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A remark on bilinear pseudo-differential operators

with symbols in the Sjöstrand class

By

Tomoya Kato∗

Abstract

In this short note, we consider the bilinear pseudo-differential operators with symbols

belonging to the Sjöstrand class. We show that those operators are bounded from the product

of the L2-based Sobolev spaces Hs1 ×Hs2 to Lr for s1, s2 > 0, s1 + s2 = n/2, and 1 ≤ r ≤ 2.

§ 1. Introduction

For a bounded measurable function σ = σ(x, ξ1, ξ2) on (Rn)3, the bilinear pseudo-

differential operator Tσ is defined by

Tσ(f1, f2)(x) =
1

(2π)2n

∫
(Rn)2

eix·(ξ1+ξ2)σ(x, ξ1, ξ2)f̂1(ξ1)f̂2(ξ2) dξ1dξ2

for f1, f2 ∈ S(Rn). The bilinear Hörmander symbol class, BSm
ρ,δ = BSm

ρ,δ(Rn), m ∈ R,
0 ≤ δ ≤ ρ ≤ 1, consists of all σ(x, ξ1, ξ2) ∈ C∞((Rn)3) such that

|∂α
x ∂

β1

ξ1
∂β2

ξ2
σ(x, ξ1, ξ2)| ≤ Cα,β1,β2

(1 + |ξ1|+ |ξ2|)m+δ|α|−ρ(|β1|+|β2|)

for all multi-indices α, β1, β2 ∈ Nn
0 = {0, 1, 2, . . . }n. When we state the boundedness

of the bilinear operators Tσ, we will use the following terminology with a slight abuse.

Let X1, X2, and Y be function spaces on Rn equipped with norms ∥ · ∥X1
, ∥ · ∥X2

, and

∥ · ∥Y , respectively. If there exist a constant C such that the estimate

∥Tσ(f1, f2)∥Y ≤ C∥f1∥X1
∥f2∥X2
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holds for all f1 ∈ S ∩X1 and f2 ∈ S ∩X2, then we simply say that the operator Tσ is

bounded from X1 ×X2 to Y .

The interest of this short note is the boundedness from L2 × L2 to L1 for the

bilinear operator Tσ with the symbol σ belonging to the Sjöstrand class. We shall first

recall some related boundedness results on the linear case. For a bounded measurable

function σ = σ(x, ξ) on (Rn)2, the linear pseudo-differential operator σ(X,D) is defined

by

σ(X,D)f(x) =
1

(2π)n

∫
Rn

eix·ξσ(x, ξ)f̂(ξ)dξ

for f ∈ S(Rn). The (linear) Hörmander symbol class, Sm
ρ,δ = Sm

ρ,δ(Rn), m ∈ R, 0 ≤ δ ≤
ρ ≤ 1, consists of all functions σ ∈ C∞((Rn)2) satisfying

|∂α
x ∂

β
ξ σ(x, ξ)| ≤ Cα,β(1 + |ξ|)m+δ|α|−ρ|β|

for all multi-indices α, β ∈ Nn
0 . In [6], Calderón–Vaillancourt proved that if symbols be-

long to the Hörmander class S0
0,0, the linear pseudo-differential operators are bounded on

L2. Then, Sjöstrand [19] introduced a new wider class generating L2-bounded pseudo-

differential operators than the class S0
0,0. This new symbol class is today called as the

Sjöstrand symbol class, and is also identified as the modulation space M∞,1((Rn)2) (see

also Boulkhemair [5]). See Section 2.2 for the definition of modulation spaces.

We shall next consider the bilinear case. Based on the linear case, one may expect

the boundedness for the bilinear pseudo-differential operators of the bilinear Hörmander

class BS0
0,0 and the Sjöstrand class M∞,1((Rn)3). However, Bényi–Torres [4] pointed

out that there exists a symbol in BS0
0,0 such that Tσ is not bounded from L2 × L2 to

L1. (See, e.g., [17] for the boundedness for the bilinear Hörmander class.) Therefore,

since BS0
0,0 ↪→ M∞,1((Rn)3), the boundedness for the Sjöstrand class also does not

hold in general. On the other hand, Bényi–Gröchenig–Heil–Okoudjou [1] proved that

if σ ∈ M∞,1((Rn)3), then Tσ is bounded from L2 × L2 to the modulation space M1,∞,

whose target space is wider than L1. Then, Bényi–Okoudjou [2, 3] gave that if σ belongs

to M1,1((Rn)3), embedded into M∞,1((Rn)3), then Tσ is bounded from L2 ×L2 to L1.

According to these results, in the bilinear case, we are able to have the boundedness on

L2 × L2 for Sjöstrand symbol class, paying some kind of cost.

Very recently, in [14], it was proved that if σ ∈ BS0
0,0, then the operator Tσ is

bounded from Hs1 ×Hs2 to (L2, `1) for s1, s2 > 0, s1 + s2 = n/2. Here, Hs, s ∈ R, is
the L2-based Sobolev space and (L2, `1) is the L2-based amalgam space (see Section 2).

The aim of this short note is to improve this boundedness for the class BS0
0,0 to that

for the Sjöstrand class. The main result is the following.

Theorem 1.1. Let s1, s2 ∈ (0,∞) satisfy s1+s2 = n/2. Then, if σ ∈ M∞,1((Rn)3),

the bilinear pseudo-differential operator Tσ is bounded from Hs1 ×Hs2 to (L2, `1). In

particular, all those Tσ are bounded from Hs1 ×Hs2 to Lr for all r ∈ (1, 2] and to h1.
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We end this section by explaining the organization of this note. In Section 2, we

will give the basic notations which will be used throughout this paper and recall the

definitions and properties of some function spaces. In Section 3, we collect some lemmas

for the proof of Theorem 1.1. In Section 4, we show Theorem 1.1.

§ 2. Preliminaries

§ 2.1. Basic notations

We collect notations which will be used throughout this paper. We denote by

R, Z, N, and N0 the sets of real numbers, integers, positive integers, and nonnegative

integers, respectively. We denote by Q the n-dimensional unit cube [−1/2, 1/2)n. The

cubes τ +Q, τ ∈ Zn, are mutually disjoint and constitute a partition of the Euclidean

space Rn. This implies integral of a function on Rn can be written as

(2.1)

∫
Rn

f(x) dx =
∑
τ∈Zn

∫
Q

f(x+ τ) dx.

We denote by BR the closed ball in Rn of radius R > 0 centered at the origin. We write

the characteristic function on the set Ω as 1Ω. For x ∈ Rd, we write ⟨x⟩ = (1+ |x|2)1/2.
For two nonnegative functions A(x) and B(x) defined on a set X, we write A(x) ≲

B(x) for x ∈ X to mean that there exists a positive constant C such that A(x) ≤ CB(x)

for all x ∈ X. We often omit to mention the set X when it is obviously recognized.

Also A(x) ≈ B(x) means that A(x) ≲ B(x) and B(x) ≲ A(x).

We denote the Schwartz space of rapidly decreasing smooth functions on Rd by

S(Rd) and its dual, the space of tempered distributions, by S ′(Rd). The Fourier trans-

form and the inverse Fourier transform of f ∈ S(Rd) are given by

Ff(ξ) = f̂(ξ) =

∫
Rd

e−iξ·xf(x) dx,

F−1f(x) = f̌(x) =
1

(2π)d

∫
Rd

eix·ξf(ξ) dξ,

respectively. We also use the partial Fourier transform of a Schwartz function f(x, ξ1, ξ2),

x, ξ1, ξ2 ∈ Rn. In this case, we denote the partial Fourier transform with respect to the

x and ξj variables by F0 and Fj , j = 1, 2, respectively. We also write the Fourier

transform on (Rn)2 for the ξ1, ξ2 variables as F1,2 = F1F2. For m ∈ S ′(Rd), the Fourier

multiplier operator is defined by

m(D)f = F−1 [m · Ff ] .

We also use the notation (m(D)f)(x) = m(Dx)f(x) when we indicate which variable is

considered.
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For a measurable subset E ⊂ Rd, the Lebesgue space Lp(E), 1 ≤ p ≤ ∞, is the set

of all those measurable functions f on E such that ∥f∥Lp(E) =
(∫

E

∣∣f(x)∣∣p dx)1/p < ∞
if 1 ≤ p < ∞ or ∥f∥L∞(E) = ess supx∈E |f(x)| < ∞ if p = ∞. We also use the notation

∥f∥Lp(E) = ∥f(x)∥Lp
x(E) when we want to indicate the variable explicitly.

The uniformly local L2 space, denoted by L2
ul(Rd), consists of all those measurable

functions f on Rd such that

∥f∥L2
ul(Rd) = sup

ν∈Zd

(∫
[−1/2,1/2)d

∣∣f(x+ ν)
∣∣2 dx)1/2

< ∞

(this notion can be found in [13, Definition 2.3]).

Let K be a countable set. We define the sequence spaces `q(K) and `q,∞(K) as

follows. The space `q(K), 1 ≤ q ≤ ∞, consists of all those complex sequences a =

{ak}k∈K such that ∥a∥ℓq(K) =
(∑

k∈K |ak|q
)1/q

< ∞ if 1 ≤ q < ∞ or ∥a∥ℓ∞(K) =

supk∈K |ak| < ∞ if q = ∞. For 1 ≤ q < ∞, the space `q,∞(K) is the set of all those

complex sequences a = {ak}k∈K such that

∥a∥ℓq,∞(K) = sup
t>0

{
t ]
(
{k ∈ K : |ak| > t}

)1/q}
< ∞,

where ] denotes the cardinality of a set. Sometimes we write ∥a∥ℓq = ∥ak∥ℓqk or ∥a∥ℓq,∞ =

∥ak∥ℓq,∞k
. If K = Zn, we usually write `q or `q,∞ for `q(Zn) or `q,∞(Zn).

Let X,Y, Z be function spaces. We denote the mixed norm by

∥f(x, y, z)∥XxYyZz
=

∥∥∥∥∥∥∥f(x, y, z)∥Xx

∥∥
Yy

∥∥∥∥
Zz

.

(Here pay special attention to the order of taking norms.) We shall use these mixed

norms for X,Y, Z being Lp or `p.

§ 2.2. Modulation spaces

We give the definition of modulation spaces which were introduced by Feichtinger

[7, 8] (see also Gröchenig [11]). Let ϕ ∈ S(Rd) satisfy that suppϕ ⊂ [−1, 1]d and∑
k∈Zd ϕ(ξ − k) = 1 for any ξ ∈ Rd. Then, for 1 ≤ p, q ≤ ∞, the modulation space

Mp,q(Rd) consists of all f ∈ S ′(Rd) such that

∥f∥Mp,q =
∥∥ϕ(D − k)f(x)

∥∥
Lp

x(Rd)ℓqk(Zd)
< ∞.

We note that the definition of modulation spaces is independent of the choice of

the function ϕ. If p1 ≤ p2 and q1 ≤ q2, M
p1,q1 ↪→ Mp2,q2 . We have M2,2 = L2, and

Mp,1 ↪→ Lp ↪→ Mp,∞ for 1 ≤ p ≤ ∞. For more details, see also, e.g., [16, 21].
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§ 2.3. Local Hardy space h1

We recall the definition of the local Hardy space h1(Rn). Let ϕ ∈ S(Rn) be such

that
∫
Rn ϕ(x) dx ̸= 0. Then, the local Hardy space h1(Rn) consists of all f ∈ S ′(Rn) such

that ∥f∥h1 = ∥ sup0<t<1 |ϕt ∗ f |∥L1 < ∞, where ϕt(x) = t−nϕ(x/t). It is known that

h1(Rn) does not depend on the choice of the function ϕ, and that h1(Rn) ↪→ L1(Rn).

See Goldberg [10] for more details about h1.

§ 2.4. Amalgam spaces

For 1 ≤ p, q ≤ ∞, the amalgam space (Lp, `q)(Rn) is defined to be the set of all

those measurable functions f on Rn such that

∥f∥(Lp,ℓq)(Rn) = ∥f(x+ ν)∥Lp
x(Q)ℓqν(Zn) =

{∑
ν∈Zn

(∫
Q

∣∣f(x+ ν)
∣∣p dx)q/p

}1/q

< ∞

with usual modification when p or q is infinity. Obviously, (Lp, `p) = Lp and (L2, `∞) =

L2
ul. If p1 ≥ p2 and q1 ≤ q2, then (Lp1 , `q1) ↪→ (Lp2 , `q2). In particular, (L2, `r) ↪→ Lr

for 1 ≤ r ≤ 2. In the case r = 1, the stronger embedding (L2, `1) ↪→ h1 holds (see

[15, Section 2.3]). See Fournier–Stewart [9] and Holland [12] for more properties of

amalgam spaces. We end this subsection with noting the following, which was proved

in [15, Lemma 2.1].

Lemma 2.1. Let 1 ≤ p, q ≤ ∞. If L > n/min(p, q) and if g is a measurable

function on Rn such that

c1Q(x) ≤ |g(x)| ≤ c−1⟨x⟩−L

with some positive constant c, then

∥f∥(Lp,ℓq)(Rn) ≈ ∥g(x− ν)f(x)∥Lp
x(Rn)ℓqν(Zn) .

§ 3. Lemmas

In this section, we prepare several lemmas. We denote by S the operator

S(f)(x) =

∫
Rn

|f(y)|
⟨x− y⟩n+1

dy.

We have the following facts, which was proved in [15, Lemmas 4.1 and 4.3].

Lemma 3.1. Let 1 ≤ p ≤ ∞. The following (1)–(3) hold for all nonnegative

measurable functions f, g on Rn.
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(1) S(f ∗ g)(x) =
(
S(f) ∗ g

)
(x) =

(
f ∗ S(g)

)
(x).

(2) S(f)(x) ≈ S(f)(y) for x, y ∈ Rn such that |x− y| ≲ 1.

(3) ∥S(f)(ν)∥ℓpν ≈ ∥S(f)(x)∥Lp
x
.

(4) Let ϕ be a function in S(Rn) with compact support. Then, |ϕ(D − ν)f(x)|2 ≲
S(|ϕ(D − ν)f |2)(x) for any f ∈ S(Rn), ν ∈ Zn, and x ∈ Rn.

The following is proved in [15, Proposition 3.4] (see also [14, Proposition 3.3]).

Lemma 3.2. Let 2 < p1, p2 < ∞, 1/p1 + 1/p2 = 1/2, and let fj ∈ `pj ,∞(Zn) be

nonnegative sequences for j = 1, 2. Then,∑
ν1,ν2∈Zn

f1(ν1)f2(ν2)A0(ν1 + ν2)
∏

j=1,2

Aj(νj) ≲ ∥f1∥ℓp1,∞∥f2∥ℓp2,∞

∏
j=0,1,2

∥Aj∥ℓ2 .

We end this section by mentioning a lemma which can be found in Sugimoto [18,

Lemma 2.2.1]. The explicit proof is given in [15, Lemma 4.4].

Lemma 3.3. There exist functions κ ∈ S(Rn) and χ ∈ S(Rn) satisfying that

suppκ ⊂ [−1, 1]n, supp χ̂ ⊂ B1, |χ| ≥ c > 0 on [−1, 1]n and∑
ν∈Zn

κ(ξ − ν)χ(ξ − ν) = 1, ξ ∈ Rn.

§ 4. Main results

In this section, we will prove Theorem 1.1. Although Theorem 1.1 can be easily

obtained as a corollary of the boundedness from Hs1 × Hs2 to (L2, `1) for the class

BS0
0,0 by [14] (see Remark 2 in Section 4.2), we will give the proof for the sake of

self-containedness.

§ 4.1. Key proposition

Proposition 4.1 below plays a crucial role in our argument. The corresponding

facts to the boundedness for the class BS0
0,0 were given in [14, Proposition 4.1] and [15,

Proposition 5.1]. We modify them to be fitted for Theorem 1.1. The proof is almost

the same as in the proof of [15], and the essential idea goes back to [5].

Proposition 4.1. Let s1, s2 ∈ (0,∞) satisfy s1+s2 = n/2, and let R0, R1, R2 ∈
[1,∞). Suppose σ is a bounded continuous function on (Rn)3 such that suppFσ ⊂
BR0 ×BR1 ×BR2 . Then

∥Tσ∥Hs1×Hs2→(L2,ℓ1) ≲ (R0R1R2)
n/2 ∥σ∥L2

ul((Rn)3).
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Proof. We take a function θ ∈ S(Rn) satisfying that |θ| ≥ c > 0 on Q =

[−1/2, 1/2)n and supp θ̂ ⊂ B1. Then, we have by Lemma 2.1

∥Tσ(f1, f2)∥(L2,ℓ1) ≈ ∥θ(x− µ)Tσ(f1, f2)(x)∥L2
x(Rn)ℓ1µ(Zn) ,

and by duality

(4.1) ∥Tσ(f1, f2)∥(L2,ℓ1) ≈

∥∥∥∥∥ sup
∥g∥L2=1

∣∣∣∣∫
Rn

θ(x− µ)Tσ(f1, f2)(x) g(x) dx

∣∣∣∣
∥∥∥∥∥
ℓ1µ

.

Hence, in what follows we consider

I =

∫
Rn

θ(x− µ)Tσ(f1, f2)(x) g(x) dx

for any µ ∈ Zn and all g ∈ L2(Rn).

Now, we rewrite the integral I by the two steps below. Firstly, by using Lemma

3.3, we decompose the symbol σ as

σ(x, ξ1, ξ2) =
∑

ν∈(Zn)2

σ(x, ξ1, ξ2)κ(ξ1 − ν1)χ(ξ1 − ν1)κ(ξ2 − ν2)χ(ξ2 − ν2)

=
∑

ν∈(Zn)2

σν(x, ξ1, ξ2)κ(ξ1 − ν1)κ(ξ2 − ν2),

where ν = (ν1, ν2) ∈ (Zn)2 and we set

σν(x, ξ1, ξ2) = σ(x, ξ1, ξ2)χ(ξ1 − ν1)χ(ξ2 − ν2).

Denote the Fourier multiplier operators κ(D − νj) by □νj
, j = 1, 2. Then, the integral

I is written as

(4.2) I =
∑

ν∈(Zn)2

∫
Rn

θ(x− µ)Tσν

(
□ν1f1,□ν2f2

)
(x)g(x) dx.

The idea of decomposing symbols by such κ and χ goes back to Sugimoto [18].

Secondly, in the integral of (4.2), we transfer the information of the Fourier trans-

form of θ(· − µ)Tσν (□ν1f1,□ν2f2) to g. Observe that

F [Tσν (□ν1f1,□ν2f2)] (ζ)

=
1

(2π)2n

∫
(Rn)2

(
F0σν

)(
ζ − (ξ1 + ξ2), ξ1, ξ2

) ∏
j=1,2

κ(ξj − νj)f̂j(ξj) dξ1dξ2.

Then, combining this with the facts that suppF0σν(·, ξ1, ξ2) ⊂ BR0
and suppκ(·−νj) ⊂

νj + [−1, 1]n, j = 1, 2, we see that

suppF [Tσν (□ν1
f1,□ν2

f2)] ⊂
{
ζ ∈ Rn : |ζ − (ν1 + ν2)| ≲ R0

}
.
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Hence, since supp θ̂ ⊂ B1,

suppF [θ(· − µ)Tσν (□ν1
f1,□ν2

f2)] ⊂
{
ζ ∈ Rn : |ζ − (ν1 + ν2)| ≲ R0

}
for any µ ∈ Zn. Taking a function ϕ ∈ S(Rn) satisfying that ϕ = 1 on {ζ ∈ Rn : |ζ| ≲ 1},
the integral I given in (4.2) can be further rewritten as

(4.3) I =
∑

ν∈(Zn)2

∫
Rn

θ(x− µ)Tσν (□ν1
f1,□ν2

f2)(x)ϕ

(
D + ν1 + ν2

R0

)
g(x) dx.

Now, we shall actually estimate the newly rewritten integral I in (4.3). Since it

holds from the facts suppF1,2σ(x, ·, ·) ⊂ BR1
×BR2

and supp χ̂ ⊂ B1 that

suppF1,2σν(x, ·, ·) ⊂ B2R1 ×B2R2 ,

we have

Tσν (□ν1
f1,□ν2

f2)(x)

=
1

(2π)2n

∫
(Rn)2

(
F1,2σν

)
(x, y1 − x, y2 − x)

∏
j=1,2

1B2Rj
(x− yj)□νjfj(yj) dy1dy2.

Then, the Cauchy–Schwarz inequalities and the Plancherel theorem yield that

|Tσν (□ν1f1,□ν2f2)(x)| ≲
∥∥σν(x, ξ1, ξ2)

∥∥
L2

ξ1,ξ2

∏
j=1,2

{(
1B2Rj

∗
∣∣□νjfj

∣∣2) (x)}1/2

for any ν = (ν1, ν2) ∈ (Zn)2 and x ∈ Rn. From this, the integral I is estimated as

|I| ≲
∑

ν∈(Zn)2

∫
Rn

|θ(x− µ)|
∥∥σν(x, ξ1, ξ2)

∥∥
L2

ξ1,ξ2

×
∏

j=1,2

{(
1B2Rj

∗
∣∣□νj

fj
∣∣2)(x)}1/2

∣∣∣∣ϕ(D + ν1 + ν2
R0

)
g(x)

∣∣∣∣ dx.(4.4)

Next, we decompose the above integral over x by using (2.1). Then the inequality (4.4)

coincides with

|I| ≲
∑

ν0∈Zn

∑
ν∈(Zn)2

∫
Q

|θ(x+ ν0 − µ)|
∥∥σν(x+ ν0, ξ1, ξ2)

∥∥
L2

ξ1,ξ2

×
∏

j=1,2

{(
1B2Rj

∗
∣∣□νj

fj
∣∣2)(x+ ν0)

}1/2
∣∣∣∣ϕ(D + ν1 + ν2

R0

)
g(x+ ν0)

∣∣∣∣ dx.
Observe that |θ(x+ν0−µ)| ≲ ⟨ν0−µ⟩−L holds for any x ∈ Q and some constant L > 0

sufficiently large, and from Lemma 3.1 (4), (1), and (2) that(
1B2Rj

∗
∣∣□νjfj

∣∣2)(x+ ν0) ≲ S
(
1B2Rj

∗
∣∣□νjfj

∣∣2)(ν0)
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for x ∈ Q. Then, by the Cauchy–Schwarz inequality for the integral over x,

|I| ≲
∑

ν0∈Zn

∑
ν∈(Zn)2

⟨ν0 − µ⟩−L
∏

j=1,2

{
S
(
1B2Rj

∗
∣∣□νj

fj
∣∣2)(ν0)}1/2

×
∫
Q

∥∥σν(x+ ν0, ξ1, ξ2)
∥∥
L2

ξ1,ξ2

∣∣∣∣ϕ(D + ν1 + ν2
R0

)
g(x+ ν0)

∣∣∣∣ dx
≲
∑

ν0∈Zn

∑
ν∈(Zn)2

⟨ν0 − µ⟩−L
∏

j=1,2

{
S
(
1B2Rj

∗
∣∣□νj

fj
∣∣2)(ν0)}1/2

×
∥∥σν(x+ ν0, ξ1, ξ2)

∥∥
L2

ξ1,ξ2
L2

x(Q)

∥∥∥∥ϕ(D + ν1 + ν2
R0

)
g(x+ ν0)

∥∥∥∥
L2

x(Q)

.

Here, the equivalence

(4.5) sup
ν0,ν

∥∥σν(x+ ν0, ξ1, ξ2)
∥∥
L2

ξ1,ξ2
L2

x(Q)
≈ ∥σ∥L2

ul((Rn)3)

holds. In fact, since |χ(x+y)| ≲ ⟨y⟩−L for any x ∈ Q, y ∈ Rn, and some constant L > 0

sufficiently large, we have by (2.1)∥∥σν(x+ ν0, ξ1, ξ2)
∥∥
L2

ξ1,ξ2
L2

x(Q)

=
∥∥σ(x+ ν0, ξ1 + µ1, ξ2 + µ2)χ(ξ1 + µ1 − ν1)χ(ξ2 + µ2 − ν2)

∥∥
L2

ξ1,ξ2
(Q2)ℓ2µ1,µ2

L2
x(Q)

≲
∥∥σ(x+ ν0, ξ1 + µ1, ξ2 + µ2)⟨µ1 − ν1⟩−L⟨µ2 − ν2⟩−L

∥∥
L2

ξ1,ξ2
(Q2)ℓ2µ1,µ2

L2
x(Q)

≤
∥∥⟨µ1 − ν1⟩−L⟨µ2 − ν2⟩−L

∥∥
ℓ2µ1,µ2

sup
ν0,µ1µ2

∥σ(x+ ν0, ξ1 + µ1, ξ2 + µ2)∥L2
x,ξ1,ξ2

(Q3)

≈ ∥σ∥L2
ul((Rn)3),

which gives the inequality ≲. On the other hand, since |χ| ≥ c > 0 on Q = [−1/2, 1/2)n

(see Lemma 3.3), we have∥∥σ(x+ ν0, ξ1 + ν1, ξ2 + ν2)
∥∥
L2

x,ξ1,ξ2
(Q3)

≲
∥∥σ(x+ ν0, ξ1 + ν1, ξ2 + ν2)χ(ξ1)χ(ξ2)

∥∥
L2

x,ξ1,ξ2
(Q3)

≤
∥∥σ(x+ ν0, ξ1, ξ2)χ(ξ1 − ν1)χ(ξ2 − ν2)

∥∥
L2

ξ1,ξ2
(Rn×Rn)L2

x(Q)
,

which gives the inequality ≳. (See also the proof of [15, Lemma 2.1].) Hence, we have

by (4.5)

|I| ≲ ∥σ∥L2
ul

∑
ν0∈Zn

∑
ν∈(Zn)2

⟨ν0 − µ⟩−L

×
∏

j=1,2

{
S
(
1B2Rj

∗
∣∣□νj

fj
∣∣2)(ν0)}1/2

∥∥∥∥ϕ(D + ν1 + ν2
R0

)
g(x+ ν0)

∥∥∥∥
L2

x(Q)

.

(4.6)
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In what follows, we write each summand above by

Aj(νj , ν0) =
{
S
(
1B2Rj

∗
∣∣□νj

fj
∣∣2) (ν0)}1/2

, j = 1, 2,

A0(τ, ν0) =

∥∥∥∥ϕ(D + τ

R0

)
g(x+ ν0)

∥∥∥∥
L2

x(Q)

.

Then, the inequality (4.6) is written by

(4.7) |I| ≲ ∥σ∥L2
ul
II

with

II =
∑

ν0∈Zn

⟨ν0 − µ⟩−L
∑

ν∈(Zn)2

A0(ν1 + ν2, ν0)
∏

j=1,2

Aj(νj , ν0).

Now, we shall estimate II. By applying Lemma 3.2 with s1 + s2 = n/2 to the sum

over ν, we have

II =
∑

ν0∈Zn

⟨ν0 − µ⟩−L
∑

ν∈(Zn)2

⟨ν1⟩−s1⟨ν2⟩−s2A0(ν1 + ν2, ν0)
∏

j=1,2

⟨νj⟩sjAj(νj , ν0)

≲
∑

ν0∈Zn

⟨ν0 − µ⟩−L∥A0(τ, ν0)∥ℓ2τ
∏

j=1,2

∥⟨νj⟩sjAj(νj , ν0)∥ℓ2νj ,

since ⟨νj⟩−sj ∈ `n/sj ,∞(Zn), j = 1, 2. Then, we use the Hölder inequality to the sum

over ν0 to have

(4.8) II ≲ ∥A0(τ, ν0)∥ℓ2τ ℓ2ν0
∏

j=1,2

∥⟨ν0 − µ⟩−L/2⟨νj⟩sjAj(νj , ν0)∥ℓ2νj ℓ4ν0 .

Here, the norm of A0 in (4.8) is estimated by the Plancherel theorem as follows:

∥A0(τ, ν0)∥ℓ2τ ℓ2ν0 =

∥∥∥∥ϕ(D + τ

R0

)
g(x+ ν0)

∥∥∥∥
L2

x(Q)ℓ2τ ℓ
2
ν0

=

∥∥∥∥ϕ(D + τ

R0

)
g(x)

∥∥∥∥
L2

x(Rn)ℓ2τ

≈
∥∥∥∥ϕ(ζ + τ

R0

)
ĝ(ζ)

∥∥∥∥
L2

ζ(Rn)ℓ2τ

≈ R
n/2
0 ∥g∥L2 ,

(4.9)

where we used that ∥ϕ( ζ+τ
R0

)∥ℓ2τ ≈ R
n/2
0 for any ζ ∈ Rn. Hence, by collecting (4.7),

(4.8), and (4.9) we have

(4.10) |I| ≲ R
n/2
0 ∥σ∥L2

ul
∥g∥L2

∏
j=1,2

∥⟨ν0 − µ⟩−L/2⟨νj⟩sjAj(νj , ν0)∥ℓ2νj ℓ4ν0 .

We substitute (4.10) into (4.1), and then use the Cauchy–Schwarz inequality to `1µ.

Then,

(4.11) ∥Tσ(f1, f2)∥(L2,ℓ1) ≲ R
n/2
0 ∥σ∥L2

ul

∏
j=1,2

∥∥∥⟨ν0 − µ⟩−L/2⟨νj⟩sjAj(νj , ν0)
∥∥∥
ℓ2νj

ℓ4ν0ℓ
2
µ

.
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To achieve our goal, we shall estimate the norm of Aj in (4.11). We have∥∥∥⟨ν0 − µ⟩−L/2⟨νj⟩sjAj(νj , ν0)
∥∥∥
ℓ2νj

ℓ4ν0
ℓ2µ

=

∥∥∥∥⟨ν0 − µ⟩−LS
(
1B2Rj

∗
∣∣⟨νj⟩sj□νj

fj
∣∣2)(ν0)∥∥∥∥1/2

ℓ1νj
ℓ2ν0

ℓ1µ

=

∥∥∥∥⟨ν0⟩−LS
(
1B2Rj

∗
∥∥⟨νj⟩sj□νj

fj
∥∥2
ℓ2νj

)
(ν0 + µ)

∥∥∥∥1/2
ℓ2ν0

ℓ1µ

= (∗∗).

Then, by using the embedding `1ν0
↪→ `2ν0

, Lemma 3.1 (3), and the boundedness of the

operator S on L1, we have

(∗∗) ≲
∥∥∥∥1B2Rj

∗
∥∥⟨νj⟩sj□νj

fj
∥∥2
ℓ2νj

∥∥∥∥1/2
L1

x

≲ R
n/2
j

∥∥⟨νj⟩sj□νj
fj
∥∥
ℓ2νj

L2
x
,

where the first inequality holds if L is suitably large. Here, by the Plancherel theorem∥∥⟨νj⟩sj□νj
fj
∥∥
ℓ2νj

L2
x
≈
∥∥∥⟨νj⟩sjκ(ξ − νj)f̂j(ξ)

∥∥∥
ℓ2νj

L2
ξ

≈
∥∥∥⟨ξ⟩sjκ(ξ − νj)f̂j(ξ)

∥∥∥
ℓ2νj

L2
ξ

≈ ∥fj∥Hsj ,

where, we used that
∑

νj∈Zn |κ(· − νj)|2 ≈ 1 to have the last equivalence. Therefore,∥∥∥⟨ν0 − µ⟩−L/2⟨νj⟩sjAj(νj , ν0)
∥∥∥
ℓ2νj

ℓ4ν0
ℓ2µ

≲ R
n/2
j ∥fj∥Hsj .(4.12)

Substituting (4.12) into (4.11), we obtain

∥Tσ(f1, f2)∥(L2,ℓ1) ≲ (R0R1R2)
n/2 ∥σ∥L2

ul

∏
j=1,2

∥fj∥Hsj ,

which completes the proof.

§ 4.2. Proof of Theorem 1.1

From Proposition 4.1, we shall deduce Theorem 1.1.

Proof of Theorem 1.1. We decompose the symbol σ by a partition {ϕ(· − k)}k∈Zn

stated in Section 2.2:

σ(x, ξ1, ξ2) =
∑

(k0,k1,k2)∈(Zn)3

ϕ(Dx − k0)ϕ(Dξ1 − k1)ϕ(Dξ2 − k2)σ(x, ξ1, ξ2)

=
∑

k∈(Zn)3

□kσ(x, ξ1, ξ2)
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with

□kσ(x, ξ1, ξ2) = ϕ(Dx − k0)ϕ(Dξ1 − k1)ϕ(Dξ2 − k2)σ(x, ξ1, ξ2),

where k = (k0, k1, k2) ∈ (Zn)3. Here, we observe that

□kσ(x, ξ1, ξ2) = eix·k0eiξ1·k1eiξ2·k2 □(0,0,0) [Mkσ] (x, ξ1, ξ2),

where

Mkσ(x, ξ1, ξ2) = e−ik0·xe−ik1·ξ1e−ik2·ξ2σ(x, ξ1, ξ2).

Hence,

T□kσ(f1, f2) = eix·k0 T□(0,0,0)[Mkσ]

(
f1(·+ k1), f2(·+ k2)

)
.

Since

suppF
[
□(0,0,0) [Mkσ]

]
⊂ [−1, 1]3n,

we have by Proposition 4.1 and the translation invariance of the Sobolev space

∥T□kσ∥Hs1×Hs2→(L2,ℓ1) ≲
∥∥□(0,0,0) [Mkσ]

∥∥
L2

ul

= ∥□kσ∥L2
ul
.

Furthermore, we have the equivalence

(4.13) ∥□kσ∥L2
ul

≈ ∥□kσ∥L∞

with implicit constants independent of k (see Remark 1 below). Therefore,

∥Tσ∥Hs1×Hs2→(L2,ℓ1) ≤
∑

k∈(Zn)3

∥T□kσ∥Hs1×Hs2→(L2,ℓ1)

≲
∑

k∈(Zn)3

∥□kσ∥L2
ul

≈ ∥σ∥M∞,1 ,

which completes the proof of Theorem 1.1.

Remark 1. The equivalence (4.13) was already pointed out by Boulkhemair [5,

Appendix A.1]. However, for the reader’s convenience, we give a proof of (4.13). The

way of the proof here is essentially the same as was given in [5, Appendix A.1].

Let {ϕ(· − k)}k∈Zd be a partition on Rd stated Section 2.2. We take a function

φ ∈ S(Rd) satisfying that φ = 1 on [−1, 1]d. Then,

ϕ(D − k)f(x) = φ(D − k)ϕ(D − k)f(x)

=

∫
Rd

ei(x−y)·kφ̌(x− y)ϕ(D − k)f(y) dy.
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By the Cauchy–Schwarz inequality, we have

|ϕ(D − k)f(x)| ≲
∫
Rd

⟨x− y⟩−d−1|ϕ(D − k)f(y)| dy

≲
(∫

Rd

⟨x− y⟩−d−1|ϕ(D − k)f(y)|2 dy
)1/2

= (†)

for any k ∈ Zd and x ∈ Rd. As in (2.1), we decompose the integral and have

(†) ≈

∑
ν∈Zd

∫
[−1/2,1/2)d

⟨x− ν⟩−d−1|ϕ(D − k)f(y + ν)|2 dy

1/2

≤ ∥ϕ(D − k)f∥L2
ul(Rd)

∑
ν∈Zd

⟨x− ν⟩−d−1

1/2

≈ ∥ϕ(D − k)f∥L2
ul(Rd)

for any k ∈ Zd and x ∈ Rd. Therefore, we obtain the inequality ≳ in (4.13). The

opposite inequality is obvious, so that we have the equivalence (4.13).

Remark 2. We derive Theorem 1.1 from the boundedness from Hs1 × Hs2 to

(L2, `1) for the class BS0
0,0 obtained in [14]. The proof in this remark was given by the

referee of this paper. Before starting the proof, we observe that∣∣∣∂α
x ∂

β1

ξ1
∂β2

ξ2

(
□(0,0,0) [Mkσ] (x, ξ1, ξ2)

)∣∣∣ ≤ Cα,β1,β2

∥∥□(0,0,0) [Mkσ]
∥∥
L∞ ,(4.14)

where the notations are the same as above. While this inequality might be well-known

(see, e.g., [20, Section 1.3.2]), we give the proof for the reader’s convenience. Since

suppF
[
□(0,0,0) [Mkσ]

]
⊂ [−1, 1]3n,

we have by taking a function φ ∈ S(Rn) satisfying that φ = 1 on [−1, 1]n

□(0,0,0) [Mkσ] (x, ξ1, ξ2) = φ(Dx)φ(Dξ1)φ(Dξ2)
[
□(0,0,0) [Mkσ]

]
(x, ξ1, ξ2)

=

∫
(Rn)3

φ̌(x− y)φ̌(ξ1 − η1)φ̌(ξ2 − η2)□(0,0,0) [Mkσ] (y, η1, η2) dydη1dη2.

From this identity, we obtain∣∣∣∂α
x ∂

β1

ξ1
∂β2

ξ2

(
□(0,0,0) [Mkσ] (x, ξ1, ξ2)

)∣∣∣
≤
∥∥□(0,0,0) [Mkσ]

∥∥
L∞

∫
(Rn)3

∣∣∂α
x φ̌(x− y)

∣∣∣∣∂β1

ξ1
φ̌(ξ1 − η1)

∣∣∣∣∂β2

ξ2
φ̌(ξ2 − η2)

∣∣ dydη1dη2
≈
∥∥□(0,0,0) [Mkσ]

∥∥
L∞ .

Hence, we have (4.14).
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Now, since (4.14) means that □(0,0,0) [Mkσ] ∈ BS0
0,0, we see from the boundedness

from Hs1 ×Hs2 to (L2, `1) for the class BS0
0,0 that

∥T□(0,0,0)[Mkσ]∥Hs1×Hs2→(L2,ℓ1) ≲
∥∥□(0,0,0) [Mkσ]

∥∥
L∞ .

Therefore, repeating the same lines as done in the proof of Theorem 1.1, we obtain

∥Tσ∥Hs1×Hs2→(L2,ℓ1) ≤
∑

k∈(Zn)3

∥T□kσ∥Hs1×Hs2→(L2,ℓ1)

=
∑

k∈(Zn)3

∥T□(0,0,0)[Mkσ]∥Hs1×Hs2→(L2,ℓ1)

≲
∑

k∈(Zn)3

∥∥□(0,0,0) [Mkσ]
∥∥
L∞ = ∥σ∥M∞,1 ,

which gives the boundedness stated in Theorem 1.1.
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[12] F. Holland, Harmonic analysis on amalgams of Lp and ℓq, J. London Math. Soc. (2), 10

(1975), 295–305.

[13] T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Ra-

tional Mech. Anal., 58 (1975), 181–205.

[14] T. Kato, A. Miyachi, and N. Tomita, Boundedness of bilinear pseudo-differential operators

of S0,0-type on L2 × L2, available at arXiv:1901.07237.

[15] T. Kato, A. Miyachi, and N. Tomita, Boundedness of multilinear pseudo-differential op-

erators of S0,0-type in L2-based amalgam spaces, available at arXiv:1908.11641.

[16] M. Kobayashi, Modulation spaces Mp,q for 0 < p, q ≤ ∞, J. Funct. Spaces Appl., 4 (2006),

329–341.

[17] A. Miyachi and N. Tomita, Calderón-Vaillancourt-type theorem for bilinear operators,

Indiana Univ. Math. J., 62 (2013), 1165–1201.

[18] M. Sugimoto, Lp-boundedness of pseudo-differential operators satisfying Besov estimates

I, J. Math. Soc. Japan, 40 (1988), 105–122.
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