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ABSTRACT
The density-functional tight-binding (DFTB) formulation of the fragment molecular orbital method is combined with periodic boundary
conditions. Long-range electrostatics and dispersion are evaluated with the Ewald summation technique. The first analytic derivatives of the
energy with respect to atomic coordinates and lattice parameters are formulated. The accuracy of the method is established in comparison
to numerical gradients and DFTB without fragmentation. The largest elementary cell in this work has 1631 atoms. The method is applied to
elucidate the polarization, charge transfer, and interactions in the solution.
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I. INTRODUCTION

Quantum-mechanical (QM) calculations can describe many
useful properties of materials such as heat of chemical reactions,
electronic structure, and multipole moments. To reduce the large
cost of QM calculations, various methods have been proposed, tak-
ing advantage of the locality of the electron density. Among low scal-
ing methods,1 there are a large number of various fragment-based
approaches.2–12

One of them is the fragment molecular orbital (FMO)
method.13–17 FMO has been developed for many ab initio QM meth-
ods and used to evaluate single point energies and interactions
between fragments,18,19 especially between residues in proteins and
ligands.20,21 However, traditional QM methods combined with FMO
are rather expensive for full geometry optimizations and molecular
dynamics (MD), although some progress has been achieved22,23 in
reducing the cost.

To enable full structure relaxation, density-functional tight-
binding (DFTB) is a good compromise between accuracy and effi-
ciency. DFTB is parameterized to reproduce either density func-
tional theory (DFT) properties24–26 or other high-level methods,27–29

but at a very small fraction of cost. FMO has been combined with
DFTB for both two and three-body expansions in FMO and second-
and third-order of DFTB.30–33

A few of the fragment-based methods7,34,35 can be used with
periodic boundary conditions (PBC). Although some work has
been done for formulating FMO with PBC,36,37 these Hartree–Fock
approaches are costly for large scale applications and lack a proper
summation of the long-ranged electrostatic interaction and analytic
derivatives with respect to lattice parameters.

In this work, by employing DFTB, a practical FMO–DFTB/PBC
method is formulated, in which the periodic electrostatics is properly
accounted for using the Ewald38 summation technique, and the ana-
lytic gradients with respect to both atomic coordinates and lattice
parameters are derived. Besides FMO, there are other low scaling
formulations of DFTB.39–41

FMO/PBC is intended to be used with large elementary cells.
Typical examples are solutions, crystals with defects, adsorption
on crystal surfaces, and crystals of macromolecules such as pro-
teins. The concentration of solutes, defects, or guest molecules is
often low, which means that a large elementary cell should be
used.
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There is a strong demand for the QM method with PBC that can
be used for large periodic cells, and the method in this work opens
many future fields of applications. Also, the developed method deliv-
ers interaction energies between fragments in a periodic system, pro-
viding quantitative means for gaining physical insight into the forces
driving processes such as adsorption or chemical reactions.

II. METHODOLOGY
A. Density-functional tight-binding theory
with periodic boundary conditions

The total energy per unit cell in the third-order DFTB3/PBC
method42,43 can be written as

E =∑
k
wk ∑

μν∈0
Dk

μνH
0,k
μν +

1
2∑AB

∑
R
γA∈0,B∈RΔqAΔqB

+
1
6∑AB

∑
R
(ΓA∈0,B∈RΔqA + ΓB∈0,A∈RΔqB)ΔqAΔqB

+∑
R
∑
A∈0

∑
B∈R(B<A)

Erep
AB , (1)

where k is the wave vector, wk is the weight factor, Dk
μν is the electron

density matrix, ΔqA is the Mulliken atomic charge of atom A, and 0
and R are the original and replicated (image) cell, respectively. γAB
and ΓAB are the interatomic distance dependent functions. The sec-
ond and third terms in Eq. (1) describe the electrostatic interaction
with some exchange–correlation taken into account43 as related to
the second- and third-order of DFTB, respectively.

In DFTB2, all ΓAB values are zero; DFTB2 equations can thus
be trivially obtained from DFTB3. In this work, both DFTB2 and
DFTB3 are implemented.

The k-dependent 0-order Hamiltonian is

H0,k
μν =∑

R
eik⋅RH0

μ∈0,ν∈R, (2)

where R runs over replicated cells including the original cell 0.
H0

μ∈0,ν∈R is computed as for molecules using atomic orbitals (AOs)
μ ∈ 0 and ν ∈ R.

Because atomic charges are independent of the cell R, one can
sum the γ terms in Eq. (1) as

γ̃AB =∑
R
γA∈0,B∈R. (3)

As the distance rAB between atoms A and B increases, γAB asymp-
totically behaves as 1/rAB, and the summation over R has to be
performed over replicated cells to infinity. In this study, the three-
dimensional Ewald summation technique38 is used as follows:

∑
R

1
rA∈0,B∈R

=∑
R

erfc(α∣rAB + R∣)
∣rAB + R∣

+
4π
V ∑G≠0

cos(G ⋅ rAB)
∣G∣2

× exp(−
∣G∣2

4α2 ) −
π

Vα2 − δAB
2α
√
π

, (4)

where rAB is the difference between Cartesian coordinates of atoms
A and B, α is a parameter that regulates the separation of the short
and long distance terms,G is a unit cell vector in the reciprocal space,
and V is the volume of the unit cell.

Because the electrostatic interaction is conditionally conver-
gent, the original Ewald summation requires that the system should
be neutralized. However, the third term in Eq. (4), as a result of
the conducting or tinfoil boundary conditions,44 can compensate for
a charge in the periodic cell. Nevertheless, it is known that these
boundary conditions lead to an overstabilization of ions,45 so PBC
is usually applied to systems with the total zero charge.

In the universal force-field (UFF)-type dispersion model,46,47

one has to sum 1/rmAB terms for some m over replicated cells. The
Ewald summation is used to do that.48 Another variant of the disper-
sion model49 has been implemented as well, but this model is not a
simple polynomial function of 1/rAB, so the dispersion contribution
is computed by directly summing the values over the original and a
few neighboring image cells. In this study, the UFF-type dispersion
model is employed throughout.

The ΓAB function is relatively short-ranged and decays expo-
nentially,43 so it can be computed directly by summing over a few
neighboring cells R,

Γ̃AB =∑
R
ΓA∈0,B∈R. (5)

The same direct summation over a few cells can be done for the
repulsion (rep) term in Eq. (1),

Ẽrep
= ∑

A>B
Ẽrep
AB =∑

R
∑
A∈0

∑
B∈R(B<A)

Erep
AB . (6)

In this work, only the Γ point (the center of the Brillouin zone)
is used, that is, wk is 1 for k = 0 and 0 otherwise, so that Eq. (1) can
be simplified as

E = ∑
μν∈0

DμνH̃0
μν +

1
2 ∑AB∈0

γ̃ABΔqAΔqB

+
1
6 ∑AB∈0

(Γ̃ABΔqA + Γ̃BAΔqB)ΔqAΔqB + Ẽrep, (7)

where

H̃0
μν =∑

R
H0

μ∈0,ν∈R. (8)

This matrix is relatively short-ranged and can be computed by
summing over a few neighboring cells.

B. FMO–DFTB with periodic boundary conditions
In FMO, an elementary cell is divided into fragments. During

each fragment calculation, the atomic charges for atoms in the cor-
responding fragment are updated, whereas the charges of the other
atoms (not in the fragment) are fixed. After performing all frag-
ment calculations, the total embedding is updated using the atomic
charges of all fragments. Then fragment calculations are repeated
with the updated embedding until convergence of the fragment
energies with respect to the embedding. Finally, fragment pairs (in
FMO3, also triples) are computed in the embedding to describe
interfragment charge transfer.18

The workflow30,50 for FMO–DFTB with PBC is essentially the
same as without PBC. There are only two basic differences: (a) the

J. Chem. Phys. 154, 111102 (2021); doi: 10.1063/5.0039520 154, 111102-2

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics COMMUNICATION scitation.org/journal/jcp

embedding is due to the atoms in the original and all replicated
cells with (PBC) vs atoms in the molecule (no PBC) and (b) dimers
cover fragment pairs in the original cell and also when one fragment
is in an image cell with (PBC) vs dimers within the molecule (no
PBC). However, the overall scheme is the same, as the summation
over image cells can be done internally (see below) hiding the PBC
treatment in the gamma summations [Eq. (3)].

The total energy for the two-body FMO method (FMO2) is

E =
N

∑
I
E′I +

N

∑
I>J

ΔEIJ , (9)

where pair interaction energies (PIEs) between fragments I and J are

ΔEIJ = E′IJ − E
′

I − E
′

J + ΔEV
IJ . (10)

The internal energy of X (X = I for fragments and X = IJ for
pairs) is

E′X = ∑
μν∈X

DX
μν(H̃

0,X
μν + PX

μν) +
1
2 ∑AB∈X

γ̃ABΔqXAΔq
X
B

+
1
6 ∑AB∈X

(Γ̃ABΔqXA + Γ̃BAΔqXB)Δq
X
AΔq

X
B + Ẽrep,X , (11)

where PX
μν is the hybrid orbital projection (HOP) operator for cova-

lent boundaries between fragments.51 In the AO basis, the operator
is

PX
μν = B∑

ρσ
SXμρD̃

X
ρσS

X
σν, (12)

where B is a universal constant (usually 106 a.u.), D̃X
ρσ is the density

of the hybrid orbitals,52 and Sμρ is the overlap matrix in the AO basis.
The energy representing the coupling of the second (ΔΔqIJA) and

third (ΔΔQIJ
A) order charge transfer terms33 between I and J with the

embedding potential V (due to fragments K) is

ΔEV
IJ = ∑

A∈IJ

N

∑
K≠I,J
∑
B∈K
{γ̃ABΔqIJAΔq

K
B +

1
3
Γ̃ABΔΔQIJ

AΔq
K
B

+
1
3
Γ̃BAΔΔqIJA(Δq

K
B )

2
}. (13)

If two fragments are far from each other, there is no charge
transfer between them and the electrostatic dimer (ES-DIM)
approximation can be used to compute the energy for such dimer
IJ as

E′IJ ≈ E
′

I + E′J +∑
A∈I
∑
B∈J
{γ̃AB +

1
3
(Γ̃ABΔqIA + Γ̃BAΔqJB)}Δq

I
AΔq

J
B. (14)

C. Analytic derivatives with respect
to atomic coordinates

By differentiating the total energy with respect to a nuclear
coordinate a, one obtains32

dE
da
=∑

I
(1 −NI

md)E
′a
I +

N

∑
I>J
(E′aIJ + ΔEV ,a

IJ )

+ 4
N

∑
K

virt

∑
k∈K

occ

∑
l∈K

UK,a
kl LK

kl, (15)

where NI
md is the number of short-range dimers including monomer

I, “virt” and “occ” stand for virtual and occupied molecular orbitals,
respectively. UK,a

kl is the orbital response term,32 and LK
kl is the orbital

Lagrangian.32 In the derivatives of E′aX and ΔEV ,a
IJ , one has to sum

over replicated cells as in Eqs. (2) and (3); otherwise, the expressions
are the same as for molecules.32

To evaluate the last term in Eq. (15), coupled-perturbed equa-
tions are solved using the self-consistent Z-vector method,32

N

∑
L

virt

∑
i∈L

occ

∑
j∈L

ZL
ijAL,K

ij,kl = L
K
kl, (16)

where AX,Y
ij,kl defined for molecules32 is modified by summing over

replicated cells. Solving Eq. (16), one obtains ZL
ij and the gradient is

computed using the Z-vector technique53 as

dE
da
=∑

I
(1 −NI

md)E
′a
I +

N

∑
I>J
(E′aIJ + ΔEV ,a

IJ )

+ 4
N

∑
K

virt

∑
k∈K

occ

∑
l∈K

ZK
klB

K,a
kl , (17)

where BX,a
ij is defined elsewhere32 for molecules and a summation

over replicated cells has to be used in it for PBC.
In practice, the most difficult part of implementing DFTB/PBC

in the Γ point approximation is the replacement of the long-ranged
γAB with γ̃AB, which has to be summed properly to infinity; in addi-
tion, one has to do an explicit summation of nearby cells for short-
ranged terms, such as the 0-order Hamiltonian. In the FMO/PBC
equations, the PBC part is hidden inside tilde terms and the equa-
tions [e.g., Eq. (9)] are similar to those without PBC.

D. Analytic derivatives with respect
to lattice parameters

The stress tensor is

Παβ = −
1
V ∑γ

dE
daαγ

aβγ, (18)

where aαβ is the lattice parameter, α, β = x, y or z (aα is the lattice
vector).

To compute the stress tensor in FMO, one needs to obtain
the tensor contribution from the internal energy of X [see Eqs. (9)
and (18)],

∑
γ

dE′X
daαγ

aβγ = ∑
AB∈X

dE′X
drαAB

rβAB, (19)

= ∑
AB∈X
∑
μ∈A
∑
ν∈B

⎧⎪⎪
⎨
⎪⎪⎩

DX
μν
∂H̃0,X

μν

∂rαAB
−W′X

μν
∂S̃Xμν
∂rαAB

+
1
2
∂S̃Xμν
∂rαAB

ΩX
AB}r

β
AB +

1
2 ∑AB∈X

{
∂γ̃AB
∂rαAB

+
1
3
(
∂Γ̃AB
∂rαAB

ΔqXA +
∂Γ̃BA
∂rαAB

ΔqXB)}Δq
X
AΔq

X
B r

β
AB

+ ∑
A>B∈X

∂Ẽrep
AB

∂rαAB
rβAB, (20)

J. Chem. Phys. 154, 111102 (2021); doi: 10.1063/5.0039520 154, 111102-3

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics COMMUNICATION scitation.org/journal/jcp

where rαAB is the α component of the rAB and W′X
μν and ΩX

AB are
defined elsewhere.32

The derivatives of ΔEV
IJ are obtained similarly. After summing

all fragment terms in Eq. (9), one obtains the total stress ten-
sor Παβ for FMO, from which the derivatives with respect to lat-
tice parameters are obtained by multiplying with a reciprocal cell
matrix.42

Response contributions described above are also needed for
a proper evaluation of the stress tensor. As ZL

ij is obtained in
FMO–DFTB for analytic gradients anyway, the extra cost for PBC
is very little. Neglect of the response can make the stress tensor
non-symmetric.

E. Extension to FMO3 and interfragment distances
for PBC

The energy in the three-body FMO3–DFTB method is33

EFMO3
=

N

∑
I
E′I +

N

∑
I>J

ΔEIJ +
N

∑
I>J>K
(ΔEIJK − ΔEIJ − ΔEJK − ΔEKI). (21)

In this work, FMO3–DFTB was also developed (the formu-
lation closely follows FMO2–DFTB, and the details are omitted).
Both the energy and its analytic derivatives can be computed for
FMO3–DFTB/PBC.

There are two types of approximations used in FMO–DFTB,
ES-DIM, and I-TRIM (I-TRIM stands for ignoring separated
trimers) applied to fragments pairs and triples, respectively. Both
approximations rely on a definition of a distance rIJ between frag-
ments I and J. For molecules, it is

rIJ = min
A∈I,B∈J

rAB
RA + RB

, (22)

where RA is the van der Waals radius of atom A and rAB is the
geometrical distance between atoms A and B.

FIG. 1. Two copies of the elementary cell are shown. Without PBC, the distance
between fragments I and J is r IJ . With PBC, the distance is reduced to rPBC

IJ
because of the presence of replicated images of fragments, I′ and J′.

However, for PBC, there are replicated images of the elemen-
tary cell, atoms which may be close to the atoms in the original cell
(Fig. 1). Therefore, the distance should be defined as

rPBC
IJ = min

A∈I(0),B∈J(R), ∀ R

rAB
RA + RB

, (23)

where 0 and R are the original and replicated cells, respectively (the
original cell is included in the replicated cell set R).

FIG. 2. Molecular structures for the smallest cell size, (a) SN2, (b) α-helix of
(ALA)10, and (c) a complex of Trp-cage (1L2Y) with a ligand (in an explicit solvent).
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In practice, for a wrapped original cell, it is enough to limit
the replicated set to the original cell and its nearest neighbors in
the directions of the three lattice vectors. Using Eq. (23) yields
smaller distances, in general, than Eq. (22) (see Fig. 1). Once
these distances rPBC

IJ are computed, ES-DIM and I-TRIM may be
used in a straightforward way by comparing the distances to the
thresholds.

III. COMPUTATIONAL DETAILS
FMO–DFTB/PBC was implemented in a development version

of GAMESS-US54 and parallelized with the generalized distributed
data interface (GDDI).55 DFTB/PBC without fragmentation was also
implemented in this work.

DFTB3 with 3ob-3-127 parameters and UFF dispersion cor-
rection46,47 was used in all calculations. HOP boundary treatment
was employed for polypeptide fragmentation. Solvent boxes were
added using FU.56 The polypeptide and water were fragmented as
one residue and molecule per fragment, respectively.

The following systems were used: (a) an SN2 reaction CH3Cl
+ OH− → CH3OH + Cl−, (b) a capped α-helix of (ALA)10
(α-(ALA)10), and (c) a complex of Trp-cage (PDB: 1L2Y) with a
ligand, p-phenolic acid, all solvated in explicit water. The structures
for the smallest box size are shown in Fig. 2.

The geometry of the SN2 reaction was prepared by locating the
transition state using unfragmented DFTB in vacuum. Then, explicit
water molecules were added, and, to neutralize the system, a sodium
cation was added and assigned to the reaction center fragment. The
structure of the α-(ALA)10 was obtained by a geometry optimization
with FMO2–DFTB in vacuum. Then, water molecules were added.
These geometries of SN2 and α-(ALA)10 were used for accuracy tests.
For an analysis of solute–solvent interactions, the structure of SN2
was optimized while freezing the coordinates of the reaction site
(CH3Cl + OH−) at the values for the transition state and fully opti-
mizing water and the counterion, with PBC while keeping the box
size constant, with the threshold of 10−3 a.u./bohr.

The geometry for the protein–ligand complex was optimized
with FMO2–DFTB/PCM.57 Then, the system was neutralized by
adding one sodium and two chloride ions to Ser-20, Asn-1, and
Lys-8 fragments, respectively; the ions were assigned to the respec-
tive fragments. Asp-9 and Arg-16 retained their charges (−1 and
+1, respectively). The geometry of all atoms in the protein–ligand

complex was fully optimized with PBC (fixed box) with the thresh-
old of 5 × 10−4 a.u./bohr; then, the geometry of the protein and
ligand was further optimized to 1 × 10−4 a.u./bohr while keeping
the solvent frozen.

IV. RESULTS AND DISCUSSION
The accuracy results of FMO in comparison to the full calcula-

tions are shown in Table I. The errors in the energy and gradient
with respect to DFTB/PBC without fragmentation are reasonably
small, and increasing the order of FMO from two to three sub-
stantially reduces the errors. FMO3 errors are within the chemical
accuracy of 1 kcal/mol. A comparison of the analytic and numerical
gradients in Table II shows that the analytic gradients are accurate
for both FMO2 and FMO3.

To gain some insight into the transition state stabilization by
the solvent, the total solute–solvent interaction energy ΔEint (the
sum of pair interactions ΔEIJ over solvent fragments J for the fixed
solute fragment I = 1) and the destabilization component of the
polarization (pold) energy58 of the reaction fragment ΔEpold (the dif-
ference of the energy of the reaction fragment E′I in solution and
vacuum) were computed for the solution (described with PBC) and
a water droplet (no PBC). The concentration was computed based
on the cell volume. The subsystem analysis59 was applied by defining
two subsystems, solute and solvent.

PIEs ΔEIJ are a useful measure of the role of fragments in study-
ing binding processes.20,21 For PBC, PIEs are defined in Eq. (10); they
describe interactions between fragments polarized by the whole peri-
odic system (a crystal field polarization; “crystal” here denotes that a
system is periodic like a crystal, although it may be a solution). A PIE
in FMO/PBC incorporates a sum over cells [via the cell-summed γ,
see Eq. (3)] so that a PIE value for a pair of fragments I and J includes
a sum of interactions between fragment I in the original cell 0 and
fragment J in all cells R (including 0).

The results are shown in Table III. The neutral zwitteri-
onic solute has a strong solute–solvent interaction energy, between
−164 and −213 kcal/mol; the pold component is between 8 and
14 kcal/mol. Stronger interactions lead to a larger polarization, as
expected.58 The PBC effect (the difference between solution and
droplet) does not exceed 8 kcal/mol; it decreases with the cell size
(the effect is weaker for lower concentrations), as expected: the thin-
ner the solvent layer, the stronger the crystal field from replicated

TABLE I. Errors in the FMOn (n = 2, 3) energies E (kcal/mol) and gradients G (hartree/bohr) with respect to atoms (a) and lattice (l) parameters in comparison to full unfragmented
DFTB/PBC.a

System a Nat E2 E3 G2
a , max G2

a , rmsd G3
a , max G3

a , rmsd G2
l , max G2

l , rmsd G3
l , max G3

l , rmsd

SN2 12 95 −2.0 0.1 0.002 16 0.000 29 0.000 31 0.000 03 0.000 59 0.000 33 0.000 05 0.000 02
SN2 18 341 −4.9 0.4 0.004 94 0.000 29 0.000 26 0.000 06 0.001 11 0.000 54 0.000 09 0.000 05
SN2 23 812 −4.9 0.7 0.001 56 0.000 12 0.000 28 0.000 03 0.000 94 0.000 51 0.000 13 0.000 07
α-(ALA)10 24 217 1.4 0.0 0.004 73 0.000 24 0.000 20 0.000 02 0.000 78 0.000 29 0.000 01 0.000 00
α-(ALA)10 28 514 0.3 0.2 0.000 75 0.000 09 0.000 18 0.000 02 0.000 13 0.000 06 0.000 04 0.000 02
α-(ALA)10 33 1171 −3.2 0.7 0.001 22 0.000 10 0.000 28 0.000 03 0.000 73 0.000 33 0.000 12 0.000 05

aThe largest of the three lattice parameters is shown as a (Å).
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TABLE II. Deviations between analytic and numerical FMOn derivatives
(hartree/bohr) with respect to atoms (a) and lattice (l) parameters, for the SN2 reaction
in an explicit solvent (water) with the box size of 12 Å.

n Ga, max Ga, rmsd Gl, max Gl, rmsd

2 0.000 000 7 0.000 000 06 0.000 000 04 0.000 000 02
3 0.000 009 9 0.000 000 75 0.000 000 37 0.000 000 14

TABLE III. Effect of the concentration c (M) on the solute–solvent interaction (int) and
the solute polarization (pold) energies (kcal/mol) for the transition state in the SN2
reaction computed with FMO2–DFTB/PBC.

c ΔEsolution
int ΔEsolution

pold ΔEdroplet
int ΔEdroplet

pold

0.96 −172.1 7.7 −163.8 10.9
0.28 −214.4 13.8 −212.7 14.3
0.15 −181.2 10.8 −179.2 11.2

cells. The largest PBC effect for pold and interaction values is for the
lowest concentration, which is because for higher concentrations a
thicker solvent layer damps the polarization of the solute. For more
reliable energetics, one has to average various conformations, which
will be the subject of future work.

The solute–solvent charge transfer is substantial, 0.7–0.9 elec-
trons, which in this system is mainly between Na and water (i.e., Na
pulls the electron density of lone pairs of oxygens), because the other
charged ion, Cl, is busy in the chemical reaction and shares little of
its charge with the solvent.

For the complex of Trp-cage with its ligand, PIEs are shown in
Fig. 3 (the concentration of the protein or ligand is 0.067 M). Calcu-
lations were done with PBC (solution) and without PBC (droplet).
There is little difference in PIEs, which indicates that the droplet of
this size (see Fig. 2) is sufficient to describe solute–solute (protein–
ligand) interactions.

FIG. 3. Residue–ligand interactions ΔEIJ in the Trp-cage complex in an explicit
solvent, computed with PBC (solution) and without PBC (droplet) (J is the ligand,
and I runs over all residues).

The reason why a reasonably sized droplet is enough for PIEs
is that protein images are well separated from each other by a layer
of water so that there is little additional polarization of the protein
and ligand by image cells, which makes little difference on the inter-
actions between fragments. For a higher concentration, the effect is
expected to be larger.

V. CONCLUSIONS
The density-functional tight-binding approach based on the

fragment molecular orbital method has been extended to treat peri-
odic boundary conditions, at the levels of second- and third-order
DFTB and two and three-body FMO. Energy and analytic deriva-
tives with respect to atomic coordinates and lattice parameters have
been developed.

Long-range electrostatics has been properly summed using the
Ewald technique. FMO/PBC uses a polarizable embedding, and the
gradient and stress tensor require computing response terms related
to the embedding, obtained from the coupled-perturbed equations
(Z-vector equations); the developed formalism may be of use to
other fragment methods with a polarizable embedding.

The developed method makes it possible to use large ele-
mentary cells with the parameterized quantum-mechanical method
DFTB (in this work, the largest cell containing a protein, a ligand,
and counterions has 1631 atoms), which describes polarization and
charge transfer based on the wave function in DFTB.

It has been shown by comparison to DFTB calculations with-
out fragmentation and FMO numerical gradients that energy and
analytic gradients in FMO can be accurately calculated using FMO–
DFTB/PBC. In the applications to the SN2 reaction and the protein–
ligand complex, it has been shown how PBC affects the pair interac-
tions between fragments. It has been demonstrated how the devel-
oped method can be used to gain physical insight into the polariza-
tion of the solute, solute–solvent, and solute–solute (protein–ligand)
interactions.

FMO–DFTB/PBC can be used to describe solution with explicit
solvent as an alternative to continuum models.57 In the future,
FMO–DFTB/PBC may be extended to treat improved DFTB models
such as DFTB with long-range corrections.60 It would be useful to
develop analytic second derivatives61 to study phonons.

SUPPLEMENTARY MATERIAL

See the supplementary material for the energy conservation
in an NVE MD simulation performed with FMO2–DFTB3/PBC
demonstrating that the energy gradient is analytic. Timings show the
efficiency of the developed FMO–DFTB/PBC.
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