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Weighted norm inequalities for the Fourier extension

operator via the X-ray tomography

By

Shohei Nakamura∗

Abstract

This note is an announcement of forthcoming paper [4] which is a work with Professor

Jonathan Bennett (University of Birmingham) and so the main purpose is to exhibit results in

[4] especially related to the weighted norm estimate for the Fourier extension operator known as

Stein and Mizohata-Takeuchi conjectures. To these open problems in [4] we apply the approach

using the X-ray tomography principle which has its origin in work of Planchon and Vega [17].

We will explain our results with motivations and how to apply the tomography principle to

the weighted norm estimate. We will also provide the explicit and detailed proof of Theorem

4.1 in [1] by Barceló-Bennett-Carbery.

§ 1. Introduction and statements of results

§ 1.1. Background: the Fourier restriction conjecture and related

conjectures

Our main object is the Fourier extension operator formally defined by

ĝdσ(x) =

∫
Sn−1

g(ξ)eix·ξ dσ(ξ), x ∈ Rn,

for g : Sn−1 → C where Sn−1 is the unit sphere in Rn and dσ denotes surface measure

on Sn−1. The main question we are interested in is the decay rate of ĝdσ in Rn. To this

question, the celebrated restriction conjecture states that

(1.1)
∥∥ĝdσ∥∥

Lq(Rn)
≤ C∥g∥Lp(Sn−1)
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holds for all g ∈ Lp(Sn−1) if and only if

(1.2)
1

q
<

n− 1

2n
,

1

q
≤ n− 1

n+ 1

1

p′
.

The restriction conjecture has been verified in dimension n = 2 (C. Fefferman and

Stein [11], [18]; see also Zygmund [24]), and there has been considerable progress in

higher dimensions in recent years (see for example [12] and [20] for further discussion

and context). We also refer to the lecture note [22] by Tao for detailed discussion of

motivation and relation to other topics.

Note that the difficulty of the sufficient part of this conjecture is to push the

exponent q as small as possible in (1.1). For instance, (1.1) with q = ∞ is an easy

consequence of Riemann-Lebesgue’s theorem and the case q = 2(n + 1)/(n − 1) is

also known to be true due to Stein-Tomas which also reveals a close link with the

nonlinear dispersive equation. On the other hand, the necessity of the conditions (1.2)

is straightforward to verify with simple examples. For the purpose of explaining our

approach, let us see these examples. The condition 1/q < (n − 1)/2n can be obtained

by applying (1.1) with g ≡ 1. In fact, one has the asymptotic behavior:

(1.3) |1̂dσ(x)| =
∣∣∣∫

Sn−1

eix·ξdσ(ξ)
∣∣∣ ∼ (1 + |x|)−

n−1
2

on a large portion of Rn by the simple application of the stationary phase argument – see

[23] or [18] for example. Accordingly, it is also conjectured that an endpoint inequality

of the form

(1.4) ∥ĝdσ∥
L

2n
n−1 (BR)

≲ε R
ε∥g∥

L
2n

n−1 (Sn−1)

holds for all ε > 0; here BR denotes the ball of radius R centred at the origin. It is

well-known that (1.4) for all ε > 0, indeed implies the restriction conjecture; see [21].

Another condition can be obtained by applying (1.1) with g = 1C(en,δ), where in

general for ω ∈ Sn−1, C(ω, δ) = Sn−1 ∩ B(ω, δ) is the δ-cap centered at ω and δ > 0.

Again it is straightforward to see

| ̂1C(en,δ)dσ| ≳ δn−11Tδ−1

where Tδ−1 is δ−1×· · · δ−1×δ−2-tube whose direction is parallel to en and centered at the

origin. Using this lower bound and tending δ → 0, one can obtain 1/q ≤ (n−1)/(n+1)p′.

In particular, this example reveals the relation between ĝdσ and geometry of tubes. In

this way, one can create any δ−1 × · · · × δ−1 × δ−2-tube whose direction and center

are arbitrary. Namely for arbitrary direction ω ∈ Sn−1 and center v ∈ Rn, if we set

g(ξ) = eiv·ξ1C(ω,δ), then ĝdσ has a large mass on the δ−1 × · · · δ−1 × δ−2-tube whose
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direction ω and centered at v. This link with the tube or line reminds us the Kakeya

conjecture which states that

(1.5) ∥Xf∥Ln(Sn−1) ≤ Cε∥(1−∆)εf∥Ln(Rn)

holds for all ε > 0 where the maximal X-ray transform X is given by

Xf(ω) = sup
v∈⟨ω⟩⊥

Xf(ω, v), Xf(ω, v) :=

∫
R
f(tω + v) dt, ω ∈ Sn−1.

In fact, there is a direct implication between two conjectures, see [22] for its proof:

Proposition 1.1.

Restriction conjecture ⇒ Kakeya conjecture.

At this stage, one may wonder if the reverse implication is true or not, namely

these two conjectures are equivalent or not. To this question there is no known explicit

reverse implication although there is some implicit one, for example Bourgain [5] first

provide the important progress on the restriction conjecture by employing the progress

of the Kakeya conjecture. Related to this question, Stein posed the following conjecture

about the weighted norm inequality for ĝdσ known as Stein’s conjecture in [19]; see also

Córdoba [9] and Carbery–Soria–Vargas [8] for variants of this: for all weight function

w : Rn :→ R≥0,

(1.6)

∫
Rn

|ĝdσ(x)|2w(x) dx ≤ C

∫
Sn−1

|g(ξ)|2Xw(ξ) dσ(ξ).

By the duality and bootstrapping argument, one can see that if Stein’s conjecture (1.6)

is true then the Kakeya conjecture implies the restriction conjecture and hence these

two conjectures become equivalent. These relations clarify the importance of Stein’s

conjecture, but it is also related to another open problem so-called Mizohata-Takeuchi

conjecture back to 1970’s [16] which states that

(1.7)

∫
Rn

|ĝdσ(x)|2w(x) dx ≤ C∥Xw∥L∞(M1,n)

∫
Sn−1

|g(ξ)|2 dσ(ξ).

Here, M1,n denotes the set of all lines in Rn parametrized by

M1,n = {l(ω, v) : ω ∈ Sn−1, v ∈ ⟨ω⟩⊥}, l(ω, v) := {tω + v ∈ Rn : t ∈ R}

and hence the mixed norm is defined by

∥Xw∥Lp
ωLq

v(M1,n) :=
( ∫

Sn−1

(

∫
⟨ω⟩⊥

Xw(ω, v)q dλω(v))
p/q σ(ω)

)1/p
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for general 1 ≤ p, q < ∞, and ∥Xw∥Lp
ωLq

v(M1,n) := supω∈Sn−1,v∈⟨ω⟩⊥ Xw(ω, v). In this

terminology we have

Xw(ω, v) =

∫
l(ω,v)

w.

Clearly, Stein’s conjecture implies (1.7). In this article, we are especially interested in

conjectures (1.6) and (1.7) that are open problems even when n = 2.

§ 1.2. Results

Let us focus on the Mizohata-Takeuchi conjecture (1.7). Firstly it is worth to

mention that (1.7) is known to be true if the weight w is radial for which case the

problem is indeed equivalent to certain uniform eigenvalue estimate involving Bessel

function, see [2, 7] or [1]. At the heuristically level there is an easy way to explain how

one can obtain the object Xw. In fact from the polar coordinate we know∫
Rn

w(x)|x|−(n−1) dx = cn

∫ ∞

0

w0(r) dr = cnXw(e1, 0)

which suggests the line integral of w, Xw, where w(x) = w0(|x|) since w is radial.

However, it is not clear how to deduce the quantity Xw for general weight w and this

is one of the difficulties of the Mizohata-Takeuchi conjecture. For this issue, we propose

to use the X-ray tomography principle. The basic principle of X-ray tomography is

captured by the well-known inversion formula,

(1.8) f = cnX
∗(−∆v)

1
2Xf,

or the closely-related fact that c
1/2
n (−∆v)

1/4X is an isometry from L2(Rn) to L2(M1,n)

for a certain dimensional constant cn. We might therefore expect that estimates on

X(|ĝdσ|2), or its variants, may be used to address tackling problems in restriction

theory as we have∫
Rn

|ĝdσ(x)|2 w(x)dx = cn

∫
M1,n

X(|ĝdσ|2)(ω, v)(−∆v)
1
2Xw(ω, v) dλω(v)dσ(ω).

A precedent for this approach may be found in the work of Planchon and Vega [17],

where certain sharp Strichartz estimates for the Schrödinger equation are obtained from

identities involving the Radon transform of |u(·, t)|2, where u is a solution to the free

time-dependent Schrödinger equation; see also Beltran and Vega [3], where their X-ray

analysis allows them to recover the recent sharp Stein–Tomas restriction theorem of

Foschi.

Before going to further detailed argument involving this approach, let us describe

the precise problem we will tackle via this X-ray tomography approach. As we men-

tioned the conjecture (1.7) has been the longstanding open problem and so it would be
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meaningful to consider the weakened problem as a first attempt. For this purpose we

employ the formal Sobolev’s embedding which suggests that

(1.9) ∥f∥L∞(Rn−1) ≲
∥∥(−∆)

n−1
2q f

∥∥
Lq(Rn−1)

for all 1 ≤ q ≤ ∞. Strictly speaking this endpoint of Sobolev’s embedding is known to

be fail. Nevertheless a formal application of (1.9) to the conjecture (1.7) implies

(1.10)

∫
Rn

|ĝdσ(x)|2w(x) dx ≤ C
∥∥(−∆v)

n−1
2q Xw

∥∥
L∞

ω Lq
v(M1,n)

∫
Sn−1

|g(ξ)|2 dσ(ξ)

for all 1 ≤ q ≤ ∞ and this is what we are interested in. The conjecture (1.7) corre-

sponds to (1.10) with q = ∞ and so the problem is to establish (1.10) with q as large

as possible. Although these arguments are heuristic our result in below justifies this

situation. Rigorously speaking, in order to apply the tomography principle, we instead

consider the validity of the local variant

(1.11)

∫
BR

|ĝdσ|2 w ≲ Rε
∥∥(−∆v)

n−1
2q Xw

∥∥
L∞

ω Lq
v(M1,n)

∫
Sn−1

|g|2,

formulated in the spirit of (1.4). Our main result here states that, for n = 2, the case

q = 1 holds true and moreover the exponent q may be pushed up to 2.

Theorem 1.2 (Bennett, N [4]). Let n = 2. Then (1.11) holds true as long as

1 ≤ q ≤ 2. Moreover, we have

(1.12)

∫
BR

|ĝdσ|2 w ≲ logR
∥∥(−∆v)

1
4Xw

∥∥
L∞

ω L2
v(M1,2)

∫
S1
|g|2.

It is interesting to compare (1.12) with the endpoint restriction estimate (1.4).

When n = 2, using the isometry of (−∆v)
1
4X from L2(R2) to L2(M1,2), the endpoint

estimate (1.4) is equivalent to

(1.13)

∫
BR

|ĝdσ|2 w ≲ε R
ε
∥∥(−∆v)

1
4Xw

∥∥
L2

ω,v(M1,2)
∥g∥2L4(S1)

and this reveals the close link between (1.12) and the original restriction problem.

We can also apply the similar argument to Stein’s conjecture and indeed our proof

of Theorem 1.2 is based on it. Again the formal application of (1.9) to (1.6) gives

(1.14)

∫
Rn

|ĝdσ(x)|2w(x) dx ≤ C

∫
Sn−1

|g(ξ)|2Xqw(ξ) dσ(ξ)

for all 1 ≤ q ≤ ∞ where

Xqw(ξ) :=
∥∥(−∆v)

n−1
2q Xw(ξ, ·)

∥∥
Lq

v(M1,n)
.
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As before (1.14) with q = ∞ corresponds to Stein’s conjecture and hence the problem

is to make q as large as possible.

Our next theorem provides a variant of (1.14) in the case n = 2 and q = 2. Its

statement naturally involves a bilinear averaging operator BTδ defined by

(1.15) BTδ(g1, g2)(ω) =

∫
Sn−1

g1(ξ)g̃2(Rω(ξ))

|ω · ξ|+ δ
dσ(ξ)

for δ > 0 and g1, g2 : Sn−1 → C where g̃(ω) = g(−ω) and Rω(ξ) = ξ − 2(ξ · ω)ω is the

reflection of ξ in the hyperplane ⟨ω⟩⊥. 1

Theorem 1.3 (Bennett, N [4]). Let n = 2. Then for all R ≫ 1,∫
BR

|ĝdσ|2w ≲
∫
S1
BT1/R

(
|g|21/R, |g|

2
1/R

)
(ω)

1
2Sw(ω) dσ(ω)(1.16)

+

∫
S1
BT1/R

(
|g|21/R, |g|

2
1/R

)
(ω⊥)

1
2Sw(ω) dσ(ω),

where

Sw(ω) := X2w(ω) =

(∫
⟨ω⟩⊥

∣∣(−∆v)
1
4Xw(ω, v)

∣∣2 dλω(v)

) 1
2

,

and |g|1/R is a suitable mollification of |g| at scale 1/R, such as that given by convolution

with the Poisson kernel on S1.

The first remark here is about the auxiliary bilinear operator BTδ. In [4] we

observed that BTδ is very well behaved, satisfying the bounds∥∥BTδ(g1, g2)
∥∥
L

1
2 (S1)

≲ log(δ−1)2∥g1∥L1(S1)∥g2∥L1(S1),(1.17) ∥∥BTδ(g1, g2)
∥∥
L1(S1) ≲ log(δ−1)∥g1∥L2(S1)∥g2∥L2(S1).(1.18)

In particular, our Stein-type inequality (1.16), when combined with (1.17), immediately

implies our Mizohata–Takeuchi-type inequality (1.12). Similarly, (1.16) and (1.18),

combined with the Cauchy–Schwarz inequality, imply the n = 2 endpoint restriction

inequality (1.4), thanks to the fact that the controlling operator S, like X , satisfies

1One can see that BTδ is the natural bilinearization on Sn−1 of the linear operator Tδ given by

Tδg(ω) :=

∫
Sn−1

g(ξ)

|ξ · ω|+ δ
dσ(ξ).

In fact for general linear operator T acting on the function on Sn−1 we may define its bilinear
variant by

BT (g1, g2)(ω) := T (g1(·)g̃2(Rω(·)))(ω).
With this definition one can check that, for example, for H, the Hilbert transform on S1, BH
corresponds to the bilinear Hilbert transform, see [14].
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suitable bounds on L2(R2) – indeed S is better behaved than X in this regard as

∥Sw∥L2(S1) =
√
2π∥w∥L2(R2).

Second remark is about the weighted norm inequality for BTδ. As one can see the

difference between (1.14) and (1.16) is the presence of the well-behaved operator BTδ.

From this point of view it is natural to ask what is the natural weight class of v for

which the weighted norm estimate

(1.19)
( ∫

S1
|BTδ(g1, g2)(ω)|

1
2 v(ω) dσ(ω)

)2 ≲ log(δ−1)2
∏
i=1,2

( ∫
S1
|gi(ωi)|v(ωi) dσ(ωi)

)
holds true. For instance if one can ensure that (1.19) holds true with v = Sw, then
one would obtain (1.14) with q = 2 from our result (1.16). For this problem it is worth

to provide a way to regard the operator BTδ as the truncated version of the bilinear

Hilbert transform. Perhaps L1 × L1 → L1/2 bound (1.17) reminds us the famous

conjecture for the bilinear Hilbert transform, see Lacey-Thiele [14]. Let us explain

further details. We assume, as we may, that g1, g2 are nonnegative and symmetric.

Using the parametrization ω = (cos θ, sin θ) and ξ = (cosφ, sinφ) in (1.15), we have

BTδ(g1, g2)(ω) =

∫ 2π

0

G1(φ)G2(2θ − φ)

| cos(θ − φ)|+ δ
dφ =

∫ 2π

0

G1(θ − φ)G2(θ + φ)

| cosφ|+ δ
dφ,

where Gi(φ) = gi(cosφ, sinφ) for i = 1, 2. After considering suitable rotations, we see

that BTδ behaves like

(1.20) BHδ(h1, h2)(θ) :=

∫ 1/100

−1/100

h1(θ + φ)h2(θ − φ)

|φ|+ δ
dφ.

From this realization the problem (1.19) is more or less equivalent to identifying the

weight class of V for which

(1.21)
( ∫ 2π

0

|BHδ(h1, h2)(θ)|
1
2V (θ) dθ

)2 ≲ log(δ−1)2
∏
i=1,2

( ∫ 2π

0

|hi(θi)|V (θi) dθi
)

holds true. Alternatively we may also ask the Fefferman-Stein type estimate instead

of (1.21). Namely, by using some suitable maximal operator M , for example Hardy-

Littlewood maximal operator, the question is the validity of

(1.22)
( ∫ 2π

0

|BHδ(h1, h2)(θ)|
1
2V (θ) dθ

)2 ≲ log(δ−1)2
∏
i=1,2

( ∫ 2π

0

|hi(θi)|MV (θi) dθi
)

for all weight V . The positive answer to (1.22) also provides some progress on (1.14). As

far as we are aware there seems no investigation about these weighted norm estimates

for the bilinear Hilbert transform and it would be an interesting problem. For the
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weighted norm estimate for the fractional integral operator with exponent below 1 in

the place of 1/2, we refer [15].

As a final remark it is interesting to compare Theorem 1.3 with Theorem 4.1 in [1]

by Barceló-Bennett-Carbery. We will provide their precise statement in Section 2 and

here just mention that their result has a common property, namely it involves L2-norm

in right-hand side. In Section 2 we will provide the detailed proof of their result as well

since they have just referred the work of Erdog̃an [10] (also [6]) for its proof and no one

can find the explicit proof.

§ 1.3. Idea of how to apply the X-ray tomography

In this subsection we describe the idea of the proof of Theorem 1.2 via the X-ray

tomography approach which means the aforementioned fact that c
1/2
n (−∆v)

1/4X is an

isometry from L2(Rn) to L2(M1,n). By using this isometry we have∫
Rn

|ĝdσ|2w = cn

〈
(−∆v)

1
4X(|ĝdσ|2), (−∆v)

1
4Xw

〉
L2(M1,n)

= cn

〈
(−∆v)

1
2 (1−

n−1
q )X(|ĝdσ|2), (−∆v)

n−1
2q Xw

〉
L2(M1,n)

(1.23)

for all 1 ≤ q ≤ ∞. An application of Hölder’s inequality now leads to the bound

(1.24)

∫
Rn

|ĝdσ|2w ≲
∥∥(−∆v)

n−1
2q Xw

∥∥
L∞

ω Lq
v

∥∥(−∆v)
1
2 (1−

n−1
q )X(|ĝdσ|2)

∥∥
L1

ωLq′
v
.

Therefore our estimate (1.10) may be reduced to the “tomography bounds”

(1.25)
∥∥(−∆v)

1
2 (1−

n−1
q )X(|ĝdσ|2)

∥∥
L1

ωLq′
v (M1,n)

≲ ∥g∥2L2(Sn−1).

Corresponding to the local variant (1.11) we also consider

(1.26)
∥∥(−∆v)

1
2 (1−

n−1
q )X(γR|ĝdσ|2)

∥∥
L1

ωLq′
v (M1,n)

≲ Rε∥g∥2L2(Sn−1),

where γR is a smooth bump function adapted to BR (satisfying certain technical condi-

tions). As arguing before (1.26) implies (1.11). So the proof of Theorem 1.2 is reduced

to the analysis of the quantity (−∆v)
αX(|ĝdσ|2). More precisely, it amounts to show∥∥X(γR|ĝdσ|2)
∥∥
L1

ωL∞
v (M1,2)

≲ Rε∥g∥2L2(S1),∥∥(−∆v)
1
4X(γR|ĝdσ|2)

∥∥
L1

ωL2
v(M1,2)

≲ Rε∥g∥2L2(S1).

These will be done by using further Fourier analytic argument in [4] and we do not give

detailed proof here. Instead we end this section by the remark that (1.26) cannot be

true for 2 ≤ q ≤ ∞ as the example g ≡ 1 shows. So the simple argument like (1.23)

and (1.24) are not enough to reach at the conjecture (1.7).
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§ 2. Statement and detailed proof of Theorem 4.1 in [1] by

Barceló-Bennett-Carbery.

§ 2.1. Statement

We first correct notations we will use in this section.

• A unit ball is given by B(2) = {ξ ∈ R2 : |ξ| ≤ 1}.

• For α < β, ω ∈ S1, and x ∈ R2, Tα,β(ω, x) denotes the tube whose short length is

α, long length β, centered at x, and the long direction parallel to ω.

• For δ > 0, the δ-fattened sphere is denoted by S1 +O(δ) := {ξ ∈ R2 : 1− δ ≤ |ξ| ≤
1 + δ}.

• We will use g for the function on S1 and G for the function on S1 +O(δ).

• More generally, for t > 0, we define the sphere with radius t by

S1t := {ξ ∈ R2 : |ξ| = t}, dσt(ξ) := δ(t2 − |ξ|2)dξ

where δ is the standard Dirac delta. Note that if we define

ϕt,ε(ξ) := ε−1g(ε−1(t2 − |ξ|2)),

where g stands for the centered and normalized gaussian, then we have

(2.1) lim
ε→0

ϕt,ε(ξ) = δ(t2 − |ξ|2), ϕt,ε(ξ) = cε−1

∫ t+ε

t−ε

δ(s2 − |ξ|2) ds.

• We will identify S1 with (−π, π) via

φ(θ) = (cos θ, sin θ) ∈ S1, θ ∈ (−π, π).

• For a set E ⊂ Rn, n = 1, 2, we denote the smooth cut-off associated with E by

χE ∈ C∞
c (Rn) satisfying 12−1E ≤ χ ≤ 12E .

The statement of the result in [1] is as follows. We will use the notation −
∫
to denote

the averaged integral.
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Theorem 2.1 (Theorem 4.1 in [1]). For all R ≫ 1,

(2.2)

∫
B(2)

|ĝdσ(Rx)|2w(x) dx ≲ R−1 log(R)

∫
S1
|g(ω)|2MRw(ω) dσ(ω),

where

MRw(ω) := sup
R−1≤α≤R−1/2

Mα,Rw(ω),

Mα,Rw(ω) := sup
v∈R2

(
−
∫
T(αR)−1,1(ω,v)

[
−
∫
Tα,α2R(ω,x)

w(y) dy
]2

dx

) 1
2

.(2.3)

After rescaling one can see (2.2) is a variant of (1.6) and indeed it is the weakened

version. We will provide the detailed proof of this result in below.

§ 2.2. Equivalent R−1-fattened form

It is convenient to use G : R2 → C supported on S1+O(R−1) instead of g : S1 → C
as the input function.

Lemma 2.2. Consider two estimate: for t > 0,

(2.4)∫
B(2)

|ĝtdσt(Rx)|2w(x) dx ≲ R−1 log(R)

∫
S1t
|gt(ω)|2MRw(ω/|ω|) dσt(ω), (gt : S1t → C),

and

(2.5)∫
B(2)

|∨G(Rx)|2w(x) dx ≲ R−2 log(R)

∫
R2

|G(ξ)|2MRw(ξ/|ξ|) dξ, (G : S1+O(R−1) → C).

1. Suppose that (2.4) holds uniformly in t ∈ (1−R−1, 1 +R−1) uniformly in t. Then

we have (2.5).

2. Conversely assume (2.5). Then we have (2.4) with t = 1.

Thanks to Lemma 2.2, it suffices to show (2.5).

Proof. First let us show the part (1). With (2.1) in mind,

∨G(x) =

∫
S1+O(R−1)

G(ξ)e−ix·ξ dξ

=

∫
R2

R−1ϕ1,R−1(ξ)G(ξ)e−ix·ξ dξ

=

∫
R2

∫ 1+R−1

1−R−1

G(ξ)e−ix·ξδ(s2 − |ξ|2) dsdξ

=

∫ 1+R−1

1−R−1

ĝsdσs(x) ds,
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where gs := G|S1s is the restriction of G to S1s. So simple applications of the Minkowski’s

inequality, (2.4), and the Cauchy-Schwarz inequality reveal that∫
B(2)

|∨G(Rx)|2w(x) dx

≤
(∫ 1+R−1

1−R−1

( ∫
B(2)

|ĝsdσs(Rx)|2w(x) dx
) 1

2 ds

)2

≲R−1 log(R)

(∫ 1+R−1

1−R−1

( ∫
S1s
|gs(ω)|2MRw(ω/|ω|) dσs(ω)

) 1
2 ds

)2

≲R−1(R−1/2)2 log(R)

∫ 1+R−1

1−R−1

∫
S1s
|gs(ω)|2MRw(ω/|ω|) dσs(ω)ds

=R−2 log(R)

∫ 1+R−1

1−R−1

∫
R2

|G(ω)|2MRw(ω/|ω|)δ(s2 − |ω|2) dωds

∼R−2 log(R)

∫
R2

|G(ω)|2MRw(ω/|ω|)|ω|−1 dω

∼R−2 log(R)

∫
R2

|G(ω)|2MRw(ω/|ω|) dω

where we also used the fact that
∫ 1+R−1

1−R−1 δ(s2 − |ω|2)ds ∼ |ω|−1 and that the integral is

indeed over S1 +O(R−1), in particular |ω| ∼ 1.

Next we show the part (2). We first note that by denoting γR(x) = e−|x/R|2 we

have ∫
B(2)

|ĝdσ(Rx)|2w(x) dx ≲
∫
B(2)

|∨
[
(gdσ) ∗ γ̂R

]
(Rx)|2w(x) dx.

If ξ /∈ S1 + O(R−1), then (gdσ) ∗ γ̂R(ξ) decays arbitrary fast as the Gaussian γ̂R does.

So, we may regard the support of (gdσ) ∗ γ̂R is contained in S1 +O(R−1) and hence set

G = (gdσ) ∗ γ̂R. Applying (2.5), we see∫
B(2)

|ĝdσ(Rx)|2w(x) dx ≲ R−2 log(R)

∫
R2

|(gdσ) ∗ γ̂R(ξ)|2MRw(ξ/|ξ|) dξ.

We complete the proof once we can prove (especially for p = 2)

(2.6)

∫
R2

|(gdσ) ∗ γ̂R(ξ)|pMRw(ξ/|ξ|) dξ ≲ R
p
p′

∫
S1
|g(ξ)|pMRw(ξ) dσ(ξ).

We will do this by the interpolation. When p = ∞, (2.6) follows from the simple

observation that

sup
ξ∈R2

∫
S1
|γ̂R(ξ − y)| dσ(y) ≲ R

since we easily have

sup
ξ∈R2

|(gdσ) ∗ γ̂R(ξ)| ≤ ∥g∥∞ sup
ξ∈R2

∫
S1
|γ̂R(ξ − y)| dσ(y).
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On the other hand, for p = 1 we have∫
R2

|(gdσ) ∗ γ̂R(ξ)|MRw(ξ/|ξ|) dξ

≤
∫
R2

∫
R2

|g(ξ − η)|δ(1− |ξ − η|2)|γ̂R(η)|MRw(ξ/|ξ|) dξdη

=

∫
R2

∫
R2

|g(ω)|δ(1− |ω|2)|γ̂R(η)|MRw((ω + η)/|ω + η|) dξdη.

As we will prove in Lemma 2.3 the maximal operator MR has a local constant property

at scale R−1/2 and in particular at scale R−1 in the sense that if ω, ω0 ∈ S1 and

|ω − ω0| ≤ R−1/2, then

MRw(ω) ∼ MRw(ω0).

So, for |η| ≤ R−1, we have |(ω + η)/|ω + η| − ω/|ω|| ≲ R−1 and hence

MRw((ω + η)/|ω + η|) ∼ MRw(ω/|ω|) = MRw(ω).

This shows∫
R2

|(gdσ) ∗ γ̂R(ξ)|MRw(ξ/|ξ|) dξ ≲
∫
R2

∫
R2

|g(ω)|δ(1− |ω|2)|γ̂R(η)|MRw(ω) dσ(ω)dη

∼
∫
S1
|g(ω)|MRw(ω) dσ(ω)

which is (2.6) with p = 1. Therefore we conclude (2.4) with t = 1.

§ 2.3. Basic properties of maximal operators MR and Mα,R

First of all, we begin this subsection with one simple geometrical observation which

implies the locally constant property of Mα,R and MR as well. Recall that for α < β,

ω ∈ S1, and v ∈ R2, Tα,β(ω, v) is the tube centered at v whose short length is α, long

length is β, and the direction is ω. Then one can see that there exists C, c > 0 such

that

(2.7) cTα,β(ω0, v) ⊂ Tα,β(ω, v) ⊂ CTα,β(ω0, v)

holds as long as |ω − ω0| ≤ α/(100β). Using this property, we can show the following.

Lemma 2.3. Let α > 0. Then Mα,Rw is the locally constant at scale (αR)−1

in the sense that

Mα,Rw(ω) ∼ Mα,Rw(ω0)

holds as long as ω, ω0 ∈ S1, |ω − ω0| ≤ (αR)−1, where the implicit constants are inde-

pendent of α,R.

In particular, MRw is the locally constant at scale R−1/2.
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Proof. It suffices to show

Mα,Rw(ω) ≲ Mα,Rw(ω0).

From the definition of Mα,R, for each ω ∈ S1, there exists v(ω) ∈ R2 such that

Mα,Rw(ω) ∼
(
−
∫
T(αR)−1,1(ω,v(ω))

[
−
∫
Tα,α2R(ω,x)

w(y) dy
]2

dx

) 1
2

.

Using (2.7) for T(αR)−1,1(ω, v(ω)) and Tα,α2R(ω, x), one can replace tubes direction ω

in right-hand side by the ones direction ω0 and hence we see

Mα,Rw(ω) ≲
(
−
∫
T(αR)−1,1(ω0,v(ω))

[
−
∫
Tα,α2R(ω0,x)

w(y) dy
]2

dx

) 1
2

≲ Mα,Rw(ω0)

as long as |ω − ω0| ≤ (αR)−1.

Another property we will need is the relation between Mα,R and the Kakeya type

maximal operator.

Lemma 2.4. Then we have

(2.8) MR−1/2,Rw(ω) ∼ sup
v∈R2

−
∫
T
R−1/2,1

(ω,v)

w(x) dx.

Proof. With the definition of MR−1/2,R in mind, we consider(
−
∫
T
R−1/2,1

(ω,v)

[
−
∫
T
R−1/2,1

(ω,x)

w(y) dy
]2

dx

) 1
2

for arbitrary v ∈ R2. Since the two tubes have same size we see that for all x ∈
TR−1/2,1(ω, v),

100TR−1/2,1(ω, x) ⊃ TR−1/2,1(ω, v)

and hence

inf
x∈T

R−1/2,1
(ω,v)

−
∫
100T

R−1/2,1
(ω,x)

w(y) dy ≳ −
∫
T
R−1/2,1

(ω,v)

w(y) dy.

This yields(
−
∫
T
R−1/2,1

(ω,v)

[
−
∫
100T

R−1/2,1
(ω,x)

w(y) dy
]2

dx

) 1
2

≳ −
∫
T
R−1/2,1

(ω,v)

w(y) dy

and hence by taking the supremum over all v it concludes

MR−1/2,Rw(ω) ≳ sup
v∈R2

−
∫
T
R−1/2,1

(ω,v)

w(x) dx.
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We similarly have for all x ∈ TR−1/2,1(ω, v),

100TR−1/2,1(ω, v) ⊃ TR−1/2,1(ω, x)

and hence

sup
x∈T

R−1/2,1
(ω,v)

−
∫
T
R−1/2,1

(ω,x)

w(y) dy ≲ −
∫
100T

R−1/2,1
(ω,v)

w(y) dy

which shows the converse inequality.

§ 2.4. Proof of (2.5)

Let us prove (2.5) and hence Theorem 2.1 by following the argument by Erdog̃an

[10]. Recalling the identification φ(θ) = (cos θ, sin θ), the support of G is φ((−π, π)) +

O(R−1). Moreover we may suppose G is supported on φ((−1/2, 1/2))+O(R−1) without

loss of generality. Now we employ the Whitney decomposition to handle the singularity.

For each j ∈ N, we do the dyadic decomposition (−1/2, 1/2) =
⋃

k τ
j
k , where τ jk is the

subdyadic interval of length 2−j . We say τ jk ∼ τ jk′ if τ jk and τ jk′ are not adjacent but

have adjacent parent. Then we may decompose the unit cube by

(−1/2, 1/2)× (−1/2, 1/2) =

log(R1/2)⋃
j=1

⋃
k,k′:τj

k∼τj

k′

τ jk +D,

where D is more or less the R−1/2-neighborhood of the diagonal line: {(θ1, θ2) ∈
(−1/2, 1/2) × (−1/2, 1/2) : |x − y| ≤ R−1/2}. In particular, we may decompose D
by

D =
R1/2⋃
l=1

Il × Il,

where Il ⊂ (−1/2, 1/2) is an interval of length R−1/2 and the family of intervals {Il}l
are almost disjoint. Therefore we see

|∨G(Rx)|2 ≲
log(R1/2)∑

j=1

∑
k,k′:τj

k∼τj

k′

|∨Gτj
k
(Rx)∨Gτj

k′
(Rx)|+

R1/2∑
l=1

|∨GIl(Rx)|2,
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where for the interval I ⊂ (−1/2, 1/2) we denote GI(ξ) = G(ξ)χI ◦ φ−1(ξ/|ξ|). So it

suffices to evaluate two quantities

I1 :=

∫
B(2)

log(R1/2)∑
j=1

∑
k,k′:τj

k∼τj

k′

|∨Gτj
k
(Rx)∨Gτj

k′
(Rx)|w(x) dx,

I2 :=

∫
B(2)

R1/2∑
l=1

|∨GIl(Rx)|2w(x) dx.

We first handle the second term which behaves better than the first term. Notice

that the support of GIl is in φ(Il) + O(R−1). More precisely, if we denote ωl ∈ S1 to

be the center of φ(Il), then

supp(GIl) ⊂ TR−1,R−1/2(ω⊥
l , ωl)

and hence the Fourier support of ∨GIl(R·) is in T1,R1/2(ω⊥
l , Rωl). So the Fourier support

of |∨GIl(R·)|2 is contained in 2T1,R1/2(ωl
⊥, Rωl) which implies∫

B(2)

|∨GIl(Rx)|2w(x) dx ≲
∫
B(2)

|∨GIl(Rx)|2w ∗ |∨χT
1,R1/2 (ωl

⊥,Rωl)|(x) dx.

Here with the uncertainly principle in mind we have

|∨χT
1,R1/2 (ωl

⊥,Rωl)| ∼ |T1,R1/2(ωl
⊥, Rωl)|χT

R−1/2,1
(ωl,0) = |TR−1/2,1(ωl, 0)|−1χT

R−1/2,1
(ωl,0)

and hence for any x ∈ R2,

w ∗ |∨χT
1,R1/2 (ωl

⊥,Rωl)|(x) ≲ sup
v∈R2

−
∫
T
R−1/2,1

(ωl,v)

w(y) dy ∼ MR−1/2,Rw(ωl)

thanks to Lemma 2.4. From this, we also have∫
B(2)

|∨GIl(Rx)|2w(x) dx ≲
∫
B(2)

|∨GIl(Rx)|2 dx×MR−1/2,Rw(ωl)

≤ R−2

∫
R2

|∨GIl(x)|2 dx×MR−1/2,Rw(ωl)

= R−2

∫
R2

|GIl(ξ)|2 dξ ×MR−1/2,Rw(ωl).

Recalling the support of GIl is in TR−1,R−1/2(ω⊥
l , ωl), especially in B(ωl, R

−1/2) we

notice that∫
R2

|GIl(ξ)|2 dξ ×MR−1/2,Rw(ωl) ∼
∫
R2

|GIl(ξ)|2MR−1/2,Rw(ξ/|ξ|) dξ



70 Shohei Nakamura

since MR−1/2,Rw is locally constant at scale R−1/2, see Lemma 2.3. Since {Il}l has the
almost disjointness we can sum up with respect to l = 1, . . . R1/2 and conclude

I2 ≲ R−2

∫
R2

|G(ξ)|2MR−1/2,Rw(ξ/|ξ|) dξ ≤ R−2

∫
R2

|G(ξ)|2MRw(ξ/|ξ|) dξ.

To handle I1, fix j, k, k′ and consider
∫
B(2) |∨Gτj

k
(Rx)∨Gτj

k′
(Rx)|w(x) dx. Note that

the Fourier support of ∨Gτj
k

∨Gτj

k′
is the support of Gτj

k
∗Gτj

k′
⊂ [τ jk +O(R−1)] + [τ jk′ +

O(R−1)]. If we denote the center of the 2−j-cap φ(τ jk) by ωj
k ∈ S1, then τ jk +O(R−1) ⊂

T2−2j ,2−j ((ωj
k)

⊥, ωj
k) and hence

supp(Gτj
k
∗Gτj

k′
) ⊂ T2−2j ,2−j ((ωj

k)
⊥, ωj

k) + T2−2j ,2−j ((ωj
k′)

⊥, ωj
k′).

Furthermore recalling τ jk ∼ τ jk′ which in particular implies τ jk′ ⊂ 4τ jk and hence

T2−2j ,2−j ((ωj
k)

⊥, ωj
k) + T2−2j ,2−j ((ωj

k′)
⊥, ωj

k′) ⊂ 8T2−2j ,2−j ((ωj
k)

⊥, ωj
k).

This shows the Fourier support of ∨Gτj
k
(R·)∨Gτj

k′
(R·) is contained in 8TR2−2j ,R2−j ((ωj

k)
⊥, Rωj

k)

and so ∫
B(2)

|∨Gτj
k
(Rx)∨Gτj

k′
(Rx)|w(x) dx

≲
∫
B(2)

|∨Gτj
k
(Rx)∨Gτj

k′
(Rx)|w ∗ |∨χTR2−2j ,R2−j ((ω

j
k)

⊥,Rωj
k)
|(x) dx.

As before from the uncertainly principle we know

(2.9) |∨χTR2−2j ,R2−j ((ω
j
k)

⊥,Rωj
k)
| ∼ |TR−12j ,R−122j (ω

j
k, 0)|

−1χTR−12j ,R−122j (ω
j
k,0)

.

We further decompose the physical space into rectangles:
∑

P χP ∼ 1, where each

P is the rectangle of short length 2−j , long length 1, and the direction is parallel to ωj
k.

Then∫
B(2)

|∨Gτj
k
(Rx)∨Gτj

k′
(Rx)|w(x) dx

≲
∑
P

∫
P

|∨Gτj
k
(Rx)∨Gτj

k′
(Rx)|w ∗ |∨χTR2−2j ,R2−j ((ω

j
k)

⊥,Rωj
k)
|(x) dx

≤
∑
P

( ∫
P

|∨Gτj
k
(Rx)∨Gτj

k′
(Rx)|2 dx

) 1
2
( ∫

P

w ∗ |∨χTR2−2j ,R2−j ((ω
j
k)

⊥,Rωj
k)
|(x)2 dx

) 1
2 .

From the bilinear restriction estimate (for example (25) in [10]) we have∫
P

|∨Gτj
k
(Rx)∨Gτj

k′
(Rx)|2 dx ≲ 2j

∥∥∧[χP
∨Gτj

k
(R·)]

∥∥2
2

∥∥∧[χP
∨Gτj

k′
(R·)]

∥∥2
2
.
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For the second term we have from (2.9) that∫
P

w ∗ |∨χTR2−2j ,R2−j ((ω
j
k)

⊥,Rωj
k)
|(x)2 dx ≲

∫
P

[−
∫
TR−12j ,R−122j (ω

j
k,x)

w(y) dy]2 dx

= 2−j−
∫
P

[−
∫
TR−12j ,R−122j (ω

j
k,x)

w(y) dy]2 dx.

From these estimates we obtain∫
B(2)

|∨Gτj
k
(Rx)∨Gτj

k′
(Rx)|w(x) dx

≲
∑
P

2j/2
∥∥∧[χP

∨Gτj
k
(R·)]

∥∥
2

∥∥∧[χP
∨Gτj

k′
(R·)]

∥∥
2
2−j/2

×
(
−
∫
P

[−
∫
TR−12j ,R−122j (ω

j
k,x)

w(y) dy]2 dx
) 1

2

≤
(∑

P

∥∥∧[χP
∨Gτj

k
(R·)]

∥∥2
2

) 1
2
(∑

P

∥∥∧[χP
∨Gτj

k′
(R·)]

∥∥2
2

) 1
2

× sup
P

(
−
∫
P

[−
∫
TR−12j ,R−122j (ω

j
k,x)

w(y) dy]2 dx
) 1

2

∼
∥∥∨Gτj

k
(R·)

∥∥
2

∥∥∨Gτj

k′
(R·)

∥∥
2
sup
P

(
−
∫
P

[−
∫
TR−12j ,R−122j (ω

j
k,x)

w(y) dy]2 dx
) 1

2

∼R−2∥Gτj
k
∥2∥Gτj

k′
∥2 sup

P

(
−
∫
P

[−
∫
TR−12j ,R−122j (ω

j
k,x)

w(y) dy]2 dx
) 1

2 .

Since the direction of P is ωj
k, we notice

sup
P

(
−
∫
P

[−
∫
TR−12j ,R−122j (ω

j
k,x)

w(y) dy]2 dx
) 1

2 = MR−12j ,Rw(ω
j
k) ∼ MR−12j ,Rw(ω

j
k′)

as MR−12j ,Rw is locally constant at scale 2−j thank to Lemma 2.3 and |ωj
k−ωj

k′ | ∼ 2−j .

Moreover

dist
(
ωj
k, ∂
[
supp(Gτj

k
)
])
,dist

(
ωj
k′ , ∂

[
supp(Gτj

k′
)
])

∼ 2−j ,

and hence again Lemma 2.3 shows

∥Gτj
k
∥2∥Gτj

k′
∥2 sup

P

(
−
∫
P

[−
∫
TR−12j ,R−122j (ω

j
k,x)

w(y) dy]2 dx
) 1

2

∼∥Gτj
k
∥2∥Gτj

k′
∥2MR−12j ,Rw(ω

j
k)

1
2 ×MR−12j ,Rw(ω

j
k′)

1
2

∼
( ∫

R2

|Gτj
k
(ξ)|2MR−12j ,Rw(ξ/|ξ|) dξ

) 1
2
( ∫

R2

|Gτj

k′
(ξ)|2MR−12j ,Rw(ξ/|ξ|) dξ

) 1
2

≤
( ∫

R2

|Gτj
k
(ξ)|2MRw(ξ/|ξ|) dξ

) 1
2
( ∫

R2

|Gτj

k′
(ξ)|2MRw(ξ/|ξ|) dξ

) 1
2 .
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Now we sum up over k, k′. Note that for each fixed j, {τ jk}k has the almost disjointness.

Also for each k, we know ♯{k′ : τ jk ∼ τ jk′} ≤ 4 and so we may pretend as there is a

unique k′ = k′(k) such that τ jk ∼ τ jk′(k). With these in mind we conclude∑
k,k′:τj

k∼τj

k′

∫
B(2)

|∨Gτj
k
(Rx)∨Gτj

k′
(Rx)|w(x) dx

≲R−2
∑
k

( ∫
R2

|Gτj
k
(ξ)|2MRw(ξ/|ξ|) dξ

) 1
2
( ∫

R2

|Gτj

k′(k)

(ξ)|2MRw(ξ/|ξ|) dξ
) 1

2

≤R−2
(∑

k

∫
R2

|Gτj
k
(ξ)|2MRw(ξ/|ξ|) dξ

) 1
2
(∑

k

∫
R2

|Gτj

k′(k)

(ξ)|2MRw(ξ/|ξ|) dξ
) 1

2

≲R−2

∫
R2

|G(ξ)|2MRw(ξ/|ξ|) dξ.

Since this is the uniform estimate with respect to j, we conclude (2.5).
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