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Function spaces associated with
the Dirichlet Laplacian

By

Tsukasa IWABUCHT*

Abstract

This is a survey of recent results on function spaces associated with the Dirichlet Laplacian.
We study the well-definedness of the Besov spaces, properties of semigroup generated by the
fractional Laplacian, and bilinear estimates.

§ 1. Introduction

Let © be an arbitrary open domain of R? with d > 1. We consider the Dirichlet
Laplacian A on L?(€), namely,

d 62
j=1 J

with the domain
D(A) = {f € Hy(Q)|Af € L*(Q)},

where H}((2) is the completion of C§°(2) with the H' norm || f||z: = {||f]|3. +
IV £]12,}1/2. We study several properties of function spaces such as Sobolev spaces and
Besov spaces for applications to nonlinear partial differential equations on domains. As
fundamental properties, we are interested in the well-definedness of those spaces, com-
pleteness, duality, lifting and so on. In this paper, we shall discuss semigroup generated
by the Dirichlet Laplacian of fractional order and the bilinear estimates in those spaces.

Received December 25, 2019. Revised January 31, 2020.

2020 Mathematics Subject Classification(s): Primary 46E35; Secondary 42B35, 42B37.

Key Words: Dirichlet Laplacian, Neumann Laplacian, Sobolev spaces, Besov spaces, Fractional
Laplacian, semigroup, bilinear estimates.

The author was supported by the Grant-in-Aid for Young Scientists (A) (No. 17H04824) from
JSPS.
*Mathematical Institute, Tohoku University, 980-8578, Sendai, Japan.

e-mail: t-iwabuchi@tohoku.ac. jp

(© 2021 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



2 TSUKASA ITWABUCHI

In the whole space R?, such results are nowadays well known and there are a lot of
applications to partial differential equations. To the best of our knowledge for general
domain case, such theory has not been well-established and the purpose of this paper
is to give one of possibilities to approach the problems.

We start with defining spaces of test function spaces and Besov spaces, following
the argument in [8]. The important property to introduce them is the Gaussian upper
bound of the semigroup generated by the Dirichlet Laplacian, which allows us to obtain
crucial spectral multiplier estimates. Let us remark here that it would be possible to
apply this argument to more general operators such that the Gaussian upper bounds
hold. Then we should define test function spaces on general domains appropriately,
especially treating the low spectral component, which can give a theory of function
spaces. We take ¢g(-) € C§°(R) a non-negative function on R such that

(1.1) suppgo C { AN ER[27' <A <2}, ) ¢o(277N) =1 for A >0,
JEZL

and {¢;},ez is defined by letting
(1.2) ¢;(\) :==po(277N) for A € R.
Definition. (Spaces of test functions and distributions) (i) (Inhomogeneous
type) X (A) is defined by

X(A) :={fe L' R})NDA)|AY f € L'(R}) N D(A) for all M € N}
equipped with the family of semi-norms {pa am(-)}37—1 given by

pam(f) = IIflzr@n) +Su§2Mj||¢j(\/Z)f||Ll(R¢),
VS

and X'(A) denotes the topological dual of X(A).
(ii) (Homogeneous type) Z(A) is defined by

2(4) = {1 € X(4)| sup27 65 (VA f]| 1 g, < 00 for all M € N}
J<0 +
equipped with the family of semi-norms {qa,m(-)}37—, given by
qam(f) == ||fHL1(R1) + S}HZ 2M|j|||¢j(\/z)f“L1(Ri),
je

and Z'(A) denotes the topological dual of Z(A).

It is easy to see that X'(A), Z(A) are independent of the choice of the partition of
the unity {¢;};cz and that they are Fréchet spaces. We also remark that L'-norm is
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considered in the definition, while A is initially defined on L?(Q). For this, we recall
the boundedness of the spectral multiplier and its uniformity with respect to a scaling

parameter.

Lemma. ([1,7]) Let 1 < p < co. Then

sup [|¢; (VA || 1o < 0.

JEL
Furthermore, if « € R and 1 < p < ¢ < 00, then

/2. P q
sup ||A ¢J<\/Z>HL —L < 00

1.
(1.3) D a1

We define Besov spaces on € in the following way. Let ¢) be a non-negative function
such that

e CyER), YN+ Z@(A) =1 for any A > 0.
jeN

Definition. (Besov spaces) Let s € R and 1 < p,q < occ.
(i) B, ,(A) is defined by

By (A):=={f e X'(A)|[If|

B: ,(4) < 00},

where

1718500 = IOVAN Lo + {27 065 VAo el oy
(ii) B;’q(A) is defined by

B (A) = {f € Z/(A) | If g, () < 0},

where

1155y = H{28j||¢j(\/z)f||LP(Ri)}jGZng@)'

It was proved that the fundamental properties of the Besov spaces holds, such as
the completeness, the duality, the embedding of the Sobolev type, the lifting, and so
on. More precisely we have the following.

Proposition. ([8]) Let s,a € R, 1 < p,q,r < co. Then the following hold:

(i) X(Q) and Z(Q2) are Fréchet spaces and X (2) — LP(Q) — X' (Q), Z(2) — LP(Q) —
Z'(Q) in the sense of continuous embedding.

(ii) B, ,(A) is a Banach space and Z(Q) — B, (A) — 2'(Q2) in the sense of continuous
embedding.
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(iii) If p,g < oo and 1/p+1/p' = 1/q+ 1/q’ = 1, the dual space of By, ,(A) is B, (A).
More precisely, if f belongs to B, , y» then the bounded linear functional Ty given
by

B, ( 99'—>/ ¢; (VA (\/Z)g dr € C, @;:=0¢; 1+ ¢j+ djy1,
is well-defined and there exists C > 0 so that

1|

Bs (A)—)(C<CHf”B s,

Conversely, for every bounded linear functional T on B;,q(A), there exists fr €
B;fq, such that the functional is written as above and there exists C' > 0 so that

£l 5, < CITs s o

std(1-1

(iv) Ifr < p, Brg (A) is embedded to B;q(A).

(v) For any f € Byt*(A), Asf e B; ,(A).

In this paper, let us overview results about semigroup generated by the fractional
Laplacian in section 2, and bilinear estimates in section 3.

§ 2. Semigroup generated by the fractional Dirichlet Laplacian

We introduce the fractional Laplacian and the semigroup along the paper [5]. First
of all, the boudedness of the spectral multipliers gives the following boundedness

1A% ¢;(VA)|| 1)) < C2%,  [le™2 ¢;(VA) | 11y or1() < Ce™

for all j € Z with some positive constants C, ¢ > 0. This allows us to define the operators
A% and e=*4% on the test function space Z(A). Thus they are also defined on the dual
space Z’'(A) with the resolution of identity (see Lemma 4.5 in [8]). In fact, for any
f € 2'(A), we define A% f, e_tA%f as elements of Z’(A) such that

ASf =7 A%¢;(VA)f in Z'(A),

JEZL
A=Y e M g (VA)S in 2/(4).
JEZ

The following is the result for the semigroup generated by the fractional Laplacian.
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Theorem 2.1. ([5]) Let « > 0,t >0, s,51,52 € R, 1 < p,p1,p2,q,q1,q2 < 0.
(1) There exists a positive constant C so that for every f € Bzyq(A)

e f e By (A) and e f| Bs (A) < | f] Bj ,(A)’
(ii) If s2 > s1, p1 < p2 and
1 1
d(———> + 859 — 51 >0,
b1 b2
then a constant C > 0 exists such that
e _d(1 _ 1y _s2—s
o7 Fllssg iy O =077 gy, )
for all f € B;i’ql (A).
(iii) Assume that ¢ < oo and f € B;q(A). Then
. —tAT .
%E}},He f_f‘B;’q(A) =0.

(iv) Assume that 1 < p < 0o, ¢ =00 and f € B;’OO(A). Then e_tA%f converges to f
in the dual weak sense ast — 0.
(v) Let so > s/a. Then a constant C > 0 exists such that

By ,(4) = {/OOO (t‘ill(tAg)s(’etA%fHLp)q%}; < C|If]

for all f € B;yq(A). )
(vi) Assume that ug € B;;a_E(A), f e L0, oo;Bf)yq(A)). Let u be given by

CHI/

Bg ,(A)

o t a
u(t) =e "% ug + / e mIAR f(7)dr.
0
Then there exists a constant C' > 0 independent of ug and f such that

||atu||Lq(o,oo;B;7q(A)) + ||A5U||Lq(o,oo;B;,q(A)) < CHUOHB;:%%(A) + C||f||Lq(0,oo;B§7q(A))'

It is well known that the assertions above hold in the case when Q = R? and
a =1 (see e.g. [10]). The proof is based on the spectral multiplier estimate (1.3).
Furthermore, we can verify

C12% < ||A*2¢;(VA)|| Lo 10 < C2,

C1e™92 < et 6 (VA) || propr < Ce™C 2
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for all j € Z with an absolute constant C' > 0 (see Lemma 5.1 in [5]). These inequalities
from above and below allow us to prove Theorem 2.1 by estimating them directly.

It is natural to expect corresponding results in function spaces of in inhomogeneous
type, which will be the future work.

§ 3. Bilinear estimates

We consider the bilinear estimates of the form

179l < CU N,

where s > 0 and p,p; (j = 1,2,3,4) satisfy 1/p = 1/p1 + 1/p2 = 1/p3 + 1/ps. We
focus on the domain, the half space Ri = {x € R?| x4 > 0}, for the sake of simplicity.

(9llLez + | fllzes llgllgrs )

The spaces we consider are the Sobolev spaces and the Besov spaces generated by the
Dirichlet and the Neumann Laplacian. This kind of inequalities are well known in several
domains, but because of the problem on how to introduce the fractional derivatives, the
most of the results are for the whole space case, and general domains case required
certain restriction, such as only small regularity number s, smoothness of the boundary
of the domain. Classical proof of the bilinear estimates in the whole space case can be
found in papers by Grafakos and Si [3], Tomita [12], and we refer a book by Runst and
Sickel [11] on the detailed analysis of multi-linear estimates (see also [2,4,9]).

We shall reveal the optimal regularity s such that the above bilinear estimates holds
for the Dirichlet and the Neumann boundary conditions. There will be a restriction
on the regularity s only for the Dirichlet case, whose crucial point is how to handle
behaviour of functions near the boundary, which will be discussed below theorems.

We introduce the Sobolev spaces generated by the Dirichlet and the Neumann
Laplacian and state the results. Hereafter let us write the Dirichlet Laplacian Ap and
the Neumann Laplacian Ay .

Definition. Let A= Ap or Ay, s€R and 1 < p < 0.
(i) Hy(A) is defined by

Hy(A) = {f € X' (A) || fllmgcay == (1 + A)*"2 fll o gny < o0}
(ii) H;(A) is defined by

Hy(A) = {f € Z' (D) | If gy ) = 14 Fllzory) < o0}

Theorem 3.1.  ([6]) Suppose that p,p1,p2, ps3,ps satisfy

1 1 1 1 1
1<p,pr,pa<oo, 1<py,p3<o0, —=—+—=—-+—.
b D1 P2 pP3 D4
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(i) (Dirichlet case) Let A = A,0 < s <24 1/p. There ezists a positive constant C so
that

(3.) 1Follizgam < CUF Mg, capylollzes + 1 las lgllizy (ap)

for all f € H3 (Ap) N LP*(R7), g € LP2(R%) N H3, (Ap).
(ii) (Neumann case) Let A = An,s > 0. There ezists a positive constant C so that

(3.2) 10015y < CUF s, (awlllzes + 1 os gl 5 ()

for all f € H3 (Ax) N LP*(R%), g € LP2(R%}) N HE, (An)
(iii) The corresponding assertions to (i) and (ii) in the inhomogeneous Sobolev spaces

hold.

Theorem 3.2.  ([6]) Suppose that s > 2+ 1/p. Then the bilinear estimate (3.1)
of the Dirichlet case does not hold.

The result in the Besov spaces also holds.

Theorem 3.3.  ([6]) Suppose that p,p1,p2, p3, P4, q satisfy

1 1 1 11
1<p,p1,p2,p3,p4 <00, —=—+ —=—+ —,
b D1 D2 P3 P4

Let s be as in Theorem 3.1. Then the corresponding bilinear estimates in B;Q(AD),
B; ,(Ap), B;,Q(AN), B, ,(AN) hold, respectively, by replacing the Sobolev spaces with
the Besov spaces which have the interpolation index q. Furthermore, if s > 2+ 1/p or
s =2+ 1/p with 1 < q < 00, the bilinear estimate does not hold for the Dirichlet case.

Multi-linear case contains a complexity that some cases hold true but the others

do not. This is a result for the trilinear estimates.
Corollary 3.4. ([6]) Let s >0, p,p; (j =1,2,---,9) be such that

1<p,pj <oo forj=1,5,9 1<p;<ooforj=2,3,4,6,7,8,

Then there exists a positive constant C so that

1Fghll s a0
<COAllzrs, apylglizea hllzes + 1 frallgllizs capylBllizrs + 1 Fllzer lgllzes (Al gy cap))-
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We expect the positive result for products of functions of the odd numbers for all
regularity s > 0, and there should be restriction for the even number case. Let us
discuss the difference between two cases and conjecture the optimal regularity number
s for the Dirichlet case.

The Neumann case can be handled by the even extension of the function on the
half space to the whole space: For f : le_ — R, let us define the even extension foyen by

f(x), if x4 > 0,

feven(x) = f(—.’L'), i 2y < 0.

Then we deduce that

“A?Vf”LP(Ri) = H(_A)afeven”LP(Rd)y

where (—A)® is defined by the Fourier multiplier |£]?®, and the formula

(fg)even = feven Jeven

and the bilinear estimates in the whole space R? implies the one on the half space Ri in
the Sobolev spaces associated with the Neumann Laplacian Ay. The important point is
smoothness continued from {zs < 0} to {4 < 0} successfully accrossing the boundary
IR

On the other hand, the Dirichlet case causes an different situation in this viewpoint.
Let us define the odd extension: For f : Ri — R, we define

f(x), if g >0,

foaa(®) = —f(=x), ifxzg<O.

Then we deduce that

IADfll Lo ay = (=) fodall Lr re),

however,

(f9)oda = (signzq) foad Goda
which would causes an restricted regularity for connection of continuity near the bound-
ary. In fact, let us consider smooth f satisfying the Dirichlet boundary condition
flao = 0. The Dirichlet condition for f,g gives again the Dirichlet condition for the
product fg, however, higher order Dirichlet Laplacians can not act on fg, namely,

Ap(fg) = (Apf)g—Vf-Vg+ fApg,

and Vf - Vg must be non-zero on the boundary in general. Hence V f - Vg does not
belong to the domain of the Dirichlet Laplcian, in particular, (9,,f)(0.,9) does not
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necessarily satisfy the Dirichlet boundary condition. The threshold regularity of the
bilinear estimate (3.1) is s = 2+ 1/p, whose second order derivative corresponds to Ap
and the regularity less than 1/p is understood by the possibility of functions non-zero
boundary value belonging to the Sobolev space associated with the Dirichlet Laplacian
HY?P=¢(Ap). For m € N and f; € X(Ap) (j = 1,2,--,2m), as the multi-linear case,
it would be reasonable to conjecture that the threshold regularity of the multilinear
estimates for fyfo- -+ fom is 2m + 1/p, since we see

AG(fifa - fam) = (=1)™(V f1-V f2)(Vf3-V f1) - - (V fam—1-V fom )+(the other terms),

the first term can have the non-zero boundary value in general and the other terms
should satisfy the Dirichlet boundary condition.
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