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Abstract
Many plant-dwelling mites reside on lower leaf surfaces. The biological impact of solar ultraviolet-B (UV-B) radiation on 
spider mites has been demonstrated over the last decade. Due to the serious problem of acaricide resistance in spider mites, 
the development of alternative control methods and establishment of an integrated pest management (IPM) strategy are 
urgently needed, especially for greenhouse horticultural crops such as strawberries. A physical control method for spider 
mites using UV-B lamps (UV-B method) has been established. Using the UV-B method, simultaneous control of spider mites 
and powdery mildew, a major disease, is possible, making it is a favorable IPM strategy. Here, I introduce general findings 
regarding the biological impact of UV radiation on spider mites and phytoseiid mites, useful natural enemies for biological 
control, over the last decade, including dose response, effective wavelengths, and photoreactivation. Moreover, I introduce 
the application of UV-B to spider mite control in strawberry greenhouses, including the possibility of concurrent use with 
biological control via phytoseiid mites, and discuss its possible contributions to IPM.
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Introduction

The near ultraviolet (UV) wavelengths are divided into 
UV-A (315–400  nm), UV-B (280–315  nm), and UV-C 
(200–280 nm). As UV-C and the majority of UV-B are 
absorbed by the atmosphere and ozone layer, solar UV 
radiation at ground level is composed of UV-A with a small 
proportion of UV-B. At shorter wavelengths, UV exerts 
stronger inhibition on organisms (Slieman and Nicholson 
2000), resulting in a spectrum of biological activity of solar 
UV radiation that peaks in the range of 305–315 nm (Coohill 
and Sagripanti 2009; Munakata et al. 1996).

The biological impact of solar UV-B combined with the 
effects of climate change has heightened awareness of ozone 
layer destruction including the ozone hole in Antarctica 
(Ballaré et al. 2011; Bornman et al. 2019; Paul and Gwynn-
Jones 2003). Meanwhile, attenuation of solar UV-B radia-
tion has resulted in an increase in herbivory by insects at 
high latitudes in both the southern and northern hemispheres 

(Ballaré et al. 2001; Gwynn-Jones et al. 1997; Rousseaux 
et al. 2001, 2004). Conversely, enhanced UV-B radiation 
increases the deleterious effects on insect behavior and 
health and affects their interactions with plants via induc-
tion of defensive material production and photomorphogenic 
changes (Burdick et al. 2015; Caldwell et al. 2007; Esco-
bar-Bravo et al. 2017; Kuhlmann and Müller 2009a, 2009b; 
Yin et al. 2018). Solar UV radiation is generally higher at 
lower latitudes, except in the ozone hole region, and has 
greater impacts on organisms living in low latitudes (Meador 
et al. 2009), leading to evolution of protective systems and 
other adaptations against ambient UV-B radiation in insects 
(Abram et al. 2015; Gaudreau et al. 2017).

Plant-dwelling mites frequently reside on the lower leaf 
surfaces of their host plants (Sudo and Osakabe 2011). In 
addition to topographic differences between adaxial (upper) 
and abaxial (lower) leaf surfaces (Chien and Sussex 1996; 
Price 1980; Sakai et al. 2012a; Sudo and Osakabe 2013), 
the preference for lower leaf surfaces by tiny mites (Jeppson 
1975; Kiritani 2012, 2013) has been attributed to avoidance 
of harsh environments on upper leaf surfaces such as radi-
ant heat (Lu et al. 2014; Perring et al. 1984), desiccation 
(Ferro and Chapman 1979; McEnroe 1961) and rain (Boyne 
and Hain 1983; Ho 2000; Osakabe 1965; Rêgo et al. 2013). 
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Detrimental effects of solar UV-B on plant-dwelling mites 
and avoidance of these effects by occupying lower leaf sur-
faces on sunny days have been reported previously by Bar-
celo (1981). Over the last decade, numerous studies have 
revealed significant biological impacts of UV-B radiation 
on plant-dwelling mites (Ohtsuka and Osakabe 2009; Suzuki 
et al. 2009). Genus Tetranychus, which includes the two-
spotted spider mite T. urticae Koch (Acari: Tetranychidae), 
comprises the most important spider mites acting as horti-
cultural pests because of their vigorous fertility, extremely 
broad host range, and development of acaricide resistance 
worldwide (Jeppson 1975; Osakabe et al. 2009; Van Leeu-
wen et al. 2010, 2015). Therefore, the use of UV-B (as well 
as UV-C) for spider mite control has raised interest (Short 
et al. 2018; Tanaka et al. 2016).

Below, I review the biological impacts and adaptations 
of herbivorous spider mites and their natural enemy, phyto-
seiid mites. Then, I introduce the challenges associated with 
application of UV-B lamps for spider mite management in 
greenhouses and discuss the potential contribution of UV-B 
technology to integrated pest management (IPM) strategies 
for greenhouse cultivation.

Hiding from solar radiation

The majority of mites use lower leaf surfaces

Tetranychus urticae pierces both adaxial and abaxial leaf 
surfaces with its stylet (Bensoussan et al. 2016). In field 
observations by Osakabe et al. (2006), ~ 99% of T. urticae 
females resided on lower (abaxial) leaf surfaces in an apple 
orchard from mid-June to early-August in Hiraka, Akita, 
Japan (39°23′ N, 140°3′ E). Ohtsuka and Osakabe (2009) 
revealed that egg hatching and juvenile development were 
significantly suppressed on upper (adaxial) leaf surfaces or 
on leaf discs that were placed under UV-transparent film, 
while most eggs hatched and larvae developed on lower 
(abaxial) leaf surfaces or on leaf discs that were placed under 
UV-attenuating film. Plants accumulate UV-B-absorbing 
compounds, including leaf phenolics (e.g., flavonoids), in 
epidermal cells that reduce UV-B penetration via protection 
of sensitive targets in mesophyll cells, possibly acting as 
selective sunscreens for small arthropods on the lower leaf 
surfaces (Izaguirre et al. 2007; Lavola et al. 1998; Rous-
seaux et al. 2004; Tegelberg et al. 2004). Similar protective 
effects of host plant leaves have been demonstrated in the 
UV-sensitive freshwater snail Planorbarius corneus (Lin-
naeus) (Wahl 2008).

Several practical observations provide evidence that mites 
avoid solar UV radiation. For example, movement of T. urti-
cae females from the upper to lower leaf surfaces of host 
plants under solar radiation was accelerated when covered 

by UV-transparent film overhead compared with UV-opaque 
film (Sakai and Osakabe 2010). Conversely, movement from 
the lower to upper leaf surfaces of host plants covered by 
UV-opaque film overhead was accelerated after the lower 
leaf surfaces were irradiated with reflected solar UV radia-
tion (Sakai and Osakabe 2010). On the other hand, in a UV 
irradiation experiment with a wavelength interval of 20 nm 
using a spectroscopic light source, Sakai and Osakabe 
(2010) found that T. urticae did not escaped from leaf area 
irradiated with UV-B and UV-A at 300 and 360 nm wave-
lengths, while it escaped from the area irradiated with UV-A 
at 320 and 340 nm wavelengths. Based on this result, they 
supposed that T. urticae avoids UV-A at 320–340 nm wave-
lengths in the sun, thereby avoiding UV-B contained in it at 
the same time (Sakai and Osakabe 2010). Monochromatic 
analyses by Suzuki et al. (2009) also showed avoidance 
behavior by T. urticae females more often in the presence 
of UV-A (350 nm) than UV-B (300 nm). Tetranychus urti-
cae females showed a maximum behavioral response along 
with a second peak at 375–525 nm wavelengths (Naegele 
et al. 1966). In contrast, Suzuki et al. (2013) showed that 
T. urticae avoids entering patches illuminated with UV-B 
(λmax 307 nm) from a light emitting diode under virtual field 
conditions provided by a micro-locomotion compensator, 
which is an equipment to keep and record a walking mite 
in an experimental area by complementing the movement 
of mites on the test table with the movement of the table 
(Kojima et al. 2003). Therefore, it is controversial how T. 
urticae avoids solar UV-B.

In addition to T. urticae, the eyeless predacious phy-
toseiid mite Neoseiulus californicus (McGregor) (Acari: 
Phytoseiidae) avoids areas irradiated with solar UV (Tachi 
and Osakabe 2012). Neoseiulus californicus escapes rapidly 
from areas irradiated with monochromatic UV-B radiation 
at wavelengths ≥ 300 nm, in contrast to T. urticae (Tachi and 
Osakabe 2014). If the complicated thread webs produced 
by spider mites (prey) are present, N. californicus does not 
escape from areas irradiated with UV at ≥ 310 nm, whereas 
it escapes areas irradiated with dangerous UV-B at 300 nm 
(see section “Fatal wavelengths”) (Tachi and Osakabe 2014). 
Phytoseiid mites show escape behavior even from visible 
light (VIS) (Tachi and Osakabe 2012; Weintraub et  al. 
2007), causing them to remain on lower leaf surfaces and 
within domatia (Ghazy et al. 2016; Onzo et al. 2009, 2010).

The minority of mites use upper leaf surfaces

In contrast to many other mites, spider mites in the genus 
Panonychus (Acari, Tetranychidae) frequently occupy 
upper leaf surfaces (Foott 1963; Jones and Parrella 1984; 
Morimoto et al. 2006; Osakabe et al. 2006). Eggs of the 
citrus red mite Panonychus citri (McGregor) (Acari: Tet-
ranychidae) show greater resistance to UV-B radiation 
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than do those of T. urticae (Fukaya et al. 2013; Osakabe 
et al. 2006). The herbivorous false spider mite, Brev-
ipalpus obovatus Donnadieu (Acari: Tenuipalpidae), is 
another occupier of upper leaf surface (Sudo and Osakabe 
2011), and it shows greater UV-B resistance than P. citri 
(Sudo and Osakabe 2015). Sudo and Osakabe (2013) sug-
gested that B. obovatus has a reduced risk of egg preda-
tion by phytoseiid mites such as Phytoseius nipponicus 
Ehara (Acari: Phytoseiidae), present on the lower leaf 
surfaces of Viburnum erosum Thunb. var. punctatum 
Franch. et Sav. (Adoxaceae), by ovipositing on the upper 
leaf surfaces (Sudo and Osakabe 2013). However, it is 
difficult for B. obovatus eggs to survive on upper leaf 
surfaces in summer due to strong detrimental effects of 
both UV-B radiation and radiant heat from the sun, limit-
ing the field occurrence of this mite to autumn (Sudo and 
Osakabe 2015).

UV irradiation and radiant heat from the sun both 
induce the formation of reactive oxygen species (ROS), 
which cause oxidative damage in organisms, such as lipid 
peroxidation (Girotti 1985, 1998) as well as DNA base 
damage (Cadet and Wagner 2013). Although the protec-
tive effects of enzymatic antioxidant responses have not 
been clarified (Yang et al. 2010), P. citri possesses asta-
xanthin, an efficient scavenger of ROS (Camera et al. 
2009), as its main pigment (Atarashi et al. 2017; Met-
calf and Newell 1962). Atarashi et al. (2017) observed 
a higher survival rate at high temperature in wild type 
than albino P. citri, which lacks astaxanthin, although no 
difference was detected under UV-B irradiation. On the 
other hand, summer-form Tetranychus mites also possess 
astaxanthin but the distribution of astaxanthin is restricted 
to the mites’ eye spots; when they enter diapause, keto-
carotenoids including astaxanthin are synthesized and 
accumulate throughout the body (Kawaguchi et al. 2016; 
Veerman 1972, 1974a). As a result, Tetranychus mites 
have increased UV resistance in their diapause form than 
in their summer form (Suzuki et al. 2009).

Panonychus ulmi Koch (Acari: Tetranychidae) exhib-
its a reddish body and egg coloration similar to P. citri, 
likely due to carotenoids such as astaxanthin or com-
plexes thereof (Putman 1965). Generally, Panonychus 
mites are inferior competitors to Tetranychus mites, as 
the complicated webs of fine threads created by the lat-
ter significantly inhibit the activity and development of 
the former (Morimoto et al. 2006). Field observations in 
an apple orchard revealed that P. ulmi females tended to 
avoid lower leaf surfaces on which T. urticae was present 
and to move to the competitor-free upper leaf surfaces 
(Osakabe et al. 2006). Solar radiation may have non-neg-
ligible effects on the evolution and seasonal dynamics of 
plant-dwelling mites via the effects of oxidative stressors, 
namely UV-B radiation and radiant heat.

Seasonal differences in the biological impacts 
of solar UV‑B radiation

In general, the UV-B irradiation intensity and daily cumu-
lative dose of solar radiation are high in summer and low 
in winter. Therefore, we tend to assume that the biological 
impact of solar UV-B radiation is strongest in summer. How-
ever, a semi-field experiment performed in Kyoto, Japan, 
from spring (mid-April) to autumn (end of October) revealed 
the highest ovicidal effect of solar UV radiation on T. urticae 
eggs in spring (Sakai et al. 2012b). The hatchability of eggs 
exposed to solar UV radiation (placed under UV-transpar-
ent film) was lowest in April (10.7%) and increased toward 
October (74.9–92.3%). In contrast, the hatchability of eggs 
placed under UV-opaque film was 96.2–99.8% throughout 
the experimental period from spring to autumn (Sakai et al. 
2012b), indicating a strong impact of solar UV radiation 
on spider mites. Sakai et al. (2012b) found a negative cor-
relation between the hatchability of eggs exposed to solar 
UV radiation and the cumulative UV-B dose during the egg 
period.

From the data reported by Sakai et al. (2012b), the LD50 
value of solar UV-B radiation for T. urticae eggs was esti-
mated as ~ 50 kJ/m2, which is equivalent to the cumulative 
irradiation dose over 3 days in April or October or < 2.5 days 
in summer (June–August) in Kyoto. The reason for the peak 
mortality of eggs in spring (April) and the minimum mor-
tality in autumn (October) remain unclear. However, it is 
likely that the higher temperature in autumn shortened the 
egg period and thereby reduced the cumulative UV-B dose 
received during the egg period in autumn relative to spring. 
If this speculation is true, the combined effect of UV-B 
dose and temperature is an important factor for identifying 
the optimal conditions for practical UV-B control of spider 
mites.

The effect of temperature on UV damage to organisms 
remains controversial (see section “Effects of air temperature 
on mite mortality due to daily nighttime UV-B irradiation”), 
and in particular, the impacts of global climate change 
are largely unknown (Alton and Franklin 2012, 2017). In 
Japan, the temperature increase in 2015–2018 relative to 
1981–2010 was greater in spring than in autumn (Fig. 1). 
Such meteorological changes may influence the seasonal 
occurrence of spider mites via both the effect of temperature 
on developmental rate and UV damage mitigation.

Fatal effects and reciprocity law

Fatal wavelengths

The fatal effects of solar UV-B radiation on T. urticae 
were shown by Ohtsuka and Osakabe (2009). In the sun, 
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egg hatching and juvenile development were significantly 
suppressed on the upper (adaxial) leaf surfaces, while most 
eggs hatched, and larvae on lower (abaxial) leaf surfaces 
or under UV-attenuating film developed normally. Experi-
ments on the effects of single-wavelength acute irradiation 
using artificial monochromatic UV radiation indicated that 
the extent of damage changed dramatically between wave-
lengths of 300 nm and longer; all eggs of T. urticae and N. 
californicus died from exposure to 300 nm wavelength while 
all eggs hatched upon exposure to 310 nm and longer wave-
lengths in N. californicus (Tachi and Osakabe 2014) and 
320 nm and longer wavelengths in T. urticae (310 nm has not 
been tested) (Sakai and Osakabe 2010). A similar response 
has been reported in marine zooplankton (Copepoda) eggs 
(Kouwenberg et al. 1999b). UV-C causes greater damage 
to spider mites (Suzuki et al. 2009), but solar radiation at 
wavelength below 290 nm scarcely reaches ground level. 
Meanwhile, UV-A shows no lethal effects on mites (Ohtsuka 
and Osakabe 2009; Sakai and Osakabe 2010; Suzuki et al. 
2009; Tachi and Osakabe 2014). Therefore, the wavelengths 
fatal to mites lie within a very narrow range (290–300 nm) 
that accounts for a small portion of the total solar radiation 
at ground level.

Reciprocity law in the lethal effect

Several studies have been conducted on aquatic organisms 
to determine the mechanism of UV damage. Reciprocity 
might be applicable to the mortality of shrimp zoea (Wüb-
ben 2000), sea urchin (early stages; Nahon et al. 2009), 
and fish eggs (Kouwenberg et al. 1999a). However, diver-
gence from reciprocity was observed at low UV-B radia-
tion in shrimp zoea and several aquatic animals (Cywin-
ska et al. 2000; Wübben 2000), and thus the applicability 
of the reciprocity law to UV damage in those organisms 
remains questionable. In contrast, mortality due to UV-B 

irradiation is strictly determined by the cumulative UV-B 
dose (= UV-B irradiance [W/m2] × irradiation time [s]) in 
T. urticae (Murata and Osakabe 2013). Moreover, Murata 
and Osakabe (2013) found strong linear regression between 
mortality probit and the log-transformed UV-B dose, which 
was useful for determining LD50 values of 0.58, 1.19, 1.01, 
and 26.12 kJ/m2 for the egg, larva, teleiochrysalis, and adult 
female, respectively. Egg production by females decreased 
linearly, and the developmental duration from larvae to 
adult emergence increased linearly, with increasing cumu-
lative UV-B dose (Murata and Osakabe 2013). Murata and 
Osakabe (2013) performed these experiments in a laboratory 
illuminated by fluorescent lights. Therefore, UV-B damage 
may be underestimated compared to dark conditions due to 
effects of photoreactivation discussed in “DNA lesions and 
repair” section. The UV damage in this spider mite gener-
ally followed the reciprocity law, suggesting that the effect 
of UV-B application on spider mite management will be 
predictable.

The large difference in LD50 values between the labo-
ratory experiment using a UV-B lamp and the semi-field 
experiment under solar UV radiation (86-fold greater; Sakai 
et al. 2012b) described above is noteworthy. In the laboratory 
experiment, eggs were illuminated with a moderate-intensity 
fluorescent lamp (Murata and Osakabe, 2013), whereas the 
amount of VIS in the natural sunlight was overwhelming. 
This difference in the LD50 values may be explained by pho-
toreactivation efficiency, as described below.

Stage‑specific vulnerability to UV‑B damage

UV-B sensitivity of eggs varies among developmental 
stages; for example, Atlantic cod eggs are vulnerable dur-
ing post-fertilization (mid-gastrulation) and hatching stages 
in comparison with the middle embryonic stages (Kouwen-
berg et al. 1999a). The UV-B vulnerability of T. urticae 
eggs peaks at 24–48 h after oviposition at 25 °C (Murata 
and Osakabe 2014; Yoshioka et al. 2018), corresponding 
to when the larval body is formed based on the germinal 
disk (Dearden et al. 2002). Then, the UV-B tolerance of the 
eggs increases, reaching a maximum just prior to hatching 
(Murata and Osakabe 2014). Neoseiulus californicus eggs 
show their highest UV-B vulnerability at similar embryonic 
development periods as those of T. urticae eggs (Sugioka 
et al. 2018). Interestingly, the goldfish Carassius auratus 
(L.) embryo shows a similar time course of sensitivity and 
resistance to UV-B as that of mites (Wiegand et al. 2004).

The high UV-B resistance of mature embryos just before 
hatching is related to the fact that most T. urticae larvae 
irradiated with UV-B do not die immediately, and instead 
enter the protochrysalis stage (Murata and Osakabe 2017b). 
The damaged larvae die during the protochrysalis stage or 
molting (Murata and Osakabe 2014, 2017b), indicating the 
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Fig. 1   Deviation of monthly mean temperature in 2015–2018 from 
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vulnerability of the chrysalis stage. This finding is sup-
ported by the smaller LD50 of the teleiochrysalis than that 
of larvae, although adult T. urticae females may have higher 
values than those of larvae due to their larger body size, as 
described above (Murata and Osakabe 2013). Interestingly, 
greater numbers of quiescent stage European red mites, 
Panonychus ulmi (Koch), occupied lower leaf surfaces than 
upper leaf surfaces, as reported by Foott (1963). Similarly, 
many larvae and nymphs of P. citri reside on the lower 
surfaces of citrus leaves, despite higher juvenile develop-
ment rates and egg production levels in females, indicating 
a nutritional advantage of residing on the upper leaf surface 
(Fukaya et al. 2013).

DNA lesions and repair

Accumulation of DNA damage

Ambient UV-B radiation frequently causes DNA lesions in 
organisms in the forms of cyclobutane pyrimidine dimers 
(CPDs), (6–4) photoproducts (6–4 PPs), and their Dewar 
valence isomers, which interrupt the processes of gene tran-
scription and replication (Cadet et al. 2012; Pfeifer 2020; 
Rastogi et al. 2010; Sinha and Häder 2002). Although 6–4 
PPs may have more serious lethal effects on organisms due 
to the formation of DNA bends, CPDs are more common 
and therefore responsible for most cytotoxic effects (Mitchell 
and Nairn 1989; Sinha and Häder 2002).

Studies on Daphnia and bacteria suggest that DNA 
lesions accumulate in a dose-dependent manner (Connelly 
et al. 2009; Riley and Kaufman 1972). Murata and Osakabe 
(2017a) observed increased mortality and simultaneous 
accumulation of DNA lesions (CPDs and 6–4 PPs) with 
increasing UV-B doses in irradiated T. urticae larvae. The 
levels of CPDs and 6–4 PPs are linearly correlated with the 
UV-B dose (Murata and Osakabe 2017a).

DNA repair systems

Nucleotide excision repair (NER) and photoenzymatic 
repair (PER) are the major repair systems for DNA lesions 
in organisms (Rastogi et al. 2010; Sinha and Häder 2002; 
Thoma 1999; Weber 2005). Multiple enzymes act in NER to 
replace damaged DNA with undamaged nucleotides, using 
ATP for energy (Sinha and Häder 2002). In contrast, PER is 
a relatively simple repair system in which DNA lesions are 
directly repaired by photolyases using energy from blue light 
(400–450 nm wavelength) and UV-A (Kalthoff 1975; Sancar 
2003; Shiroya et al. 1984; Sinha and Häder 2002). The T. 
urticae genome includes four highly homologous copies of 
the CPD photolyase gene (tetur12g04440, tetur12g04460, 
tetur35g00010, and tetur35g00030), the product of which 

repairs CPDs, but it contains no gene encoding a (6–4) pho-
tolyase for repairing 6–4 PPs (Grbić et al. 2011), which has 
been found in limited organisms, such as Drosophila (Todo 
et al. 1996). A single-copy gene encoding the xeroderma 
pigmentosum group A protein (tetur05g03450), one of the 
core factors for NER, is present in the T. urticae genome 
(Grbić et al. 2011; Murata and Osakabe 2017a). Murata and 
Osakabe (2017a) suggested that UV-B-induced 6–4PPs dis-
appeared 1 day after UV-B irradiation in T. urticae larvae 
kept in the dark. Thus, 6–4 PPs may be repaired by mecha-
nisms other than PER including NER in T. urticae.

Recovering from fatal UV‑B damage using light 
energy

Photoreactivation via repair of DNA lesions such as CPDs 
and 6–4 PPs via PER is essential, and the reactivation sys-
tem is present in a wide range of organisms, including bac-
teria (Ikenaga et al. 1970; Peccia and Hernandez 2001), 
rotifers (Grad et al. 2003), crustaceans (Connelly et al. 2009; 
Damkaer and Dey 1983; Grad and Williamson 2001), algae 
(Pakker et al. 2000; Pescheck 2019), plants (Hada et al. 
2003; Kaiser et al. 2009; Manova et al. 2016; Takahashi 
et al. 2002), amphibians (Blaustein et al. 1994; Morison 
et al. 2020), and fishes (Applegate and Ley 1988; Lawrence 
et al. 2020; Mitchell et al. 2009; Wiegand et al. 2004), but 
not in placental mammals, which may rely on other repair 
systems: base excision repair, NER, and so on (Sinha and 
Häder 2002). In spider mites, Santos (2005) observed pho-
toreactivation of UV-B damage in T. urticae, the mortal-
ity rate of T. urticae adult females irradiated with UV-B at 
46.8 kJ/m2 was reduced from 46% (when kept in the dark 
after UV-B irradiation) to 26% with VIS illumination after 
UV-B irradiation. As the adult female is the most resistant to 
UV-B radiation, more dramatic photoreactivation effects are 
observed egg and larval stages. UV-B-irradiated T. urticae 
eggs and larvae recovered at rates of 57% and ~ 100% with 
subsequent VIS radiation (Murata and Osakabe 2014).

In a midge Smittia sp. (Chironomidae, Diptera) and a 
bacterium Escherichia coli (Migula) (Enterobacteriaceae, 
Enterobacterales), VIS intensity has been suggested as a fac-
tor that affects the efficiency of photoreactivation (Kalthoff 
et al. 1978; Kelner 1951). In contrast, correlation of the pho-
toreactivation efficiency with the cumulative VIS irradiance 
after UV-B irradiation has been reported in the long-nosed 
potoroo Potorous tridactylus (Kerr) (Potoroidae, Diproto-
dontia) and a bacterium Streptomyces griseus (Krainsky) 
(Streptomycetaceae, Actinomycetales) (Chiang and Rupert 
1979; Kelner 1951). Murata and Osakabe (2014) suggested 
that the photoreactivation of T. urticae also depends on the 
cumulative VIS irradiation (a reciprocity law), though the 
regression curve was analyzed by a nonlinear least-squares 
method.
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Efficient wavelengths for photoreactivation

For activation of PER, radiation at wavelengths of 
350–450  nm generally provides an effective energy 
source (Baalen and O’Donnell 1972; Chiang and Rupert 
1979; Kalthoff et al. 1978; Kelner 1951; Sancar 2003). 
Murata and Osakabe (2014) assessed the effects of UV-A 
and wavelength-filtered VIS (blue, green, yellow, and 
red) on photoreactivation of T. urticae eggs. They esti-
mated the effective radiation range as UV-A to green light 
(≤ 500 nm) (Murata and Osakabe 2014), roughly corre-
sponding to those of other organisms. Intensification of 
solar UV-B radiation occurs later than UV-A (morning) 
and is negligible earlier in the evening (Fig. 2). Because 
lower leaf surfaces also exposed to low-intensity UV-B 
rays scattered in the air, survival rate and egg production 
of Typhlodromalus aripo De Leon, the most UV-B vul-
nerable phytoseiid mite species, decrease on lower leaf 
surfaces when the leaves are irradiated with UV-B (Onzo 
et al. 2010). UV-A and visible lights also seem to be scat-
tered in shadows such as lower leaf surfaces frequently. 
Thus, solar radiation in the early morning and late evening 
may enhance the recovery from UV damage via photore-
activation in mites.

Application of UV‑B for mite control 
in strawberry greenhouses

Spider mites have long been major pests affecting strawberry 
production in Japan (Aida 1987; Yanagita 2019). Moreover, 
the recent development of acaricide resistance in T. urti-
cae has become a serious problem in Japanese strawberry 
greenhouses, hindering the selection of chemicals for rota-
tion spraying (Yamamoto 2012; Yanagita 2019). There-
fore, the development of alternative control technologies is 
urgently needed. The UV-B method (Tanaka et al. 2016) 
may be a promising addition to IPM in greenhouse straw-
berry cultivation.

UV‑B ray delivery to lower leaf surfaces

Along with many other plant-dwelling mites, most T. urti-
cae individuals reside on the lower leaf surfaces of host 
plants in the field (Osakabe et al. 2006). Thus, for practical 
use of UV-B for spider mite control in strawberry green-
houses, UV-B delivery to the lower leaf surfaces on which 
spider mites reside is important. For this reason, Tanaka 
et al. (2016) used a combination of overhead UV-B lamps 
and light-reflecting sheets in a strawberry greenhouse. The 
light-reflecting sheet was a flash-spun nonwoven fabric 
sheet (Tyvek 700AG; DuPont-Asahi Flash Spun Products, 
Tokyo, Japan), which diffusely reflected solar radiation, 
including UV-A and UV-B, and VIS with high efficiency 
(> 90%; Sakai and Osakabe 2010). As a result, the UV-B 
radiation was 0.023–0.053 W/m2 on the lower leaf surface 
and 1.61–1.87 W/m2 on the upper leaf surface of green-
house strawberry plants (Tanaka et al. 2016). For the rea-
sons described in the following section, UV-B irradiation 
was performed at midnight every day for 3 h. Therefore, the 
daily cumulative irradiation on the lower leaf surfaces was 
0.25–0.57 kJ/m2.

UV-B irradiation affects plant-dwelling arthropods and 
pathogens not only directly, but also through indirect path-
ways involving plant responses to UV irradiation, such as 
the accumulation of phenolic compounds (Escobar-Bravo 
et al. 2017; Neugart and Schreiner 2018) and the induction 
of protective signaling systems (Ballaré 2014; Kunz et al. 
2006). In strawberries, UV-B irradiation induces disease 
resistance and strongly prevents the development of pow-
dery mildew caused by Sphaerotheca aphanis (Wallroth) 
Braun var. aphanis (Erysiphales: Erysiphaceae) (Kanto et al. 
2009). Although the effects of plant defense systems on spi-
der mites have been reported (Kant et al. 2008; Ozawa et al. 
2017), indirect effects of UV-B radiation acting through 
host plants on spider mites have not been reported to date. 
Tomimori et al. (2020) detected no effect of pre-irradiation 
with UV-B on the perilla plants Perilla frutescens (L.) Brit-
ton var. crispa (Thunb.) H. Deane (Lamiales: Lamiaceae), 
which produces abundant essential oil containing various 

Fig. 2   Daily fluctuations of 
solar UV-A (solid line) and 
UV-B (gray line) in Kyoto, 
Japan on a 25 April, b 21 July, 
and c 7 October in 2010. Data 
from the Solar Radiation and 
Weather Monitoring Project 
at Kyoto Women’s University 
(34°59′ N, 135°47′ E; http://
db.cger.nies.go.jp/gem/ja/uv/
uv_sited​ata/kyoto​/index​.html) 0
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secondary metabolites that act as a biological protective 
mechanism, on the juvenile development and egg production 
of T. urticae. This highlights the importance of delivery of 
UV-B rays to spider mite locations for practical application.

Diminished photoreactivation by midnight UV‑B 
irradiation

Suzuki et al. (2014) and Koveos et al. (2017) showed that 
simultaneous white light and UV-B irradiation reduced the 
mortality of Tetranychus spider mite eggs and phytoseiid 
mite eggs caused by UV-B damage. The photoreactivation 
efficiency increased with increasing cumulative VIS irra-
diation, as did the reciprocity effect on the accumulation of 
UV-B damage (Murata and Osakabe 2014). These results 
indicate less effective control of spider mites by UV-B irra-
diation during the daytime; therefore, nighttime irradiation 
is preferred in greenhouses (Masui et al. 2013; Tanaka et al. 
2016).

Moreover, increasing lag time between UV-B irradiation 
and light irradiation for photoreactivation reduces the pho-
toreactivation efficiency in T. urticae eggs, and a lag longer 
than 4 h inactivates the photoreactivation system (Murata 
and Osakabe 2014; Yoshioka et al. 2018). In contrast, no 
effect of lag time was observed in UV-B-exposed larvae; 
even after a 4-h lag, all larvae exposed to photoreactiva-
tion light developed to adulthood, but no larvae developed if 
they were not exposed to light (Murata and Osakabe 2014). 
Therefore, the effect of UV-B irradiation on controlling 
spider mites in greenhouse production might be due to an 
ovicidal mechanism.

Concurrent use of UV‑B and biological control

Reversal of vulnerability to UV‑B between spider mites 
and phytoseiid mites under daily nighttime irradiation 
for practical application

According to egg mortality after a single period of acute 
UV-B irradiation, phytoseiid mites appear to be more vul-
nerable to UV-B damage than spider mites (Ghazy et al. 
2016; Tachi and Osakabe 2012). Interestingly, it was 
recently reported that resistance to daily UV-B irradiation 
at midnight is higher in N. californicus eggs than T. urticae 
eggs (Nakai et al. 2018; Yuan and Osakabe 2020). Yuan and 
Osakabe (2020) found a linear regression between the loga-
rithmic daily cumulative level of UV-B radiation and probit 
mortality in T. urticae eggs (y = 6.54x + 11.7, R2 = 0.867, 
P = 4.38 × 10−3) and N. californicus eggs (y = 6.99x + 8.76, 
R2 = 0.978, P = 1.17 × 10−4) in laboratory experiments that 
simulated practical UV-B irradiation conditions in straw-
berry greenhouses (Tanaka et al. 2016). The LD50 value of 
N. californicus eggs was 0.29 kJ/(m2 day) at 25 °C, which 

was three times higher than that in T. urticae (0.095 kJ/(m2 
day); 25 °C). The mortality of eggs irradiated with 0.15, 
0.17, and 0.2 kJ/(m2 day) were estimated from the regres-
sion lines as 90, 95, and 98%, respectively, in T. urticae 
and 2, 5, and 15%, respectively, in N. californicus. There-
fore, cumulative irradiation in the range of 0.15–0.2 kJ/m2 
(0.014–0.019 W/m2 for 3 h/day) is advantageous for apply-
ing UV-B for spider mite control in combination with N. 
californicus at 25 °C. However, Nakai et al. (2018) reported 
that a UV-B dose of 0.27 kJ/(m2 day) at 25 °C reduced the 
developmental success of hatched N. californicus larvae, 
indicating that lower UV-B doses within the cumulative 
radiation range may be preferable for controlling spider 
mites using phytoseiid mites.

The mechanism behind the difference in the UV-B vul-
nerability of spider mites and phytoseiid mites between a 
single UV-B irradiation and daily nighttime UV-B irradia-
tion remains unclear. Koveos et al. (2017) reported higher 
hatchability under continuous UV-B irradiation without 
VIS irradiation in the eggs of four of phytoseiid mite spe-
cies compared with T. urticae eggs. Considering the reci-
procity of UV-B-induced mortality (Murata and Osakabe 
2013), the difference in vulnerability could be attributed 
to the shorter egg duration of phytoseiid mites relative to 
spider mites. Moreover, variations in UV-B vulnerability 
among the embryonic developmental stages (Murata and 
Osakabe 2014; Sugioka et al. 2018; Yoshioka et al. 2018) 
may be involved. This topic may be related to the interaction 
between UV damage and temperature and thus linked to the 
issue of global climate change.

Effects of air temperature on mite mortality caused by daily 
nighttime UV‑B irradiation

Laboratory experiments revealed that daily nighttime UV-B 
irradiation in greenhouses is more effective for controlling 
spider mites at low than high temperatures (Nakai et al. 
2018; Yuan and Osakabe 2020). Mortality of T. urticae eggs 
caused by UV-B irradiation at 0.097 kJ/(m2 day) was 7.0, 
28.6, and 78.2% at 30, 25, and 18 °C, respectively (Yuan 
and Osakabe 2020). The air temperatures (monthly aver-
age) 0.15 m above a ridge in greenhouse reported by Tanaka 
et al. (2016) in Hyogo Prefecture, Japan (34.9° N, 134.9° E) 
were lower than 18 °C from December to April, and reached 
21–22.6 °C in May, indicating that the cumulative radiation 
on lower leaf surfaces was sufficient for control of T. urticae 
eggs.

Like T. urticae, the biological impact of daily nighttime 
irradiation on N. californicus is stronger at relatively low 
temperature. The rates of egg mortality caused by UV-B 
irradiation at 0.27 kJ/(m2 day) were 13.7, 31.1, and 80.3% 
at 30, 25, and 18 °C, respectively (Yuan and Osakabe 2020). 
Analyzing the relationship between temperature and probit 
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mortality by linear regression, strong correlations (R2 > 0.95) 
were detected in both T. urticae and N. californicus eggs 
(Fig. 3). The regression line was similar between N. cali-
fornicus UV-B irradiated at 0.27 kJ/(m2 day) and T. urticae 
UV-B irradiated at 0.097 kJ/(m2 day), indicating that N. 
californicus eggs have stronger resistance to daily nighttime 
UV-B irradiation than do T. urticae eggs, at least within the 
temperature range of 18–30 °C. Moreover, in the winter, 
daily cumulative UV-B radiation for spider mite control can 
be reduced, and this reduction is beneficial for the activity 
of phytoseiid mites. Vulnerability to UV-B radiation varies 
among phytoseiid mite species (Ghazy et al. 2016; Onzo 
et al. 2010). Phytoseiulus persimilis Athias-Henriot is more 
resistant to UV-B radiation compared with other phytosei-
ids that are potential biological control agents, such as N. 
californicus, Neoseiulus womersleyi Schicha, and Ambly-
seius swirskii Athias-Henriot (Koveos et al. 2017; Tachi 
and Osakabe 2012). Phytoseiulus persimilis eggs show 
orange–red color that might be due to keto-carotenoids 
derived from prey spider mites (Veerman 1974b), while eggs 
of Neoseiulus phytoseiid mites are colorless or milky white. 
Keto-carotenoids, especially astaxanthin, has strong anti-
oxidant activity (Camera et al. 2009), and have the effects 
reducing lipid peroxidation in spider mites (Atarashi et al. 
2017). According to Croft et al. (1999), eggs of P. persimilis 
is larger in size (egg length: 0.24 mm) than that of Neoseiu-
lus species (egg length: 0.20–0.21 mm), being advantageous 
in terms of UV-B resistance due to limitation of penetration. 
Moreover, according to Escudero and Ferragut (2005), egg 
duration of P. persimilis at 25 °C (1.4–1.8 days) is shorter 

than that of N. californicus (1.9–2.4 days), though the effects 
on UV-B resistance is not clear so far.

Although a clear relationship between mortality and tem-
perature was seen in mite eggs after daily nighttime UV-B 
irradiation, the thermal dependence of UV-B damage in 
various organisms remains controversial. UV damage in E. 
coli and tadpoles of the frog Limnodynastes peronii Duméril 
and Bibron is greater at lower temperature than at higher 
temperature (Mangoli et al. 2014; Van Uitregt et al. 2007). 
The cladoceran Daphnia catawba Coker and the calanoid 
copepod Leptodiaptomus minutus Lilljeborg show greater 
UV-B resistance with increasing temperature, whereas 
the rotifer Asplanchna girodi de Guerne shows reduced 
resistance at higher temperatures (Williamson et al. 2002). 
Moreover, in four Daphnia species, DNA repair occurs more 
rapidly at lower temperatures, but the opposite pattern is 
seen in Daphnia pulicaria Forbes (MacFadyen et al. 2004). 
Enzymes associated with DNA repair and ROS scaveng-
ing likely have high activity within the optimal temperature 
range. The studies described above suggest the involvement 
of multiple factors, such as developmental stage and timing 
of gene expression. In spider mites, some stages are specifi-
cally vulnerable, such as developing embryo and quiescent 
juvenile (Murata and Osakabe 2014, 2017b; Sugioka et al. 
2018; Yoshioka et al. 2018). Research in the association of 
such stage-specific UV-B vulnerability with variation in the 
thermal dependence of UV damage will be worthwhile for 
elucidating adaptation to UV-B radiation in mites.

Differences in the behavioral responses of spider mites 
and phytoseiid mites to UV‑B irradiation

Tachi and Osakabe (2012) showed that most T. urticae and 
N. californicus individuals escaped from solar UV radiation 
within 30 and 10 min, respectively. In laboratory experi-
ments using monochromatic UV radiation, however, T. urti-
cae females responded by escaping from UV-A irradiation at 
320 and 340 nm wavelengths, but not from UV-B irradiation 
at 300 nm (Sakai and Osakabe 2010). In a monochromatic 
analysis by Suzuki et al. (2009), non-diapausing T. urticae 
females also escaped from safe UV-A radiation (350 nm) 
more often than from lethal UV-B radiation (300 nm). Bar-
celo and Calkins (1980) and Barcelo (1981) showed strong 
dose-dependent responses of T. urticae escape from leaf 
areas irradiated with UV-B at the beginning of experiments. 
Then, the mite distribution between areas with and without 
UV-B radiation became constant at ~ 2 h after the start of 
UV-B irradiation (Barcelo and Calkins 1980). On the other 
hand, Suzuki et al. (2013) revealed that T. urticae increased 
the frequency of turning behavior when it entered an area 
irradiated with monochromatic UV-B (307 nm) using a 
virtual field system, suggesting that T. urticae perceives 
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Fig. 3   Correlation of probit mortality with temperature in the eggs of 
Tetranychus urticae (gray circles) and Neoseiulus californicus (open 
circles) irradiated with 0.097 and 0.27  kJ/(m2 day), respectively. 
Regression lines: y =  − 1.65x + 8.76, R2 = 0.95, P = 5.32 × 10−6 for T. 
urticae (solid line) and y =  − 1.89x + 9.18, R2 = 0.979, P = 2.69 × 10−7 
for N. californicus (broken line). This graph was created using the 
data from Yuan and Osakabe (2020)
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UV-B radiation visually, as thrips (Mazza et al. 2010), or 
via another mechanism, as phytoseiid mites.

Although phytoseiid mites are eyeless, they escape from 
solar UV radiation more quickly than spider mites (Tachi 
and Osakabe 2012). Photoreceptors distributing brains have 
been known in a wide range of classes of nonmammalian 
vertebrates (Bertolucci and Foà 2004). In insects, multiple 
extraocular photoreceptive areas including brains and geni-
talia have been reported (Arikawa et al. 1980; Spaethe and 
Briscoe 2005). Elucidation of extraocular photoreceptor in 
the eyeless phytoseiid mites is interesting but not yet so far.

The arresting effects of spider mite webs on predacious 
phytoseiid mites have long been known. When phytoseiid 
mites encounter the webs or their remnants, they walk slowly 
and turn frequently, entering a “search mode” for their prey, 
spider mites (Hoy and Smilanick 1981). This behavior may 
result in the phytoseiid mite trailing silks or residues left 
by dispersed spider mites (Shinmen et al. 2010; Yano and 
Osakabe 2009). In the experiments performed in Kyoto City, 
Japan (35° N, 136° E) from 7 September to 8 October, 2011, 
females of N. californicus escaped from solar VIS radia-
tion (Tachi and Osakabe 2012) as well as from artificially 
provided monochromatic UV-A and UV-B radiation (Tachi 
and Osakabe 2014). They are also arrested by residue from 
T. urticae females (web and eggs), even when irradiated 
with monochromatic UV of wavelength ≥ 310 nm, which 
is not harmful to N. californicus (Tachi and Osakabe 2014). 
In contrast, they escaped quickly from an area irradiated 
with harmful UV-B at 300 nm, regardless of the presence 
of spider mite residue (Tachi and Osakabe 2014), indicating 
that phytoseiid mites perceive this deleterious UV radia-
tion. Interestingly, prey eggs without webs do not arrest 
N. californicus females in UV-irradiated areas (Tachi and 
Osakabe 2014), showing the importance of webs in their 
behavioral response to predation (Furuichi et al. 2005). I 
suppose that phytoseiid mites likely escape and hide more 
quickly than spider mites when UV-B lamps are turned on 
in a greenhouse. Spider mites flee to and are saved in a safe 
place, such as the shadows on host plant leaves, which phy-
toseiid mites possibly enter to escape from UV-B irradiation. 
Consequently, the phytoseiid mite may efficiently forage on 
prey in these hidden areas in a greenhouse subjected to UV 
irradiation.

Potential protection of phytoseiid mites from UV‑B 
irradiation by pollen feeding

The removal of ROS by antioxidants is generally consid-
ered a UV protective mechanism. However, protection via 
the ROS-scavenging effects of antioxidants has been tested 
mainly in vitro (Camera et al. 2009; Kootstra 1994), and the 
effects of antioxidants on the survival of organisms under 
ambient UV radiation remain vague (Heath et al. 2013). 

Indeed, diapausing T. urticae females, which are more resist-
ant to UV-B radiation than the summer form of this species 
(Suzuki et al. 2009), accumulate keto-carotenoids such as 
astaxanthin, a very powerful ROS scavenger (Kawaguchi 
et al. 2016; Veerman 1974a). This suggests that the carot-
enoid composition and dose affect their survival under ambi-
ent UV-B radiation. In phytoseiid mites, Nakai et al. (2018) 
found that N. californicus eggs and hatched larvae produced 
by females feeding on P. citri, which contains abundant asta-
xanthin, were more resistant to UV-B radiation than those 
produced by females feeding on T. urticae.

Plant pollen is a possible alternative food for many phy-
toseiid mites (Castagnoli and Simoni 1999; Kishimoto et al. 
2014; Osakabe 1988; Osakabe et al. 1987). The germ cells 
contained in pollen must be protected from ambient UV-B, 
and therefore, pollen contains UV-B-protective compounds 
(Feng et al. 2000; Wang et al. 2010; Žilić et al. 2014). Sug-
ioka et al. (2018) identified tri-coumaroylspermidine and 
catechins as the major antioxidants in peach pollen and tea 
pollen, respectively. Neoseiulus californicus females fed pol-
len showed increased survivorship after exposure to artifi-
cial UV-B irradiation, and the viability of eggs produced 
by pollen-fed females was higher than that of T. urticae-fed 
females (Sugioka et al. 2018). The transmission of those 
antioxidants into eggs has not been proven unfortunately. 
However, I consider that such transmission is not surprising, 
because transmission of dietary obtained carotenoids, which 
is essential for diapause induction, from mother to eggs is 
known for a long time in phytoseiid mites and spider mites 
(Van Zon et al. 1981; Veerman 1980, 1992).

Later, Yuan et al. (2020) identified five types of hydroxy-
cinnamoyl spermidine derivatives in strawberry pollen. The 
majority of the content was comprised of three derivatives 
containing a caffeoyl group or both caffeoyl and feruloyl 
groups (Yuan et al. 2020). The caffeoyl and feruloyl groups 
confer higher antioxidant capacity than does the coumaroyl 
group in spermidine derivatives (Castelluccio et al. 1995; 
Shahidi and Chandrasekara 2010). Yuan et  al. (2020) 
observed the development of juveniles including egg peri-
ods on strawberry pollen was faster than that on T. urticae 
and found enhanced survival of females and hatching of eggs 
in N. californicus after UV-B irradiation combined with a 
strawberry pollen diet. This finding may help maintain N. 
californicus within strawberry greenhouses equipped with 
UV-B lamps.

UV‑B lamps as an IPM strategy 
in greenhouses

One advantage of UV technology in IPM is that it enables 
simultaneous control of spider mites and powdery mil-
dew, both of which are economically important pests of 



148	 Applied Entomology and Zoology (2021) 56:139–155

1 3

strawberry (Kanto et al. 2009, 2011, 2014; Sugeno et al. 
2018) and wide range of horticultural crops including rose 
(Kobayashi et al. 2013; Suthaparan et al. 2012) and cucum-
ber (Suthaparan et al. 2014, 2017). Powdery mildew fungi 
have developed resistance to a wide range of fungicides due 
to their frequent application (Elderfield et al. 2018; Nakano 
et al. 1992; Sombardier et al. 2010; Wyenandt et al. 2018).

A comparison of UV damage and photoreactivation 
between mites and powdery mildew fungi drawn from the 
literature is provided in Table 1. The UV-B wavelength 
range that can effectively suppress infection by powdery 
mildew fungi is less than 310 nm (Suthaparan et al. 2012, 
2016a). The effect of UV-B at 290–310 nm on powdery mil-
dew fungi depends on the duration of exposure (Suthaparan 
et al. 2016a). The effectiveness of UV-B by direct irradia-
tion rather than by indirect effects by UV-B via host plants, 
decreasing photoreactivation with lag time between UV-B 
irradiation and VIS irradiation in powdery mildew fungi 
(Janisiewicz et al. 2016a; Suthaparan et al. 2012, 2016b, 
2018) are similar to those in spider mites. Janisiewicz et al. 
(2016b) reported a similar decrease in photoreactivation 
with lag time in the gray mold fungus Botrytis cinerea Pers. 
These similarities in symptoms and protective responses to 
UV-B radiation between spider mites and fungi are advan-
tageous for the development of IPM strategies against both 
pests. The mechanism by which the time lag between UV-B 
irradiation and VIS radiation diminishes photoreactivation 
capacity is currently under investigation.

UV-C radiation (wavelength ≤ 280 nm) strongly inhibits 
fungal development (Janisiewicz et al. 2016a; Suthaparan 
et  al. 2016a) as well as T. urticae population growth 
(Short et al. 2018). However, irradiation at a wavelength 
of 280 nm inhibits the walking ability of both N. californi-
cus and T. urticae in an intensity-dependent manner (Sakai 
and Osakabe 2010; Tachi and Osakabe 2014). The pro-
portions of N. californicus females incapable of walking 
normally (i.e., of escaping from UV) after UV radiation at 
280 nm wavelength were 95.1% (37/39 ♀♀), 100% (41/41 
♀♀) and 0% (0/28 ♀♀) at intensities of 1.26, 0.73 and 
0.29 W/m2, respectively (Tachi and Osakabe 2014). The 
intensity of UV-C (254 nm) used by Short et al. (2018) 
for T. urticae control was 0.237 W/m2. Although this is 
lower than the intensity that caused no damage to phy-
toseiid mite behavior at 280 nm, the shorter wavelength 
might have a greater effect on the behavior and health of 
phytoseiid mites. Conversely, the benefit of UV-C is the 
short irradiation time required for control of spider mites. 
The T. urticae population was suppressed by only 60 s of 
irradiation per day (Short et al. 2018). Therefore, informa-
tion about the interaction between UV-C and phytoseiid 
mites is likely to be helpful for supporting the practical 
application of UV-C. In the future, it is worth considering 
how each UV wavelength can be optimized for IPM.

Table 1   Comparison of UV damage and photoreactivation between mites and fungi causing powdery mildew

UV effects Spider mite 
and phytoseiid 
mite

Powdery mildew fungus References

Direct (D) and indirect (I) effects D > I D > I Ohtsuka and Osakabe (2009), Suthaparan 
et al. (2012, 2016b, 2018), Janisiewicz 
et al. (2016a), Tomimori et al. (2020)

Deleterious wavelength < 310 nm < 310 nm Sakai and Osakabe (2010), Tachi and 
Osakabe (2014), Suthaparan et al. 
(2016a)

Reciprocity in deleterious effects Yes Effects depend on duration of exposure 
(UV-B)

Tachi and Osakabe (2012), Murata and 
Osakabe (2013), Suthaparan et al. 
(2016a), Yuan and Osakabe (2020)

Photoreactivation from UV damage Yes Yes Murata and Osakabe (2014, 2017a), 
Janisiewicz et al. (2016b), Koveos et al. 
(2017), Nakai et al. (2018), Sugioka 
et al. (2018), Suthaparan et al. (2018)

Effective wavelength for photoreactiva-
tion

From UV-A 
to green 
(≤ 500 nm; 
T. urticae)

350–500 nm (Olidium neolycopersici) Murata and Osakabe (2014), Suthaparan 
et al. (2018)

Dark period after UV irradiation to 
invalid photoreactivation

≥ 4 h > 4 h Murata and Osakabe (2014), Janisiewicz 
et al. (2016a), Suthaparan et al. (2018), 
Yoshioka et al. (2018)
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Future perspectives

The UV-B method is a control technique that exploits the 
behaviors and physiologies of spider mites related to UV 
adaptation to exploit their weaknesses. Although increased 
shadowing due to plant growth may reduce the effective-
ness of this method, phytoseiid mites avoiding UV-B may 
prey on spider mites surviving in the shadows. Conse-
quently, the UV-B method can suppress overgrowth of the 
spider mite population in excess of the control capacity of 
phytoseiid mites, and phytoseiid mites can complement 
the weakness of the UV-B method in shaded areas. Moreo-
ver, nighttime UV-B irradiation allows workers to avoid 
unwanted exposure to UV-B. Thus, the concurrent use of 
the UV-B method and biological control is an extremely 
promising management method.

On the other hand, the physiological processes of UV 
damage and adaptation to it in spider mites require more 
works. Mites are organisms with a remarkable life-and-
death reaction to UV damage, making them an ideal sub-
ject for study of the mechanism of UV adaptation.
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