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ABSTRACT:  657 

In 2008, the Wenchuan earthquake triggered many large landslides with rapid movement and long runouts, 658 

resulting in a great number of casualties. Although there have been many studies of the geographical features and 659 

initiation mechanisms of some catastrophic landslides, the movement mechanisms for many remain unclear. In 660 

this paper, we present a case study of a large landslide (debris avalanche) triggered by the 2008 Wenchuan 661 

earthquake in the Donghekou area, Sichuan Province, China. We made detailed field surveys of the geographical 662 

features of the landslide and carried out subsurface investigations of the landslide deposits using microtremor array 663 

measurement and electrical resistivity tomography (ERT). Based on the observed surficial features, shear-wave 664 

velocity (Vs) profiles and 2D electrical resistivity profiles of the landslide deposits, we estimated the possible 665 

thickness of landslide deposits at different locations, and also analyzed the possible landsliding mechanisms. We 666 

inferred that this landslide resulted from retrogressive failures on the source area, and the displaced landslide 667 

materials underwent transitional spreading with further entrainment of debris along the travel path. Multiple mud 668 

waves might have been formed in the substrate soil layers along the travel path due to the entraining of landsliding 669 

materials, and the landsliding materials might have presented channelized movements, indicating that different 670 

parts may have moved at different speeds. This kind of transportation mechanism may provide information for 671 

elevating the numerical simulation of landsliding, and also for reuse of deposit area of large landslides. 672 

 673 
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1. Introduction 675 

Rock or debris avalanches are normally characterized by large volumes, rapid movement and long runouts, and 676 

thus are usually catastrophic (e.g., Heim, 1932; McSaveney, 1978; Evans and Clague, 1999; Strom and 677 

Adbrakhmatov, 2018). They can be triggered by rainfall, earthquakes, and human activities, and some by unknown 678 

factors. To prevent or at least to mitigate the hazards resulting from different types of avalanches, numerous studies 679 

had been carried out to better understand their long runout mechanisms (McSaveney et al., 1992; Hungr et al., 680 

2001; Davies and McSaveney, 2002; Hancox et al., 2005; Crosta et al., 2007; Schulz et al., 2008). It has been 681 

assumed that the avalanches move as a fluid (e.g. Heim, 1932; Kent, 1966; Hsu, 1975; Voight et al., 1983), as 682 

disintegrating rock blocks (McSaveney, 1978), or as sliding blocks riding on thin but ductile basal layers or air 683 

cushions (Kent, 1966; Shreve, 1968; Aharonov and Anders, 2006). Statistical data indicate that the mobility of an 684 

avalanche is directly related to its volume (Heim, 1932; Scheidegger; 1973), while several physical models, such 685 

as fluidization, air cushion, self-lubrication, debris entrainment, dynamic fragmentation, and hydrothermal 686 

overpressuring, have been proposed to explain their long runout movement (Kent, 1966; Shreve, 1968; McSaveney, 687 

1978; Davies and McSaveney, 2002; Voight et al., 1983; Anders et al., 2000; Erismann and Abele, 2001; Collins 688 

and Melosh, 2003; Goren et al., 2010; Hu et al., 2018). Although these models sound reasonable, most of them are 689 

derived from field observation on the surficial features of their deposits with less information on the internal 690 

structure of the landslide deposits. This is understandable, because it is normally difficult to conduct detailed 691 

surveys on the avalanche deposits with large areas. Nevertheless, understanding the internal structure of the 692 

avalanche deposits is important for clarifying the movement mechanism and then validating the suitability of these 693 

models mentioned above. 694 

To unravel the internal structure of deposits of debris avalanches, and improve our understanding of long runout 695 

movement of displaced materials, we described a debris avalanche triggering by the 2008 Wenchuan earthquake 696 

in the Donghekou area (hereinafter termed the Donghekou landslide), Qingchuan County, Sichuan Province, China. 697 

Because Donghekou landslide is one of the most catastrophic landslides triggered by the 2008 Wenchuan 698 

earthquake and featured by long runout and great number of casualties, immediately after the earthquake, we 699 

conducted field survey on the landslide phenomena, investigated the features of the surficial layers of the landslide 700 

deposits and examined the shear behavior of landsliding materials for better understanding the possible sliding 701 

mechanism (Wang et al., 2014). It is also noted that soon after the earthquake, Donghekou landslide area was 702 

designated an earthquake ruins park. This enabled us to conduct further subsurface investigations of the landslide 703 



deposits using multiple geophysical approaches, including microtremor array measurement and electrical 704 

resistivity topography (ERT). In this paper, we present those newly obtained results. Based on these data we 705 

analyze the transportation mechanism of Donghekou landslide, and discuss its implication for understanding the 706 

movement mechanisms of other debris avalanches. 707 

 708 

2. The 2008 Wenchuan earthquake and Donghekou landslide 709 

The 2008 Wenchuan earthquake (Mw8.3) occurred on 12 May, 2008, at 14:28 local time. The epicenter, with a 710 

depth of about 19 km, is in Wenchuan County (Fig. 1) (Huang, 2009), which is 80 km west-northwest of Chengdu 711 

City in Sichuan Province, China. The fault rupture resulted in several meters of surface displacements and 712 

propagated from the epicenter for about 240 km along the Longmenshan thrust zone. This earthquake caused huge 713 

losses in both built infrastructure and human lives. According to the International Strategy for Disaster Reduction 714 

(ISDR), more than 87,400 people were confirmed dead, and 459,000 injured (Qi et al., 2010). 715 

More than 60,000 landslides were triggered by the earthquake (Huang and Li, 2009; Dai et al., 2011a; Gorum 716 

et al., 2011). The main landslide types include shallow landslides, rock falls, deep-seated landslides, and 717 

rock/debris avalanches (Dai et al., 2011b). Although most of the landslides are shallow ones, there were also many 718 

catastrophic large landslides, which resulted in severe casualties. One was the Donghekou landslide (Figs. 2 and 719 

3). 720 

The Donghekou landslide is located on the junction zone between Hongguang Town and Guanzhuang Town, 721 

Qingchuan County, about 250 km northeast of Chengdu, the capital city of Sichuan Province. It originated from a 722 

slope along the confluence of the Qingzhu River and its tributary, the Hongshi River (Fig. 2). The mountains in 723 

this area normally reach elevations of more than 1000 m, with an altitude difference (above the river bed) of about 724 

500 m, and have steep upper slopes and gentle lower slopes. 725 

Donghekou landslide is a rockslide-debris avalanche (as defined by Hungr and Evans, 2004) with the runout 726 

path material entrained by the impact of rock debris (e.g., Wang et al., 2014; Dai et al., 2011b; Yin et al., 2009, 727 

2011; Xu and Tang, 2009). A bout 1×107 m3 of landslide materials displaced from the source area and descended 728 

a vertical distance of about 500 m over a horizontal distance of about 2 km. The landslide material buried the 729 

residential areas and the rice paddy on the downstream, and blocked both rivers, resulting in the formation of a 730 

dam. It is noted that although the resultant impounding water overflowed a few days late and caused partial collapse 731 

of the dam, no further casualties were triggered to the downstream villages due to proper countermeasure. 732 

There were four villages in the Donghekou area before the earthquake. Figs. 3a and 3b present views of the 733 



Donghekou area before and after the earthquake, respectively. There were many houses located on the toe part of 734 

the mountains before the earthquake (Fig. 3a). However, almost all these houses were destroyed and the villages 735 

buried completely by the displaced landslide materials (Fig. 3b). As a result, about 780 people were killed. The 736 

dashed circles (Fig. 3a, b) show the one-story house that survived during the earthquake, while the river shown in 737 

Fig. 3b is the breached Qingzhu River. 738 

According to the local geological map (Fig. 4), the exposed strata of the research area consist of Sinian, 739 

Cambrian, Silurian and Quaternary systems, and each stratum presents a stripped distribution along the tectonic 740 

line. The Sinian system can be divided into three members, i.e., the Third (Zy3), the Second (Zy2) and the First 741 

(Zy1) members, based on their age from oldest to most recent. Zy3 mainly consists of dolomitic limestone, grey 742 

blocky dolomite, and dark blocky siliceous dolomite. Zy2 mainly consists of calcareous sericite phyllite, thin layer 743 

of crystalline limestone, and lenticular dolomite. Zy1 mainly consists of siliceous banded dolomite and siliceous 744 

dolomite. The Cambrian system consists of the Youfang Formation (€y) and Qiujiahe Formation (€q). €y mainly 745 

consists of calcareous tuffaceous sandstone, and tuffaceous sericite phyllite; while €q consists of carbonaceous 746 

siliceous slate and siliceous rock, with low-grade Mn ore. The Quaternary strata (Qh) are mainly distributed in the 747 

valley of the landslide deposit area, and consisted of alluvial or alluvial deposits (riverbed sand, gravel, silt and 748 

clay) of the Holocene Series. The lithology changes greatly, and the thickness of the siliceous dolomite interlayer 749 

is also different. The bottom is a carbonaceous siliceous slate sandwiched with thin layer of siliceous dolomite, 750 

partially lumpy siliceous dolomite. The Sinian system mainly crops out on the middle-upper part of the landslide 751 

slope, and the Donghekou landslide originated mainly in this stratum. The Cambrian Youfang and Qiujiahe 752 

Formations are found on the right side of the landslide body and the middle and lower part of the slope body. A 753 

fault (Hongkan Fault) passing through the source area has been identified (Xu and Tang, 2009; Yu et al., 2010; 754 

among others). Large extension cracks had been identified to the left side of the source area before the earthquake, 755 

and the residents were made aware of slope instability, so evacuation was enforced during heavy rainfall events. 756 

As reported by Wang et al (2014), six months after the earthquake, fumaroles with sulfur smell appeared on the 757 

middle part of the landslide (as shown in Fig. 5). Wang et al. (2014) carried out long-term monitoring of the ground 758 

temperature around the fumarole opening and reported that the ground temperature was measured as 65°C in 759 

highest value. They also conducted chemical analyses of the liquid and gas collected from the vents of the 760 

fumaroles, and concluded that the fumaroles resulted from the weathering of underlying landslide materials and 761 

bedrock (carbonaceous siliceous slate). 762 

 763 



3. Methods 764 

To unravel the internal structure of the landslide deposits, Wang et al (2014) measured the 2D shear-wave 765 

velocity (Vs) profile of the landslide deposits by using the active multichannel analysis of surface waves (MASW) 766 

method. Details for the principles of MASW method can be referred to Park et al. (1998), Miller et al. (1999), 767 

Hayashi and Suzuki (2004), and Hayashi et al. (2008). Due to the limitation in the surveying depth (usually in the 768 

range of 10-20 m) through this active MASW method, Wang et al (2014) failed to obtain the Vs information for 769 

the layers of the landslide deposits deeper than 20 m, such that the formation of the sliding surface remains unclear. 770 

Therefore, in this study we employed a passive MASW method (microtremor array measurement) (Park et al., 771 

2005), in which ten geophones with a natural frequency of 2 Hz for each were placed in an equilateral triangle (as 772 

illustrated in Fig. 6). According to Okada (2003), the detection depth through this kind of observation array for the 773 

passive MASW method is practically about three to four times of the observation radius (the distance between G2 774 

and G11 as shown in Fig. 6). Therefore, by employing the observation array shown in Fig. 6, a detection depth of 775 

about 80 m beneath the central point (G2) of the triangle could be expected. It is noted that in both the active and 776 

passive MASW methods, we employed the instrument of McSEIS-SXW (OYO Corporation) for data acquisition, 777 

and used SeisImager/SW software (OYO Corporation) for the raw data process and analysis. 778 

Passive MASW surveys were carried out at two locations (M1 and M2 in Fig. 7) on the landslide deposit area 779 

in the early morning (around 5:00 AM) of November 22, 2009, to avoid strong anthropogenic noise from cars, 780 

trucks, and other machines. At each location, altogether 27 records were measured without changing the geophone 781 

array, and each record was sampled at a frequency of 500 Hz with a data length of 16384. It is noted that Wang et 782 

al (2014) conducted active MASW survey along three survey lines on the landslide deposit area, and their locations 783 

(L1-L3) are also presented in Fig. 7. Fig. 8 shows an example of one record acquired at location M2. Using the 784 

SeisImager/SW software, a file list was at first constructed by reading all the 27 records acquired by the McSEIS-785 

SXW, which was followed by the setup of array geometry and calculation of 2D spatial autocorrelation. Thereafter, 786 

a phase velocity image in frequency domain was obtained through the phase velocity-frequency transformation in 787 

which a maximum velocity and a maximum frequency were set as 1000 m/s and 16 Hz, respectively. Basing on 788 

the phase velocity image, phase velocities were picked automatically at the mathematical maximum amplitude for 789 

each frequency by setting up the minimum frequency as 2 Hz. Because the passive MASW data do not include 790 

shallow depth information (less than 5~10 m), we used the active data that were obtained along L3 and presented 791 

in Wang et al (2014) through location projection, and conducted similar analyses to get the phase velocity image. 792 

Based on these phase velocity images, the dispersion curve was extracted. Based on the dispersion curve, an initial 793 



model for the 1-D shear wave velocity (Vs) profile was constructed by simple depth transformation, which includes 794 

calculating the wavelength (λ) from frequency and phase-velocity, inferring the depth that is defined as λ/3, and 795 

plotting the phase-velocity on depth-velocity chart. Finally, the 1-D shear wave velocity (Vs) profile was estimated 796 

by fitting the observed and the theoretical phase velocities through inversion. It is noted that non-linear least square 797 

method was employed in the inversion with number of iterations = 5, scaling factor = 0.15, acceleration factor = 798 

2.0, and damping factor = 0.01. More details on the data acquisition and analysis for both the active and passive 799 

surface wave methods could be obtained in SeisImager/SWTM Manual (Geometrics, Inc., 2009). 800 

We also used Electrical Resistivity Tomography (ERT) to measure the 2D images of the distribution of electrical 801 

resistivity in the landslide deposits. ERT surveys enable identification of resistivity contrasts that may result from 802 

both the lithological nature of the deposits and variation in water content. Due to its effectiveness, ERT had been 803 

widely used in landslide studies (Perrone et al., 2014). 804 

An ERT survey was conducted in March 2018, in which measurements were carried out using the Wenner 805 

method. All ERT data were processed using 2D inversion with the RES2Dinv software, which is based on a 806 

technique proposed by Loke and Barker (1996). Three lines (E3-E5) were arranged along the transverse direction 807 

of the deposit area, while two lines (E1 and E2) were individually set along the longitudinal direction, due to the 808 

spillway along Hongshi River. The locations of ERT survey lines E1-E5 are superimposed in Fig. 7, where a 809 

zoomed view (based on the Google Earth image shot on October 30, 2019) of the window shown in Fig. 2a is used. 810 

 811 

4. Results 812 

4.1 Shear velocity profile 813 

The analyzed results obtained from the measurements at M2 are summarized in Fig. 9, where Figs. 9a and 9b 814 

present the phase velocity images in frequency domain obtained from active and positive MASW methods, 815 

respectively. The dispersion curve extracted from Fig. 9a (for the data with frequency being ranging from 8~40 816 

Hz) and 9b (for the data with frequency being less than 8 Hz) is depicted in Fig. 9c, where wavelengths calculated 817 

from the phase velocity and frequency are also presented. Fig. 9d plots the inverted 1-D Vs profile together with 818 

the original picked phase velocities (presented by red points) whose depths were estimated following the 819 

one-third-wavelength approximation. In Figs. 9a and 9b, the error between the observed coherences and the 820 

theoretical Bessel functions is displayed by different colors: magenta indicates large error and blue presents 821 

small error. The red dots indicating the phase velocities with minimum-error at each frequency are picked for 822 

the construction of observed dispersion curves, and plotted in Fig. 9c. The observed dispersion curve shown 823 



in Fig. 9c enabled the analysis of Vs to a depth of about 80 m (as shown in Fig. 9d). In Fig. 9d, the darker 824 

grey marks the valid range of the inversion, while the light grey is not based on data. From Fig. 9d, it is seen that 825 

the Vs for the surficial layer (0~5.4 m in depth) is less than 230 m/s, and increases to 270 m/s approximately for 826 

the layer in the depth of 5.4 ~ 12.3 m. The soil layers between the depth of 12.3 m and 20.8 m have their Vs being 827 

440~590 m/s approximately, while all the soil layers deeper than 20.8 m show Vs values greater than 700 m/s. 828 

Fig. 10 presents the phase-velocity images in frequency domain, dispersion curve and the 1-D Vs profile for the 829 

measurements at M1. Similar to M2, both the active and passive data show clear dispersion curve, and enable the 830 

analysis of Vs to a depth of about 73 m. However, it is worth noting that at M1, Vs shows a sharp change from 831 

426 m/s to 700 m/s approximately at the depth of 25.6 m. After that, Vs increases to 740 m/s at the depth of 36.3 832 

m and further to 810 m/s at the depth of 42.3 m, and finally does not show remarkable change with further increase 833 

of depth. 834 

 835 

4.2 ERT profile  836 

Figs. 11a and 11b show the electrical resistivity tomographies measured along the E1 and E2 survey lines, 837 

respectively. In Fig. 11a, the domain in the upper stream area (zone D4) and surficial soil layers (0 – 10 m deep) 838 

show high resistivity (>255 ohm·m) in general, with an exception for the surficial layer ranging from 255 m to 839 

305 m along the profile; there the resistivities are smaller than 150 ohm·m. Three zones (D1, D2 and D3) show 840 

remarkably low resistivities. In zone D1 the resistivities range from about 16–25 ohm·m; while the resistivities in 841 

D2 and D3 are <15 ohm·m. 842 

In Fig. 11b, the surficial soil layers upstream of survey line E2 (10 ~ 210 m) have a high resistivity (>255 843 

ohm·m), while downstream they show relatively low resistivity. Underneath the surficial soil layer, the resistivity 844 

lowers to a small value (about 8 ohm·m at a minimum) in most area. However, the resistivity increased with further 845 

increases of depth, presenting a clear contrast with the two clusters of high resistivities. It is also noticed that the 846 

domain (D5) located between 170–200 m in HD and at 630–590 m in elevation shows lower resistivities (< 127 847 

ohm.m). 848 

Figure 12 presents the electrical resistivity tomographies measured along the E3, E4 and E5 lines, respectively. 849 

Due to a limitation on available survey cable lengths, the span of survey Lines E3 and E4 are less than 140 m, 850 

while E5 spanned 295 m. In all the survey lines, the start (zero) point indicates the right margin (looking 851 

downslope) of the landslide deposits. In Line E5 (Fig. 12a), the surficial layer (about 10 m thick) shows higher 852 

resistivities, except for the domain of 100 ~135 m in horizontal distance, while the deeper domains showed clear 853 



contrasts in resistivity structure, and the zone having approximately the same values in resistivity inclined leftward 854 

with increase of depth in general. For the survey line E4 (Fig. 12b), the surficial layer (about 6 m deep) shows high 855 

resistivity, and underneath the surficial layer there are several separated domains with low resistivity, and these 856 

domains are approximately horizontal. In Fig. 12b, it can be seen that some of the domains are underlain by layers 857 

with higher resistivity. The surficial layer in survey line E3 (Fig. 12c) does not show distinguishable contrast 858 

within the deeper soil layer. However, a domain of relatively high resistivities located at the surficial distance of 859 

40–45 m inclined rightward with increase of depth, while another domain (starting from 95 to 105 m on the 860 

surficial layer) inclined leftward with increase of depth, and the area between these two domains presents low 861 

resistivities. 862 

 863 

5. Discussion 864 

By now, several interpretations have been proposed to explain the long runout movement of Donghekou 865 

landslide (Xu and Tang, 2009; Yin et al., 2009, 2011; Wang, et al., 2014). Some studies emphasized the effect of 866 

strong seismic motion on the possible sliding velocity of landslide materials when they slid from the source area 867 

(Zhou et al., 2013; Zhang et al., 2015), while others examined the effect of entrainment of debris on the mobility 868 

along the transport path (Yuan et al., 2014; Wang et al., 2014).  869 

Numerical simulations using different approaches have been carried out to simulate the processes of 870 

transportation and deposition of landslide materials (Li et al., 2012; Zhang et al., 2013, 2015; Huang et al., 2012a, 871 

among others). For example, Li et al. (2012) simulated the kinematic behavior and concluded that a low friction 872 

coefficient (about 0.1) is required to justify its mobility. Yuan et al. (2014), using 2-D DEM analysis, concluded 873 

that the landslide in the source area began as a push-type and then changed to a retrogressive one, and the 874 

entrainment of sliding path materials slightly elevated the mobility. Zhang et al. (2015) analyzed the mobility of 875 

the Donghekou landslide using a seismic discontinuous deformation analysis (DDA) approach and concluded that 876 

seismic loading on the displaced landslide materials could be a factor helping increase the mobility of the 877 

Donghekou landslide. Huang et al. (2012b) concluded that Donghekou landslide may have several flow stages 878 

with long sliding distances. Nevertheless, most of these studies are based on surficial examination of the landslide 879 

deposits without information on their internal structure. As pointed out by Strom (2006), developing reliable 880 

models for predicting the movement and deposition processes of a landslide mass needs to intercorporate the 881 

topographical, structural and depositional features, which should be regarded as constraints for checking the 882 

reliability of the numerical model. However, for Donghekou landslide, the internal features of the landslide 883 



deposits and the basal sliding surface have not been clarified, so that the numerical simulations can only use the 884 

deposit area of the landslide materials as the constraint for model calibration. This may be the reason why different 885 

failure models for the landslide materials from the crown were adopted in different simulations. 886 

The thickness of the landslide deposits on Donghekou area seems to be an unsolved issue. For example, the 887 

descriptive texts on some guide plates erected on the ruins park tell indicate that some areas of the landslide 888 

deposits damming these rivers have a thickness of more than 100 m. On the other hand, Zhang et al (2011) reported 889 

that the thickness of the landslide deposits varies from several meters to dozens of meters, while Xu and Tang 890 

(2009) reported that the landslide dams on Hongshi River and Qingzhu River are about 50 m and 20 m in height, 891 

respectively. Further, Li et al (2012) stated that the landslide dam on Qingzhu River is about 25 m in maximum 892 

thickness. From Figs. 10d, it is noticed that Vs of the soil layer changes from 460 m/s to 700 m/s at the depth of 893 

about 25.6 m. Considering that Vs = 700 m/s had been widely used for defining the engineering bedrock (Miller 894 

et al., 1999; Santamarina et al., 2001), we infer that the soil layer deeper than 25.6 m with Vs > 700 m/s be the 895 

bedrock of the original ground, and the overlaid soil layers be the landslide deposits, and then the landslide deposits 896 

at location M1 may have a thickness of about 25.6 m. This inference is supported by the ERT results shown in Fig. 897 

11d, where the electrical resistivities of soil layers show significant contrast at the depth of about 26 m. By 898 

comparing Figs. 9d and 11b, we further infer that the thickness of landslide deposits at location M2 be about 21 899 

m. It is noted that these inferred thicknesses show good consistency with the maximum thickness of 25 m reported 900 

by Li et al (2012), although they did not provide any evidence for the estimation of this value. In this sense, our 901 

result for the possible thickness of landslide deposits provides reliable evidence, because previous estimates for 902 

the thickness of the landslide deposits in the Donghekou area were based on a DEM with a 10-m-contour, which 903 

was the only available one for this area before the earthquake. 904 

According to Dunning and Armitage (2011), rock-avalanche deposits commonly have three sedimentary facies: 905 

a carapace facies, a body facies, and a basal facies. The carapace facies represents the coarsest unit composing the 906 

surface and near surface, the body facies is the main body of the rock-avalanche deposit, while the basal facies 907 

indicates the base of the rock-avalanche deposit. By employing the active MASW method, Wang et al. (2013b) 908 

examined Vs values of the deposits of a landslide that was triggered by the same earthquake in the Tianchi area, 909 

Sichuan. They identify a clear boundary between the basal facies and the body facies, and suggest that the 910 

superficial layer (carapace facies) and the bottom layer (basal facies with a thickness of about 2-3 m) have 911 

relatively smaller shear-wave velocities. 912 

For Donghekou landslide, Wang et al (2014) conducted active MASW survey along three survey lines (L1-L3) 913 



on the landslide deposit area. Fig.13 summarizes the Vs profiles along these survey lines. As reported in Wang et 914 

al (2014), L1 and L2 are laid along the drainage channel on the right and left banks, respectively, and are 70 m 915 

apart. The Vs profile along L2 (Fig. 13a) showed that the upper layers are weaker, with Vs values ranging from 916 

250–300 m/s. This weak layer is about 12 m thick near the zero point at the horizontal distance (HD) and becomes 917 

thicker when the HD becomes greater. For L1, the upper weaker layers with Vs values ranging from 250–300 m/s 918 

are thin and their thickness increases also when HD becomes greater (Fig. 13b). The shear-wave velocity along 919 

L3 showed that the superficial soil layers have small Vs values (ranging from 180–270 m/s) (Fig. 13c). From Figs. 920 

9, 10 and 13, it is inferred that the most upper layers of landslide deposits with small Vs values may present the 921 

carapace facies. The existence of carapace facies can also be inferred from the ERT profile shown in Fig. 11. The 922 

vertical distribution of resistivity at Location M2 (shown in Fig. 11b) indicates the existence of three main layers, 923 

namely, surficial layer (about 5 m thick) with resistivity being greater than 100 ohm.m, middle layer (about 10 m 924 

thick) with the resistivity being among 60~100 ohm.m, and the bottom layer locating above the dashed line (about 925 

4 m thick) with resistivity being among 100-127. It is understood that the resistivity of a soil layer could be changed 926 

with variation of soil moisture. However, the high resistivities in Fig. 11b are distributed along the superficial 927 

layers at different elevation (say from 0 to 200 m in HD), it will be reasonable to infer that the high resistivity of 928 

the superficial layers results from loose soil structure, which may result in small Vs value, corresponding to the 929 

carapace facies. 930 

It is also noted that the basal facies consisting of thin layers with smaller Vs values had not been identified 931 

through these Vs profiles presented in Figs. 9, 10 and 13, probably because the basal faces is located in a depth to 932 

which the active MASW method failed to reach, while the basal faces is too thin such that the passive MASW 933 

method failed to individuate it, i.e., the thickness of the basal faces is out of the resolution of the passive MASW 934 

method. Therefore, further survey, such as drilling, will be necessary to delineate the basal facies in the landslide 935 

deposits of Donghekou area. 936 

As pointed out by Hungr et al. (2001), in debris avalanches, multiple surges are not common, but may occur as 937 

a result of retrogressive failures from the crown or slides off the source scar. The ERT results (Fig. 11a) indicate 938 

the presences of several domains with diagonally forward isopleth resistivity. This phenomenon might result from 939 

progressive failures occurring on the source area. As reported by Wang et al. (2014), the colluvium in the valley 940 

on area B1 (Fig. 3) started its movement almost at the same time as the landsliding originating on the upper slope 941 

(area B2), which was followed by the downslope movement of the “mountain” on area B3. Further failures on a 942 

smaller scale on the source area continued for two days. Zones D2 and D3 (Fig. 11a) mainly consist of slate rocks, 943 



where rapid chemical weathering (biological oxidation of pyrite) caused the appearance of fumes (as shown in Fig. 944 

5) and resulted in an increase in ground temperature for some years after the earthquake (Wang et al., 2014). The 945 

domain with high resistivity upstream of D4 may present the deposits of fragmented dolomite limestone 946 

originating from the uppermost source area.  947 

Landslide materials originating from a source area often may entrain debris along the sliding path, increasing 948 

the landslide mobility and destructiveness (Sassa, 1985; Hungr and Evans, 2004; McDougall and Hungr, 2005; 949 

Wang et al., 2003, 2013a, 2014; Crosta et al., 2009; Mangeney et al., 2010; Berger et al., 2011; Dufresne, 2012; 950 

Zhou et al., 2016). Although entrainment has also been incorporated in some numerical landslide simulations, the 951 

interaction between the sliding debris and the original ground along the sliding path remains unclear. Hungr and 952 

Evans (2004) presented a hypothetical mechanism of a flow with entrainment of liquefiable materials and provided 953 

a schematic illustration for the interaction between the moving rock mass and the substrate along the travel path 954 

(Fig. 14). In this model, the landsliding materials from the source area may trigger liquefaction through impact on 955 

a liquefiable substrate layer (Fig. 14b). As the result, a mud wave could be formed and then projected forward (Fig. 956 

14c), and finally the rock mass may be deposited on the mud wave with long travel (Fig. 14d). For the Donghekou 957 

landslide, the electrical resistivity topography profiles presented in Fig. 11b suggest that the landsliding of those 958 

long-traveled materials might have involved multiple surges resulting from different failure stages. The contour 959 

lines (dashed lines) for the resistivities of 127–200 ohm.m in the domain starting from HD 75 to 135 m are 960 

approximately horizontal, and then shift to an uphill inclination with further increase in HD (from HD 135 to 170 961 

m). A similar phenomenon can be observed for the domain from HD 200 to 310 m. As mentioned above, we infer 962 

that the soil layers underneath the soil layer (with resistivities of 127–200 ohm.m) are the former ground surface 963 

before the earthquake, and the ground underwent shear failures at different locations along the travel path during 964 

the landsliding, resulting in the formation of multiple mud waves, as shown in Fig. 11.  965 

Through comparing the Vs profile along L2 and the ERT profile along E5 (Fig. 15), we found that channelized 966 

sliding may also have occurred within the landsliding materials during the emplacement. As shown in Fig. 15a, 967 

the boundaries showing greater Vs values (marked by dashed lines at points of P and P’) are approximately in good 968 

agreement with those revealed by the ERT profile (as presented by points of Y and Y’ in Fig. 15b). Similar 969 

phenomena can also be identified in the ERT profile shown in Fig. 12c, where the locations of the boundaries are 970 

marked by R and R’, and in the Vs profiles shown in Figs.13a and b (locations are marked by T and T’). We 971 

interpret these boundaries as longitudinal ridges, which channelized the emplacement of sliding material. As 972 

pointed out in other studies, longitudinal ridges are a frequently occurring topographical feature on rock avalanches 973 



deposits (Dufresne and Davies, 2009; Dufresne et al., 2010, 2019; Dunning et al., 2015; Shugar and Clague, 2011), 974 

and could be in the form of ridges, flowbands or aligned hummocks that are characterized by differences in texture. 975 

Although shearing within the moving debris has been inferred as one reason for these kinds of ridges or flowbands, 976 

details on their formation remain unclear (Dufresne et al., 2019). Therefore, the Vs and ERT profiles (Figs. 12 and 977 

15) provide evidence for better understanding the internal structures of these ridges or flowbands. 978 

The lower resistivities (< 127 ohm.m) in the domain D5 shown in Fig. 11b may suggest the existence of a fault 979 

that had not been identified yet. Based on the topography and location of an old landslide located on the slope on 980 

the right side of the landslide deposit area, we infer that a fault (see Fig. 7) may exist. Nevertheless, concerning 981 

this inference, further surveys will be necessary and will be conducted in the near future. 982 

 983 

6. Conclusions 984 

During the 2008 Wenchuan earthquake (M8.0), a catastrophic landslide occurred in the Donghekou area. The 985 

landslide had a total volume of about 1×107 m3 and a travel distance of about 2.0 km, with an elevation drop of 986 

about 500 m. Four villages were buried by the landslide materials, and more than 780 people were killed. The 987 

displaced landslide materials also dammed two rivers, threatening people downstream immediately after the 988 

earthquake. Field investigations and geophysical surveys using different approaches suggest the following 989 

conclusions. 990 

1. Donghekou landslide can be classified as a debris avalanche. The landslide materials originating from the 991 

source area involved retrogressive failures, resulting in the formation of a landslide deposit with differing 992 

internal structures at different locations. 993 

2. The landslide materials deposited in the upper stream area of the valley (immediately below the toe of the 994 

landslide slope) showed complex structures. Two domains showed very low resistivities, representing 995 

deposits of slate rocks from the landslide source area and weathered quickly after being outcropped. 996 

3. Combined analyses of both passive and active surface waves enabled the pickup of dispersion curve in an 997 

extended frequency range, and then enabled the estimation of Vs for the soil layers to a depth of about 80 998 

m. The Vs and ERT profiles provided more reliable evidence for estimating the thickness of landslide 999 

deposits, and also provided information for understanding the carapace facies formed in the landslide 1000 

deposits. 1001 

4. The ERT profiles suggest that the landsliding materials may have involved at least two main surges, which 1002 

resulted in the formation of mud waves in the substrate soil layers along the slide path. 1003 



5. The Vs and ERT profiles along lines traversing the landslide deposits reveal that channelized sliding may 1004 

have occurred within the landsliding materials. The structure of the channelized sliding provides evidence 1005 

for understanding the formation of ridges within landslide materials during their emplacement. 1006 

 1007 

Finally, it is noted that all these inferences mentioned above are based on the MASW and ERT data. Considering 1008 

the limitation of these geophysical survey methods, further survey (such as borehole drilling) will be needed to 1009 

elevate the accuracy of these inferences. Applying these methods to some landslides in Japan are also in operation 1010 

for better understanding the internal structures of landslide deposits resulting from different types of landslides 1011 

triggered by rainfall and/or earthquake.  1012 
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Fig. 1. Epicenter of Sichuan earthquake, distribution of landslides, and location of Donghekou landslide (after 1237 
Huang, 2009). 1238 
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Fig. 2. Donghekou landslide: (a) oblique aerial view; (b) Longitudinal section along the main sliding path (after 1299 
Yin, 2008). L1, L2, L3: S-wave survey lines presented in Wang et al. (2014), and the arrows in L1~L3 present the 1300 
extending direction of the survey lines. 1301 
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Fig. 3. Views of Donghekou area towards S-W before (a) and after (b) the earthquake, respectively (after Wang et 1346 
al., 2014). B1: toe part of the valley where the material started to move almost at the same time as the earthquake. 1347 
B2: location of middle slope; B3: main source area. Photo in (b) was taken on 7 July 2018. The dashed cycles in 1348 
both views mark the location of a one-stored building that was not destroyed during the earthquake. 1349 
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Fig. 4. Geological map of Donghekou landslide area (after Xu and Tang, 2009) 1365 
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Fig. 5. Fumes rising from the landslide deposits near location B1 in Fig. 3a (taken on March 6, 2009) 1389 
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Fig. 6. Layout of geophones in triangular array for microtremor method (passive SPAC method).  1414 
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Fig. 7. layout of ERT lines (E1-E5), S-wave survey lines (L1, L2, L3), and locations of microtremor monitoring 1435 
(M1, M2) (Google Earth image shot on October 30, 2019). 1436 
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Fig. 8. An example of the record of passive MASW measurement at survey point M2. 1471 
 1472 
 1473 
 1474 
 1475 
 1476 
 1477 
 1478 
 1479 
 1480 
 1481 
 1482 
 1483 
 1484 
 1485 
 1486 
 1487 
 1488 
 1489 
 1490 
 1491 
 1492 
 1493 
 1494 
 1495 
 1496 
 1497 
 1498 
 1499 
 1500 
 1501 
 1502 
 1503 



 1504 
 1505 
 1506 
 1507 
 1508 
 1509 
 1510 
 1511 
 1512 
 1513 
 1514 
 1515 
 1516 
 1517 
 1518 
 1519 
 1520 
 1521 
 1522 
 1523 
 1524 
 1525 
 1526 
 1527 
 1528 
 1529 
 1530 
 1531 
 1532 
 1533 
 1534 
 1535 
 1536 
 1537 
 1538 
 1539 
 1540 
 1541 
 1542 
 1543 
 1544 
 1545 
 1546 
 1547 
 1548 
 1549 
 1550 
 1551 
Fig. 9. Vs profile for Point M2. (a), (b) Phase-velocity images in frequency domain obtained by active and passive 1552 
methods, respectively; red dots indicate the picked phase-velocity; (c) Dispersion curve obtained from (a) and (b); 1553 
(d) Inverted shear-wave velocity (Vs) profile together with the original picked phase velocities (presented by red 1554 
points) whose depths were estimated following the one-third-wavelength approximation.  1555 
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Fig. 10. Vs profile for Point M1. (a), (b) Phase-velocity images in frequency domain obtained by active and passive 1607 
methods, respectively, there the red dots indicate the picked phase-velocity; (c) Dispersion curve obtained from 1608 
(a) and (b); (d) Inverted shear-wave velocity (Vs) profile together with the original picked phase velocities 1609 
(presented by red points) whose depths were estimated following the one-third-wavelength approximation. 1610 
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Fig. 11. Electrical resistivity topography (ERT) profiles along survey lines E1 and E2; the locations of cross section survey lines E3-E4 and microtremor measurement sites 1648 
M1 and M2 are marked. 1649 
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Fig. 12. Electrical resistivity tomography (ERT) profiles along survey line E5 (a), E4 (b), and E3 (c) on the landslide deposits. The arrow shows the location of intersection of 1688 
two survey lines. Dashed lines mark the boundaries of channelized sliding. 1689 
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Fig. 13. Shear-wave velocity (Vs) profiles along traverse line L2 (a), L1 (b), and L3 (c), respectively (After Wang 1716 
et al., 2014).  1717 
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Fig. 14. Schematic illustration of interaction between moving rock mass and liquefiable substrate (after Hungr and 1747 
Evans, 2004). (a) rock mass moving towards the substrate layer; (b) deformed substrate with overriding rock mass; 1748 
(c) mud wave projected forward, (d) mud wave and rock mass deposit. 1749 
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Fig. 15. Comparison between the shear-wave velocity (Vs) profile along L2 (after Wang et al., 2014) and 1772 
electrical resistivity tomography (ERT) profile along E5. Dashed lines mark the possible boundaries of 1773 
channelized sliding. 1774 
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Captions: 1775 

Fig. 1. Epicenter of Sichuan earthquake, distribution of landslides, and location of Donghekou landslide (after 1776 
Huang, 2009). 1777 
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Fig. 2. Donghekou landslide: (a) oblique aerial view; (b) Longitudinal section along the main sliding path (after 1779 
Yin, 2008). L1, L2, L3: S-wave survey lines presented in Wang et al. (2014), and the arrows in L1~L3 present the 1780 
extending direction of the survey lines. 1781 
 1782 
Fig. 3. Views of Donghekou area towards S-W before (a) and after (b) the earthquake, respectively (after Wang et 1783 
al., 2014). B1: toe part of the valley where the material started to move almost at the same time as the earthquake. 1784 
B2: location of middle slope; B3: main source area. Photo in (b) was taken on 7 July 2018. The dashed cycles in 1785 
both views mark the location of a one-stored building that was not destroyed during the earthquake. 1786 
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Fig. 4. Geological map of Donghekou landslide area (after Xu and Tang, 2009) 1788 
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Fig. 5. Fumes rising from the landslide deposits near location B1 in Fig. 3a (taken on March 6, 2009) 1790 
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Fig. 6. Layout of geophones in triangular array for microtremor method (passive SPAC method).  1792 
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Fig. 7. layout of ERT lines (E1-E5), S-wave survey lines (L1, L2, L3), and locations of microtremor monitoring 1794 
(M1, M2) (Google Earth image shot on October 30, 2019). 1795 
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Fig. 8. An example of the record of passive MASW measurement at survey location M2. 1797 
 1798 
Fig. 9. Vs profile for Point M2. (a), (b) Phase-velocity images in frequency domain obtained by active and passive 1799 
methods, respectively; red dots indicate the picked phase-velocity; (c) Dispersion curve obtained from (a) and (b); 1800 
(d) Inverted shear-wave velocity (Vs) profile together with the original picked phase velocities (presented by red 1801 
points) whose depths were estimated following the one-third-wavelength approximation.  1802 
 1803 
 1804 
Fig. 10. Vs profile for Point M1. (a), (b) Phase-velocity images in frequency domain obtained by active and passive 1805 
methods, respectively, there the red dots indicate the picked phase-velocity; (c) Dispersion curve obtained from 1806 
(a) and (b); (d) Inverted shear-wave velocity (Vs) profile together with the original picked phase velocities 1807 
(presented by red points) whose depths were estimated following the one-third-wavelength approximation. 1808 
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Fig. 11. Electrical resistivity topography (ERT) profiles along survey lines E1 and E2; the locations of cross section 1811 
survey lines E3-E4 and microtremor measurement locations M1 and M2 are marked. 1812 
 1813 
Fig. 12. Electrical resistivity tomography (ERT) profiles along survey line E5 (a), E4 (b), and E3 (c) on the 1814 
landslide deposits. The arrow shows the location of intersection of two survey lines. Dashed lines mark the 1815 
boundaries of channelized sliding. 1816 
 1817 
Fig. 13. Shear-wave velocity (Vs) profiles along traverse line L2 (a), L1 (b), and L3 (c), respectively (After Wang 1818 
et al., 2014). 1819 
 1820 
Fig. 14. Schematic illustration of interaction between moving rock mass and liquefiable substrate (after Hungr and 1821 
Evans, 2004). (a) rock mass moving towards the substrate layer; (b) deformed substrate with overriding rock mass; 1822 
(c) mud wave projected forward, (d) mud wave and rock mass deposit. 1823 
 1824 
Fig. 15. Comparison between the shear-wave velocity (Vs) profile along L2 (after Wang et al., 2014) and electrical 1825 
resistivity tomography (ERT) profile along E5. Dashed lines mark the possible boundaries of channelized sliding. 1826 


