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Function spaces associated with

the Dirichlet Laplacian

By

Tsukasa Iwabuchi∗

Abstract

This is a survey of recent results on function spaces associated with the Dirichlet Laplacian.

We study the well-definedness of the Besov spaces, properties of semigroup generated by the

fractional Laplacian, and bilinear estimates.

§ 1. Introduction

Let Ω be an arbitrary open domain of Rd with d ≥ 1. We consider the Dirichlet

Laplacian A on L2(Ω), namely,

A = −∆ = −
d∑

j=1

∂2

∂x2j
,

with the domain

D(A) := {f ∈ H1
0 (Ω) |∆f ∈ L2(Ω)},

where H1
0 (Ω) is the completion of C∞

0 (Ω) with the H1 norm ‖f‖H1 := {‖f‖2L2 +

‖∇f‖2L2}1/2. We study several properties of function spaces such as Sobolev spaces and

Besov spaces for applications to nonlinear partial differential equations on domains. As

fundamental properties, we are interested in the well-definedness of those spaces, com-

pleteness, duality, lifting and so on. In this paper, we shall discuss semigroup generated

by the Dirichlet Laplacian of fractional order and the bilinear estimates in those spaces.
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In the whole space Rd, such results are nowadays well known and there are a lot of

applications to partial differential equations. To the best of our knowledge for general

domain case, such theory has not been well-established and the purpose of this paper

is to give one of possibilities to approach the problems.

We start with defining spaces of test function spaces and Besov spaces, following

the argument in [8]. The important property to introduce them is the Gaussian upper

bound of the semigroup generated by the Dirichlet Laplacian, which allows us to obtain

crucial spectral multiplier estimates. Let us remark here that it would be possible to

apply this argument to more general operators such that the Gaussian upper bounds

hold. Then we should define test function spaces on general domains appropriately,

especially treating the low spectral component, which can give a theory of function

spaces. We take φ0(·) ∈ C∞
0 (R) a non-negative function on R such that

(1.1) suppφ0 ⊂ {λ ∈ R | 2−1 ≤ λ ≤ 2 },
∑
j∈Z

φ0(2
−jλ) = 1 for λ > 0,

and {φj}j∈Z is defined by letting

φj(λ) := φ0(2
−jλ) for λ ∈ R.(1.2)

Definition. (Spaces of test functions and distributions) (i) (Inhomogeneous

type) X (A) is defined by

X (A) :=
{
f ∈ L1(Rn

+) ∩ D(A)
∣∣AMf ∈ L1(Rn

+) ∩ D(A) for all M ∈ N
}

equipped with the family of semi-norms {pA,M (·)}∞M=1 given by

pA,M (f) := ‖f‖L1(Rn
+) + sup

j∈N
2Mj‖φj(

√
A)f‖L1(Rn

+),

and X ′(A) denotes the topological dual of X (A).

(ii) (Homogeneous type) Z(A) is defined by

Z(A) :=
{
f ∈ X (A)

∣∣∣ sup
j≤0

2−Mj
∥∥φj(√A)f∥∥L1(Rn

+)
<∞ for all M ∈ N

}
equipped with the family of semi-norms {qA,M (·)}∞M=1 given by

qA,M (f) := ‖f‖L1(Rn
+) + sup

j∈Z
2M |j|‖φj(

√
A)f‖L1(Rn

+),

and Z ′(A) denotes the topological dual of Z(A).

It is easy to see that X (A), Z(A) are independent of the choice of the partition of

the unity {φj}j∈Z and that they are Fréchet spaces. We also remark that L1-norm is
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considered in the definition, while A is initially defined on L2(Ω). For this, we recall

the boundedness of the spectral multiplier and its uniformity with respect to a scaling

parameter.

Lemma. ([1, 7]) Let 1 ≤ p ≤ ∞. Then

sup
j∈Z

‖φj(
√
A)‖Lp→Lp <∞.

Furthermore, if α ∈ R and 1 ≤ p ≤ q ≤ ∞, then

(1.3) sup
j∈Z

‖Aα/2φj(
√
A)‖Lp→Lq

2αj+d( 1
p−

1
q )j

<∞.

We define Besov spaces on Ω in the following way. Let ψ be a non-negative function

such that

ψ ∈ C∞
0 (R), ψ(λ) +

∑
j∈N

φj(λ) = 1 for any λ ≥ 0.

Definition. (Besov spaces) Let s ∈ R and 1 ≤ p, q ≤ ∞.

(i) Bs
p,q(A) is defined by

Bs
p,q(A) := {f ∈ X ′(A) | ‖f‖Bs

p,q(A) <∞},

where

‖f‖Bs
p,q(A) := ‖ψ(

√
A)f‖Lp +

∥∥{2sj‖φj(√A)f‖Lp(Rn
+)

}
j∈N

∥∥
ℓq(N).

(ii) Ḃs
p,q(A) is defined by

Ḃs
p,q(A) := {f ∈ Z ′(A) | ‖f‖Ḃs

p,q(A) <∞},

where

‖f‖Ḃs
p,q(A) :=

∥∥{2sj‖φj(√A)f‖Lp(Rn
+)

}
j∈Z

∥∥
ℓq(Z).

It was proved that the fundamental properties of the Besov spaces holds, such as

the completeness, the duality, the embedding of the Sobolev type, the lifting, and so

on. More precisely we have the following.

Proposition. ([8]) Let s, α ∈ R, 1 ≤ p, q, r ≤ ∞. Then the following hold:

(i) X (Ω) and Z(Ω) are Fréchet spaces and X (Ω) ↪→ Lp(Ω) ↪→ X ′(Ω),Z(Ω) ↪→ Lp(Ω) ↪→
Z ′(Ω) in the sense of continuous embedding.

(ii) Ḃs
p,q(A) is a Banach space and Z(Ω) ↪→ Ḃs

p,q(A) ↪→ Z ′(Ω) in the sense of continuous

embedding.
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(iii) If p, q <∞ and 1/p+1/p′ = 1/q+1/q′ = 1, the dual space of Ḃs
p,q(A) is Ḃ

−s
p′,q′(A).

More precisely, if f belongs to Ḃ−s
p′,q′ , then the bounded linear functional Tf given

by

Ḃs
p,q(A) 3 g 7→

∫
Ω

(
φj(

√
A)f

)
· Φj(

√
A)g dx ∈ C, Φj := φj−1 + φj + φj+1,

is well-defined and there exists C > 0 so that

‖Tf‖Ḃs
p,q(A)→C ≤ C‖f‖Ḃ−s

p′,q′
.

Conversely, for every bounded linear functional T on Ḃs
p,q(A), there exists fT ∈

Ḃ−s
p′,q′ such that the functional is written as above and there exists C > 0 so that

‖fT ‖Ḃ−s

p′,q′
≤ C‖Tf‖Ḃs

p,q(A)→C.

(iv) If r ≤ p, Ḃ
s+d( 1

r−
1
p )

r,q (A) is embedded to Ḃs
p,q(A).

(v) For any f ∈ Ḃs+α
p,q (A), A

α
2 f ∈ Ḃs

p,q(A).

In this paper, let us overview results about semigroup generated by the fractional

Laplacian in section 2, and bilinear estimates in section 3.

§ 2. Semigroup generated by the fractional Dirichlet Laplacian

We introduce the fractional Laplacian and the semigroup along the paper [5]. First

of all, the boudedness of the spectral multipliers gives the following boundedness

‖Aα
2 φj(

√
A)‖L1(Ω)→L1(Ω) ≤ C2αj , ‖e−tA

α
2 φj(

√
A)‖L1(Ω)→L1(Ω) ≤ Ce−ct2αj

for all j ∈ Z with some positive constants C, c > 0. This allows us to define the operators

A
α
2 and e−tA

α
2 on the test function space Z(A). Thus they are also defined on the dual

space Z ′(A) with the resolution of identity (see Lemma 4.5 in [8]). In fact, for any

f ∈ Z ′(A), we define A
α
2 f, e−tA

α
2 f as elements of Z ′(A) such that

A
α
2 f =

∑
j∈Z

A
α
2 φj(

√
A)f in Z ′(A),

e−tA
α
2 f =

∑
j∈Z

e−tA
α
2 φj(

√
A)f in Z ′(A).

The following is the result for the semigroup generated by the fractional Laplacian.
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Theorem 2.1. ([5]) Let α > 0, t > 0, s, s1, s2 ∈ R, 1 ≤ p, p1, p2, q, q1, q2 ≤ ∞.

(i) There exists a positive constant C so that for every f ∈ Ḃs
p,q(A)

e−tA
α
2 f ∈ Ḃs

p,q(A) and
∥∥e−tA

α
2 f

∥∥
Ḃs

p,q(A)
≤ C‖f‖Ḃs

p,q(A).

(ii) If s2 ≥ s1, p1 ≤ p2 and

d
( 1

p1
− 1

p2

)
+ s2 − s1 > 0,

then a constant C > 0 exists such that∥∥e−tA
α
2 f

∥∥
Ḃ

s2
p2,q2

(A)
≤ Ct−

d
α ( 1

p1
− 1

p2
)− s2−s1

α ‖f‖Ḃs1
p1,q1

(A)

for all f ∈ Ḃs1
p1,q1(A).

(iii) Assume that q <∞ and f ∈ Ḃs
p,q(A). Then

lim
t→0

∥∥e−tA
α
2 f − f

∥∥
Ḃs

p,q(A)
= 0.

(iv) Assume that 1 < p ≤ ∞, q = ∞ and f ∈ Ḃs
p,∞(A). Then e−tA

α
2 f converges to f

in the dual weak sense as t→ 0.

(v) Let s0 > s/α. Then a constant C > 0 exists such that

C−1‖f‖Ḃs
p,q(A) ≤

{∫ ∞

0

(
t−

s
α ‖(tAα

2 )s0e−tA
α
2 f‖Lp

)q dt

t

} 1
q ≤ C‖f‖Ḃs

p,q(A)

for all f ∈ Ḃs
p,q(A).

(vi) Assume that u0 ∈ Ḃ
s+α−α

q
p,q (A), f ∈ Lq(0,∞; Ḃs

p,q(A)). Let u be given by

u(t) = e−tA
α
2 u0 +

∫ t

0

e−(t−τ)A
α
2 f(τ)dτ.

Then there exists a constant C > 0 independent of u0 and f such that

‖∂tu‖Lq(0,∞;Ḃs
p,q(A)) + ‖Aα

2 u‖Lq(0,∞;Ḃs
p,q(A)) ≤ C‖u0‖

Ḃ
s+α−α

q
p,q (A)

+ C‖f‖Lq(0,∞;Ḃs
p,q(A)).

It is well known that the assertions above hold in the case when Ω = Rd and

α = 1 (see e.g. [10]). The proof is based on the spectral multiplier estimate (1.3).

Furthermore, we can verify

C−12αj ≤ ‖Aα/2φj(
√
A)‖Lp→Lp ≤ C2αj ,

C−1e−C2αj

≤ ‖e−tAα/2

φj(
√
A)‖Lp→Lp ≤ Ce−C−12αj

,
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for all j ∈ Z with an absolute constant C > 0 (see Lemma 5.1 in [5]). These inequalities

from above and below allow us to prove Theorem 2.1 by estimating them directly.

It is natural to expect corresponding results in function spaces of in inhomogeneous

type, which will be the future work.

§ 3. Bilinear estimates

We consider the bilinear estimates of the form

‖fg‖Ḣs
p
≤ C(‖f‖Ḣs

p1

‖g‖Lp2 + ‖f‖Lp3 ‖g‖Ḣs
p4

),

where s > 0 and p, pj (j = 1, 2, 3, 4) satisfy 1/p = 1/p1 + 1/p2 = 1/p3 + 1/p4. We

focus on the domain, the half space Rd
+ := {x ∈ Rd |xd > 0}, for the sake of simplicity.

The spaces we consider are the Sobolev spaces and the Besov spaces generated by the

Dirichlet and the Neumann Laplacian. This kind of inequalities are well known in several

domains, but because of the problem on how to introduce the fractional derivatives, the

most of the results are for the whole space case, and general domains case required

certain restriction, such as only small regularity number s, smoothness of the boundary

of the domain. Classical proof of the bilinear estimates in the whole space case can be

found in papers by Grafakos and Si [3], Tomita [12], and we refer a book by Runst and

Sickel [11] on the detailed analysis of multi-linear estimates (see also [2, 4, 9]).

We shall reveal the optimal regularity s such that the above bilinear estimates holds

for the Dirichlet and the Neumann boundary conditions. There will be a restriction

on the regularity s only for the Dirichlet case, whose crucial point is how to handle

behaviour of functions near the boundary, which will be discussed below theorems.

We introduce the Sobolev spaces generated by the Dirichlet and the Neumann

Laplacian and state the results. Hereafter let us write the Dirichlet Laplacian AD and

the Neumann Laplacian AN .

Definition. Let A = AD or AN , s ∈ R and 1 ≤ p ≤ ∞.

(i) Hs
p(A) is defined by

Hs
p(A) := {f ∈ X ′(A) | ‖f‖Hs

p(A) := ‖(1 +A)s/2f‖Lp(Rn
+) <∞}.

(ii) Ḣs
p(A) is defined by

Ḣs
p(A) := {f ∈ Z ′(A) | ‖f‖Ḣs

p(A) := ‖As/2f‖Lp(Rn
+) <∞}.

Theorem 3.1. ([6]) Suppose that p, p1, p2, p3, p4 satisfy

1 < p, p1, p4 <∞, 1 < p2, p3 ≤ ∞,
1

p
=

1

p1
+

1

p2
=

1

p3
+

1

p4
.
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(i) (Dirichlet case) Let A = A, 0 < s < 2 + 1/p. There exists a positive constant C so

that

(3.1) ‖fg‖Ḣs
p(AD) ≤ C(‖f‖Ḣs

p1
(AD)‖g‖Lp2 + ‖f‖Lp3 ‖g‖Ḣs

p4
(AD))

for all f ∈ Ḣs
p1
(AD) ∩ Lp3(Rn

+), g ∈ Lp2(Rn
+) ∩ Ḣs

p4
(AD).

(ii) (Neumann case) Let A = AN , s > 0. There exists a positive constant C so that

(3.2) ‖fg‖Ḣs
p(AN ) ≤ C(‖f‖Ḣs

p1
(AN )‖g‖Lp2 + ‖f‖Lp3‖g‖Ḣs

p4
(AN ))

for all f ∈ Ḣs
p1
(AN ) ∩ Lp3(Rn

+), g ∈ Lp2(Rn
+) ∩ Ḣs

p4
(AN )

(iii) The corresponding assertions to (i) and (ii) in the inhomogeneous Sobolev spaces

hold.

Theorem 3.2. ([6]) Suppose that s ≥ 2 + 1/p. Then the bilinear estimate (3.1)

of the Dirichlet case does not hold.

The result in the Besov spaces also holds.

Theorem 3.3. ([6]) Suppose that p, p1, p2, p3, p4, q satisfy

1 ≤ p, p1, p2, p3, p4 ≤ ∞,
1

p
=

1

p1
+

1

p2
=

1

p3
+

1

p4
.

Let s be as in Theorem 3.1. Then the corresponding bilinear estimates in Ḃs
p,q(AD),

Bs
p,q(AD), Ḃs

p,q(AN ), Bs
p,q(AN ) hold, respectively, by replacing the Sobolev spaces with

the Besov spaces which have the interpolation index q. Furthermore, if s > 2 + 1/p or

s = 2 + 1/p with 1 ≤ q <∞, the bilinear estimate does not hold for the Dirichlet case.

Multi-linear case contains a complexity that some cases hold true but the others

do not. This is a result for the trilinear estimates.

Corollary 3.4. ([6]) Let s > 0, p, pj (j = 1, 2, · · · , 9) be such that

1 < p, pj <∞ for j = 1, 5, 9, 1 < pj ≤ ∞ for j = 2, 3, 4, 6, 7, 8,

1

p
=

1

p1
+

1

p2
+

1

p3
=

1

p4
+

1

p5
+

1

p6
=

1

p7
+

1

p8
+

1

p9
.

Then there exists a positive constant C so that

‖fgh‖Ḣs
p(AD)

≤C(‖f‖Ḣs
p1

(AD)‖g‖Lp2 ‖h‖Lp3 + ‖f‖Lp4‖g‖Ḣs
p5

(AD)‖h‖Lp6 + ‖f‖Lp7‖g‖Lp8 ‖h‖Ḣs
p9

(AD)).
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We expect the positive result for products of functions of the odd numbers for all

regularity s > 0, and there should be restriction for the even number case. Let us

discuss the difference between two cases and conjecture the optimal regularity number

s for the Dirichlet case.

The Neumann case can be handled by the even extension of the function on the

half space to the whole space: For f : Rd
+ → R, let us define the even extension feven by

feven(x) =

f(x), if xd > 0,

f(−x), if xd < 0.

Then we deduce that

‖Aα
Nf‖Lp(Rd

+) ' ‖(−∆)αfeven‖Lp(Rd),

where (−∆)α is defined by the Fourier multiplier |ξ|2α, and the formula

(fg)even = feven geven

and the bilinear estimates in the whole space Rd implies the one on the half space Rd
+ in

the Sobolev spaces associated with the Neumann Laplacian AN . The important point is

smoothness continued from {xd < 0} to {xd < 0} successfully accrossing the boundary

∂Rd
+.

On the other hand, the Dirichlet case causes an different situation in this viewpoint.

Let us define the odd extension: For f : Rd
+ → R, we define

fodd(x) =

f(x), if xd > 0,

−f(−x), if xd < 0.

Then we deduce that

‖Aα
Df‖Lp(Rd

+) ' ‖(−∆)αfodd‖Lp(Rd),

however,

(fg)odd = (signxd)fodd godd

which would causes an restricted regularity for connection of continuity near the bound-

ary. In fact, let us consider smooth f satisfying the Dirichlet boundary condition

f |∂Ω = 0. The Dirichlet condition for f, g gives again the Dirichlet condition for the

product fg, however, higher order Dirichlet Laplacians can not act on fg, namely,

AD(fg) = (ADf)g −∇f · ∇g + fADg,

and ∇f · ∇g must be non-zero on the boundary in general. Hence ∇f · ∇g does not

belong to the domain of the Dirichlet Laplcian, in particular, (∂xd
f)(∂xd

g) does not
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necessarily satisfy the Dirichlet boundary condition. The threshold regularity of the

bilinear estimate (3.1) is s = 2+ 1/p, whose second order derivative corresponds to AD

and the regularity less than 1/p is understood by the possibility of functions non-zero

boundary value belonging to the Sobolev space associated with the Dirichlet Laplacian

H1/p−ε(AD). For m ∈ N and fj ∈ X (AD) (j = 1, 2, · · · , 2m), as the multi-linear case,

it would be reasonable to conjecture that the threshold regularity of the multilinear

estimates for f1f2 · · · f2m is 2m+ 1/p, since we see

Am
D(f1f2 · · · f2m) = (−1)m(∇f1·∇f2)(∇f3·∇f4) · · · (∇f2m−1·∇f2m)+(the other terms),

the first term can have the non-zero boundary value in general and the other terms

should satisfy the Dirichlet boundary condition.
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