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Higher order transversality in harmonic analysis

By

Jonathan Bennett∗ and Neal Bez∗∗

Abstract

In differential topology two smooth submanifolds S1 and S2 of euclidean space are said to

be transverse if the tangent spaces at each common point together form a spanning set. The

purpose of this article is to explore a much more general notion of transversality pertaining to

a collection of submanifolds of euclidean space. In particular, we show that three seemingly

different concepts of transversality arising naturally in harmonic analysis, are in fact equivalent.

This result is an amalgamation of several recent works on variants of the Brascamp–Lieb

inequality, and we take the opportunity here to briefly survey this growing area. This is not

intended to be an exhaustive account, and the choices made reflect the particular perspectives

of the authors.

§ 1. Introduction

In differential topology, two smooth submanifolds S1, S2 of Rn are said to be trans-

verse if at each point of their intersection, the tangent spaces of S1, S2 together span

Rn – that is

(1.1) x ∈ S1 ∩ S2 =⇒ TxS1 + TxS2 = Rn.

Of course (TxS1 + TxS2)
⊥ = (TxS1)

⊥ ∩ (TxS2)
⊥, and so this notion of transversality is

equivalent to requiring that the normal spaces to S1, S2 at a common point intersect

trivially.

Received December 24, 2019. Revised May 12, 2021.
2020 Mathematics Subject Classification(s): 44A35, 57N75, 42B10
Key Words: Transversality, convolution estimates, Fourier extension estimates
Supported by JSPS Kakenhi no. 19H01796 (Bez)

∗School of Mathematics, The Watson Building, University of Birmingham, Edgbaston, Birmingham,
B15 2TT, England.
e-mail: j.bennett@bham.ac.uk

∗∗Department of Mathematics, Graduate School of Science and Engineering, Saitama University,
Saitama 338-8570, Japan.
e-mail: nealbez@mail.saitama-u.ac.jp

© 2021 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



76 Jonathan Bennett and Neal Bez

One reason why transversality is important in analysis is that it allows us to make

sense of products of distributions. For example, if S1, S2 are transverse smooth sub-

manifolds of Rn, and for each j = 1, 2 the Sj-carried distribution δSj
is given by

〈δSj , φ〉 =
∫
Sj

φ dσj ,

where dσj denotes surface measure on Sj , then the product distribution δS1δS2 is well-

defined and given by

〈δS1
δS2

, φ〉 =
∫
S1∩S2

φ dµ,

for a measure dµ that is absolutely continuous with respect to surface measure on S1∩S2

(see, for example, Sogge [96] and Foschi–Oliveira e Silva [66]).

Assigning meaning to such distributional products becomes relevant in harmonic

analysis when defining convolutions of measures carried on submanifolds of Rn – some-

thing that arises frequently. In this context it is natural to strengthen (1.1) in a way

that makes it translation-invariant in S1 and S2 independently, so that it becomes

(1.2) x1 ∈ S1, x2 ∈ S2 =⇒ Tx1
S1 + Tx2

S2 = Rn.

With this translation-invariant notion of transversality, it follows that the convolution

dσ1∗dσ2 is absolutely continuous with respect to Lebesgue measure on Rn. Moreover, if

S1, S2 are compact, then dσ1 ∗dσ2 has bounded density, or in other words, the (bilinear)

estimate

(1.3) ‖g1dσ1 ∗ g2dσ2‖L∞(Rn) ≲ ‖g1‖L∞(S1)‖g2‖L∞(S2)

holds.

Such convolutions of surface carried measures arise naturally in harmonic analysis,

particularly in the restriction theory of the Fourier transform. This theory concerns

the Lq(Rn) integrability properties of Fourier transforms of measures with Lp densities

supported on (typically curved) submanifolds of Rn, and has many applications, from

dispersive partial differential equations to analytic number theory (see, for example,

Stovall [99]). Questions in this area are usually formulated in terms of the extension

operator g 7→ ĝdσ, given by

ĝdσ(x) =

∫
S

ei⟨x,ξ⟩g(ξ)dσ(ξ),

where S is a smooth (typically compact) submanifold of Rn, and dσ is surface measure

on S, as before. At the centre of this theory is the celebrated restriction conjecture

of Stein, which states that if S is a smooth compact hypersurface with everywhere

nonvanishing gaussian curvature, then

‖ĝdσ‖Lq(Rn) ≲ ‖g‖Lp(S)
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provided 1
q < n−1

2n and 1
q ≤ n−1

n+1
1
p′ (see Stein [98]). This conjecture is settled for n = 2

(C. Fefferman and Stein [64], [98]; see also Zygmund [111]), and is still open for n ≥ 3 –

see Hickman–Rogers [78] for further discussion and recent developments. The relevance

of transversality in restriction theory stems from the simple observation that if S1, S2

are suitable pieces of such a curved manifold S, then they will be transverse in the

sense of (1.2). For example, this will be the case if S is a hemisphere and S1, S2 ⊆ S

are disjoint caps. This naturally leads one to consider bilinear extension operators (or

bilinear interactions) of the form

(1.4) (g1, g2) 7→ ĝ1dσ1ĝ2dσ2 = (g1dσ1 ∗ g2dσ2) ,̂

and seek estimates of the form

(1.5) ‖ĝ1dσ1ĝ2dσ2‖Lq/2(Rn) ≲ ‖g1‖Lp1 (S1)‖g2‖Lp2 (S2),

under the assumption that S1, S2 are transverse. We refer to Bourgain [32] and Tao–

Vargas–Vega [105] for the origins of this idea.

Under a transversality hypothesis alone, that is, not stipulating any curvature

properties of S1, S2, the bilinear estimate (1.5) is well understood, and the whole story

may be reduced to the endpoint estimate

(1.6) ‖ĝ1dσ1ĝ2dσ2‖L2(Rn) ≲ ‖g1‖L2(S1)‖g2‖L2(S2).

In two dimensions (n = 2) matters are particularly simple, and the statements

(1.2), (1.3) and (1.6) are easily seen to be equivalent, in that

(1.2) =⇒ (1.3) =⇒ (1.6) =⇒ (1.2)

may be quickly verified. The first implication has already been discussed, and the

second amounts to an application of Plancherel’s theorem via (1.4), followed by a routine

interpolation argument. The third follows from the standard (Knapp-type) examples

in this context – see Section 3.

The main purpose of this article is to present a broad generalisation of the simple

equivalence above. Our main result is the following, which unifies the recent works

Bennett–Carbery–Christ–Tao [24, 25], Bennett–Bez–Flock–Lee [21] and Bennett–Bez–

Buschenhenke–Cowling–Flock [20].

Theorem 1.1. Suppose S1, . . . , Sm are smooth compact submanifolds of Rn, and

p1, . . . , pm ∈ [1,∞] are Lebesgue exponents satisfying

(1.7)

m∑
j=1

dim(Sj)

p′j
= n.
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Then the following are equivalent:

(C) ‖g1dσ1 ∗ · · · ∗ gmdσm‖L∞(Rn) ≲ ‖g1‖Lp1 (S1) · · · ‖gm‖Lpm (Sm)

(E)

∫
BR

m∏
j=1

|ĝjdσj |2/p
′
j ≲ε R

ε
m∏
j=1

‖gj‖
2/p′

j

L2(Sj)
all ε > 0

(T) dim(V ) ≤
m∑
j=1

dim(V )− dim(V ∩ (TSj)
⊥)

p′j

for all subspaces V of Rn and all tangent spaces TSj of Sj.

The implications (T) =⇒ (E) and (T) =⇒ (C) were proved at this level of generality

in [21] and [20] respectively, both using the method of induction-on-scales. That (C) =⇒
(T) follows from Bennett–Bez–Gutiérrez [22], and that (E) =⇒ (T) will be presented in

Section 3. Some words on nomenclature: here (C), (E) and (T) stand for “convolution”,

“extension” and “transversality” respectively. Of course this notion of transversality

depends on the exponents p = (p1, . . . , pm), and it should be noticed that if m = 2 and

p1 = p2 = ∞, then it coincides with the familiar (1.2).

Example. Suppose m = n, the submanifolds S1, . . . , Sn are hypersurfaces, and

p1 = · · · = pn = (n − 1)′. In this case the transversality condition (T) amounts to the

statement that

(1.8) (TS1)
⊥ + · · ·+ (TSn)

⊥ = Rn;

in other words, any selection of unit normals ν1, . . . , νn to S1, . . . , Sn respectively, forms

a basis of Rn (note that the volume form |ν1 ∧ · · · ∧ νn| is also bounded below by com-

pactness). In this case the extension estimate (E) becomes the well-known multilinear

restriction inequality

(1.9) ‖ĝ1dσ1 · · · ĝndσn‖
L

2
n−1 (BR)

≲ε R
ε‖g1‖L2(S1) · · · ‖gn‖L2(Sn)

of Bennett–Carbery–Tao [26]. When n = 3 the estimate (C) amounts to the statement

that the convolution of L2 densities supported on S1 and S2 restricts to an L2 density on

S3 – see Bejenaru–Herr–Tataru [17], and Bennett–Bez [19] for (C) in higher dimensions.

Underlying this is a certain nonlinear perturbation of the classical Loomis–Whitney in-

equality of Bennett–Carbery–Wright [27]. In the context of the particular transversality

condition (1.8) the inequalities (E) and (C) have had numerous applications – see Sec-

tion 4 for some examples.
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Some remarks on the condition (1.7) are in order. This condition ensures that the

estimates (E) and (C) are “curvature blind”, and it has this effect by ensuring that

they are both1 invariant under isotropic scalings of the submanifolds Sj (with respect

to scalings of the underlying euclidean space). Of course curvatures may be made arbi-

trarily small under isotropic dilations, whereas quantitative measures of transversality

are left unchanged. As an example, the well-known three-dimensional bilinear extension

estimate

(1.10) ‖ĝ1dσ1ĝ2dσ2‖L5/3(BR) ≲ε R
ε‖g1‖L2(S1)‖g2‖L2(S2)

of Tao [102], involving separated compact subsets S1, S2 of the paraboloid in R3 fails to

satisfy the scaling condition (1.7). However, despite (1.10) being (E) with p1 = p2 = 6,

the transversality condition (T) with the same exponents is easily seen to fail. The point

here is that the curvature of the paraboloid is playing a role in (1.10), along with the

transversality. We note the consistency of this observation with our assertions about

(1.6).

It is natural to conjecture that (E) holds with ε = 0, as is done in [26] for the special

case (1.9). The power loss may at least be reduced to polylogarithmic loss, replacing

the Rε factor with a power of logR, as is observed in Bennett [18] and Zhang [109] for

(1.9) and (E) respectively, although removing it entirely is only currently possible in

degenerate or very simple cases, such as when Sj = Rn for each j, or when n = 2. Very

recently however, this loss has been successfully removed from all proper interpolants

of (1.9) and the elementary bound

‖ĝ1dσ1 · · · ĝndσn‖L∞(Rn) ≲ ‖g1‖L1(S1) · · · ‖gn‖L1(Sn)

– see Tao [104]. Prior to [104] such global estimates away from the sharp line had been

achieved under the additional hypothesis that the hypersurfaces Sj have everywhere

nonvanishing gaussian curvature, using ε-removal techniques – see Bourgain–Guth [36].

The key to understanding Theorem 1.1 lies in the theory of the Brascamp–Lieb

inequality, first formulated by Brascamp and Lieb [38] as a generalised form of Young’s

convolution inequality. As we shall see, the three statements (C), (E) and (T) are

manifestations of certain seemingly quite different generalisations of this inequality,

whose equivalence has only recently been understood.2

§ 2. The Brascamp–Lieb inequality and its many variants and

generalisations

The Brascamp–Lieb inequality is a well-known and far-reaching generalisation of a

wide range of sharp functional inequalities in analysis, including the multilinear Hölder,

1Strictly speaking this scale-invariance requires that ε = 0 in (E).
2Notwithstanding the expectation that (E) holds with ε = 0.
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Loomis–Whitney and Young convolution inequalities. It takes the form

(2.1)

∣∣∣∣∣
∫
Rn

m∏
j=1

fj(Ljx) dx

∣∣∣∣∣ ≤ BL(L,p)

m∏
j=1

‖fj‖Lpj (Rnj ),

where the mappings Lj : Rn → Rnj are linear surjections, pj ∈ [1,∞], and BL(L,p)

denotes the smallest constant (which may be infinite). We refer to

(L,p) = ((Lj)
m
j=1, (pj)

m
j=1)

as the Brascamp–Lieb datum, and BL(L,p) as the Brascamp–Lieb constant.3 This in-

equality was first formulated in [38] and gives rise to an elegant and powerful theory;

further notable contributions in this direction include those of Ball [4], Lieb [87], Barthe

[5], Carlen, Lieb and Loss [46], as well as [24] and Barthe, Cordero-Erausquin, Ledoux

and Maurey [7]. Ball [4] derived a particular class of rank-one Brascamp–Lieb inequal-

ities and pioneered their use in convex geometry, solving several problems on volumes

of sections of convex bodies. Barthe [5, 6] extended such geometric Brascamp–Lieb in-

equalities to the general rank case, and introduced the use of optimal transport methods

in order to advance the general theory of the Brascamp–Lieb inequality and its dual

form. Applications and perspectives on the Brascamp–Lieb inequality may be found

even more widely, including in convex geometry [9, 39, 40, 67], probability, stochastic

processes and statistics [2, 3, 65, 86], information theory [8, 45, 46, 62, 88], scattering

theory [1, 41, 42, 94], combinatorics [30, 61], group theory [47, 60], and theoretical com-

puter science [49, 50, 59, 68, 97]. For example, the information-theoretic connection

reveals that the Brascamp–Lieb inequality has an equivalent formulation in terms of a

generalised notion of subadditivity of the entropy (see [45]).

Before introducing some of the recent generalisations of (2.1), we briefly describe

some of the key features and examples of the classical theory. This is not intended to

be an exhaustive or balanced account, and the reader is referred to [24, 25] for further

results and discussion.

A well-known example, and indeed the historical motivation for the Brascamp–Lieb

inequality, is the celebrated sharp version of Young’s convolution inequality, first proved

by Beckner [11, 12] and Brascamp–Lieb [38]. In the framework of (2.1), this may be

stated as

(2.2)∫
Rd

∫
Rd

f1(y)f2(x− y)f3(x) dy dx ≤ (Cp1
Cp2

Cp3
)d‖f1‖Lp1 (Rd)‖f2‖Lp2 (Rd)‖f3‖Lp3 (Rd),

3While the functions fj may be complex valued here, in studying the Brascamp–Lieb constant
BL(L,p) we may of course restrict attention to nonnegative fj , and this is often implicit. We
caution that the Brascamp–Lieb datum is usually presented in terms of the reciprocals of the
exponents pj , as elements of (0, 1] – see (2.11).
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where p1, p2, p3 ∈ [1,∞], 1
p1

+ 1
p2

+ 1
p3

= 2, and Cr = ((1 − 1/r)1−1/r/(1/r)1/r)1/2.

The main significance of this statement lies in the conclusion that, on the relative inte-

rior of the set of admissible exponents ( 1
p1
, 1
p2
, 1
p3
), the optimal constant (Cp1

Cp2
Cp3

)d

is strictly less than 1, and is uniquely attained on suitably scaled isotropic centred

gaussian inputs fj . Remarkably, this phenomenon turns out to be quite typical in the

general context of (2.1). This is captured by a fundamental theorem of Lieb [87], which

guarantees the existence of extremising sequences of centred gaussians for (2.1). This

reduces the complexity of working with the Brascamp–Lieb constant considerably since

it quickly gives rise to the formula

BL(L,p) = sup
A

∏m
j=1 det(Aj)

1/(2pj)

det
(∑m

j=1
1
pj
L∗
jAjLj

)1/2 ,
where the supremum is taken over all m-tuples A = (A1, . . . , Am) of positive definite

nj × nj symmetric matrices Aj , 1 ≤ j ≤ m. In particular, the proof of (T) =⇒ (C) in

Theorem 1.1 relies heavily on a quantified version of this fact – see [20]. We refer the

reader to [24] and the references there for further structural results, such as statements

on the existence and uniqueness of gaussian extremisers.

From the point of view of the restriction theory of the Fourier transform, arguably

the most important examples are of “Loomis–Whitney” type (we refer the reader for-

ward to Section 2.3 for elaboration of this). Here the kernels of the linear surjections

Lj : Rn → Rnj collectively form a basis for Rn – that is

(2.3) ker(L1)⊕ · · · ⊕ ker(Lm) = Rn.

For such data simple examples reveal that BL(L,p) < ∞ if and only if p1 = · · · =
pn = m− 1, and in this case there is an explicit expression for BL(L,p) in terms of the

natural volume form associated with L – see for example [19].

The inequality (2.1) may be interpreted as a bound on multilinear forms of the

type

(2.4) (f1, . . . , fm) 7→
∫
H

f1 ⊗ · · · ⊗ fm dµH ,

where H is a subspace of the cartesian product Rn1 × · · · × Rnm , and integration is

with respect to Lebesgue measure on H. Here H encodes the linear maps L as the

range of x 7→ (L1x, . . . , Lmx), allowing the pair (H,p) to be interpreted as a certain

parametrisation-free Brascamp–Lieb datum, and BL(H,p), defined to be the best con-

stant in the inequality

(2.5)

∣∣∣∣∣
∫
H

f1 ⊗ · · · ⊗ fm dµH

∣∣∣∣∣ ≤ BL(H,p)

m∏
j=1

‖fj‖Lpj (Rnj ),
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a parametrisation-free Brascamp–Lieb constant.4 As one may expect, quite how this sub-

space H sits relative to the coordinate subspaces Rn1 , . . . ,Rnm determines the finiteness

(or otherwise) of the Brascamp–Lieb constant, and it is this that is ultimately captured

by the transversality condition (T) in the statement of Theorem 1.1. The following

finiteness characterisation will be crucial in making this connection.

Theorem 2.1 ([24]). The Brascamp–Lieb constant BL(L,p) is finite if and only

if

(2.6) n =

m∑
j=1

nj

pj

and

(2.7) dim(V ) ≤
m∑
j=1

dim(LjV )

pj

for all subspaces V of Rn.

We remark that Theorem 2.1 follows similar results in [5], and the case where the

maps Lj have rank one was established in [46].

In terms of the parametrisation-free data (H,p), the above result may be re-

interpreted as follows: BL(H,p) is finite if and only if

(2.8) dim(H) =
m∑
j=1

nj

pj

and

(2.9) dim(V ) ≤
m∑
j=1

dim(πjV )

pj

for all subspaces V ofH. Here πj denotes the orthogonal projection from Rn1×· · ·×Rnm

onto the jth factor Rnj .

There is one clear advantage to the parametrisation-free formulation (2.5) stemming

from the elementary fact that the structure of the multilinear form involved is manifestly

Fourier–invariant – that is,∫
H

f1 ⊗ · · · ⊗ fm dµH =

∫
H⊥

f̂1 ⊗ · · · ⊗ f̂m dµH⊥ , 5

4While this is clearly an abuse of notation, the context here eliminates any possible confusion.
5Of course nonnegativity is not Fourier-invariant, so it is important that we consider general complex-
valued functions fj in this context.
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where H⊥ denotes the orthogonal complement of H in Rn1 × · · · ×Rnm . This gives rise

to a useful (Fourier-) duality principle, which states that

(2.10) BL(H,p) = Cp,n BL(H⊥,p′);

see [20] (and also Bennett–Jeong [28] for a discrete analogue). Here p′ = (p′1, . . . , p
′
m),

and Cp,n denotes an explicit constant depending on p and the underlying dimensions

n = (n1, . . . , nm). This plays an important role in establishing that (T) =⇒ (C) in the

proof of Theorem 1.1 – see Section 3.

Finally, we note that the Brascamp–Lieb inequality is usually stated in the form

(2.11)

∫
Rn

m∏
j=1

fj(Ljx)
rjdx ≤ B̃L(L, r)

m∏
j=1

(∫
Rnj

fj

)rj
,

where rj ∈ [0, 1], and the functions fj are nonnegative and integrable on their respective

domains. On replacing fj in (2.1) by f
rj
j , where rj = 1/pj , we see that (2.1) (with non-

negative fj) and (2.11) are the same inequality, and in particular B̃L(r,L) = BL(p,L).

The advantage of this formulation is that it alludes to a certain self-similarity structure

that may be exploited by the method of induction-on-scales – see, for example, [19] or

[20] for further discussion. In order to avoid confusion we make no further reference to

B̃L.

In recent years a number of variants of the Brascamp–Lieb inequality have emerged

in harmonic analysis, with a range of applications. This effectiveness reflects an im-

proved understanding of the role of curvature in harmonic analysis, and in particular

its relation to transversality of the type discussed in this article. In the remainder of

this section we survey a variety of interconnected set-ups, with the first and third of

particular importance for the proof of Theorem 1.1.

§ 2.1. A nonlinear variant

The Brascamp–Lieb inequality, stated in either form (2.1) or (2.5), involves linearity

in an important way – either the linearity of the maps Lj , or the linearity of the subspace

H. A variety of problems in harmonic analysis and PDE raise questions about the

necessity of this linear structure. For example, may the Lj be replaced by smooth

submersions Bj , or equivalently, may H be replaced by a smooth submanifold M , at

least in a neighbourhood of a point of Rn? Affirmative answers to these questions are

known as nonlinear Brascamp–Lieb inequalities, and this line of research traces back to

[27]. At the level of local statements, the following near-optimal result was obtained

recently in [20]:

Theorem 2.2 ([20]). Suppose M is a C2 submanifold of Rn1 × · · · × Rnm and
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x ∈ M . Then given any ε > 0 there exists δ > 0 such that

(2.12)

∫
M∩B(x,δ)

f1 ⊗ · · · ⊗ fm dµM ≤ (1 + ε) BL(TxM,p)
m∏
j=1

‖fj‖Lpj (Rnj ).

Here dµM denotes Lebesgue measure on M , and TxM denotes the tangent space to M

at x.

Theorem 2.2 follows several nonlinear Brascamp–Lieb inequalities established under

various additional (structural) hypotheses on the manifold M , and obtained by different

methods – see [27, 17, 19, 84, 43, 20] for further discussion. We also refer the reader

to recent developments by Duncan [55, 56] on nonlinear Brascamp–Lieb inequalities,

including certain global estimates and stability results.

It is perhaps worth remarking that many positive multilinear forms way be ex-

pressed as

(2.13) (f1, . . . , fm) 7→
∫
Rn1×···×Rnm

f1 ⊗ · · · ⊗ fm dµ

for an appropriate measure µ. Indeed, the Schwartz kernel theorem expresses any m-

linear form on m-tuples of Schwartz functions (f1, . . . , fm) ∈ S(Rn1) × · · · × S(Rnm),

acting continuously in each component, as an element of S ′(Rn1+···+nm) acting on the

tensor product f1⊗· · ·⊗fm. If this distribution extends to a continuous linear functional

on C0, then a version of the Riesz representation theorem yields the representation (2.13)

for some Radon measure µ. Theorem 2.2 provides Lebesgue space bounds on (2.13) in

situations where µ specialises to integration over a submanifold M satisfying certain

structural (transversality) and regularity hypotheses. Multilinear forms of this type,

which are sometimes referred to as multilinear Radon-like transforms, arise frequently

in analysis – see Section 4 for some examples in the context of dispersive PDE.

§ 2.2. A Kakeya-type variant

Informally speaking Kakeya-type problems concern the extent to which families

of geometric objects (usually subsets of Rn) may be arranged so as to minimise the

space in which they occupy (or maximise the extent to which they overlap). Usually

the geometric objects are δ-neighbourhoods of unit line segments T ⊆ Rn, referred to

as δ-tubes, belonging to some family T, and the objective is to control the “multiplicity

function”

x 7→
∑
T∈T

χT (x),

where χT denotes the characteristic function of T . For families T of tubes whose di-

rection set forms a δ-separated subset of the unit sphere Sn−1, the Kakeya maximal
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conjecture states that for every ε > 0,

(2.14)
∥∥∥∑
T∈T

χT

∥∥∥
L

n
n−1 (Rn)

≲ε δ
−ε(δn−1#T)

n−1
n

uniformly in the family T. A notable consequence of this is the Kakeya set conjecture,

which asserts that a Kakeya set (a compact subset of Rn containing a unit line segment

in every direction) has full Hausdorff dimension – a statement that is only known in

two dimensions; see for example Hickman–Rogers–Zhang [79] or Zahl [107] for some

historical background and the current status of this active problem in higher dimensions.

The Kakeya maximal conjecture is well known to follow from the restriction con-

jecture (stated in the introduction) – see [13]. The mechanism by which this follows

relates the (unit) normal vectors to the hypersurface S with the directions within the

family of tubes, and through this the δ-separation condition may be viewed as a sort of

curvature condition. As we shall see, it is also natural to consider “multilinear” variants

of the Kakeya conjecture (2.14) where the δ-separation condition is replaced with a

suitable transversality condition between families of tubes. A very general Kakeya-type

inequality of this flavour, referred to as the Kakeya–Brascamp–Lieb inequality, was first

established in Zhang [109] (see also Zorin–Kranich [110]), following a weaker version in

[21] involving an ε-loss similar to that in (2.14). Both of these were preceded by spe-

cial cases corresponding to Loomis–Whitney-type data, established by Guth [75] and

Bennett–Carbery–Tao [26] respectively – see also Guth [76]. We also refer to Bourgain–

Guth [36] and Carbery–Valdimarsson [44] for further results.

In order to state a form of the Kakeya–Brascamp–Lieb inequality let V1, . . . , Vm de-

note subspaces on Rn of codimensions n1, . . . , nm respectively, and suppose that for each

1 ≤ j ≤ m the set Tj denotes a finite collection of δ-neighbourhoods of codimension-nj

affine subspaces that are, modulo translations, sufficiently close to Vj (with respect to

the standard metric on the grassmann manifold of codimension-nj subspaces of Rn).

The following is a special case of a more general result of Zhang [109].

Theorem 2.3. If the subspaces V1, . . . , Vm and exponents p = (p1, . . . , pm) sat-

isfy

(2.15) n =

m∑
j=1

codim(Vj)

pj

and

(2.16) dim(V ) ≤
m∑
j=1

dim(V )− dim(V ∩ Vj)

pj
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for all subspaces V of Rn, then

(2.17)

∫
Rn

m∏
j=1

( ∑
Tj∈Tj

χTj

)1/pj

≲ δn
m∏
j=1

(#Tj)
1/pj .

As we have already alluded to, the inequality (2.17) may be viewed as a certain

perturbation of the classical Brascamp–Lieb inequality (this time in the equivalent form

(2.11)). To see this consider the special case where, for each 1 ≤ j ≤ m, all elements

Tj ∈ Tj are parallel to Vj , so that ∑
Tj∈Tj

χTj
= fj ◦ Lj ,

where fj is a sum of characteristic functions of O(δ) balls in Rnj , and Lj : Rn →
Rnj is a linear surjection with kernel Vj . Substituting this into (2.17), and using the

scaling condition (2.15), we obtain (2.11) with rj = 1/pj .
6 Here we have reconciled the

conditions (2.16) and (2.7) via the elementary identity dim(LjV ) = dim(V )− dim(V ∩
ker(Lj)). We refer to Maldague [89] for a recent local version of Theorem 2.3 which has

the advantage of not requiring the scaling condition (2.15). Kakeya–Brascamp–Lieb

inequalities of this type play an important role in the theory of decoupling (also known

as Wolff inequalities) – see [34].

Variants and generalisations of such Kakeya–Brascamp–Lieb inequalities have also

been useful in establishing estimates for linear operators. Notably, variants living at

intermediate levels of multilinearity, which exploit both curvature and transversality,

have led to progress on the original Kakeya maximal conjecture – see [79] and [107].

Further, certain invariant generalisations of Theorem 2.3, where the affine subspaces are

also replaced with algebraic varieties (see [109] and [110]) have recently had applications

to the Lp-improving properties of Radon-like transforms – see Gressman [72].

§ 2.3. A Fourier extension variant

The Brascamp–Lieb inequality provides a natural framework for certain “multilin-

ear” variants of the classical Fourier restriction conjecture described in the introduction.

In particular, the inequality (E) with ε = 0, which is equivalent to the global extension

estimate

(2.18)

∫
Rn

m∏
j=1

|ĝjdσj |2/p
′
j ≲

m∏
j=1

‖gj‖
2/p′

j

L2(Sj)
,

6Strictly speaking we obtain (2.11) only for functions fj being sums of characteristic functions of
δ-balls, although since the implied constant is uniform in δ, we may drop this requirement by a
scaling and limiting argument.
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may be viewed as a certain oscillatory form of (2.1). In order to explain this it is

convenient to parametrise our (compact) submanifolds of Rn by smooth mappings Σj :

Uj → Rn, where Uj ⊆ Rnj , and define the (parametrised) extension operators

Ejfj(x) =
∫
Uj

ei⟨x,Σj(ξ)⟩fj(ξ)dξ, x ∈ Rn.

With this notation it is straightforward to verify that (2.18) is equivalent to

(2.19)

∫
Rn

m∏
j=1

|Ejfj |2/p
′
j ≲

m∏
j=1

‖fj‖
2/p′

j

L2(Uj)
.

Now, if Σj is linear, then Ejfj(x) = f̂j(Σ
∗
j (x)), and so (2.19) reduces to

(2.20)

∫
Rn

m∏
j=1

|f̂j(Σ∗
j (x))|2/p

′
jdx ≲

m∏
j=1

‖fj‖
2/p′

j

L2(Uj)
,

which by Plancherel’s theorem applied in Rnj for each j, becomes

(2.21)

∫
Rn

m∏
j=1

gj(Σ
∗
j (x))

1/p′
jdx ≲

m∏
j=1

(∫
Rnj

gj

)1/p′
j

.

This is of course the Brascamp–Lieb inequality in the equivalent form (2.11) with

rj = 1/p′j and Lj = Σ∗
j . In this way, permitting nonlinear Σj in (2.19), or equiva-

lently, nonlinear submanifolds Sj in (2.18), constitutes a generalisation of the classical

Brascamp–Lieb inequality. It should be noticed that unless p1 = · · · = pm, such in-

equalities are not (manifestly at least) bounds on multilinear operators, and differ in

that respect from the linear and nonlinear Brascamp–Lieb inequalities discussed earlier.

At this level of generality we have the following result from [21]. For convenience

we suppose that 0 ∈ Uj for each 1 ≤ j ≤ m, which is of course without loss of generality.

Theorem 2.4 ([21]). If BL(dΣ(0)∗,p′) < ∞ then provided the Uj are suffi-

ciently small neighbourhoods of 0,

(2.22)

∫
BR

m∏
j=1

|Ejfj |2/p
′
j ≲ε R

ε
m∏
j=1

‖fj‖
2/p′

j

L2(Uj)
.

Here dΣ(0)∗ denotes the m-tuple of linear maps (dΣ1(0)
∗, . . . , dΣm(0)∗).

As mentioned in the introduction, this result with Loomis–Whitney data, that is,

where the maps L = dΣ(0)∗ satisfy the basis condition (2.3), is referred to as the

multilinear restriction inequality, and originates in [26]. Estimates of this type have

proved to have many applications, most notably to the classical (linear) restriction
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conjecture – see [36] – and to the theory of decouplings (also known as Wolff inequalities)

– see [34]. Remarkably, Theorem 2.4 and (the Kakeya–Brascamp–Lieb) Theorem 2.3

are virtually equivalent – see [21]; we refer to Bejenaru [14] for an alternative approach

to multilinear extension estimates which avoids explicit Kakeya-type considerations.

§ 2.4. A multilinear oscillatory integral variant

Another, rather different oscillatory form of the Brascamp–Lieb inequality was in-

troduced by Christ–Li–Tao–Thiele [52], this time exhibiting connections with questions

related to Szemerédi’s theorem from additive combinatorics. Motivated by questions of

boundedness of certain multilinear oscillatory singular integral operators, the authors

consider the multilinear functional

(2.23) Λλ(f1, . . . , fm) =

∫
Rn

eiλP (x)
m∏
j=1

fj(Ljx)η(x) dx,

where P is a real-valued measurable function, η is a smooth bump function, and λ is a

real parameter. Of course one has the elementary estimate

|Λλ(f1, . . . , fm)| ≲
m∏
j=1

‖fj‖∞

regardless of the linear maps Lj and phase function P . In this context it is of particular

interest to identify conditions on the data (L, P ) for which there is some additional

decay in λ – that is, for which the right hand side above may include an additional

factor of λ−ε for some ε > 0. Such (L, P ) are said to have the power decay property,

and the objective in [52], and subsequent works, is to characterise these. Of course, this

set-up naturally generalises to incorporate Lpj (Rnj ) norms of fj for each j, allowing the

theory to generalise (or interact with) that of the classical Brascamp–Lieb inequality

(2.1) – see [25].

The function P is said to be degenerate relative to L if it may be expressed as a

linear combination of measurable functions of the form ϕj ◦ Lj . It is straightforward

to see that such data cannot have the power decay property, and the objective is to

establish power decay in all other situations. Although this remains a challenging open

problem, we refer the reader to [48, 51, 69, 70, 73, 74, 92, 106] for substantial recent

progress in this direction.

§ 2.5. A singular integral variant

At the level of examples at least, singular integral variants of the Brascamp–Lieb

inequality (2.1) have been the focus of considerable attention over the last two decades,

including the celebrated boundedness of the bilinear Hilbert transform of Lacey and
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Thiele [85] and subsequent developments (see, for example, Demeter–Pramanik–Thiele

[54] and Muscalu–Tao–Thiele [90]). In the recent survey article of Durcik–Thiele [57]

a general set-up is presented that differs from (2.1) in that some of the functions fj

corresponding to exponents pj = 1 are taken to be Calderón–Zygmund singular integral

kernels, rather than Lebesgue integrable functions. Thus inequalities of the form

(2.24)

∣∣∣∣∣
∫
Rn

k∏
j=1

fj(Ljx)
m∏

j′=k+1

Kj(Ljx) dx

∣∣∣∣∣ ≲
k∏

j=1

‖fj‖Lpj (Rnj )

are sought, where for k + 1 ≤ j ≤ m, the distribution Kj is a standard Calderón–

Zygmund kernel. A well-known example is the conjectural bound on the so-called

triangular Hilbert transform, given by∣∣∣∣∣
∫
R3

f1(x2, x3)f2(x1, x3)f3(x1, x2)
dx

x1 + x2 + x3

∣∣∣∣∣ ≲ ‖f1‖L3(R2)‖f2‖L3(R2)‖f3‖L3(R2),

which amounts to a singular Brascamp–Lieb inequality where the linear maps are the

three-dimensional Loomis–Whitney maps with a fourth L4x := x1 + x2 + x3 appended.

Here the singular kernel is the classical Hilbert principal value kernel, and the integral is

interpreted accordingly. As is pointed out in [57], certain aspects of the Brascamp–Lieb

theory already discussed usefully apply in this singular context, such as the Fourier-

invariance property (2.10). Furthermore, since delta distributions are examples of singu-

lar kernels, the finiteness conditions for (2.1) ((2.8) and (2.9) with pk+1 = · · · = pm = 1)

also become necessary conditions for finiteness in (2.24). As may be expected, the theory

of (2.24) is much less developed and largely very different from that of (2.1), involv-

ing time-frequency analysis and other methods that exploit cancellation. We refer to

[57, 58, 91] for further discussion and recent results.

§ 2.6. A variant on LCA groups

The Brascamp–Lieb inequality is also naturally formulated in the context of locally

compact abelian groups, whereby (2.1) becomes

(2.25)

∫
G

m∏
j=1

fj ◦ φj ≤ C
m∏
j=1

‖fj‖Lpj (Gj),

where the maps φj : G → Gj are homomorphisms of LCA groups, and the integrals in-

volved are with respect to (suitably normalised) Haar measures. This departs from the

euclidean theory in some interesting ways. In the context of finitely generated discrete

groups a finiteness characterisation was established in [25]. Motivated by problems in

communication theory, this was studied further by Christ–Demmel–Knight–Scanlon–

Yelick [50], who showed that a polynomial time algorithm for verifying the finiteness
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condition is equivalent to Hilbert’s tenth problem over the rational numbers. Further-

more, for torsion-free discrete groups, they showed that if the constant C is finite then it

must equal 1 – a conclusion consistent with the classical Young’s convolution inequality

on the integers. Similar results may be established in the compact setting, and ulti-

mately give rise to an abstract duality principle of the form (2.10) – see [28] for more

general conclusions and clarification.

§ 2.7. A measure space variant

Continuing somewhat in the spirit of the preceding formulation, it is reasonable

to consider variants of the Brascamp–Lieb inequality on more general ambient spaces.

Whilst the classical form of the Brascamp–Lieb inequality on euclidean spaces is amenable

to a variety of techniques, the approach based on a diffusion flow has proved to be par-

ticularly effective in more general contexts. An elegant example in the setting of real

spheres takes the form

(2.26)

∫
Sn−1

n∏
j=1

fj(xj)dσ(x) ≤
n∏

j=1

(∫
Sn−1

fj(xj)
2dσ(x)

)1/2
.

This sharp inequality was derived in [46] by using a heat flow monotonicity argument for

functions on Sn−1. In this case, sharpness refers both to the optimality of the constant

1 and also in the sense of the L2 norms on the right hand side (which provides a clear

advantage over a simple application of the Hölder inequality). Despite the fact that the

underlying Brascamp–Lieb mappings are simply coordinate projections, obviously the

coordinates of points on spheres are not independent and thus there is no Fubini-type

identity on L1. The inequality (2.26) may be viewed as a correlation inequality which

quantifies how far coordinate functions on spheres are from being independent.

Carlen, Lieb and Loss applied similar heat flow arguments in the context of the

classical Brascamp–Lieb inequality (2.1) for rank-one mappings (also in [46]) and in the

seemingly rather different setting of permutation groups in order to obtain a version of

Hadamard’s inequality for matrix permanents (see [47]). A unification and significant

extension may be found in [7] (see also the precursor [8]) whose setting consisted of

an underlying measure space, a Markov semigroup with generator L acting on the

measure space, and Brascamp–Lieb mappings between measure spaces which interact in

an appropriate manner with the generator L. Brascamp–Lieb type inequalities in such a

setting were generated through an abstract argument using the semigroup interpolation

method and this facilitated a comprehensive understanding of several concrete settings.

Further more recent developments along these lines may be found in work of Bramati

[37].
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§ 2.8. A Lorentz norm variant

Whilst the variants discussed up to this point have amounted to modification to the

form on the left hand side of the classical Brascamp–Lieb inequality, it is also beneficial

to extend the framework to allow input functions in Lorentz spaces rather than the

standard Lebesgue spaces. One need look no further than the classical and ubiquitous

Hardy–Littlewood–Sobolev inequality (in dual form) for a special case. More recently

though more elaborate Brascamp–Lieb type inequalities such as∫
C2k+1

f0(x0 − x1 + · · · − x2k−1 + x2k)
∏2k

j=1 fj(xj)

|x0 − x1||x1 − x2| · · · |x2k−1 − x2k|
dµ(x0, . . . , x2k) ≲

2k∏
j=0

‖fj‖2,

where dµ is product measure, have arisen in inverse scattering theory – see work of

Brown [41], as well as [1, 42, 94]. As observed by Christ in [94], thanks to multilinear

interpolation it is possible to obtain estimates of the form7

(2.27)

∫
Rn

m∏
j=1

fj(Ljx) dx ≲
m∏
j=1

‖fj‖Lpj,rj (Rnj )

from the finiteness of BL(L, p̃), for p̃ in a neighbourhood of p, and under the constraint∑m
j=1 1/rj ≥ 1. This generates, for instance, the estimate (2.27) in the case of simple8

Brascamp–Lieb data (L,p) and whenever
∑m

j=1 1/rj ≥ 1. This latter restriction on the

exponents r has been shown to be necessary in the case of arbitrary Brascamp–Lieb

data (see Bez–Lee–Nakamura–Sawano [29]). A characterisation of allowable estimates

of the form (2.27) in the case of non-simple data appears to be an interesting open

problem9.

The “upgrading” trick of Christ has also been employed recently in work of Kato–

Miyachi–Tomita [81] on the boundedness of certain bilinear pseudodifferential operators.

Naturally appearing in their study are bilinear symbol classes associated to weights Ṽ

defined on Rn × Rn for which the weighted (discrete) Brascamp–Lieb inequality∑
ℓ1,ℓ2∈Zn

A1(ℓ1 + ℓ2)A2(ℓ1)A3(ℓ2)V (ℓ1, ℓ2) ≲ ‖A1‖ℓ2(Zn)‖A2‖ℓ2(Zn)‖A3‖ℓ2(Zn)

holds. Here, V is a discretisation of Ṽ , and the observation of Christ was used to show

that V ∈ ℓ4,∞(Zn × Zn) are admissible.

7Here we are using the standard notation Lp,r for Lorentz spaces.
8A Brascamp–Lieb data (L,p) is said to be simple if the scaling condition (2.6) holds and the
dimension condition (2.7) holds with strict inequality for all proper and non-trivial subspaces.

9It was observed in [29] that the stronger condition
∑n

j=1 1/rj ≥ n
n−1

is necessary for Loomis–

Whitney data (with one-dimensional kernels), so we may expect such a characterisation to be
somewhat subtle.
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§ 2.9. Some remarks on connections between the different variants

While quite different in many respects, the variant Brascamp–Lieb inequalities dis-

cussed above have interrelations on a number of different levels. As may be expected

from classical (linear) restriction theory, when the Sj are hypersurfaces the extension

variant is easily seen to imply the Kakeya-type variant via a routine randomisation

argument involving wavepackets – see, for example, [26] or [21]. Furthermore, as men-

tioned at the end of Section 2.2, the extension variant may be deduced from the Kakeya

variant by a routine induction-on-scales argument, provided one is prepared to accept a

small power or polylogarithmic loss in the truncation parameter R. A link between the

nonlinear and extension variants becomes apparent on extending (2.19) to incorporate

more general Hörmander-type oscillatory integral operators – an exercise that leads to a

common generalisation of the two (see [18]). The nonlinear, extension and Kakeya-type

variants are also related from a methodological point of view, all being accessible (up to

endpoints at least) by the method of induction-on-scales – see [21] for further details.

A somewhat superficial connection between the nonlinear and the oscillatory vari-

ants becomes apparent upon expressing one of the functions (say fm) in the nonlinear

setting in terms of its Fourier transform using the inversion formula, upon which the

map Bm essentially emerges as the phase P . A less superficial connection between the

extension, singular integral and nonlinear variants stems from the simple observation

that the three-dimensional (conjectured) endpoint multilinear extension inequality of

[26], namely

‖ĝ1dσ1ĝ2dσ2ĝ3dσ3‖L1(R3) ≲ ‖g1‖L2(S1)‖g2‖L2(S2)‖g3‖L2(S3),

implies ∣∣∣∫
R3

ĝ1dσ1ĝ2dσ2ĝ3dσ3 K̂
∣∣∣ ≲ ‖g1‖L2(S1)‖g2‖L2(S2)‖g3‖L2(S3),

for any three-dimensional Calderón–Zygmund kernel K. Applying Parseval’s identity,

this is equivalent to∣∣∣∫
R3

g1dσ1 ∗ g2dσ2 ∗ g3dσ3 K
∣∣∣ ≲ ‖g1‖L2(S1)‖g2‖L2(S2)‖g3‖L2(S3)

holding for any such K. If the surfaces S1, S2, S3 are linear then this is an (albeit

rather straightforward) instance of a singular Brascamp–Lieb inequality. However, for

nonlinear Sj it is not known, and appears to be an interesting challenge to existing

methods. We note that in the special case where K is the delta distribution at a point,

this is an instance of the convolution inequality (C) originating in [17], which is in turn

a manifestation of the nonlinear Brascamp–Lieb inequality for Loomis–Whitney data

[27].



Higher order transversality in harmonic analysis 93

§ 3. On the proof of Theorem 1.1

In this section we show how Theorem 1.1 may be reduced to the wider theory of

the Brascamp–Lieb inequality described in Section 2. To a great extent this is achieved

by amalgamating the results of [25, 22, 21, 20], with the exception of the implication

from (E) to (T), which has some subtlety due to the ε-loss in (E). We recall that the

scaling condition (1.7) should be assumed here throughout.

§ 3.1. The equivalence of (T) and (E)

That (T) =⇒ (E) is quickly reduced to Theorem 2.4, which as we will see, is simply

a version of this statement in terms of the parametrised extension operators of Section

2.3. First of all, since the submanifolds Sj are compact, it is enough to establish a local

version of (T) =⇒ (E), whereby the the tangent spaces in (T) are at a single point, and

the conclusion (E) is for functions gj supported in a sufficiently small neighbourhood of

that point. For convenience we take this distinguished point to be the origin, assuming

as we may that 0 ∈ Sj for each j, and denote by (T0) and (E0) the conditions (T)

and (E) with these restrictions. Since (E0) and its parametrised version (2.22) are

equivalent, the equivalence of (T) and (E) will follow if we show that

(i) (T0) is equivalent to the finiteness of BL(dΣ(0)∗,p′), and

(ii) (2.22) for all ε > 0 implies the finiteness of BL(dΣ(0)∗,p′).

In doing this, for convenience we shall assume, as we may, that the Sj are parametrised

in such a way that 0 ∈ Uj .

Part (i) follows directly from Theorem 2.1 along with the elementary observation

that

(3.1) dim(dΣj(0)
∗V ) = dim(V )− dim(V ∩ (T0Sj)

⊥)

for all subspaces V of Rn.

Part (ii) would follow from a scaling and limiting argument were we permitted to

take ε = 0 in (E). Since we are not, we appeal to an adaptation of the Knapp-type

examples from the classical linear and bilinear restriction theory (see [105]). To this

end let V be a subspace of Rn, and suppose (E0) holds for all ε > 0. By Theorem 2.1

it suffices to show that

(3.2) dim(V ) ≤
m∑
j=1

dim(LjV )

p′j
,

where Lj := dΣj(0)
∗. For each 1 ≤ j ≤ m we define a set Xj ⊆ Uj by

Xj = Nδ

(
(LjV )⊥ ∩B(0, δ1/2)

)
,
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where Nδ(E) is used to denote the δ-neighbourhood of a set E. We clarify that (LjV )⊥

is a subspace of Rnj , so that B(0, δ1/2) should be interpreted as a δ1/2-ball in Rnj .

Similarly we define a set X ⊆ Rn by

X = Ncδ−1/2

(
V ∩B(0, cδ−1)

)
for some suitably small constant c > 0, independent of δ. Setting fj = χXj

we have

Ejfj(x) =
∫
Xj

eihj(x,ξ)dξ,

where

(3.3) hj(x, ξ) := 〈x,Σj(ξ)〉 = 〈Ljx, ξ〉+ 〈x,Σj(ξ)− dΣj(0)ξ〉.

Now, we claim that |hj(x, ξ)| ≤ 1/5 whenever ξ ∈ Xj and x ∈ X, provided the constant

c is taken to be sufficiently small. Using that fact we have that |Ejfj(x)| ≳ |Xj | for all
x ∈ X. Hence by (E0) with R = δ−1,

|X|
m∏
j=1

|Xj |1/p
′
j ≲ε δ

−ε

for all 0 < δ � 1 and all ε > 0. Since

|Xj | ∼ (δ1/2)nj−dim(LjV )δdim(LjV )

and

|X| ∼ (δ−1)dim(V )(δ−1/2)n−dim(V ),

(3.2) follows by taking both ε and δ arbitrarily small.

It remains to prove the claim, which by (3.3), will follow if we can show that

(3.4) |〈Ljx, ξ〉|, |〈x,Σj(ξ)− dΣj(0)ξ〉| ≤ 1/10

whenever ξ ∈ Xj and x ∈ X, again provided the constant c is taken to be sufficiently

small. However, these are elementary exercises using the basic geometries of the sets

Xj and X for the first, and the C2 character of the maps Σj for the second. We leave

these to the interested reader.

§ 3.2. The equivalence of (T) and (C)

The arguments presented here are largely re-workings of arguments from [20].

Merely for convenience we begin by expressing (C) in a parametrised form using the
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smooth maps Σj : Uj → Rn defined in Section 2.3, so that surface measure dσj on Sj

is given by ∫
Sj

fdσj =

∫
Uj

f(Σj(x))Jj(x)dx.

Here, by compactness, the jacobian factor Jj(x) is both bounded from above and below

on the parameter set Uj ⊆ Rnj , where nj = dim(Sj). Next we observe that for any

a ∈ Rn,

g1dσ1 ∗ · · · ∗ gmdσm(a) =

∫
U1×···×Um

f1 ⊗ · · · ⊗ fm(y)δ(Fa(y))J(y) dy

∼
∫
U1×···×Um

f1 ⊗ · · · ⊗ fm(y)δ(Fa(y)) dy

(3.5)

where J = J1 ⊗ · · · ⊗ Jm, fj = gj ◦ Σj , and

(3.6) Fa(y) = Σ1(y1) + · · ·+Σm(ym)− a.

Consequently, (C) reduces to the nonlinear Brascamp–Lieb inequality

(3.7)

∫
M

f1 ⊗ · · · ⊗ fmdµM ≲
m∏
j=1

‖fj‖Lpj (Uj),

where the manifold

M = {(y1, . . . , ym) ∈ U1 × · · · × Um : Fa(y) = 0}.

Of course in order to have the required L∞ bound on the iterated convolution in (3.5),

the bound in (3.7) should be seen to be locally uniform in the implicit parameter a.

In this case the compactness of the surfaces Sj allows us to sidestep this point, and

without loss of generality (using the translation-invariance of our hypotheses) suppose

that a = 0, and write F0 = F . Similarly for convenience we assume, as we may, that

Σj(0) = 0, so that in particular 0 is a point on M .

Of course the main implication to establish is (T) =⇒ (C), for which we appeal to

the nonlinear Brascamp–Lieb inequality of Theorem 2.2. By Theorem 2.2 it suffices to

prove that BL(T0M,p) < ∞, where T0M is the tangent space to M at the origin. For

this it remains to see that the Brascamp–Lieb finiteness condition (2.9) for the data

(T0M,p) is equivalent to (T). While this may be established directly with some careful

linear algebra, it is more convenient to first appeal to the Fourier duality relation (2.10)

to replace the data (T0M,p) here with its dual data ((T0M)⊥,p′). Since

(T0M)⊥ = {(dΣ1(0)
∗x, . . . , dΣm(0)∗x) : x ∈ Rn},

the finiteness condition (2.9) for the data ((T0M)⊥,p′), and hence (T0M,p), follows

quickly from (T) using the elementary identity (3.1).
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Finally, the converse (C) =⇒ (T) is a direct consequence of the following minor

variant of Lemma 6 of [22].

Proposition 3.1. Suppose that M is a smooth submanifold of Rn1 × · · ·×Rnm ,

and p = (p1, . . . , pm) ∈ [1,∞)m is such that

dim(M) =

m∑
j=1

nj

pj

and ∫
M

f1 ⊗ · · · ⊗ fm dµM ≤ C

m∏
j=1

‖fj‖Lpj (Rnj )

for some constant C, where dµM denotes surface measure on M . Then BL(TxM,p) ≤ C

for all x ∈ M .

§ 4. Applications

The estimates (C) and (E) in the statement of Theorem 1.1 have found numerous

applications. Most (although not all – see [20] for applications in abstract harmonic

analysis) stem from the close relationship between transversality and curvature, and

the well-known fact that harmonic analysis is a powerful tool for understanding many

analytical problems where some underlying curved manifold plays an important role.

In this section we elaborate on certain (PDE) applications of the lesser-known estimate

(C), referring the reader to [18], [53] for further discussion of (E).

In the analysis of nonlinear dispersive equations, estimates involving iterated convo-

lutions frequently arise. A widely used technique (see, for example, Beals [10], Bourgain

[32], Klainerman–Machedon [83]) in the study of the local well-posedness of subcritical

problems is the use of Xs,b
S spaces, associated with an underlying surface S, in an itera-

tion argument. In this way, it is desirable to establish control on the nonlinearity in the

setting of these function spaces and, under certain structural assumptions on the non-

linearity, it is often possible to reduce estimates of this type to multilinear convolution

estimates. Naturally it is desirable to have a general framework for such estimates, and

a systematic study of weighted convolution estimates of the form

(4.1)

∣∣∣∣ ∫
G

f1 ⊗ · · · ⊗ fm(y)w(y) dµG(y)

∣∣∣∣ ≤ C
m∏
j=1

‖fj‖L2(Z)

for L2 functions was carried out by Tao [101]. Here, Z is an abelian group, written

additively, G is the subgroup {y ∈ Zm : y1 + · · · + ym = 0} of Zm, and µG is a Haar

measure and w is a (weight) function on G. We refer the reader to [101] for further
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details concerning the motivation for estimates of the type (4.1), along with applications

to bilinear estimates associated with the KdV, wave and Schrödinger equations.

The multilinear convolution estimate (C), which involves singular measures (rather

than weights), falls outside the scope of (4.1). However, such singular convolution

estimates also arise naturally in dispersive PDE, and in particular, have played a role in

recent breakthroughs in the low-regularity theory of the Zakharov system by Bejenaru–

Herr–Holmer–Tataru [16] and Bejenaru–Herr [15]. This is a coupled system of nonlinear

Schrödinger and wave equations, and takes the form

(i∂t +∆)u = nu

(∂2
t −∆)n = ∆|u|2,

for functions u : Rd+1 → C and n : Rd+1 → R. Formulated by Zakharov [108], this

arises as a model in plasma physics, and much effort has been spent developing the well-

posedness theory of this system (see, for example, [15, 16, 33, 71, 93, 100]). For initial

data in L2-based Sobolev spaces, the papers [16] and [15] provided definitive results on

the local well-posedness of the system in two and three spatial dimensions, respectively,

in the subcritical regime. The iteration argument in [16] involves multilinear estimates

in terms of certain Xs,b,1
S spaces, where S is either a paraboloid or a cone in R3. The

underlying qualitative phenomenon is the fact that, given three C2, bounded, and trans-

verse10 surfaces S1, S2 and S3 in R3, the convolution of two L2 functions supported

on two of the surfaces has a well-defined restriction, as an L2 function, to the third

surface S3. This phenomenon, which has already been touched on in the introduction,

is captured by the estimate

‖g1dσ1 ∗ g2dσ2‖L2(S3) ≤ C‖g1‖L2(S1)‖g2‖L2(S2),

or equivalently, by duality,

(4.2) |g1dσ1 ∗ g2dσ2 ∗ g3dσ3(0)| ≤ C

3∏
j=1

‖gj‖L2(Sj).

This is of course a particular instance of (C), and the associated transversality assump-

tion (T) reduces to the three-dimensional case of (1.8). The specific bound (4.2), in

the quantitative form of relevance to applications, was first established in [17] (see also

[27]). We remark that in most applications of this type, the underlying submanifolds Sj

satisfy such a “Loomis–Whitney-type” transversality condition, whereby (T) reduces to

the “basis condition”

(TS1)
⊥ ⊕ · · · ⊕ (TSm)⊥ = Rn,

10In this context, if ν1, ν2, ν3 are linearly independent for any choice of normal vector νj to Sj , we
say that the Sj are transverse.
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where (necessarily) p1 = · · · = pm = m−1; cf. (2.3). The reader will of course recognise

this as a generalisation of (1.8) from the introduction, and we refer to [19] and [20] for

further discussion of its significance.

There are further, quite varied applications of (C), and the nonlinear Brascamp–

Lieb inequality more generally, in PDE-related problems. For example, in their study of

the weakly nonlinear large-box limit of the two-dimensional cubic nonlinear Schrödinger

equation, Faou–Germain–Hani [63] derive a new nonlinear integro-differential equation

governed by a trilinear form that draws on the nonlinear Loomis–Whitney inequality

from [27]. Also, in the spirit of [16] and [15], nonlinear Loomis–Whitney-type inequali-

ties have been used very recently to push forward the mathematical theory of the Klein–

Gordon–Zakharov system in two dimensions [82] and a system of quadratic derivative

nonlinear Schrödinger equations [80]. In somewhat different territory, explicit examples

of multilinear Radon-like transforms of the form (2.13) have also appeared in obstacle

scattering, in particular, in the recovery of singularities of a potential q by its so-called

Born series qB ; we refer the reader to [95] (see also [23]) for further background and

discussion on the manner in which bounds of the form (2.12) naturally arise in this

context. It seems reasonable to expect further such applications arising from Theorems

1.1 and 2.2.
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[9] Barthe, F., Guédon, O., Mendelson, S. and Naor, A., A probabilistic approach to the

geometry of the ℓnp -ball, Ann. Probab., 33 (2005) 480–513.

[10] Beals, M., Self-spreading and strength of singularities for solutions to semilinear wave

equations, Ann. of Math., 118 (1983) 187–214.

[11] Beckner, W., Inequalities in Fourier analysis on Rn, Proc. Nat. Acad. Sci. U.S.A., 72

(1975) 638–641.

[12] Beckner, W., Inequalities in Fourier analysis, Ann. of Math., 102 (1975) 159–182.

[13] Beckner, W., Carbery, A., Semmes, S. and Soria, F., A note on restriction of the Fourier

transform to spheres, Bull. Lond. Math. Soc., 21 (1989) 394–398.

[14] Bejenaru, I., The multilinear restriction estimate: a short proof and a refinement, Math.

Res. Lett., 24 (2017) 1585–1603.

[15] Bejenaru, I. and Herr, S., Convolutions of singular measures and applications to the Za-

kharov system, J. Funct. Anal., 261 (2011) 478–506.

[16] Bejenaru, I., Herr, S., Holmer, J. and Tataru, D., On the 2d Zakharov system with L2

Schrödinger data, Nonlinearity, 22 (2009) 1063–1089.

[17] Bejenaru, I., Herr, S. and Tataru, D., A convolution estimate for two-dimensional hyper-

surfaces, Rev. Mat. Iberoam., 26 (2010) 707–728.

[18] Bennett, J., Aspects of multilinear harmonic analysis related to transversality, Harmonic

Analysis and Partial Differential Equations, Contemp. Math., 612, Amer. Math. Soc.,

Providence, RI, 2014, 1–28.

[19] Bennett, J. and Bez, N., Some nonlinear Brascamp–Lieb inequalities and applications to

harmonic analysis, J. Funct. Anal., 259 (2010) 2520–2556.

[20] Bennett, J., Bez, N., Buschenhenke, S., Cowling, M. G. and Flock, T. C., On the nonlinear

Brascamp–Lieb inequality, Duke Math. J., 169 (2020) 3291–3338.

[21] Bennett, J., Bez, N., Flock, T. C. and Lee, S., Stability of the Brascamp–Lieb constant

and applications, Amer. J. Math., 140 (2018) 543–569.

[22] Bennett, J., Bez, N. and Gutiérrez, S., Global nonlinear Brascamp–Lieb inequalities,

J. Geom. Anal., 23 (2013) 1806–1817.

[23] Bennett, J., Bez, N. and Gutiérrez, S., Transversal multilinear Radon-like transforms:

local and global estimates, Rev. Mat. Iberoam., 29 (2013) 765–788.

[24] Bennett, J., Carbery, A., Christ, M. and Tao, T., The Brascamp–Lieb inequalities: finite-

ness, structure and extremals, Geom. Funct. Anal., 17 (2007) 1343–1415.

[25] Bennett, J., Carbery, A., Christ, M. and Tao, T., Finite bounds for Hölder–Brascamp–Lieb
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Inequality: Entropic Duality and Gaussian Optimality, Entropy, 20 (2018) 418.

[89] Maldague, D., Regularized Brascamp–Lieb inequalities and an application, Q. J. Math.,

(2021).

[90] Muscalu, C., Tao, T. and Thiele, C., Multi-linear operators given by singular multipliers,

J. Amer. Math. Soc., 15 (2002) 469–496.

[91] Muscalu, C. and Zhai, Y., Five-linear singular integral estimates of Brascamp–Lieb type,

Anal. PDE, to appear.

[92] Niepla, A., O’Neill, K. and Zeng, Z., Decay rate of multilinear oscillatory integral operators

in R2, Proc. Amer. Math. Soc., 148 (2020) 1689–1695.

[93] Ozawa, T. and Tsutsumi, Y., Existence and smoothing effect of solutions for the Zakharov

equations, Publ. Res. Inst. Math. Sci., 28 (1992) 329–361.

[94] Perry, P., Global well-posedness and long-time asymptotics for the defocussing Davey–

Stewartson II equation in H1,1(C), with an appendix by M. Christ, J. Spectral Theory, 6

(2016) 429–481.

[95] Ruiz, A. and Vargas, A., Partial recovery of a potential from backscattering data,

Comm. Partial Differential Equations, 30 (2005) 67–96.

[96] Sogge, C. D., Fourier Integrals in Classical Analysis, Second Edition, Cambridge Tracts

in Mathematics 210, 2017.

[97] Sra, S., Vishnoi, N. and Yıldız, O., On geodesically convex formulations for the Brascamp–

Lieb constant, Approximation, randomization, and combinatorial optimization. Algo-

rithms and techniques, Art. No. 25, 15 pp. (2018).



Higher order transversality in harmonic analysis 103

[98] Stein, E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory

Integrals, Princeton University Press, 1993.

[99] Stovall, B., Waves, spheres, and tubes: a selection of Fourier restriction problems, meth-

ods, and applications, Notices Amer. Math. Soc., 66 (2019) 1013–1022.

[100] Sulum, C. and Sulum, P. L., Quelques résultats de régularité pour les équations de la
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