[^0]
Abstract

BACKGROUND: Pyflubumide and cyenopyrafen are respiratory complex II (complex II) inhibitors. Previous quantitative trait locus analyses suggested associations of I260V and S56L in complex II subunit B (B-I260V) and subunit C (C-S56L) with pyflubumide and cyenopyrafen resistance, respectively, in Tetranychus urticae. However, although resistant strains had been selected separately by these acaricides, all strains were homozygous for both B-I260V and C-S56L. Hence, the effects of each mutation on resistance development remain unclear.

RESULTS: We established strains homozygous for $B-I 260 \mathrm{~V}$ with C-S56 (B -I260V_I260V/C-S56_S56) and for C-S56L with B-I260 (B-I260_I260/C-S56L_S56L). High resistance levels $\left(\mathrm{LC}_{50}>1000 \mathrm{mg} \mathrm{L}^{-1}\right)$ to pyflubumide and cyenopyrafen was not conferred by $B-I 260 V$ or C-S56L alone. Next, we prepared intermixed strains by crossing B-I260V_I260V/C-S56_S56 and B-I260_I260/C-S56L_S56L. Selection of the intermixed strains by either acaricide caused very high resistance levels ($\mathrm{LC}_{50} \geq 10,000$ $\mathrm{mg} \mathrm{L}^{-1}$) to both acaricides and fixed both mutations. Allele-selected recoupling of the mutations without acaricide selection also conferred very high resistance levels to both acaricides in the intermixed strains. Unlike these, $B-I 260 \mathrm{~V}$ or C-S56L alone conferred very high and high resistance levels to cyflumetofen, respectively.

CONCLUSION: We conclude that the effect of individual mutations characteristically varies among complex II inhibitors. Moreover, very high resistance levels to pyflubumide and cyenopyrafen is conferred by the co-occurrence of B-I260V and CS56L mutations, which alone have limited effects on resistance level.

Keywords: mitochondrial electron transport chain, complex II, target site mutation, acaricide resistance, Tetranychus urticae

1 INTRODUCTION

Acaricide resistance is often caused by mutation of the target site or metabolic degradation of the pesticide by detoxification enzymes. ${ }^{1}$ As an example, the amino acid substitution I1017F in chitin synthase I confers a very high level of resistance to etoxazole, clofentezine, and hexythiazox in the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). ${ }^{2-5}$ However, target site mutation alone does not confer high resistance levels to abamectin, milbemectin, or complex I inhibitors in T. urticae. ${ }^{4-7}$ Additional significant effects of detoxification enzymes on resistance levels have been reported for those acaricides. ${ }^{8-9}$ For complex III inhibitors such as bifenazate and acequinocyl, a specific combination of target site mutations (e.g., G126S with I136T or S141F in cytochrome b) confers high resistance levels in T. urticae, but a single mutation of G126S does not. ${ }^{10-13}$ These findings indicate frequent involvement of multiple resistance factors in acquisition of resistance against acaricides, especially very high resistance levels such that the LC_{50} value exceeds $10,000 \mathrm{mg} \mathrm{L}^{-1}$.

Cyflumetofen, cyenopyrafen and pyflubumide are pro-acaricides, as their metabolites inhibit the electron-transport function of respiratory complex II (i.e., succinate dehydrogenase, hereafter, complex II) in spider mites. ${ }^{14-18}$ Those metabolites likely bind to the quinone binding pocket, consisting of complex II subunit B (ironsulfur subunit; SdhB), subunit C (cytochrome b560 subunit; SdhC), and subunit D (cytochrome b small subunit), ${ }^{14,17}$ in the same manner as fungicidal complex II inhibitors such as carboxin. ${ }^{19-21}$ Many authors reported involvement of detoxification
systems in the development of resistance to acaricidal complex II inhibitors, and several candidate genes have been identified in T. urticae ${ }^{9,22-26}$ and also Tetranychus cinnabarinus (Boisduval). ${ }^{27,28}$ However, the resistance levels of mote strains used in these studies were sometimes not high but rather moderate.

Using quantitative trait locus (QTL) analysis of microsatellite linkage maps, Sugimoto et al. ${ }^{29}$ identified I260T in SdhB (B-I260T), I260V in SdhB (B-I260V), and S56L in SdhC (C-S56L) as candidate target site mutations responsible for very high resistance levels to cyflumetofen, pyflubumide, and cyenopyrafen, respectively, in selected T. urticae strains. The $S d h B$ and $S d h C$ loci are present on different chromosomes. ${ }^{29,30}$ Of these mutations, I260T (without C-S56L) also confers the very high resistance levels to cyenopyrafen $\left(\mathrm{LC}_{50}>10,000 \mathrm{mg} \mathrm{L}^{-1}\right.$, but relatively high mortality also occurred at lower concentrations) but did not confer resistance to pyflubumide. ${ }^{29}$ A pyflubumide-resistant strain showed very high cross-resistance levels to cyflumetofen and cyenopyrafen, and a cyenopyrafen-resistant strain also showed very high cross-resistance levels to cyflumetofen (cross-resistance from cyenopyrafen to pyflubumide was not tested). ${ }^{29}$ Although QTL analyses identified distinctive target site mutations associated with pyflubumide and cyenopyrafen resistance, strains resistant to these two acaricides were selected from an identical field population, and consequently, all strains possessed both $B-I 260 \mathrm{~V}$ and $C-S 56 L .{ }^{29}$ Hence, the individual and combination effects of these mutations on resistance development have not yet been elucidated.

Our aims in this study were to elucidate the manner in which $S d h B$ and $S d h C$ mutations are involved in very high resistance levels to pyflubumide and cyenopyrafen, and whether those mutations are related to cyflumetofen resistance in T. urticae. For this purpose, we uncoupled B-I260V and C-S56L and evaluated the individual effects of
these mutations on resistance levels. Then, we tested whether acaricidal selection leads to recoupling of these mutations and whether recoupling via genotype selection (alleleselected recoupling) confers very high resistance levels in mites.

2 MATERIALS AND METHODS

2.1 Acaricides

Commercial formulations of cyenopyrafen (Starmite, ${ }^{\circledR} 30$ SC; Nissan Chemical Corp., Tokyo, Japan), pyflubumide (Dani-kong, ${ }^{\circledR} 20$ SC; Nihon Nohyaku Co., Ltd., Tokyo, Japan), and cyflumetofen (Danisaraba, ${ }^{\circledR} 20 \mathrm{SC}$; OAT Agrio Co., Ltd., Tokyo, Japan) were used for selection and the toxicological bioassay.

2.2 Mites

The pyflubumide-resistant strain SoKg1_PflR and susceptible strain Tsukuba_S used in this study were the same strains used by Sugimoto et al. ${ }^{29}$ Briefly, SoKg1_PflR was selected by pyflubumide from a field population originally collected in 2012 from commercially cultivated strawberry greenhouses in Kakegawa (SoKg1), Shizuoka Prefecture, Japan. ${ }^{29}$ Tsukuba_S is a laboratory strain transferred from the Central Region Agricultural Research Center, NARO (Tsukuba, Ibaraki, Japan) in December 2011, and it was maintained in a laboratory with no acaricide application for 18 years. ${ }^{5}$ Mites were reared on kidney bean (Phaseolus vulgaris L.) leaves placed atop watersoaked cotton in Petri dishes (9 cm in diameter) in a laboratory at $25^{\circ} \mathrm{C}$ under a photoperiod of 16:8 h light/dark. DNA sequences of SoKg1 and Tsukuba_S are available from the DDBJ/EMBL/GenBank databases under accession numbers LC511606 and LC511608, respectively, for SdhB and LC509025 and LC509026, respectively, for $S d h C .{ }^{29}$

2.3 Sequencing analyses of $S d h B$ and $S d h C$

Crude DNA samples were individually extracted from mites and prepared for PCR amplification following the method of Osakabe et al. ${ }^{5}$ Adult female or male mites were individually homogenized using a plastic pestle (Pellet mixer; Toho, Tokyo, Japan) in 20 $\mu \mathrm{L}$ lysis buffer containing 10 mM Tris- $\mathrm{HCl}(\mathrm{pH} 8.0), 100 \mathrm{mM}$ EDTA, 0.5% Igepal CA630 (Sigma-Aldrich Co. LLC., Tokyo, Japan), 10 mM NaCl , and $1 \mathrm{mg} \mathrm{mL}^{-1}$ proteinase K (TaKaRa Bio Inc., Kusatsu, Japan) in $200 \mu \mathrm{~L}$ PCR tubes. The homogenate was incubated at $65^{\circ} \mathrm{C}$ for 20 min and $95^{\circ} \mathrm{C}$ for 10 min . The lysate was diluted with nuclease-free water at 1:80 and 1:40 for females and males, respectively, and stored in a freezer at $-25^{\circ} \mathrm{C}$ until PCR amplification.

Genomic DNA regions of T. urticae including the whole coding sequences (CDSs) of $S d h B$ and $S d h C$ were separately amplified via PCR using $1.6 \mu \mathrm{~L}$ DNA template in a total reaction volume of $8 \mu \mathrm{~L}$ containing PCR buffer for KOD FX Neo (TOYOBO Co. Ltd., Osaka, Japan), 0.4 mM of each dNTP, $0.25 \mu \mathrm{M}$ each of specific forward and reverse primers, and 0.4 U KOD FX Neo DNA polymerase (TOYOBO). The primer sets used for PCR amplification were those reported by Sugimoto et al., ${ }^{29}$ namely tuSdhB-gF, 5^{\prime}-GAAGGACCTCACGTTTGAATCACAG-3', and tuSdhB-gR, $5^{\prime}-$ CAACGCCCGATTCTCTTGTTACC-3', for SdhB (amplicon: 1942 bp) and tuSdhC-gF, 5'-TCTGGACTCACTGCGATCGAAAG-3', and tuSdhC-gR, 5'-GGTGACTGGGATCAAGATTGAGTACC-3', for SdhC (amplicon: 1284 bp). The PCR conditions were an initial 2 min at $96^{\circ} \mathrm{C}$ followed by 40 cycles of 10 s at $98^{\circ} \mathrm{C}, 10 \mathrm{~s}$ at $60^{\circ} \mathrm{C}$, and 120 s and 77 s for $S d h B$ and $S d h C$, respectively, at $68^{\circ} \mathrm{C}$, and then a final 7 \min at $68^{\circ} \mathrm{C}$. After the remaining primers were removed by the polyethylene glycol precipitation method, cycle sequencing was performed using the BigDye ${ }^{\mathrm{TM}}$ Terminator
v3.1 Cycle Sequencing Kit (Thermo Fisher Scientific, Waltham, MA, USA) with the primers tuSdhB-900R, 5^{\prime}-GTCCAGATATCTGAGGCTCACTCTTC-3', and tuSdhCgFseq, 5'-GCTATTCATGAATATGCTACAAAACCAC-3', for $S d h B$ and $S d h C$, respectively. The amplicons obtained using these primers included the 260th and 56th codons of $S d h B$ and $S d h C$, respectively. The sequence of tuSdhC-gFseq was the same as that of the primer used by Sugimoto et al., ${ }^{29}$ and tuSdhB-900R was newly designed to target the CDS of SdhB (tetur01g15710) obtained from Online Resource for Community Annotation of Eukaryotes (https://bioinformatics.psb.ugent.be/orcae/) using GENETYX ${ }^{\circledR}$ ver. 14 software (GENETYX Corp., Tokyo, Japan). The DNA sequences were analyzed using the ABI 3130 Genetic Analyzer (Thermo Fisher Scientific).

2.4 SdhB and SdhC genotyping by high resolution melting analysis

The quantitative PCR (qPCR) solution consisted of a total volume of $8 \mu \mathrm{~L}$ containing 4 $\mu \mathrm{L}$ TB Green Premix Ex Taq II (Tli RNaseH Plus) (TaKaRa Bio Inc.), $0.5 \mu \mathrm{M}$ each of forward and reverse primers, and $1 \mu \mathrm{~L}$ of the crude DNA sample prepared as described in Section 2.3.

High-resolution melting (HRM) analysis was performed to determine the genotypes of $S d h B$ and $S d h C$ using a real-time PCR instrument (LightCycler 96 System; Roche Diagnostics, Tokyo, Japan). The PCR conditions consisted of preheating for 5 s at $95^{\circ} \mathrm{C}$, followed by 40 cycles of 5 s at $95^{\circ} \mathrm{C}, 30 \mathrm{~s}$ at $60^{\circ} \mathrm{C}$, and 30 s at $72^{\circ} \mathrm{C}$ and one cycle of 60 s at $95^{\circ} \mathrm{C}, 60 \mathrm{~s}$ at $40^{\circ} \mathrm{C}$, and 1 s at $65^{\circ} \mathrm{C}$. HRM was then performed by heating to $97^{\circ} \mathrm{C}$ with 15 readings per $1^{\circ} \mathrm{C}$. The primer pairs used for the HRM analysis to obtain PCR products including the mutation sites (B-I260 and C-S56) were tuSdhB-736F, 5'-GATCAATTGAGGGATCCCTTCTCAC-3', and tuSdhB-826R, 5'-

CTCGACCAGGATTCAAGTTCTTAGG-3', for $S d h B$ (amplicon: 91 bp) and tuSdhC96F, 5'- AAGCTCATCGTCGCCATCAC-3', and tuSdhC-211R, $5^{\prime}-$

TTGATAGGACCGAGGTTAATTGAGG-3', for $S d h C$ (amplicon: 116 bp). These primer pairs were designed from the CDSs of $S d h B$ and $S d h C$ (tetur30g00210; https://bioinformatics.psb.ugent.be/orcae/) using GENETYX ${ }^{\circledR}$ ver. 14 (Supplementary Data 1 and Data 2). The genotypes of $S d h B$ for I260 and I260V and $S d h C$ for S56 and S56L were determined from the shape of the melting curve (Supplementary Fig. S1).

2.5 Establishment of homozygous strains of $S d h B$ and $S d h C$

 Strains homozygous for B-I260V and C-S56L (mutant-type strain) and for B-I260 and C-S56 (wild-type strain) were established by intra-strain crosses of SoKg1_PflR and Tsukuba_S, respectively. Eight pairs of females and males from each strain were separately mated on kidney bean leaf disks $(2 \times 2 \mathrm{~cm})$. Offspring from three mating pairs homozygous for the mutation or wild-type gene at both SdhB and $S d h C$ loci were pooled and used for production of the next generations, thereby establishing the mutanttype (SoKg1_PflR_MT) and wild-type (TsukubaS_WT) strains. The genotypes of all pairs used in the crosses were determined by sequencing analysis (Data was not shown).
2.6 Toxicological bioassay

A kidney bean leaf disk $(2 \times 2 \mathrm{~cm})$ containing 10-14 adult females was immersed in acaricide solution at the assigned concentration for 10 s and then dried on filter paper at room temperature. The leaf disk was placed atop water-soaked cotton in a Petri dish, and mortality was determined after 72 h , as pyflubumide and cyenopyrafen act slowly. Any individual that could walk was counted as alive. Individuals that escaped from the leaf disks and drowned were excluded from computation of the LC_{50} values. Corrected
mortality $\left(M_{C}\right)$ was calculated using Abbott's formula: ${ }^{31}$
$M_{C}=\frac{B-A}{B}$,
where A and B are the survival rates on leaves immersed in acaricide solution (test leaves) and in water without acaricide (control), respectively. The LC_{50} value and its 95% fiducial limit were computed using a program designed to determine the 50% effective dose (http://aoki2.si.gunma-u.ac.jp/R/ed50.html) ${ }^{32}$ with some modifications made by Sugimoto et al. ${ }^{29}$ in R software. ${ }^{33}$

We used several leaf disks for each assigned concentration and combined the data from those leaf disks to compute a LC_{50} value. The average number of females used for the analysis per concentration in each experiment was shown in Table 1, 2, and 4.

2.7 Evaluation of the independent effects of $B-I 260 \mathrm{~V}$ and C-S56L

2.7.1 Decoupling of SdhB and SdhC mutations

To construct strains homozygous for B-I260V and C-S56 and homozygous for B-I260 and C-S56L, four SoKg1_PflR_MT males were individually crossed with TsukubaS_WT females (mating lines: ML1, 2, 3 and 4 [1-4]; Supplementary Fig. S2). Eight F1 females (heterozygous for both $S d h B$ and $S d h C$) obtained from each parental pair were individually mated with TsukubaS_WT males (B-I260/C-S50). Then, mating of unmated F2 females (44 q ㅇ, $16 q q, 62 q q$, and $38 q+$ for ML1, ML2, ML3, and ML4, respectively) with their own sons (F3 males) was performed. For this cross experiment, after oviposition of the unfertilized (haploid) male eggs for 2-4 days at $25^{\circ} \mathrm{C}$, the F 2 females were kept at $10^{\circ} \mathrm{C}$ until the F 3 males reached adulthood. After mother (F2)-son (F3) mating, each pair was reared for a week at $25^{\circ} \mathrm{C}$ until a sufficient number of eggs was laid for subsequent cross experiments. Genotypes of $S d h B$ and
$S d h C$ in the F2 females and F3 males (48 pairs) were confirmed by HRM analysis (Table S 1). As a result, the offspring (F3 females) from four mating pairs (sublines ML1-2-6, ML3-1-1, ML1-4-4, and ML1-4-5; branch numbers show identification of parent-F1-F2 females) were selected for use in subsequent mother-son mating experiments. Genotypes of $S d h B$ and $S d h C$ in the four mating pairs were confirmed by sequencing analysis, and no discrepancy were found (Data was not shown). In sublines ML1-2-6 and ML3-1-1, $S d h B$ and $S d h C$ of the F2 females were heterozygous and fixed for wild-type, respectively (B-I260_I260V/C-S56_S50), and F3 males had B-I260V and C-S56 (B-I260V/C-S50). In the sublines ML1-4-4 and ML1-4-5, the genotype of F2 females was B-I260_I260/C-S56_S56L, and that of F3 males was B-I260/C-S56L. Four F3 females produced from each mother (F2)-son (F3) mating were used for the next mother (F3)-son (F4) mating experiment, and the offspring of F3 females of B -I260V_I260V/C-S56_S56 and B-I260_I260/C-S56L_S56L were established as the B $I 260 V$ fixed strain and $C-S 56 L$ fixed strain, respectively (Table S2). Consequently, three B-I260V fixed strains (strains I260V-1, 2 and 3 [1-3]) were obtained from subline ML1-2-6, and three C-S56L fixed strains (strains S56L-1, 2 and 3 [1-3]) were obtained from sublines ML1-4-4 and ML1-4-5. These six fixed strains were all derived from a single parental mating pair (mating line: ML1). Genotypes of $S d h B$ and $S d h C$ in the decoupled strains were confirmed by sequencing analysis (Supplementary Data 1 and Data 2).

2.7.2 Effects of decoupled mutations on resistance level

The resistance levels of the $B-I 260 V$ fixed strains (I260V-1-3) and C-S56L fixed strains (S56L-1-3) were tested against pyflubumide, cyenopyrafen and cyflumetofen by toxicological bioassays. The LC_{50} values were compared with those of

SoKg1_PflR_MT and TsukubaS_WT, which were tested simultaneously.

2.8 Evaluation of co-occurrence effects of $B-1260 \mathrm{~V}$ and $C-S 56 L$

2.8.1 Intermixing of the $\mathrm{B}-1260 \mathrm{~V}$ and $\mathrm{C}-\mathrm{S} 56 \mathrm{~L}$ fixed strains

We intermixed B-I260V fixed strains I260V-1-3 with C-S56L fixed strains S56L-1-3. Three combinations of intermixed strains (PflMix-1, 2 and 3 [1-3]) were selected based on the LC_{50} values for pyflubumide presented in Section 2.7.2 (Table S3), although the order of I260V-1 and I260V-2 strains with a slight difference in LC_{50} values (see Table 1) had been reversed. Three further combinations (CyeMix-1, 2 and $3[1-3]$) were similarly constructed using the LC_{50} values for cyenopyrafen (Table S3). For each combination, four pairs of forward and reverse mating events were separately performed using kidney bean leaf disks $(2 \times 2 \mathrm{~cm})$ placed on water-soaked cotton in a Petri dish. After mating, females from the reciprocal crosses were moved to a newly prepared kidney bean leaf $\left(\sim 25 \mathrm{~cm}^{2}\right)$ placed atop water-soaked cotton in a Petri dish. After 20 days, the intermixed strains were used for toxicological testing of pyflubumide and cyenopyrafen. To confirm co-occurrence of the fixed mutations in each Sdh gene in intermixed strains, we preliminarily analyzed $S d h B$ and $S d h C$ genotype frequencies in PflMix-1-3 by sequencing analysis (Table S4).

2.8.2 Effects of acaricide selection on genotype frequencies

PflMix-1-3 and CyeMix-1-3 were selected using pyflubumide and cyenopyrafen, respectively, five times at increasing concentrations of 100, 200, 400, 1000, and 2000 $\mathrm{mg} \mathrm{L}^{-1}$. For selection, a small piece of kidney bean leaf containing >100 individuals was immersed in acaricide solution for 10 s . After drying on filter paper at room temperature, a small piece of the leaf was placed on water-soaked cotton in a Petri dish
for 24 h and then moved onto a newly prepared kidney bean leaf ($\sim 25 \mathrm{~cm}^{2}$).
After acaricide selection, the resistance levels of pyflubumide-selected and cyenopyrafen-selected intermixed strains (PflMixR-1-3 and CyeMixR-1-3, respectively) against pyflubumide, cyenopyrafen, and cyflumetofen were evaluated by toxicological bioassays. Genotypes of $S d h B$ and $S d h C$ were analyzed by DNA sequencing of 12 females randomly chosen from each the selected intermixed strain.

2.8.3 Effects of allele-selected recoupling of $\mathrm{B}-\mathrm{I} 260 \mathrm{~V}$ and $\mathrm{C}-\mathrm{S} 56 \mathrm{~L}$ without acaricide selection on resistance

Eight mating groups consisting of one male and six unmated females from a single intermixed strain (PflMix-1-3 and CyeMix-1-3; 48 mating groups in total) were introduced to kidney bean leaf disks $(2 \times 2 \mathrm{~cm})$ and allowed to mate for 24 h . Females that mated with males of the $B-I 260 V / C-S 56 L$ genotype, as determined using the HRM method, were then individually reared on kidney bean leaf disks and allowed to lay eggs for 1 week. Next, the genotypes of the females were determined using the HRM method. F1 offspring of females that were heterozygous or homozygous for both mutations were used for subsequent mother-son mating experiments. After mother-son mating, the $S d h B$ and $S d h C$ genotypes of the females were determined using the HRM method. The offspring of $B-I 260 V_{-} I 260 \mathrm{~V} / C-S 56 L_{-} S 56 L$ females were established as the recoupled strains. Consequently, two recoupled strains, PflMixMT-1 and PflMixMT-2, were obtained from PflMix-1 and PflMix-2, respectively, and another two strains, CyeMixMT-2 and CyeMixMT-3, were obtained from CyeMix-2 and CyeMix-3, respectively (Table S5). Genotypes of $S d h B$ and $S d h C$ in the recoupled strains were confirmed by sequencing analysis (Supplementary Data 1 and Data 2). The resistance
levels of the recoupled strains against pyflubumide and cyenopyrafen were evaluated by toxicological bioassays.

3 RESULTS

3.1 Effects of decoupled mutations on resistance level

SoKg1_PflR_MT exhibited a very high resistance level to pyflubumide, cyenopyrafen, and cyflumetofen. The LC_{50} of this strain for pyflubumide was $10,900 \mathrm{mg} \mathrm{L}^{-1}$ (Fig. 1a, Table 1). As mortality rates in the presence of cyenopyrafen (21.2\%) and cyflumetofen (34.6\%) remained low at a concentration of $20,000 \mathrm{mg} \mathrm{L}^{-1}$ (Fig. 1b and Fig. 1c), we described the LC_{50} values for these acaricides as $>10,000 \mathrm{mg} \mathrm{L}^{-1}$ (Table 1). In contrast, TsukubaS_WT was susceptible to all three complex II inhibitors, although the slope of the regression line for cyflumetofen (0.49) was small, and the associated LC_{50} of 23.7 $\mathrm{mg} \mathrm{L}^{-1}$ was $7-10$ times higher than those reported by Sugimoto et al. ${ }^{29}$ for other susceptible strains (2.40 for Nara_S and $3.39 \mathrm{mg} \mathrm{L}^{-1}$ for NS_CflS) (Fig. 1, Table 1).

The effect of decoupling of $S d h B$ and $S d h C$ mutations on susceptibility varied among complex II inhibitors and mutations. I260V-1-3 had a higher LC_{50} value for pyflubumide (2.93-8.83 $\mathrm{mg} \mathrm{L}^{-1}$) compared with TsukubaS_WT ($0.093 \mathrm{mg} \mathrm{L}^{-1}$) but remained susceptible because the LC_{50} values were much lower than the field concentration (100 $\mathrm{mg} \mathrm{L}^{-1}$; Table 1, Fig. 1a). S56L-1-3 showed pyflubumide resistance, with a LC_{50} value of $375-892 \mathrm{mg} \mathrm{L}^{-1}$ higher than field concentrations. For cyenopyrafen, I260V-1-3 and S56L-1-3 showed moderate resistance, with LC_{50} values of $107-199 \mathrm{mg} \mathrm{L}^{-1}$ and $50.2-150 \mathrm{mg} \mathrm{L}^{-1}$, respectively, which were similar to the field concentration (150 $\mathrm{mg} \mathrm{L}^{-1}$; Table 1, Fig. 1b). I260V-1-3 showed very high resistance levels to cyflumetofen $\left(\mathrm{LC}_{50}>10,000 \mathrm{mg} \mathrm{L}^{-1}\right)$, equivalent to the resistance exhibited by

SoKg1_PflR_MT (Table 1, Fig. 1c). S56L-1-3 also showed high-revel resistance to cyflumetofen, with LC_{50} values exceeding $3000 \mathrm{mg} \mathrm{L}^{-1}$, which were markedly higher than the field concentration ($200 \mathrm{mg} \mathrm{L}^{-1}$).

3.2 Co-occurence effects of $B-I 260 V$ and C-S56L

3.2.1 Effects of acaricide selection on genotype frequencies

Prior to acaricide selection, the LC_{50} values of the intermixed strains PflMix-1-3 (4.05$101 \mathrm{mg} \mathrm{L}^{-1}$) (Table 2, Fig. 2a) for pyflubumide were somewhat increased relative to those of I260V-1-3 (2.93-8.83 $\mathrm{mg} \mathrm{L}^{-1}$; Table 1) but decreased relative to those of S56L-1-3 (375-892 $\mathrm{mg} \mathrm{L}^{-1}$; Table 1). The slope of the regression line was reduced to $0.37-$ 0.72 in PflMix-1-3, suggesting heterogeneous resistance. After pyflubumide selection, the LC_{50} of PflMixR-1-3 increased markedly to $>10,000 \mathrm{mg} \mathrm{L}^{-1}$, and the slope of the regression line increased to 1.88-2.76, suggesting homogenous resistance (Table 2, Fig. 2a). The intermixed strains CyeMix-1-3 showed moderate resistance $\left(\mathrm{LC}_{50}=20.3-219\right.$ $\mathrm{mg} \mathrm{L}^{-1}$) to cyenopyrafen, and the slope of the regression line was small $(0.42-0.89)$ (Table 2, Fig. 2b). Cyenopyrafen selection markedly increased the LC_{50} to 9975-19,225 $\mathrm{mg} \mathrm{L}^{-1}$ and the regression line slope to $1.73-2.58$ (Table 2, Fig. 2b). The mortality rate of the acaricide-selected intermixed strains caused by cyflumetofen at concentrations of $1000-10,000 \mathrm{mg} \mathrm{L}^{-1}$ was low, at $0-28.5 \%$ (Fig. 2c), suggesting very high crossresistance (Table 2).

After acaricide selection, most individuals were homozygous for mutant $S d h B$ and SdhC (B-I260V_I260V/C-S56L_S56L). The percentages of individuals with B -I260V_I260V/C-S56L_S56L were 83.3-100\% and 83.3-91.7\% in PflMixR-1-3 and CyeMix-1-3, respectively (Table 3). The genotypes of all other individuals were B -

I260_I260V/C-S56L_S56L. This suggests that selection using these acaricides promoted homozygous mutant alleles at both the $S d h B$ and $S d h C$ loci.

3.2.2 Effects of allele-selected recoupling of B-I260V and C-S56L without acaricide selection on resistance levels

 Strains homozygous for both B-I260V and C-S56L mutations established without acaricide selection showed low mortality rates in the presence of pyflubumide (PflMixMT-1-2, 35-47\%) and cyenopyrafen (CyeMixMT-2-3, 32-41\%), respectively, even at a concentration of $20,000 \mathrm{mg} \mathrm{L}^{-1}$ (Fig. 3), indicating very high resistance levels to these acaricides. However, substantial mortality was observed at concentrations of $100-1000 \mathrm{mg} \mathrm{L}^{-1}(15.6-31.3 \%$ [number of females tested: 98 ± 1 (SD)] and 5.5-23.1\% [99 ± 5] for pyflubumide and cyenopyrafen, respectively; Fig. 3). This result might indicate the presence of unknown resistance factors, which were selected with the application of acaricides as described in Section 3.2.1 but not by genotype selection, leading to unrealistic LC_{50} values $\left(0.8-20 \mathrm{~kg} \mathrm{~L}^{-1}\right)$. Therefore, we excluded the data obtained using concentrations of $100-1000 \mathrm{mg} \mathrm{L}^{-1}$ and determined approximate LC_{50} values above $10,000 \mathrm{mg} \mathrm{L}^{-1}$ for both pyflubumide (PflMixMT-1-2) and cyenopyrafen (CyeMixMT-1-2) (Table 4, Fig. 3).
4 DISCUSSION

The mutations of $B-I 260 \mathrm{~V}$ and C-S56L have been suggested to drive pyflubumide and cyenopyrafen resistance, respectively, based on the QTL analyses of Sugimoto et al. ${ }^{29}$ Decoupled strains homozygous for either B-I260V (I260V-1-3) or C-S56L (C56L-1-3) showed intermediate susceptibilities to both pyflubumide and cyenopyrafen between the very high-resistance-level strain (SoKg1_PflR_MT) and the susceptible strain
(TsukubaS_WT). Consequently, neither $B-I 260 V$ nor C-S56L alone conferred very high resistance levels to these acaricides. Moreover, the LC_{50} value for pyflubumide was unexpectedly higher in the decoupled strain with C-S56L mutation than in that with B I260V, while the LC_{50} values for cyenopyrafen did not differ greatly between the two decoupled strains. The reason for this discrepancy between the decoupling experiment and the QTL analysis that suggested $B-I 260 \mathrm{~V}$ and $C-S 56 L$ as factors of pyflubumide and cyenopyrafen resistance, respectively, ${ }^{29}$ cannot be explained. The detailed molecular mechanisms underlying resistance to these acaricides should be elucidated in future research.

In contrast, $B-I 260 \mathrm{~V}$ alone conferred very high resistance levels to cyflumetofen, as did B-I260T in Sugimoto et al., ${ }^{29}$ and C-S56L alone conferred high resistance levels to cyflumetofen. Although no detailed studies have been conducted on the binding site of cyflumetofen to complex II, I260 in SdhB of T. urticae is located two residues downstream of the ubiquinone-binding residue (H207 in Escherichia coli, corresponding to H 258 in T. urticae) in the Q_{2} site ${ }^{19}$ within cysteine-rich cluster III, ${ }^{34}$ and corresponds to I269V in Zymoseptoria tritici (synonym: Mycosphaerella graminicola), which confers high resistance levels to the fungicidal complex II inhibitor carboxin. ${ }^{35}$ The potential ubiquinone-binding histidine (H267) in Z. tritici SdhB appears to bind to the "core" moiety of carboxamides via hydrogen bonding at the bottom of the cavity. ${ }^{21}$ B-I260V in T. urticae may alter the binding of the cyflumetofen core to SdhB and weaken the interactions of SdhB with pyflubumide and cyenopyrafen, or their active metabolites. ${ }^{14,17}$

Acaricide selection for the mixtures of decoupled strains (intermixed strains) led to the development of very high resistance levels to both pyflubumide and cyenopyrafen,
and selection with either pyflubumide or cyenopyrafen alone enhanced fixation of both the $S d h B$ and $S d h C$ loci to the $B-I 260 V$ and $C-S 56 L$ alleles, respectively. Conversely, allele-selected homogenization of the intermixed strains for both the $S d h B$ and $S d h C$ loci to the mutant alleles without acaricide selection increased the LC_{50} values for pyflubumide and cyenopyrafen to achieve very high resistance levels. Therefore, the occurrence of $B-I 260 V$ and $C-S 56 L$ mutations is likely essential for very high resistance levels to pyflubumide and cyenopyrafen to occur (Table 5). This finding suggests the possibility of very high cross-resistance levels between pyflubumide and cyenopyrafen, as well as between these acaricides and cyflumetofen. In contrast, development of very high resistance levels to cyflumetofen with B-I260V or $B-I 260 T^{29}$ alone does not cause cross-resistance to pyflubumide, although these mutations cause moderate crossresistance and very high cross-resistance levels to cyenopyrafen, respectively (Table 5).

Substantial mortality due to pyflubumide and cyenopyrafen at relatively low concentrations ($100-1000 \mathrm{mg} \mathrm{L}^{-1}$) was observed in the intermixed strains after alleleselected homogenization, despite low mortality at the higher concentration of 20,000 $\mathrm{mg} \mathrm{L}{ }^{-1}$. When the intermixed strains were selected by these acaricides (PflMixR-1-3 and CyeMixR-1-3), slopes of the concentration-mortality regression lines clearly increased, and the substantial mortality at lower concentrations above described was not observed. TsukubaS_WT possibly included genetic variance other than SdhB and SdhC. Moreover, in our experimental design, decoupled strains (I260V-1-3 and S56L-1-3) had 25% of SoKg1_PflR_MT-derived genes theoretically. Therefore, to explain the difference in the response to lower concentrations between acaricide-selected and alleleselected intermixed strains, we inferred from previous studies that additional factors such as detoxification enzymes contributed to general resistance to these complex II
inhibitors.
Previous synergism experiments have suggested that detoxification enzymes are involved in cyenopyrafen, ${ }^{9,22,23}$ pyflubumide, ${ }^{24}$ and cyflumetofen ${ }^{22,23}$ resistance. The most promising upregulated candidate genes are CYP392A11 (tetur20g01390) and CYP392A12 (tetur06g02130) for cyenopyrafen, ${ }^{23}$ CYP392A16 (tetur06g04520) for pyflubumide, ${ }^{25}$ and TuGSTd05 (tetur01g02510) for cyflumetofen. ${ }^{26}$ Fotoukkiaii et al. ${ }^{25}$ suggested the involvement of cis-regulatory variation of CYP392A16 in pyflubumide resistance. Associations of variations in the expression regulatory systems of certain glutathione S-transferases have been reported in strains with low and moderate cyflumetofen resistance in T. cinnabarinus. ${ }^{27,28}$ Besides increasing expression of detoxification enzymes, suppressed expression of enzymes that metabolize and activate the complex II inhibitors ${ }^{14-18}$ also possibly contributes resistance development. Although the synergistic effects by esterase inhibitors on susceptibility to the complex II inhibitors varies among mite strains and acaricides. ${ }^{9,22-24}$ Sugimoto et al. ${ }^{29}$ pointed out the down regulation of two esterase genes, TuCCE04 (tetur01g10750) and TuCCE09 (tetur01g10830), in Japanese and European cyflumetofen resistant strains of T. urticae. These findings support our idea that additional factors are involved in the resistance to complex II inhibitors.

5 CONCLUSION

The effect of each individual mutation varied among complex II inhibitors. B-I260V and C-S56L alone conferred very high and high resistance levels to cyflumetofen, respectively, but not to pyflubumide or cyenopyrafen, in T. urticae. Very high resistance levels to pyflubumide and cyenopyrafen was induced by co-occurrence of the B-I260V
and C-S56L mutations. Such synergistic (or additive) effects of mutations in two separate target site genes provide a new aspect of polygenic resistance. Moreover, even if the LC_{50} values are low, populations having both mutations possibly achieve the very high cross-resistance levels through coupling of the mutations accelerated by the selection with pyflubumide or cyenopyrafen. Therefore, the synergistic effects should take into consideration in a resistance management program, for which development of a simple and efficient monitoring technique for resistance alleles ${ }^{5,36-38}$ is desired.

SUPPORTING INFORMATION

Supporting information may be found in the online version of this article.

REFERENCES

1. Van Leeuwen T, Vontas J, Tsagkarakou A, Dermauw W, Tirry L, Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: A review. Insect Biochem Mol Biol 40:563-572 (2010).
2. Van Leeuwen T, Demaeght P, Osborne EJ, Dermauw W, Gohlke S, Nauen R, Grbić M, Tirry L, Merzendorfer H, Clark RM, Population bulk segregant mapping uncovers resistance mutations and the mode of action of a chitin synthesis inhibitor in arthropods. Proc Natl Acad Sci USA 109:4407-4412 (2012).
3. Demaeght P, Osborn EJ, Odman-Naresh J, Grbić M, Nauen R, Merzendorfer H, Clark RM, Van Leeuwen T, High resolution genetic mapping uncovers chitin synthase-1 as the target-site of the structurally diverse mite growth inhibitors clofentezine, hexythiazox and etoxazole in Tetranychus urticae. Insect Biochem Mol Biol 51:52-61 (2014).
4. Riga M, Bajda S, Themistokleous C, Papadaki S, Palzewicz M, Dermauw W,

Vontas J, Van Leeuwen T, The relative contribution of target-site mutations in complex acaricide resistant phenotypes as assessed by marker assisted backcrossing in Tetranychus urticae. Sci Rep 7:9202 (2017).
5. Osakabe M, Imamura T, Nakano R, Kamikawa S, Tadatsu M, Kunimoto Y, Doi M, Combination of restriction endonuclease digestion with the $\Delta \Delta \mathrm{Ct}$ method in realtime PCR to monitor etoxazole resistance allele frequency in the two-spotted spider mite. Pestic Biochem Physiol 139:1-8 (2017).
6. Bajda S, Dermauw W, Panteleri R, Sugimoto N, Vassilis D, Tirry L, Osakabe M, Vontas J, Van Leeuwen T, A mutation in the PSST homologue of complex I (NADH:ubiquinone oxidoreductase) from Tetranychus urticae is associated with resistance to METI acaricides. Insect Biochem Mol Biol 80:79-90 (2017).
7. Snoeck S, Kurlovs AH, Bajda S, Feyereisen R, Greenhalgh R, Perez EV, Kosterlitz O, Dermauw W, Clark RM, Van Leeuwen T, High-resolution QTL mapping in Tetranychus urticae reveals acaricide-specific responses and common target-site resistance after selection by different METI-I acaricides. Insect Biochem Mol Biol 110:19-33 (2019).
8. Van Pottelberge S, Van Leeuwen T, Nauen R, Tirry L, Resistance mechanisms to mitochondrial electron transport inhibitors in a field-collected strain of Tetranychus urticae Koch (Acari: Tetranychidae). Bull Entomol Res 99:23-31 (2009).
9. Sugimoto N, Osakabe M, Cross-resistance between cyenopyrafen and pyridaben in the two-spotted spider mite Tetranychus urticae (Acari: Tetranychidae). Pest Manag Sci 70:1090-1096 (2014).
10. Van Leeuwen T, Vanholme B, Van Pottelberge S, Van Nieuwenhuyse P, Nauen R, Tirry L, Denholm I, Mitochondrial heteroplasmy and the evolution of insecticide
resistance: non-Mendelian inheritance in action. Proc Natl Acad Sci USA 105:5980-5985 (2008).
11. Kim S II, Koo H-N, Choi Y, Park B, Kim HK, Kim G-H, Acequinocyl resistance associated with 1256 V and N321S mutations in the two-spotted spider mite (Acari: Tetranychidae). J Econ Entomol 112:835-841 (2019).
12. Sugimoto N, Osakabe M, Mechanism of acequinocyl resistance and crossresistance to bifenazate in the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Appl Entomol Zool 54:421-427 (2019).
13. Fotoukkiaii SM, Tan Z, Xue W, Wybouw N, Van Leeuwen T, Identification and characterization of new mutations in mitochondrial cytochrome b that confer resistance to bifenazate and acequinocyl in the spider mite Tetranychus urticae. Pest Manag Sci 76:1154-1163 (2010).
14. Nakahira K, Strategy for discovery of a novel miticide cyenopyrafen which is one of electron transport chain inhibitors. J Pestic Sci 36:511-515 (2011).
15. Takahashi N, Nakagawa H, Sasama Y, Ikemi N, Development of a new acaricide, cyflumetofen. J Pestic Sci 37:263-264 (2012).
16. Hayashi N, Sasama Y, Takahashi N, Ikemi N, Cyflumetofen, a novel acaricide - its mode of action and selectivity. Pest Manag Sci 69:1080-1084 (2013).
17. Nakano M, Yasokawa N, Suwa A, Fujioka S, Furuya T, Sakata K, Mode of action of novel acaricide pyflubumide: Effects on the mitochondrial respiratory chain. J Pestic Sci 40:19-24 (2015).
18. Furuya T, Machiya K, Fujioka S, Nakano M, Inagaki K, Development of a novel acaricide, pyflubumide. J Pestic Sci 42:132-136 (2017).
19. Horsefield R, Yankovskaya V, Sexton G, Whittingharn W, Shiomi K, Ōmura S,

Byme B, Cecchini G, Iwata S, Structural and computational analysis of the quinone-binding site of complex II (succinate-ubiquinone oxidoreductase). A mechanism of electron transfer and proton conduction during ubiquinone reduction. J Biol Chem 281:7309-7316 (2006).
20. Avenot HF, Michailides TJ, Progress in understanding molecular mechanisms and evolution of resistance to succinate dehydrogenase inhibiting (SDHI) fungicides in phytopathogenic fungi. Crop Prot 29:643-651 (2010).
21. Sierotzki H, Scalliet G, A review of current knowledge of resistance aspects for the next-generation succinate dehydrogenase inhibitor fungicides. Phytopathology 103:880-887 (2013).
22. Khalighi M, Tirry L, Van Leeuwen T, Cross-resistance risk of the novel complex II inhibitors cyenopyrafen and cyflumetofen in resistant strains of the two-spotted spider mite Tetranychus urticae. Pest Manag Sci 70:365-368 (2014).
23. Khalighi M, Dermauw W, Wybouw N, Bajda S, Osakabe M, Tirry L, Van Leeuwen T, Molecular analysis of cyenopyrafen resistance in the two-spotted spider mite Tetranychus urticae. Pest Manag Sci 72:103-112 (2016).
24. Fotoukkiaii SM, Mermans C, Wybouw N, Van Leeuwen T, Resistance risk assessment of the novel complex II inhibitor pyflubumide in the polyphagous pest Tetranychus urticae. J Pest Sci 93:1085-1096 (2020).
25. Fotoukkiaii SM, Wybouw N, Kurlovs AH, Tsakireli D, Pergantis SA, Clark RM, Vontas J, Van Leeuwen T, High-resolution genetic mapping reveals cis-regulatory and copy number variation in loci associated with cytochrome P450-mediated detoxification in a generalist arthropod pest. bioRxiv 2021.02.16.431408; doi: https://doi.org/10.1101/2021.02.16.431408 (2021).
26. Pavlidi N, Khalighi M, Myridakis A, Dermauw W, Wybouw N, Tsakireli D, Stephanou EG, Labrou NE, Vontas J, Van Leeuwen T, A glutathione-S-transferase (TuGSTd05) associated with acaricide resistance in Tetranychus urticae directly metabolizes the complex II inhibitor cyflumetofen. Insect Biochem Mol Biol 80:101-115 (2017).
27. Wang Y, Zhao S, Shi L, Xu Z, He L, Resistance selection and biochemical mechanism of resistance against cyflumetofen in Tetranychus cinnabarinus (Boisduval). Pestic Biochem Physiol 111:24-30 (2014).
28. Feng K, Liu J, Wei P, Ou S, Wen X, Shen G, Xu Z, Xu Q, He L, lincRNA_Tc13743.2-miR-133-5p-TcGSTm02 regulation pathway mediates cyflumetofen resistance in Tetranychus cinnabarinus. Insect Biochem Mol Biol 123:103413 (2020).
29. Sugimoto N, Takahashi A, Ihara R, Itoh Y, Jouraku A, Van Leeuwen T, Osakabe M, QTL mapping using microsatellite linkage reveals target-site mutations associated with high levels of resistance against three mitochondrial complex II inhibitors in Tetranychus urticae. Insect Biochem Mol Biol 123:103410 (2020).
30. Wybouw N, Kosterlitz O, Kurlovs AH, Bajda S, Greenhalgh R, Snoeck S, Bui H, Bryon A, Dermauw W, Van Leeuwen T, Clark RM, Long-term population studies uncover the genome structure and genetic basis of xenobiotic and host plant adaptation in the herbivore Tetranychus urticae. Genetics 211:1409-1427 (2019).
31. Abbott WS, A method of computing the effectiveness of an insecticide. JEcon Entomol 18:265-267 (1925).
32. Aoki S, Statistic Analysis Using R. Ohmsha, Tokyo (2011).
33. R Core Team, R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna (2018). https://www.R-project.org/.
34. Ando A, Sakuradani E, Hironaka K, Ogawa J, Transformation of an oleaginous zygomycete Morierella alpine 1S-4 with the carboxin resistance gene conferred by mutation of the iron-sulfur subunit of succinate dehydrogenase. Curr Genet 55:349-356 (2009).
35. Fraaije BA, Bayon C, Atkins S, Cools HJ, Lucas JA, Fraaije MW, Risk assessment studies on succinate dehydrogenase inhibitors, the new weapons in the battle to control Septoria leaf blotch in wheat. Mol Plant Pathol 13:263-275 (2012).
36. Van Leeuwen T, Vanholme B, Van Pottelberge S, Van Nieuwenhuyse P, Nauen R, Tirry L, Denholm I, Mitochondrial heteroplasmy and the evolution of insecticide resistance: non-Mendelian inheritance in action. Proc Natl Acad Sci USA 105:5980-5985 (2008).
37. Kwon DH, Lee SW, Ahn JJ, Lee SH, Determination of acaricide resistance allele frequencies in field populations of Tetranychus urticae using quantitative sequencing. J Asia Pac Entomol 17:99-103 (2014).
38. Maeoka A, Yuan L, Itoh Y, Saito C, Doi M, Imamura T, Yamaguchi T, Imura T, Osakabe M, Diagnostic prediction of acaricide resistance gene frequency using quantitative real-time PCR with resistance allele-specific primers in the two-spotted spider mite Tetranychus urticae population (Acari: Tetranychidae). Appl Entomol Zool 55:329-335 (2020).

Table 1. Resistance levels against complex II inhibitors in each strain including the strains with single mutation in $S d h B$ ($B-$ I260V) or SdhC (C-S56L)

Acaricides	Strains	LC_{50} values $\left(m g L^{-1}\right)^{a}$	95% confidence intervals	Regression lines	$\mathrm{RF}^{\text {b }}$	$\mathrm{n} \pm \mathrm{SD}^{\mathrm{c}}$
Pyflubumide	SoKg1_PflR_MT	10,900	8905-13764	$Y=1.32 X-0.33$	117,204	96 ± 4
	TsukubaS_WT	0.093	0.0248-0.196	$Y=1.07 X+6.10$	1	58 ± 25
	I260V-1	7.53	5.62-9.97	$Y=1.18 X+3.96$	81.0	92 ± 25
	I260V-2	8.83	5.47-14.9	$Y=0.64 X+4.40$	94.9	87 ± 24
	I260V-3	2.93	2.04-4.13	$Y=1.00 X+4.53$	31.5	85 ± 27
	S56L-1	892	796-1002	$Y=2.41 X-2.10$	9591	97 ± 15
	S56L-2	375	297-452	$Y=1.62 X+0.83$	4032	91 ± 14
	S56L-3	641	530-764	$Y=1.59 X+0.55$	6893	84 ± 17
Cyenopyrafen	SoKg1_PflR_MT	> 10,000	-	-	>7407	93 ± 33
	TsukubaS_WT	1.35	1.07-1.70	$Y=1.45 X+4.81$	1	98 ± 20
	I260 V-1	107	92.1-122	$Y=2.01 X+0.91$	79.3	99 ± 18
	I260V-2	194	173-219	$Y=2.42 X-0.528$	143	93 ± 16
	I260V-3	199	179-223	$Y=2.47 X-0.671$	147	105 ± 23
	S56L-1	50.2	42.5-59.1	$Y=1.66 X+2.17$	37.2	94 ± 20
	S56L-2	77.2	68.0-88.3	$Y=2.19 X+0.86$	57.2	98 ± 18
	S56L-3	150	134-170	$Y=2.78 X-1.04$	111	97 ± 32
Cyflumetofen	SoKg1_PflR_MT	> 10,000	-	-	> 422	98 ± 3
	TsukubaS_WT	23.7	14.7-46.8	$Y=0.49 X+4.33$	1	95 ± 3
	I260V-1	15,034	8214-48,749	$Y=0.72 X+2.00$	634	102 ± 15
	I260V-2	> 10,000	-	-	> 422	102 ± 9
	I260V-3	13,831	8437-32,344	$Y=0.88 X+1.37$	584	104 ± 11
	S56L-1	4566	3830-5597	$Y=1.83 X-1.68$	193	97 ± 9
	S56L-2	3650	3135-4306	$Y=2.09 X-2.46$	154	99 ± 14
	S56L-3	4665	3851-5837	$Y=1.69 X-1.19$	197	92 ± 13

[^1]${ }^{\text {c }}$ The average numbers of females used for the analysis per concentration \pm standard deviation

Table 2. Resistance levels against complex II inhibitors in the intermixed strains before (PfMix-1-3 and CyeMix-1-3) and after selection with pyflubumide (PfMixR-1-3) and cyenopyrafen (CyeMixR-1-3)

Acaricides	Strains ${ }^{\text {a }}$	LC_{50} values $\left(m g L^{-1}\right)^{b}$	95% confidence intervals	Regression lines	$\mathrm{RF}^{\text {c }}$	$\mathrm{n} \pm \mathrm{SD}^{\text {d }}$
Pyflubumide	PflMix-1	101	37.7-221	$Y=0.55 X+3.90$	1086	50 ± 2
	PflMix-2	45.2	19.2-87.5	$Y=0.72 X+3.81$	486	50 ± 1
	PflMix-3	4.05	0.0717-20.7	$Y=0.37 X+4.77$	43.5	49 ± 2
	PflMixR-1	10,225	8273-13171	$Y=2.19 X-3.76$	109,946	49 ± 2
	PflMixR-2	11,413	9525-14105	$Y=2.76 X-6.20$	122,720	47 ± 4
	PflMixR-3	10,853	8545-14687	$Y=1.88 X-2.59$	116,699	48 ± 3
Cyenopyrafen	CyeMix-1	20.3	0.0200-122	$Y=0.44 X+4.43$	15.0	44 ± 3
	CyeMix-2	219	90.7-399	$Y=0.89 X+2.92$	162	47 ± 4
	CyeMix-3	75.9	0.938-296	$Y=0.42 X+4.21$	56.2	46 ± 1
	CyeMixR-1	13,818	11327-17902	$Y=2.58 X-5.68$	10,236	47 ± 2
	CyeMixR-2	9975	7282-14022	$Y=1.73 X-1.93$	7389	46 ± 2
	CyeMixR-3	19,225	14075-32610	$Y=1.87 X-3.02$	14,241	47 ± 1
Cyflumetofen ${ }^{\mathrm{e}}$	PflMixR-1	> 10,000	-	-	>422	46 ± 6
	PflMixR-2	> 10,000	-	-	>422	44 ± 4
	PflMixR-3	> 10,000	-	-	>422	48 ± 3
	CyeMixR-1	> 10,000	-	-	>422	48 ± 2
	CyeMixR-2	> 10,000	-	-	>422	46 ± 3
	CyeMixR-3	$>10,000$	-	-	>422	49 ± 2

${ }^{\text {a }}$ PflMix-1-3 and CyeMix-1-3 were intermixed strains established by cross of I260V-1-3 and S56L-1-3. PflMixR-1-3 and
CyeMixR-1-3 were established by selection of PflMix-1-3 and CyeMix-1-3 with pyflubumide and cyenopyrafen, respectively.
${ }^{\mathrm{b}}$ See Table 1.
${ }^{\mathrm{c}}$ Resistance factors (RF) were calculated as a ratio of LC_{50} to TsukubaS_WT in Table 1.
${ }^{d}$ The average numbers of females used for the analysis per concentration \pm standard deviation
${ }^{\text {e }}$ Because $B-I 260 \mathrm{~V}$ alone caused very high resistant levels to cyflumetofen (see Table 1), we did not test the resistance levels of the non-selected intermixed strains against cyflumetofen

Table 3. $S d h B$ and $S d h C$ genotype frequencies in the intermixed strains after the selection with pyflubumide (PfMixR-1-3) and cyenopyrafen (CyeMixR-1-3)

				Genotype frequencies (\%)		
Genotypes ${ }^{\text {a }}$	PflMixR-1	PflMixR-2	PflMixR-3	CyeMixR-1	CyeMixR-2	CyeMixR-3
$\mathrm{WbWb} / \mathrm{WcWc}$	0.0	0.0	0.0	0.0	0.0	0.0
$\mathrm{WbWb} / \mathrm{WcMc}$	0.0	0.0	0.0	0.0	0.0	0.0
$\mathrm{WbWb} / \mathrm{McMc}$	0.0	0.0	0.0	0.0	0.0	0.0
$\mathrm{WbMb} / \mathrm{WcWc}$	0.0	0.0	0.0	0.0	0.0	0.0
$\mathrm{WbMb} / \mathrm{WcMc}$	0.0	0.0	0.0	0.0	0.0	0.0
$\mathrm{WbMb} / \mathrm{McMc}$	16.7	8.3	0.0	8.3	8.3	16.7
$\mathrm{MbMb} / \mathrm{WcWc}$	0.0	0.0	0.0	0.0	0.0	0.0
$\mathrm{MbMb} / \mathrm{WcMc}$	0.0	0.0	0.0	0.0	0.0	0.0
$\mathrm{MbMb} / \mathrm{McMc}$	83.3	91.7	100	91.7	91.7	83.3

${ }^{\text {a }}$ Wild type $B-I 260$ and mutant type $B-I 260 \mathrm{~V}$ of $S d h B$ are represented as Wb and Mb , respectively, and wild type C-S56 and mutant type $C-S 56 L$ of $S d h C$ are shown as Wc, and Mc, respectively. The number of females analyzed was 12 per strain.

Table 4. Resistance levels of the strains where $B-I 260 \mathrm{~V}$ and $C-S 56 L$ were recoupled without acaricide selection

Acaricides	Strains $^{\mathrm{a}}$	LC_{50}	95% confidence $\left(\mathrm{mg} \mathrm{L}^{-1}\right)$	Regression lines		
intervals	RF^{b}	$\mathrm{n}^{2} \pm \mathrm{SD}^{\mathrm{c}}$				
Pyflubumide	PflMixMT-1	49,559	$25,122-1,199,230$	$Y=0.93 X+0.65$	532,892	102 ± 5
	PflMixMT-2	19,417	$14,307-37,869$	$Y=1.27 X-0.43$	208,785	99 ± 3
Cyenopyrafen	CyeMixMT-2	49,382	$28,747-240,004$	$Y=1.42 X-1.64$	36,579	97 ± 5
	CyeMixMT-3	29,404	$22,572-48,297$	$Y=2.28 X-5.19$	21,781	100 ± 6

${ }^{\text {a }}$ PflMixMT-1, PflMixMT-2, CyeMixMT-2, and CyeMixMT-3 were selected from PflMix-1, PflMix-2, CyeMix-2, and CyeMix-
3, respectively, based on genotypes of $S d h B$ and $S d h C$ without acaricide selection and homozygous for $B-I 260 V$ and $C-S 56 L$.
${ }^{\mathrm{b}}$ Resistance factors (RF) were calculated as a ratio of LC_{50} to TsukubaS_WT in Table 1.
${ }^{\text {c }}$ The average numbers of females used for the analysis per concentration \pm standard deviation over the concentrations of 5000 , 10000, and $20000 \mathrm{mg} \mathrm{L}^{-1}$ that were used to compute the LC_{50} values (see Fig. 3).

Table 5. Summary of mutation in complex II subunits and resistance levels to the three complex II inhibitors

Mutant alleles	Resistance levels ${ }^{\text {a }}$		
	Pyflubumide	Cyenopyrafen	Cyflumetofen
B-I260T	$S^{\text {b }}$	VHR ${ }^{\text {b, }}$ c	VHR ${ }^{\text {b }}$
B-I260V	S	MR	VHR
C-S56L	R	MR	HR
$B-I 260 V+C-S 56 L$	VHR ${ }^{\text {c }}$	VHR ${ }^{\text {c }}$	VHR ${ }^{\text {b }}$
${ }^{\text {a }}$ VHR: very high resistance levels $\left(\mathrm{LC}_{50}>10,000 \mathrm{mg} \mathrm{L}{ }^{-1}\right)$, HR : high resistance levels ($1000-10,000 \mathrm{mg} \mathrm{L}{ }^{-1}$),			
R: resistance (200-1000 $\mathrm{mg} \mathrm{L}^{-1}$), MR: moderate resistance (20-200 $\mathrm{mg} \mathrm{L}^{-1}$), S: susceptible ($<20 \mathrm{mg} \mathrm{L}^{-1}$)			
${ }^{\text {b }}$ Data from Sugimoto et al. ${ }^{22}$			
${ }^{\text {c }}$ Substantial mortalities were detected at relatively low concentrations ($100-1000 \mathrm{mg} \mathrm{L}^{-1}$ or less).			

Figure legends

Figure 1. Concentration-mortality plots of strains in which $S d h B$ and $S d h C$ mutations were decoupled (I260V-1-3 and S56L-1-3, respectively) and strains fixed to the wild-type (TsukubaS_WT) or mutant-type (SoKg1_PflR_MT) of both genes. (a) Pyflubumide, (b) cyenopyrafen, and (c) cyflumetofen. Gray square: I260V-1; gray circle: I260V-2; gray triangle: I260V-3; open square: S56L-1; open circle: S56L-2; open triangle: S56L-3; cross: TsukubaS_WT; plus: SoKg1_PflR_MT.

Figure 2. Concentration-mortality plots of intermixed strains derived from B-I260V fixed strains (I260V-1-3) and C-S56L fixed strains (S56L-1-3) before (PyflMix-1-3 and CyeMix-1-3) and after selection with pyflubumide (PyflMixR-1-3) or cyenopyrafen (CyeMixR-1-3), tested using pyflubumide (a), cyenopyrafen (b), and cyflumetofen (c). Dark gray square: PyflMixR-1; dark gray circle: PyflMixR-2; dark gray triangle: PyflMixR-3; light gray square: CyeMixR-1; light gray circle: CyeMixR-2; light gray triangle: CyeMixR-3; open square, open circle and open triangle: before selection.

Figure 3. Concentration-mortality plots of strains in which B-I260V and C-S56L were recoupled, tested using pyflubumide for PyflMixMT-1-2 (a) and cyenopyrafen for CyeMixMT-2-3 (b). Circles: PyflMixMT-1 and CyeMixMT-2; triangles: PyflMixMT-2 and CyeMixMT-3. Gray points indicate the data used for linear regression analysis (see Table 4), while data shown as open points were not used for analysis (see text).

Figure 1.

Figure 2.

Figure 3.

Alignment with location of primer set for high resolution melting analysis and DNA sequencing data for $S d h B$ of ML1 (SoKg_PflR_MT_male and TsukubaS_WT_female), decoupled strains (I260V-1-3 and S56L-1-3), and recoupled strains (PflMixMT-1,2 and CyeMixMT-2,3).

$>$ No base substitution was found among three strains of I260V-1, 2 and 3 (I260V-1-3) and that of S56L-1-3 and between two strains of PflMixMT-1 and 2 (PflMixMT-1,2) and that of CyeMixMT-2,3. Therefore, the consensus sequences are shown for these strains.
$>$ In CyeMixMT-2,3, the primer set tuSdhB-gF and tuSdhB-gR did not work in PCR amplification. This failure was likely due to degradation of the DNA samples. Therefore, we used two newly designed primer pairs to amplify shorter fragments. One of the primer pairs was tuSdhB-459F 5'-GGTTCCTGATATGAACCATTTCTACGAG-3' and tuSdhB-826R (see Section 2.4) (products: 368 bp), and the other pair was tuSdhB-gFS 5'-TGATGAGTAGAT CAAGACAACTCTGAC-3' and tuSdhB-656F 5'-GATACTTGGGACCTGCTGTACTC-3' (480 bp). For subsequent cycle sequencing, we used tuSdhB-459F and tuSdhB-900R (see Section 2.3) for the former and the latter, respectively.
$>$ The sequence data of tetur01g15710 was obtained from Online Resource for Community Annotation of Eukaryotes (https://bioinformatics.psb.ugent.be/orcae/).

tetur01g15710	181:TGGAATCCTGAAACACCTGAAGTTAAACCCTACATGCAGACATATGAGGTTGATCTAAAT 240
SoKg_Pf1R_MT_male	--------TACATGCAGACATATGAGGTTGATCTAAAT 30
TsukubaS_WT_female	---TACATGCAGACATATGAGGTTGATCTAAAT 30
I260V-1-3	-TACATGCAGACATATGAGGTTGATCTAAAT 30
S56L-1-3	-TACATGCAGACATATGAGGTTGATCTAAAT 30
Pf1MixMT-1, 2	TACATGCAGACATATGAGGTTGATCTAAAT 30
CyeMixMT-2, 3	
tetur01g15710	241:ACATGCGGTCCTATGGTGCTTGATGCTTTGATTAAAATCAAAAATGAATTGGATCCTACT 300
SoKg_Pf1R_MT_male	31:ACATGCGGTCCTATGGTGCTTGATGCTTTGATTAAAATCAAAAATGAATTGGATCCTACT 90
TsukubaS_WT_female	31:ACATGCGGTCCTATGGTGCTTGATGCTTTGATTAAAATCAAAAATGAATTGGATCCTACT 90
I260V-1-3	31:ACATGCGGTCCTATGGTGCTTGATGCTTTGATTAAAATCAAAAATGAATTGGATCCTACT 90
S56L-1-3	31:ACATGCGGTCCTATGGTGCTTGATGCTTTGATTAAAATCAAAAATGAATTGGATCCTACT 90
Pf1MixMT-1, 2	31:ACATGCGGTCCTATGGTGCTTGATGCTTTGATTAAAATCAAAAATGAATTGGATCCTACT 90
CyeMixMT-2, 3	
tetur01g15710	301:TTGACTTTCAGACGATCTTGCAGGGAAGGTATATGTGGTTCTTGTGCTATGAATATTGGA 360
SoKg_Pf1R_MT_male	91:TTGACTTTCAGACGATCTTGCAGGGAAGGTATATGTGGTTCTTGTGCTATGAATATTGGA 150
TsukubaS_WT_female	91:TTGACTTTCAGACGATCTTGCAGGGAAGGTATATGTGGTTCTTGTGCTATGAATATTGGA 150
I260V-1-3	91:TTGACTTTCAGACGATCTTGCAGGGAAGGTATATGTGGTTCTTGTGCTATGAATATTGGA 150
S56L-1-3	91:TTGACTTTCAGACGATCTTGCAGGGAAGGTATATGTGGTTCTTGTGCTATGAATATTGGA 150
Pf1MixMT-1, 2	91:TTGACTTTCAGACGATCTTGCAGGGAAGGTATATGTGGTTCTTGTGCTATGAATATTGGA 150
CyeMixMT-2, 3	

tetur01g15710 361:GGTGGTAATACTCTTGCCTGTATCAGCAGAATTGACACCAGTGTCGAAAAACCGATGAAG 420 SoKg_Pf1R_MT_male 151:GGTGGTAATACTCTTGCCTGTATCAGCAGAATTGACACCAGTGTCGAAAAACCGATGAAG 210 TsukubaS_WT_female 151:GGTGGTAATACTCTTGCCTGTATCAGCAGAATTGACACYAGTGTCGAAAAACCGATGAAG 210 I260V-1-3 151:GGTGGTAATACTCTTGCCTGTATCAGCAGAATTGACACCAGTGTCGAAAAACCGATGAAG 210 S56L-1-3 151:GGTGGTAATACTCTTGCCTGTATCAGCAGAATTGACACTAGTGTCGAAAAACCGATGAAG 210 Pf1MixMT-1, 2 CyeMixMT-2, 3
tetur01g15710 421:ATCTATCCATTACCTCATATGTATGTGGTTAAGGACTTGGTTCCTGATATGAACCATTTC 480 SoKg_Pf1R_MT_male 211:ATCTATCCATTACCTCATATGTATGTGGTTAAGGACTTGGTTCCTGATATGAACCATTTC 270 TsukubaS_WT_female 211:ATCTATCCATTACCTCATATGTATGTGGTTAAGGACTTGGTTCCTGATATGAACCATTTC 270 I260V-1-3

S56L-1-3 211:ATCTATCCATTACCTCATATGTATGTGGTTAAGGACTTGGTTCCTGATATGAACCATTTC 270 211:ATCTATCCATTACCTCATATGTATGTGGTTAAGGACTTGGTTCCTGATATGAACCATTTC 270 211:ATCTATCCATTACCTCATATGTATGTGGTTAAGGACTTGGTTCCTGATATGAACCATTTC 270

\qquad
tetur01g15710 481:TACGAGCAATATCGATCGATTCAGCCTTGGCTACAAAAGAAAGATGAAACTGGTTTTGGT 540 SoKg Pf1R MT male 271:TACGAGCAATATCGATCGATTCAGCCTTGGCTACAAAAGAAAGATGAAACTGGTTTTGGT 330 TsukubaS WT female 271:TACGAGCAATATCGATCGATTCAGCCTTGGCTACAAAAGAAAGATGAAACTGGTTTTGGT 330 I260V-1-3 271:TACGAGCAATATCGATCGATTCAGCCTTGGCTACAAAAGAAAGATGAAACTGGTTTTGGT 330 S56L-1-3 271:TACGAGCAATATCGATCGATTCAGCCTTGGCTACAAAAGAAAGATGAAACTGGTTTTGGT 330 Pf1MixMT-1,2 271:TACGAGCAATATCGATCGATTCAGCCTTGGCTACAAAAGAAAGATGAAACTGGTTTTGGT 330

tetur01g15710 541:AAGAAACAAAATCTTCAAAGTGTTGATGATCGTAAGAAACTTGATGGTCTATATGAATGT 600 SoKg_Pf1R_MT_male 331:AAGAAACAAAATCTTCAAAGTGTTGATGATCGTAAGAAACTTGATGGTCTATATGAATGT 390 TsukubaS_WT_female 331:AAAAAACAAAATCTTCAAAGTGTTGATGATCGTAAGAAACTTGATGGTCTATATGAATGT 390 I260V-1-3 331:AAGAAACAAAATCTTCAAAGTGTTGATGATCGTAAGAAACTTGATGGTCTATATGAATGT 390 S56L-1-3 331:AAAAAACAAAATCTTCAAAGTGTTGATGATCGTAAGAAACTTGATGGTCTATATGAATGT 390 Pf1MixMT-1, 2 331:AAGAAACAAAATCTTCAAAGTGTTGATGATCGTAAGAAACTTGATGGTCTATATGAATGT 390 CyeMixMT-2, 3 13:AAGAAACAAAATCTTCAAAGTGTTGATGATCGTAAGAAACTTGATGGTCTATATGAATGT 72
**. $* *$
tetur01g15710 601:ATATTATGCGCTTGTTGTTCAACATCTTGTCCAAGCTATTGGTGGAATAGTGACCGATAC 660 SoKg_Pf1R_MT_male 391:ATATTATGCGCTTGTTGTTCAACATCTTGTCCAAGCTATTGGTGGAATAGTGACCGATAC 450 TsukubaS_WT_female 391:ATATTATGCGCTTGTTGTTCAACATCTTGTCCAAGCTATTGGTGGAATAGTGACCGATAC 450 I260V-1-3 391:ATATTATGCGCTTGTTGTTCAACATCTTGTCCAAGCTATTGGTGGAATAGTGACCGATAC 450 S56L-1-3 391:ATATTATGCGCTTGTTGTTCAACATCTTGTCCAAGCTATTGGTGGAATAGTGACCGATAC 450 Pf1MixMT-1, 2 391:ATATTATGCGCTTGTTGTTCAACATCTTGTCCAAGCTATTGGTGGAATAGTGACCGATAC 450 CyeMixMT-2, 3 73:ATATTATGCGCTTGTTGTTCAACATCTTGTCCAAGCTATTGGTGGAATAGTGACCGATAC 132 **
tetur01g15710 661:TTGGGACCTGCTGTACTCATGCAAGCATACCGATGGGTAATTGATTCAAGAGATGAATCA 720 SoKg_Pf1R_MT_male 451:TTGGGACCTGCTGTACTCATGCAAGCATACCGATGGGTAATTGATTCAAGAGATGAATCA 510 TsukubaS_WT_female 451:TTGGGACCTGCTGTACTCATGCAAGCATACCGATGGGTAATTGATTCGAGAGATGAATCA 510 I260V-1-3 451:TTGGGACCTGCTGTACTCATGCAAGCATACCGATGGGTAATTGATTCAAGAGATGAATCA 510 S56L-1-3 451:TTGGGACCTGCTGTACTCATGCAAGCATACCGATGGGTAATTGATTCGAGAGATGAATCA 510 Pf1MixMT-1, 2 451:TTGGGACCTGCTGTACTCATGCAAGCATACCGATGGGTAATTGATTCAAGAGATGAATCA 510 CyeMixMT-2, 3 133:TTGGGACCTGCTGTACTCATGCAAGCATACCGATGGGTAATTGATTCAAGAGATGAATCA 192
tetur01g15710 721: ACTGAAAAAAGGCTGGATCAATTGAGGGATCCCTTCTCACTTTATCGATGTCATACAATC 780
SoKg_Pf1R_MT_male 511:ACTGAAAAAAGGCTGGATCAATTGAGGGATCCCTTCTCACTTTATCGATGTCATACAGTC 570
TsukubaS_WT_female 511: ACTGAAAAAAGGTTGGATCAATTGAGGGATCCCTTCTCACTTTATCGATGTCATACAATC 570
I260V-1-3 511:ACTGAAAAAAGGCTGGATCAATTGAGGGATCCCTTCTCACTTTATCGATGTCATACAGTC 570
S56L-1-3 511: ACTGAAAAAAGGTTGGATCAATTGAGGGATCCCTTCTCACTTTATCGATGTCATACAATC 570
Pf1MixMT-1, 2 511: ACTGAAAAAAGGCTGGATCAATTGAGGGATCCCTTCTCACTTTATCGATGTCATACAGTC 570
CyeMixMT-2, 3 193:ACTGAAAAAAGGCTGGATCAATTGAGGGATCCCTTCTCACTTTATCGATGTCATACAGTC 252
$* * * * * * * * * * * * . ~ * . ~ * *$
tuSdhB-826R
tetur01g15710 781:ATGAATTGTTCCAGGACCTGTCCTAAGAACTTGAATCCTGGTCGAGCAATCGGTGAACTG 840
SoKg_Pf1R_MT_male 571:ATGAATTGT 579
TsukubaS_WT_female 571:ATGAATT 577
I260V-1-3 571:ATGAATTGT 579
S56L-1-3 571: ATGAATTGT 579
Pf1MixMT-1, 2 571:ATGAATTGT 579
CyeMixMT-2, 3 253: ATGAATTGTTCCAGGACCTGTCCTAAGAACTTGAATCCTGGTCGAGCAATCGGTG 308
>SoKg_Pf1R_MT_male | SdhB partial
TACATGCAGACATATGAGGTTGATCTAAATACATGCGGTCCTATGGTGCTTGATGCTTTGATTAAAATCAAAAATGAATT GGATCCTACTTTGACTTTCAGACGATCTTGCAGGGAAGGTATATGTGGTTCTTGTGCTATGAATATTGGAGGTGGTAATA CTCTTGCCTGTATCAGCAGAATTGACACCAGTGTCGAAAAACCGATGAAGATCTATCCATTACCTCATATGTATGTGGTT AAGGACTTGGTTCCTGATATGAACCATTTCTACGAGCAATATCGATCGATTCAGCCTTGGCTACAAAAGAAAGATGAAAC TGGTTTTGGTAAGAAACAAAATCTTCAAAGTGTTGATGATCGTAAGAAACTTGATGGTCTATATGAATGTATATTATGCG CTTGTTGTTCAACATCTTGTCCAAGCTATTGGTGGAATAGTGACCGATACTTGGGACCTGCTGTACTCATGCAAGCATAC CGATGGGTAATTGATTCAAGAGATGAATCAACTGAAAAAAGGCTGGATCAATTGAGGGATCCCTTCTCACTTTATCGATG TCATACAGTCATGAATTGT
>TsukubaS_WT_female | SdhB partial TACATGCAGACATATGAGGTTGATCTAAATACATGCGGTCCTATGGTGCTTGATGCTTTGATTAAAATCAAAAATGAATT GGATCCTACTTTGACTTTCAGACGATCTTGCAGGGAAGGTATATGTGGTTCTTGTGCTATGAATATTGGAGGTGGTAATA CTCTTGCCTGTATCAGCAGAATTGACACCAGTGTCGAAAAACCGATGAAGATCTATCCATTACCTCATATGTATGTGGTT AAGGACTTGGTTCCTGATATGAACCATTTCTACGAGCAATATCGATCGATTCAGCCTTGGCTACAAAAGAAAGATGAAAC TGGTTTTGGTAAAAAACAAAATCTTCAAAGTGTTGATGATCGTAAGAAACTTGATGGTCTATATGAATGTATATTATGCG CTTGTTGTTCAACATCTTGTCCAAGCTATTGGTGGAATAGTGACCGATACTTGGGACCTGCTGTACTCATGCAAGCATAC CGATGGGTAATTGATTCGAGAGATGAATCAACTGAAAAAAGGTTGGATCAATTGAGGGATCCCTTCTCACTTTATCGATG TCATACAATCATGAATT
>I260V-1-3 consensus | SdhB partial
TACATGCAGACATATGAGGTTGATCTAAATACATGCGGTCCTATGGTGCTTGATGCTTTGATTAAAATCAAAAATGAATT GGATCCTACTTTGACTTTCAGACGATCTTGCAGGGAAGGTATATGTGGTTCTTGTGCTATGAATATTGGAGGTGGTAATA СTCTTGCCTGTATCAGCAGAATTGACACCAGTGTCGAAAAACCGATGAAGATCTATCCATTACCTCATATGTATGTGGTT AAGGACTTGGTTCCTGATATGAACCATTTCTACGAGCAATATCGATCGATTCAGCCTTGGCTACAAAAGAAAGATGAAAC TGGTTTTGGTAAGAAACAAAATCTTCAAAGTGTTGATGATCGTAAGAAACTTGATGGTCTATATGAATGTATATTATGCG CTTGTTGTTCAACATCTTGTCCAAGCTATTGGTGGAATAGTGACCGATACTTGGGACCTGCTGTACTCATGCAAGCATAC CGATGGGTAATTGATTCAAGAGATGAATCAACTGAAAAAAGGCTGGATCAATTGAGGGATCCCTTCTCACTTTATCGATG TCATACAGTCATGAATTGT
>S56L-1-3 consensus | SdhB partial
TACATGCAGACATATGAGGTTGATCTAAATACATGCGGTCCTATGGTGCTTGATGCTTTGATTAAAATCAAAAATGAATT GGATCCTACTTTGACTTTCAGACGATCTTGCAGGGAAGGTATATGTGGTTCTTGTGCTATGAATATTGGAGGTGGTAATA CTCTTGCCTGTATCAGCAGAATTGACACTAGTGTCGAAAAACCGATGAAGATCTATCCATTACCTCATATGTATGTGGTT AAGGACTTGGTTCCTGATATGAACCATTTCTACGAGCAATATCGATCGATTCAGCCTTGGCTACAAAAGAAAGATGAAAC TGGTTTTGGTAAAAAACAAAATCTTCAAAGTGTTGATGATCGTAAGAAACTTGATGGTCTATATGAATGTATATTATGCG CTTGTTGTTCAACATCTTGTCCAAGCTATTGGTGGAATAGTGACCGATACTTGGGACCTGCTGTACTCATGCAAGCATAC CGATGGGTAATTGATTCGAGAGATGAATCAACTGAAAAAAGGTTGGATCAATTGAGGGATCCCTTCTCACTTTATCGATG TCATACAATCATGAATTGT
>Pf1MixMT-1,2 consensus | SdhB partial
TACATGCAGACATATGAGGTTGATCTAAATACATGCGGTCCTATGGTGCTTGATGCTTTGATTAAAATCAAAAATGAATT GGATCCTACTTTGACTTTCAGACGATCTTGCAGGGAAGGTATATGTGGTTCTTGTGCTATGAATATTGGAGGTGGTAATA CTCTTGCCTGTATCAGCAGAATTGACACCAGTGTCGAAAAACCGATGAAGATCTATCCATTACCTCATATGTATGTGGTT AAGGACTTGGTTCCTGATATGAACCATTTCTACGAGCAATATCGATCGATTCAGCCTTGGCTACAAAAGAAAGATGAAAC TGGTTTTGGTAAGAAACAAAATCTTCAAAGTGTTGATGATCGTAAGAAACTTGATGGTCTATATGAATGTATATTATGCG CTTGTTGTTCAACATCTTGTCCAAGCTATTGGTGGAATAGTGACCGATACTTGGGACCTGCTGTACTCATGCAAGCATAC CGATGGGTAATTGATTCAAGAGATGAATCAACTGAAAAAAGGCTGGATCAATTGAGGGATCCCTTCTCACTTTATCGATG TCATACAGTCATGAATTGT
>CyeMixMT-2, 3 consensus | SdhB partial
ACTGGTTTTGGTAAGAAACAAAATCTTCAAAGTGTTGATGATCGTAAGAAACTTGATGGTCTATATGAATGTATATTATG CGCTTGTTGTTCAACATCTTGTCCAAGCTATTGGTGGAATAGTGACCGATACTTGGGACCTGCTGTACTCATGCAAGCAT ACCGATGGGTAATTGATTCAAGAGATGAATCAACTGAAAAAAGGCTGGATCAATTGAGGGATCCCTTCTCACTTTATCGA TGTCATACAGTCATGAATTGTTCCAGGACCTGTCCTAAGAACTTGAATCCTGGTCGAGCAATCGGTGA

Supplementary Data 2:

Alignment with location of primer set for high resolution melting analysis and DNA sequencing data for SdhC of ML1 (SoKg_PflR_MT_male and TsukubaS_WT_female), decoupled strains (I260V-1-3 and S56L-1-3), and recoupled strains (PflMixMT-1,2 and CyeMixMT-2,3).

$>$ No base substitution was found among three strains of I260V-1, 2 and 3 (I260V-1-3) and that of S56L-1-3 and between two strains of PflMixMT-1 and 2 (PflMixMT-1,2) and that of CyeMixMT-2,3. Therefore, the consensus sequences are shown for these strains.
$>$ The sequence data of tetur $30 g 00210$ was obtained from Online Resource for Community Annotation of Eukaryotes (https://bioinformatics.psb.ugent.be/orcae/).

```
tetur30g00210
SoKg_Pf1R_MT_male
TsukubaS_WT_female
I260V-1-3
S56L-1-3
Pf1MixMT-1,2
CyeMixMT-2,3
tetur30g00210
SoKg_Pf1R_MT_male
TsukubaS_WT_female
I260V-1-3
S56L-1-3
Pf1MixMT-1, 2
CyeMixMT-2, 3
tetur30g00210
SoKg_Pf1R_MT_male
TsukubaS_WT_female
I260V-1-3
S56L-1-3
Pf1MixMT-1, 2
CyeMixMT-2, 3
tetur30g00210
SoKg_Pf1R_MT_male
TsukubaS_WT_female
I260V-1-3
S56L-1-3
Pf1MixMT-1, 2
CyeMixMT-2, 3
```

1:ATGTTATTTCCACGTTTGATTTGTGCTCGAGCAACTATTAGCAATCAACTACTTGGCCGG 60 1:ATGTTATTTCCACGTTTGATTTGTGCTCGAGCAACTATTAGCAATCAACTACTTGGCCGA 60 1: ATGTTATTTCCACGTTTGATTTGTGCTCGAGCAACTATTAGCAATCAACTACTTGGCCGG 60 1:ATGTTATTTCCACGTTTGATTTGTGCTCGAGCAACTATTAGCAATCAACTACTTGGCCGG 60 1:ATGTTATTTCCACGTTTGATTTGTGCTCGAGCAACTATTAGCAATCAACTACTTGGCCGA 60 1: ATGTTATTTCCACGTTTGATTTGTGCTCGAGCAACTATTAGCAATCAACTACTTGGCCGA 60
1: ATGTTATTTCCACGTTTGATTTGTGCTCGAGCAACTATTAGCAATCAACTACTTGGCCGA 60
***.
tuSdhC-96F
61:GCTAATGCAGTTCTTCCCAGAATAGCCATGGCTTCAAGCTCATCGTCGCCATCACAACCT 120 61:GCTAATGCAGTTCTTCCCAGAATAGCCATGGCTTCAAGCTCATCGTCGCCATCACAACCT 120 61:GCTAATGCAGTTCTTCCCAGAATAGCCATGGCTTCAAGCTCATCGTCGCCATCACAACCT 120 61:GCTAATGCAGTTCTTCCCAGAATAGCCATGGCTTCAAGCTCATCGTCGCCATCACAACCT 120 61:GCTAATGCAGTTCTTCCCAGAATAGCCATGGCTTCAAGCTCATCGTCGCCATCACAACCT 120 61:GCTAATGCAGTTCTTCCCAGAATAGCCATGGCTTCAAGCTCATCGTCGCCATCACAACCT 120 61:GCTAATGCAGTTCTTCCCAGAATAGCCATGGCTTCAAGCTCATCGTCGCCATCACAACCT 120
**
S56L (TTG)
121:GAACAAGATTTTTTTTACGAAGAATTCTCGGCTAAATCGTCCTATTTCACCTTATACAATA 180
121:GAACAAGATTTTTTTTACGAAGAATTCTCGGCTAAATCGTCCTATTTTGCCTTATACAATA 180
121:GAACAAGATTTTTTTTACGAAGAATTCTCGGCTAAATCGTCCTATTTCACCTTATACAATA 180
121:GAACAAGATTTTTTTTACGAAGAATTCTCGGCTAAATCGTCCTATTTCACCTTATACAATA 180
121:GAACAAGATTTTTTTTACGAAGAATTCTCGGCTAAATCGTCCTATTTTGCCTTATACAATA 180
121:GAACAAGATTTTTTTTACGAAGAATTCTCGGCTAAATCGTCCTATTTTGCCTTATACAATA 180
121: GAACAAGATTTTTTTTACGAAGAATTCTCGGCTAAATCGTCCTATTTTGCCTTATACAATA 180
**. . $* * * * * * * * * * * *$
tuSdhC-211R
181:TATCAACCTCAATTAACCTCGGTCCTATCAATATCTCACCGGGTTAGTGGTGTTGCATTA 240
181:TATCAACCTCAATTAACCTCGGTCCTATCAATATCTCACCGAGTTAGTGGTGTTGCATTA 240
181:TATCAACCTCAATTAACCTCGGTCCTATCAATATCTCACCGGGTTAGTGGTGTTGCATTA 240
181:TATCAACCTCAATTAACCTCGGTCCTATCAATATCTCACCGGGTTAGTGGTGTTGCATTA 240
181:TATCAACCTCAATTAACCTCGGTCCTATCAATATCTCACCGAGTTAGTGGTGTTGCATTA 240
181:TATCAACCTCAATTAACCTCGGTCCTATCAATATCTCACCGAGTTAGTGGTGTTGCATTA 240
181:TATCAACCTCAATTAACCTCGGTCCTATCAATATCTCACCGAGTTAGTGGTGTTGCATTA 240

[^2]tetur30g00210
SoKg_Pf1R_MT_male 241:TCTGTGGGAATTTTACGCTATGGGTATTAGTCAGCTGTTTGCTTCAACTCCATTTGCTCAT 300 TsukubaS_WT_female 241:TCTGTGGGAATTTACGCTATGGGTATTAGTCAGCTGTTTGCTTCAACTCCATTTGCTCAT 300 I260V-1-3 S56L-1-3 Pf1MixMT-1, 2 CyeMixMT-2, 3
tetur30g00210
SoKg_Pf1R_MT_male
TsukubaS_WT_female
I260V-1-3
S56L-1-3
Pf1MixMT-1, 2 CyeMixMT-2, 3
tetur30g00210
SoKg_Pf1R_MT_male TsukubaS_WT_female I260V-1-3

S56L-1-3 Pf1MixMT-1, 2 CyeMixMT-2, 3
tetur 30 g 00210
SoKg_Pf1R_MT_male TsukubaS_WT_female I260V-1-3 S56L-1-3 PflMixMT-1, 2 CyeMixMT-2, 3
tetur30g00210 481:GCTCTGGTGACCCTTTACGCTATTTTCAATCTTTAG 516
SoKg_Pf1R_MT_male 481:GCTCTGGTGACCCTTTACGCTATTTTCAATCTTTAG
TsukubaS_WT_female 481:GCTCTGGTGACCCTTTACGCTATTTTCAATCTTTAG
I260V-1-3 481:GCTCTGGTGACCCTTTACGCTATTTTCAATCTTTAG
S56L-1-3 481:GCTCTGGTGACCCTTTACGCTATTTTCAATCTTTAG
Pf1MixMT-1,2 481:GCTCTGGTGACCCTTTACGCTATTTTCAATCTTTAG
CyeMixMT-2, 3 481:GCTCTGGTGACCCTTTACGCTATTTTCAATCTTTAG
>SoKg_Pf1R_MT_male | SdhC partial
CTAATTTGGAACATTTAGCTTATTTATCTTCTGAGTAAAACACAACTGTTTTTAAATCATGTTATTTCCACGTTTGATTT GTGCTCGAGCAACTATTAGCAATCAACTACTTGGCCGAGCTAATGCAGTTCTTCCCAGAATAGCCATGGCTTCAAGCTCA TCGTCGCCATCACAACCTGAACAAGATTTTTTTACGAAGAATTCTCGGCTAAATCGTCCTATTTTGCCTTATACAATATA TCAACCTCAATTAACCTCGGTCCTATCAATATCTCACCGAGTTAGTGGTGTTGCATTATCTGTGGGAATTTACGCTATGG GTATTAGTCAGCTGTTTGCTTCAACTCCATTTGCTCATCAGCTGGAATCATTGTCGACTTCAATCCCATCTATATTAATT ATCACATCTAAAATATTAGTTGCATCTGGCTTTGGGTTCCATTTCGCCAATGGCATACGTCATCTCTTTTGGGATATGGG ATTTGGATTTGGCCTTAAAGAACTCTACACTTCAGGTTATGCAGTTCTCGGTATTACTGCTCTGGTGACCCTTTACGCTA TTTTCAATCTTTAG
>TsukubaS_WT_female | SdhC partial
CTAATTTGGAACATTTAGCTTATTTATCTTCTGAGTAAAATACAACTGTTTTTAAATCATGTTATTTCCACGTTTGATTT GTGCTCGAGCAACTATTAGCAATCAACTACTTGGCCGGGCTAATGCAGTTCTTCCCAGAATAGCCATGGCTTCAAGCTCA TCGTCGCCATCACAACCTGAACAAGATTTTTTTACGAAGAATTCTCGGCTAAATCGTCCTATTTCACCTTATACAATATA TCAACCTCAATTAACCTCGGTCCTATCAATATCTCACCGGGTTAGTGGTGTTGCATTATCTGTGGGAATTTACGCTATGG GTATTAGTCAGCTGTTTGCTTCAACTCCATTTGCTCATCAGCTGGAATCATTGTCGACTTCAATCCCATCTATATTAATT ATCACATCTAAAATATTAGTTGCATCTGGCTTTGGGTTCCATTTCGCCAATGGCATACGTCATCTCTTTTGGGATATGGG ATTTGGATTTGGCCTTAAAGAACTCTACACTTCAGGTTATGCAGTTCTCGGTATTACAGCTCTGGTGACCCTTTACGCTA TTTTCAATCTTTAG
>I260V-1-3 consensus SdhC partial
CTAATTTGGAACATTTAGCTTATTTATCTTCTGAGTAAAATACAACTGTTTTTAAATCATGTTATTTCCACGTTTGATTT GTGCTCGAGCAACTATTAGCAATCAACTACTTGGCCGGGCTAATGCAGTTCTTCCCAGAATAGCCATGGCTTCAAGCTCA TCGTCGCCATCACAACCTGAACAAGATTTTTTTACGAAGAATTCTCGGCTAAATCGTCCTATTTCACCTTATACAATATA TCAACCTCAATTAACCTCGGTCCTATCAATATCTCACCGGGTTAGTGGTGTTGCATTATCTGTGGGAATTTACGCTATGG GTATTAGTCAGCTGTTTGCTTCAACTCCATTTGCTCATCAGCTGGAATCATTGTCGACTTCAATCCCATCTATATTAATT ATCACATCTAAAATATTAGTTGCATCTGGCTTTGGGTTCCATTTCGCCAATGGCATACGTCATCTCTTTTGGGATATGGG ATTTGGATTTGGCCTTAAAGAACTCTACACTTCAGGTTATGCAGTTCTCGGTATTACAGCTCTGGTGACCCTTTACGCTA TTTTCAATCTTTAG
>S56L-1-3 consensus | SdhC partial
CTAATTTGGAACATTTAGCTTATTTATCTTCTGAGTAAAACACAACTGTTTTTAAATCATGTTATTTCCACGTTTGATTT GTGCTCGAGCAACTATTAGCAATCAACTACTTGGCCGAGCTAATGCAGTTCTTCCCAGAATAGCCATGGCTTCAAGCTCA TCGTCGCCATCACAACCTGAACAAGATTTTTTTACGAAGAATTCTCGGCTAAATCGTCCTATTTTGCCTTATACAATATA TCAACCTCAATTAACCTCGGTCCTATCAATATCTCACCGAGTTAGTGGTGTTGCATTATCTGTGGGAATTTACGCTATGG GTATTAGTCAGCTGTTTGCTTCAACTCCATTTGCTCATCAGCTGGAATCATTGTCGACTTCAATCCCATCTATATTAATT ATCACATCTAAAATATTAGTTGCATCTGGCTTTGGGTTCCATTTCGCCAATGGCATACGTCATCTCTTTTGGGATATGGG ATTTGGATTTTGGCCTTAAAGAACTCTACACTTCAGGTTATGCAGTTCTCGGTATTACTGCTCTGGTGACCCTTTACGCTA TTTTCAATCTTTAG
>PflMixMT-1,2 consensus SdhC partial
CTAATTTGGAACATTTAGCTTATTTATCTTCTGAGTAAAACACAACTGTTTTTAAATCATGTTATTTCCACGTTTGATTT GTGCTCGAGCAACTATTAGCAATCAACTACTTGGCCGAGCTAATGCAGTTCTTCCCAGAATAGCCATGGCTTCAAGCTCA TCGTCGCCATCACAACCTGAACAAGATTTTTTTACGAAGAATTCTCGGCTAAATCGTCCTATTTTGCCTTATACAATATA TCAACCTCAATTAACCTCGGTCCTATCAATATCTCACCGAGTTAGTGGTGTTGCATTATCTGTGGGAATTTACGCTATGG GTATTAGTCAGCTGTTTGCTTCAACTCCATTTGCTCATCAGCTGGAATCATTGTCGACTTCAATCCCATCTATATTAATT ATCACATCTAAAATATTAGTTGCATCTGGCTTTGGGTTCCATTTCGCCAATGGCATACGTCATCTCTTTTGGGGATATGGG ATTTGGATTTGGCCTTAAAGAACTCTACACTTCAGGTTATGCAGTTCTCGGTATTACTGCTCTGGTGACCCTTTACGCTA TTTTCAATCTTTAG
>CyeMixMT-2, 3 consensus | SdhC partial
CTAATTTGGAACATTTAGCTTATTTTATCTTCTGAGTAAAACACAACTGTTTTTAAATCATGTTATTTCCACGTTTGATTT GTGCTCGAGCAACTATTAGCAATCAACTACTTGGCCGAGCTAATGCAGTTCTTCCCAGAATAGCCATGGCTTCAAGCTCA TCGTCGCCATCACAACCTGAACAAGATTTTTTTACGAAGAATTCTCGGCTAAATCGTCCTATTTTGCCTTATACAATATA TCAACCTCAATTAACCTCGGTCCTATCAATATCTCACCGAGTTAGTGGTGTTGCATTATCTGTGGGAATTTACGCTATGG GTATTAGTCAGCTGTTTGCTTCAACTCCATTTGCTCATCAGCTGGAATCATTGTCGACTTCAATCCCATCTATATTAATT ATCACATCTAAAATATTAGTTGCATCTGGCTTTGGGTTCCATTTCGCCAATGGCATACGTCATCTCTTTTGGGATATGGG ATTTGGATTTGGCCTTAAAGAACTCTACACTTCAGGTTATGCAGTTCTCGGTATTACTGCTCTGGTGACCCTTTACGCTA TTTTCAATCTTTAG

Fig. S1 Difference in melting curves of PCR products for SdhB (a) and SdhC (b) among genotypes. Vertical axis shows melting rate curves ($-\Delta \mathrm{F} \Delta \mathrm{T}^{-1} ; \Delta \mathrm{F}$: descending fluorescence signals, $\Delta \mathrm{T}$: unit time). Blue line: wild type homozygote, red line: heterozygote, green line: mutant type homozygote. Red arrows show a small peak on the shoulder of that peak characteristic of heterozygote in these genes.

Fig. S2 Schematic diagram of cross experiments for decoupling of mutations in SdhB (B-l260V) and SdhC (C-S56L)

Table S1. Results of high-resolution melting (HRM) analysis for $S d h B$ and $S d h C$ genotyping in mother

Genes	F2 famales					F3 males			
	n	SS	SR	RR	NA	n	S	R	NA
SdhB	48	22	24	0	2	48	35	10	3
SdhC	48	22	22	0	4	48	30	12	6

n : number of individuals tested
Genotypes SS: B-I260_I260 or C-S56_S56, SR: B-I260_I260V or C-S56_S56L, RR: B-I260V_I260V or C-
S56L_S56L, S: B-I260 or C-S56, R: C-I260V or C-S56L, NA: undecidable due to unclear or confusing melting curves

Table S2. Results of HRM analysis for $S d h B$ and $S d h C$ genotyping in F3 females

F3 q for strains of B-I260V alone	Genotype		F3 q for strains of C-S56L alone	Genotype	
	SdhB	SdhC		SdhB	SdhC
ML1-2-6-1 (I260V-1)	RR	SS	ML1-4-4-4	SS	SR
ML1-2-6-4 (I260V-2)	RR	SS	ML1-4-4-5	SS	RR
ML1-2-6-6	SR	SS	ML1-4-4-6	SS	RR
ML1-2-6-8 (I260V-3)	RR	SS	ML1-4-4-7 (S56L-1)	SS	RR
ML3-1-1-2	SR	SS	ML1-4-5-1	SS	SR
ML3-1-1-5	SR	SS	ML1-4-5-3 (S56L-2)	SS	RR
ML3-1-1-7	SR	SS	ML1-4-5-4 (S56L-3)	SS	RR
ML3-1-1-8	SR	SS	ML1-4-5-5	SS	SR

Branch numbers show identification of parent-F1-F2-F3 females. Genotype notation is the same as Table S1.
Names of the decoupled strains generated from the F3 females are indicated in parentheses. Three F3 females with the genotype B-I260V_I260V/C-S56_S56 and five with B-I260_I260/C-S56L_S56L were also applied for sequencing analysis, and no discrepancy were found (Data was not shown).

Table S3. Combination of strains with B-I260V fixed (I260V-1-3) and C-S56L fixed (S56L-1-3) for the establishment of intermixed strains and acaricides used for the selection of the intermixed strains

Intermixed strains	Combination of mating strains		Acaricides used	Acaricide-selected
	B-I260V fixed	C-S56L fixed	for selection	strains
PflMix-1	I260V-1	S56L-1	Pyflubumide	PflMixR-1
PflMix-2	I260V-2	S56L-3		PflMixR-2
PflMix-3	I260V-3	S56L-2		PflMixR-3
CyeMix-1	I260V-3	S56L-3	Cyenopyrafen	CyeMixR-1
CyeMix-2	I260V-2	S56L-2		CyeMixR-2
CyeMix-3	I260V-1	S56L-1		CyeMixR-3

Table S4. Gene frequency of intermixed strains (PfMix-1-3) before acaricide selection

Genotypes a	Genotype frequencies (\%)		
	PflMix-1	PflMix-2	PflMix-3
$\mathrm{WbWb} / \mathrm{WcWc}$	0.0	10.7	0.0
$\mathrm{WbWb} / \mathrm{WcMc}$	19.4	10.7	3.2
$\mathrm{WbWb} / \mathrm{McMc}$	16.1	17.9	0.0
$\mathrm{WbMb} / \mathrm{WcWc}$	16.1	10.7	22.6
$\mathrm{WbMb} / \mathrm{WcMc}$	22.6	25.0	29.0
$\mathrm{WbMb} / \mathrm{McMc}$	12.9	14.3	6.5
$\mathrm{MbMb} / \mathrm{WcWc}$	6.5	7.1	19.4
$\mathrm{MbMb} / \mathrm{WcMc}$	6.5	3.6	19.4
$\mathrm{MbMb} / \mathrm{McMc}$	0.0	0.0	0.0
Numbers of females used for sequencing	31	28	31
${ }^{\text {a }}$ Wild type B-I260 mutant type C-S56L	ant type B are show	f $S d h B$ an Mb, Wc,	pe C-S56 spectively

Table S5. Results of HRM analysis for $S d h B$ and $S d h C$ genotyping in allele-selected recoupling

Intermixed strains	Parental crosses within each intermixed strain				F1 females		Recoupled strains
	Males		Females				
	No.	Genotypes	No.	Genotypes	No.	Genotypes	
PflMix-1	2	R/R	4	SR/SR	1	SR/RR	
					2	RR/SR	
					4	SR/RR	
					5	SR/NA	
					7	SR/NA	
					8	SR/RR	
					9	SR/SR	
					10	RR/RR	PflMixMT-1
PflMix-2	7	R/R	1	RR/SR	1	RR/RR	PflMixMT-2
					2	RR/SR	
					3	RR/RR	
					4	RR/SR	
CyeMix-2	5	R/R	4	SR/RR	2	NA/RR	
					3	RR/RR	
					4	RR/RR	
					5	SR/RR	
					6	RR/RR	
					7	RR/RR	CyeMixMT-2
					8	RR/RR	
CyeMix-3	6	R/R	5	RR/RR			CyeMixMT-3

'No.' indicates individual identification number. Genotypes are indicated as $S d h B / S d h C$, and the genotype notation is the same as Table S1. Data of parental male and females and their F1 females that were not used for generating recoupled strains were omitted. Genotypes of $S d h B$ and $S d h C$ in all of these individuals were confirmed by sequencing analysis later, and no discrepancy was found (Sequence data were not shown other than recoupled strains which sequence data are represent in Supplementary Data 1 and Data 2).

[^0]: Co-occurrence of subunit B and C mutations in respiratory complex II confers high resistance levels to pyflubumide and cyenopyrafen in the two-spotted spider mite Tetranychus urticae (Acari: Tetranychidae)

 Ayumu Maeoka, Masahiro Osakabe*

 Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan

 * Correspondence to: M Osakabe, Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan, E-mail: osakabe.masahiro.2r@kyoto-u.ac.jp (or masaosa task@hotmail.co.jp)

[^1]: ${ }^{a}$ If concentration-mortality curves did not rise within the range of the tested concentration due to the extremely high resistance levels, the LC_{50} values were indicated as $>10,000 \mathrm{mg} \mathrm{L}^{-1}$.
 ${ }^{\mathrm{b}}$ Resistance factors (RF) were calculated as a ratio of LC_{50} to TsukubaS_WT.

[^2]: $* . * * * * * * * * * * * * * * * * * *$

