Combination of target site mutation and associated CYPs confers high-level resistance to pyridaben in Tetranychus urticae

Yusuke Itoh, ${ }^{\text {a }}$ Yushi Shimotsuma, ${ }^{\text {a }}$ Akiya Jouraku, ${ }^{\mathrm{b}}$ Wannes Dermauw, ${ }^{\mathrm{c}, \mathrm{d}}$ Thomas Van Leeuwen, ${ }^{\mathrm{c}}$ Masahiro Osakabe ${ }^{\mathrm{a}^{*}}$

* Correspondence to: Masahiro Osakabe, Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan. E-mail: osakabe.masahiro.2r@kyoto-u.ac.jp; masaosa_task@hotmail.co.jp
\dagger Joint first authors
a Graduate School of Agriculture, Kyoto University, Kyoto, Japan
b Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
c Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
d Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Merelbeke, Belgium

Abstract

Pyridaben is a mitochondrial electron transport complex I inhibitor. The H110R mutation in the PSST subunit has been reported as a major factor in pyridaben resistance in the two-spotted spider mite, Tetranychus urticae. However, backcross experiments revealed that the mutant PSST alone conferred only moderate resistance. In contrast, inhibition of cytochrome P450 (CYP) markedly reduces resistance levels in a number of highly resistant strains. It was reported previously that maternal factors contributed to the inheritance of pyridaben resistance in the egg stage, but the underlying mechanisms have yet to be elucidated. Here, we studied the combined effects of the PSST H110R mutation and candidate $C Y P \mathrm{~s}$, as metabolic resistance factors, on pyridaben resistance in T. urticae. We found that the maternal effects of inheritance of resistance in the egg stage were associated with CYP activity. Analysis of differential gene expression by RNA-seq identified CYP392A3 as a candidate causal factor for the high resistance level. Congenic strains, where the alleles of both PSST and CYP392A3 were derived from a resistant strain ($\mathrm{RR} \mathrm{i} ; \mathrm{i}=1$ or 2) and a susceptible strain (SS_i) in a common susceptible genetic background, were constructed by markerassisted backcrossing. RR_i showed upregulation of CYP392A3 and high resistance levels $\left(\mathrm{LC}_{50}>10,000 \mathrm{mg} \mathrm{L}^{-1}\right)$, while SS_i had $\mathrm{LC}_{50}<10 \mathrm{mg} \mathrm{L}^{-1}$. To disentangle the individual effects of PSST and CYP392A3 alleles, we also attempted to uncouple these genes in RR_i. We conclude that given the variation in LC_{50} values and expression levels of CYP392A3 in the congenic and uncoupled strains, it is likely that the high pyridaben resistance levels are due to a synergistic or cumulative effect of the combination of mutant PSST and associated CYPs, including CYP392A3, but other yet to be discovered factors cannot be excluded.

Keywords: genetic linkage, acaricide resistance, METI, complex I, Acari,

1. Introduction

Target site resistance, as well as detoxification, is a major mechanism of pesticide resistance (Feyereisen et al., 2015; Li et al., 2007; Van Leeuwen and Dermauw, 2016; Van Leeuwen et al., 2010). In some cases, resistance levels are strongly correlated with the frequency of target site resistance mutations, such as for I1017F in chitin synthase 1 and etoxazole resistance in the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae) (Demaeght et al. 2014; Osakabe et al., 2017; Van Leeuwen et al. 2012). However, a target site mutation alone sometimes has only limited phenotypic strength and cannot explain the high resistance levels observed in the field (Riga et al., 2017).

Pyridaben is a mitochondrial electron transport complex I (NADH:ubiquinone oxidoreductase) inhibitor (METI-I) (Van Leeuwen et al., 2010). METI-Is were introduced commercially in the early 1990s (Hollingworth et al., 1994; Obata et al., 1992) and have been used worldwide. However, T. urticae rapidly developed resistance to METI-Is globally (Devine et al., 2001; Kim et al., 2004, 2006; Stumpf and Nauen, 2001). Pyridaben binds to the complex I PSST subunit (Shuler and Casida, 2001), and a nonsynonymous substitution, H110R (H92R in Yarrowia lipolytica numbering), in PSST was identified as a resistance factor (Bajda et al. 2017). However, marker-assisted backcross experiments revealed that the mutant PSST alone conferred only moderate resistance $\left(\mathrm{LC}_{50}=\sim 200 \mathrm{mg} \mathrm{L}^{-1}\right.$; Bajda et al., 2017) even though the LC_{50} of the donor Belgium strain, MR-VP, exceeded $30,000 \mathrm{mg} \mathrm{L}^{-1}$ (Van Pottelberge 2009).

Inhibition of cytochrome P 450 (CYP) activity by piperonyl butoxide (PBO) reduce LC_{50} values for pyridaben from $>10,000$ to $<100 \mathrm{mg} \mathrm{L}^{-1}$ in several Korean and

Japanese (NPR) T. urticae strains (Kim et al., 2006; Sugimoto and Osakabe, 2014). In contrast, inhibition of esterase and glutathione S-transferase did not affect pyridaben resistance (Kim et al., 2006; Sugimoto and Osakabe, 2014). Differing from these East Asian strains, treatment with PBO and inhibition of esterase by S, S, S-tributylphosphorotrithioate (DEF) reduced the LC_{50} values from $>35,000$ to 385 and 560 mg L^{-1}, respectively, in MR-VP (Van Pottelberge et al., 2009). Taken together, these observations suggest an association of CYPs with high-level pyridaben resistance, whereas the role of esterase in pyridaben resistance may be different between MR-VP and the Korean and Japanese strains.

A striking characteristic of pyridaben resistance is the maternal effect in inheritance of resistance, which is limited to the egg stage; no clear maternal effect is observed in other stages (Devine et al., 2001; Stumpf and Nauen, 2001; Sugimoto and Osakabe, 2014; Van Pottelberge et al., 2009). In general, maternal effects can be conferred by a target site mutation encoded in mitochondrial DNA (Van Leeuwen et al., 2006; Van Nieuwenhuyse et al., 2009). However, the target-site, PSST, is encoded in the nuclear DNA, and whether additional mitochondrial factors are involved in the mode of action and resistance is unknown. Quantitative trait locus (QTL) analysis of pyridaben resistance based on the crosses between Japanese resistant, NPR, and susceptible, NPS, strains using microsatellites over scaffold 7 revealed a single common QTL region over the loci of PSST and five CYPs: CYP385A1 (tetur07g05500), CYP392A1
(tetur07g06410), CYP392A3 (tetur07g06460), CYP392A4 (tetur07g06480), and CYP390B1 (tetur07g08209) (Bajda et al., 2017). Therefore, these CYPs were hypothesized to contribute to the high levels of pyridaben resistance, and potentially to the maternal effects observed in eggs.

In this study, we further examined the involvement of CYPs, and the effects of the combination of PSST H110R mutation and candidate CYPs, on pyridaben resistance in T. urticae. First, we determined the DNA sequences of mitochondrially encoded complex I subunits ND1 and ND5, to check for polymorphisms and exclude maternal effects due to mitochondrially encoded proteins. Then, we investigated the association of CYP enzymatic activity with the maternal effects in eggs. Candidate $C Y P \mathrm{~s}$ associated with pyridaben resistance were further identified based on comprehensive gene expression analysis using RNA-seq and quantitative real-time PCR (qPCR), as well as toxicological experiments. Finally, we evaluated the effects of the combination of H110R mutation in PSST and candidate CYP on the resistance level through double introgression of these alleles from resistant strain into a susceptible genetic background and uncoupling of these genes in the congenic lines.

2. Materials and methods

2.1. Acaricide

A commercial formulation of pyridaben ($20 \% \mathrm{FL}$; Nissan Chemical, Tokyo, Japan) was used for toxicity bioassays.

2.2. T. urticae strains

All T. urticae strains were originally collected from agricultural fields in Japan (Table 1). Pyridaben-resistant (NPR) and -susceptible (NPS) strains were the same as those reported previously by Sugimoto and Osakabe (2014) and Bajda et al. (2017), and underwent positive and reverse selection with pyridaben in the laboratory.

Nine other field-collected strains were maintained without pyridaben selection. Seven and one of the nine strains were the same as those described by Osakabe et al. (2017) and Sugimoto et al. (2020), respectively. All strains were reared on kidney bean (Phaseolus vulgaris L.) leaf disks ($\sim 5 \mathrm{~cm}$ in diameter for stock culture) placed on watersoaked cotton in Petri dishes (9 cm in diameter) in the laboratory at $25^{\circ} \mathrm{C}$, with 60% relative humidity (RH) and a 16-h light/8-h dark photoperiod (unless otherwise noted).

2.3. Maternal effects of pyridaben resistance inheritance in the F1 egg stage

To obtain F1 eggs, mass mating was performed between 200 unmated females and 200 adult males on kidney bean leaf disks for 24 h . Then, five inseminated females were introduced to each of four kidney bean leaf disks $(2 \times 2 \mathrm{~cm})$ and allowed to produce eggs for 24 h . The adult females were removed, and the leaf disks were immersed in pyridaben solution for 10 s . After air-drying on a paper towel, the leaf disks were placed on water-soaked cotton in Petri dishes and kept in the laboratory. Seven days later, hatchability of the eggs was assessed under a stereomicroscope.

One Petri dish was assigned to one test concentration of pyridaben including control treatment with water. Mass mating was performed for NPR $q \times \operatorname{NPR}{ }^{\lambda}$ (two replicates), $\mathrm{NPR} q \times \mathrm{NPS} \overparen{\varnothing}$ (three replicates), $\mathrm{NPS} Q \times \mathrm{NPR} \widehat{ }$ (two replicates), and NPS $q \times$ NPS $\widehat{ }$ (four replicates). The data of replicates were combined and used to compute LC_{50} values. We limited the highest test concentration to $20,000 \mathrm{mg} \mathrm{L}^{-1}$ because the viscosity of pyridaben solution increased with concentration.

Corrected mortality ($M c$) was calculated using Abbott's formula (Abbott, 1925); $M c=(B-A) / B$, where A and B represent the survival rates on test and control leaves, respectively. The LC_{50} values and 95% confidence intervals (CIs) were computed by a
program for the 50% effective dose $\left(\mathrm{ED}_{50}\right)$ using an R script (http://aoki2.si.gunmau.ac.jp/R/ed50.html; Aoki, 2011) modified by Sugimoto and Osakabe (2014). Statistical significance was evaluated by inspecting overlap of the 95% CIs of LC_{50} values.

2.4. Sequencing of ND1 and ND5 subunits of complex I

Mitochondrial DNA of NPS and NPR strains was extracted from ~ 100 adult females as described by Van Leeuwen et al. (2008). The ND1 and ND5 genes (NAD1 and NAD5, respectively) were amplified by PCR in a volume of $50 \mu \mathrm{~L}(32.3 \mu \mathrm{~L}$ of double-distilled water; $10 \mu \mathrm{~L}$ of buffer; 0.5 mM dNTP-mix; $0.3 \mu \mathrm{M}$ of each primer; 1.2 $\mu \mathrm{L}$ of template DNA and $1 \mu \mathrm{~L}$ of enzyme-mix) using an Expand Long Range, dNTPack kit (Roche, Basel, Switzerland) with an initial denaturation step at $92^{\circ} \mathrm{C}$ for 2 min , followed by 35 cycles of $92^{\circ} \mathrm{C}$ for $20 \mathrm{~s}, 54^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 58^{\circ} \mathrm{C}$ for 3 min , and $58^{\circ} \mathrm{C}$ for 5 min. NAD1 was amplified in one PCR amplicon, while NAD5 was amplified in two overlapping amplicons (Table S1). PCR products were purified using an EZNA Cycle Pure Kit (Omega Bio-Tek, Norcross, GA, USA) and sent to LGC Genomics (Berlin, Germany) for Illumina MiSeq paired-end ($2 \times 300 \mathrm{bp}$) sequencing (Illumina, San Diego, CA, USA). Generated reads were adapter clipped by LGC Genomics and submitted to the NCBI database (see Accession number section). Next, clipped reads were mapped against the T. urticae mitochondrial genome from the London strain (Grbić et al., 2011) using Bowtie 1.1.2 (Langmead et al., 2009) with the default settings. From the resulting BAM file for each strain (NPS and NPR), the NAD1 and NAD5 consensus sequences were derived using a Perl script (gene_extractor.pl) written by Rutger Vos (available at https://github.com/naturalis/fastq-simpletools/tree/master/script) and a gff-file of the London mitochondrial genome, which was
created using the MITOS web server (Bernt et al., 2013). In case heterozygous single nucleotide polymorphisms (SNPs) were present, the SNP with the highest frequency was included in the final consensus sequence.

2.5. Involvement of CYP activity in pyridaben resistance and its maternal effects in eggs

2.5.1. CYP activities in females and eggs

CYP activities were evaluated by O-deethylation of 7-ethoxy-4trifluolomethylcoumarin (7EFC) according to Van Leeuwen et al. (2005), in females and eggs of the NPR and NPS strains, and in the F1 generation derived from their reciprocal crosses. To obtain the F1 generation, 200 NPR and NPS females were mated with 200 males of NPS (RS) and NPR (SR), respectively, on leaf disks ($5 \times 5 \mathrm{~cm}$) for 24 h. Eggs and adult females of the F1 generation were obtained for subsequent CYP analysis in the same way as for the mass mating in section 2.3.

Then, 200 adult females or 1,000 eggs (within 1 day after oviposition) were homogenized in $350 \mu \mathrm{~L}$ of sodium phosphate buffer $(0.1 \mathrm{M}, \mathrm{pH} 7.6)$ at $5^{\circ} \mathrm{C}$. After centrifugation $(1,000 \times \mathrm{g})$ for 15 min at $4^{\circ} \mathrm{C}, 50 \mu \mathrm{~L}$ of the supernatant was mixed with $50 \mu \mathrm{~L}$ of substrate solution ($0.4 \mathrm{mM} 7 \mathrm{EFC}, 0.2 \mathrm{mM} \mathrm{NADP}^{+}, 1 \mathrm{mM}$ glucose-6phosphate, and 0.014 units of glucose-6-phosphate dehydrogenase in sodium phosphate buffer) in 96 -well microplates. The microplates were shaken automatically at $37^{\circ} \mathrm{C}$ for 30 min in the dark inside a microplate reader (SH-9000Lab; Corona Electric, Hitachinaka, Japan). The enzyme reaction was stopped by adding $100 \mu \mathrm{~L}$ solution of 1:1 acetonitrile:TRIZMA base solution $(0.05 \mathrm{M}, \mathrm{pH} 10)$. After 10 min , 7-hydroxy-4trifluoromethylcoumarin (7HFC) fluorescence was measured at 510 nm with an excitation wavelength of 410 nm . Wells containing sodium phosphate buffer instead of
the supernatant were used as negative controls. The 7EFC-O-deethylation activity and protein concentration in the supernatant were calibrated using a 7 HFC standard curve $(0.02-0.2 \mu \mathrm{M})$ and a Micro BCA Protein Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA).

Three biological replicates with three technical replicates were used in all experiments. In each replicate, measurements of females and eggs of NPR and NPS strains (or F1 from the reciprocal crosses) were performed on the same microplate using 7HFC solutions for calibration. The reagents used for CYP analysis were purchased from FUJIFILM Wako Pure Chemical (Osaka, Japan), Sigma-Aldrich Japan (Tokyo, Japan), or Oriental Yeast (Tokyo, Japan).

Differences in CYP activity according to resistance status were evaluated by oneway analysis of variance (ANOVA), assuming that the samples in the same microplate (replicate) were paired observations, using the "aov" module after Bartlett's test (performed with the "bartlett.test" module). All statistical analyses in the following sections were performed using R software (R Foundation for Statistical Computing, Vienna, Austria) (R Core Team, 2017).

2.5.2. Effects of CYP inhibition in females on the resistance status of their eggs

Fifty adult females of NPR were introduced onto four leaf disks. After 30 min , two leaf disks each were sprayed with 2 mL of solvent (acetone:water $=1: 1$) with or without PBO (PBO+ and PBO- , respectively) ($250 \mathrm{mg} \mathrm{L}^{-1}$; FUJIFILM Wako Pure Chemical). The females were allowed to feed on the leaves for 4 h after the solvent had dried. From each of the four leaf disks, 40 females were moved to eight leaf disks $(2 \times 2 \mathrm{~cm} ; 5$ 아 per leaf disk). After oviposition for 24 h , all females were removed from the leaf disks.

Eight leaf disks from the PBO+ (or PBO-) treatment group were immersed in 10,000 $\mathrm{mg} \mathrm{L}^{-1}$ pyridaben solution for $10 \mathrm{~s}(\mathrm{PBO}+/ \mathrm{Pyr}+[$ or $\mathrm{PBO}-/ \mathrm{Pyr}+])$. The remaining eight leaf disks of $\mathrm{PBO}+\left(\right.$ or $\left.\mathrm{PBO}^{-}\right)$were immersed in water for $10 \mathrm{~s}(\mathrm{PBO}+/ \mathrm{Pyr}-$ [or PBO-/Pyr-]). Egg hatchability was assessed under a stereomicroscope after 7 days. The experiments for these treatments were performed with six replicates.

The numbers of hatched and unhatched eggs of leaf disks in each treatment group were combined for each replicate and transformed into empirical logits. The effects of PBO and pyridaben treatments on egg hatchability were evaluated by two-way ANOVA using the "aov" module after Bartlett's test (performed using the "bartlett.test" module). Multiple comparisons among the four treatments were performed by the Tukey-Kramer method using the "TukeyHSD" module, with one-way ANOVA model constructed using the "aov" module.

2.6. RNA-seq of pyridaben-resistant and -susceptible strains

Two hundred adult females of NPR (or NPS) were introduced onto each of two leaf disks. After 24 h , one of the two leaf disks was immersed in pyridaben solution (200 mg L^{-1}) for 10 s to induce resistance-associated gene expression (induced samples). The other leaf disk was immersed in water without pyridaben for 10 s as a control (noninduced samples). After 1 h , mites were collected and homogenized in $800 \mu \mathrm{~L}$ of Isogen (Nippon Gene, Tokyo, Japan). Total RNA samples were purified in accordance with the manufacturer's protocol. After isopropanol precipitation, total RNA was dissolved in $100 \mu \mathrm{~L}$ of nuclease-free water (Qiagen, Hilden, Germany). RNA-seq (paired-end; read length: 101 bp) was performed by Hokkaido System Science Co. (Sapporo, Japan) using an Illumina HiSeq2000 (Illumina). Three biological replicates were prepared and
analyzed for each strain and treatment.
The raw RNA-seq reads of each sample were cleaned using Trimmomatic 0.32 (Bolger et al., 2014). A reference transcriptome assembly was constructed by de novo assembly of merged clean reads (six replicates) of the NPR strain using Trinity version r20140717 (Haas et al., 2013). Annotation of the reference transcriptome assembly and calculation of gene expression levels in each strain were performed as described by Sugimoto et al. (2020). Differentially expressed genes (DEGs) between strains and between treatments were determined using the iDEGES/edgeR method in TCC version 1.1.99 (Sun et al., 2013), with the following criteria: false discovery rate (FDR) <0.05, and M-value $\left[\log _{2}(\mathrm{NPR})-\log _{2}(\mathrm{NPS})\right] \geq 1$. Raw tag count data of three replicates in each condition (strain and treatment) were examined by the iDEGES/edgeR method for each comparison (normalization of the gene expression levels was performed internally using the iDEGES/edgeR method).

SNP calling of the PSST gene in each strain was performed by mapping the clean reads to the sequence of the PSST transcript in the assembly using SAMtools $0.1 .19(\mathrm{Li}$, 2011).

2.7. Effects of PSST mutation and CYP expression level on pyridaben susceptibility in local populations

2.7.1. Toxicological bioassay

The pyridaben susceptibilities of 11 T. urticae strains (Table 1) were tested using the spraying method of Kunimoto et al. (2017). Twenty-five adult females were introduced onto a leaf disk $(3 \times 3 \mathrm{~cm})$ and sprayed with pyridaben solution $(1 \mathrm{~mL})$ at the assigned concentration (adhesion amount: $1.91 \pm 0.16 \mathrm{mg} \mathrm{cm}^{-2}$). The maximum
pyridaben concentration was $10,000 \mathrm{mg} \mathrm{L}^{-1}$ due to the viscosity of the solution. Milli-Q water (1 mL) was sprayed onto the control leaf disk assigned for control. Mortality was checked after 24 h . Mites that could not walk normally after being touched with a fine brush were counted as dead. Four leaf disks were used for each concentration. The data of the four leaf disks were combined to compute LC_{50} values (see Section 2.3).
2.7.2. PSST mutation frequency analysis using $q P C R$ with a resistance allele-specific primer set

We predicted the PSST H110R frequency in the 11 local T. urticae strains (Table 1) by qPCR using a resistance allele-specific primer set (tu_PSST_222F and tu_PSST330T_357R) and a common primer set as an internal reference (tu_PSST_308F and tu_PSST_419R), developed by Maeoka et al. (2020) (Table S2). DNA samples were extracted from 50 adult females using a DNeasy Blood \& Tissue Kit (Qiagen), treated with RNase A (Qiagen), and then purified using the NucleoSpin gDNA Clean-up XS (Macherey-Nagel, Düren, Germany). qPCR was performed using a LightCycler 96 System (Roche Diagnostics, Tokyo, Japan) with TB Green Premix Ex TaqTM II (Tli RNaseH Plus) (TaKaRa Bio, Kusatsu, Japan) in a $20-\mu$ L reaction mixture (Supplementary information 1). We used three biological replicates with two technical replicates for each strain.

For calibration, a strain homozygous for PSST H110R (RR strain) was established from descendants of mating pairs from NPR, based on direct sequencing analysis using a Genetic Analyzer 3130 with BigDye Terminator v3.1 Cycle Sequencing Kit (Thermo Fisher Scientific) (Supplementary information 2) and subjected to qPCR in each replication. H110R frequency was computed by the $\Delta \Delta \mathrm{Cq}$ method (Livak et al., 2001;

Pfaffl, 2001; Schmittgen et al., 2000; Winer et al., 1999), and based on Osakabe et al. (2017) and Maeoka et al. (2020).

2.7.3. RT-qPCR analysis for validation of CYP expression determined by $R N A$-seq

Total RNA was prepared from 200 adult females for the 11 strains listed in Table 1 using an RNeasy Micro Kit (Qiagen). First-strand cDNA was synthesized from total RNA using a PrimeScript RT Reagent Kit with gDNA eraser (TaKaRa Bio). Of the 14 CYPs shown to be upregulated in NPR by RNA-seq (see Section 3.4), we designed efficient and specific primer sets for $12 C Y P$ s based on the RNA-seq data; specific primer sets could not be produced for two CYPs (CYP392A10 and CYP392D8). The gene expression levels of the 12 CYPs were evaluated by qPCR analysis using the LightCycler 96 system with TB Green Premix Ex Taq II (Tli RNaseH Plus) (Supplementary information 1). qPCR was performed for three biological replicates for each strain, with two technical replicates. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and ubiquitin genes were used as references (Table S3). The gene expression level was computed with the $\Delta \Delta \mathrm{Cq}$ method.

The $\log _{2}$-fold changes $(\log 2 \mathrm{FC}=-\Delta \Delta \mathrm{Cq})$ of $C Y P$ expression level in the strains in comparison to the NPS strain were evaluated by multiple comparison of $\Delta \mathrm{Cq}$ values with Dunnett's contrast, using the "glht" module in the "multicomp" package, by with a two-way ANOVA model without interaction (performed using the "aov" module). Prior to the two-way ANOVA, Bartlett's test was performed for all genes using the "bartlett.test" module.

[^0]The correlation of Log2FC in PSST mutation frequencies (calibrator: RR; Section 2.7.2) and expression levels of CYP genes (calibrator: NPS) in the 11 strains (Section 2.7.3) with their LC_{50} values (Section 2.7.1) were analyzed using the " lm " module. For PCA, the Log2FC data set for each gene was standardized over the 11 strains. PCA for PSST and CYP genes was performed using the "prcomp" module.

2.8. Sanger sequencing for CYP392A3

2.8.1. Cloning and sequencing of NPR CYP392A3 alleles

Based on the results presented in Section 2.7, we cloned and sequenced CYP392A3 of the NPR strain. To clone CYP392A3, total RNA was prepared from 200 adult females of NPR and cDNA was synthesized as described in Section 2.7.3. The DNA construct of CYP392A3 was produced from amplified PCR products (Supplementary information 2) using a primer set for CYP392A3 (CYP392A3fusion-F and -R; Table S4) designed for cloning the pAc5.1/V5-His A plasmid (Thermo Fisher Scientific). Cloning was performed using an In-Fusion HD Cloning Kit (TaKaRa Bio) according to the manufacturer's protocol. One Shot TOP10 Chemically Competent Escherichia coli (Thermo Fisher Scientific) was transformed with the plasmid using a rapid chemical transformation according to the manufacturer's protocol. Four transformed E. coli colonies occurred on the L-broth plates containing ampicillin $\left(100 \mu \mathrm{~g} \mathrm{~m}^{-1}\right)$ were separately amplified in 5 mL of L-broth (ampicillin $50 \mu \mathrm{~g} \mathrm{~mL}$ -) at $37^{\circ} \mathrm{C}$ for 24 h , and plasmids were purified using NucleoSpin Plasmid EasyPure (TaKaRa Bio). The purified plasmids were used for sequencing (Supplementary information 2) with the primers of CYP392A3-forward and -reverse, CYP392A3-692F, CYP392A3-938R, and Ac5-seq-F and -R (Table S4).

2.8.2. Direct sequencing of CYP392A3 alleles in males of local strains

To assess the frequency of the CYP392A3 variant with the NPR specific insertion in the local populations described in Section 2.8.1 (see also Section 3.6.1), we performed direct sequencing of CYP392A3 for haploid adult males (Supplementary information 2). The numbers of males used for sequencing were $16,12,12,1011$, and 8 for NPS, Izu2, Masu, SoOm1, Yawata, and NPR, respectively.

First, we performed sequencing analysis using only CYP392A3-reverse primer for the indel region. The templates of CYP392A3 used for sequencing were amplified using CYP392A3-forward and -reverse primers (Table S4). Then, seven and four individuals were picked up from NPS, and each of the other strains, respectively, with reference to the substitution. These were subjected to additional sequencing analysis using CYP392A3-forward, CYP392A3-692F, and CYP392-938R primers (Table S4) to complete the amplicon sequences.
2.9. Effects of the combination of mutant PSST and highly expressed CYP392A3
2.9.1. Double introgression of mutant PSST and CYP392A3 alleles (INS2+ type) into susceptible strain by the marker-assisted backcrossing

Next, we performed double introgression of the mutant PSST and highly expressing CYP392A3 genes into the genetic background of the susceptible strain. However, as monitoring gene expression as a marker in each individual mite was difficult, we used an insertion (INS2; see Fig. S8) commonly revealed by CYP392A3 sequencing of strains with high CYP392A3 expression levels (see Section 3.6) for the following introgression experiments, as an alternative marker.

Two paternal lines of NPR ($\mathrm{R} _1$ and $\mathrm{R} _2 ; \mathrm{c} .329 \mathrm{~A}>\mathrm{G}[\mathrm{H} 110 \mathrm{R}]$ in PSST and
c. 1242_1243insAATATTACC [p.E414_N415insNIT; INS2] [INS2+ type] in CYP392A3), and two of NPS (S_1 and S_2; 329A [H110] in PSST with no insertion at c.1242_1243 [INS2- type] in CYP392A3) (see Section 3.6.1), were established from descendants of homogeneous mating pairs of NPR and NPS strains (mutation notation follows the Human Genome Variation Society; http://www.hgvs.org/mutnomen/examplesDNA.html; den Dunnen and Antonarakis 2000). The genotypes of parental mites were determined by direct sequencing analysis (Supplementary information 2) using CYP392A3-forward and -reverse primers for CYP392A3, and PSST-73F and PSST-664R for PSST (Table S4).

Marker-assisted backcrossing (Bajda et al., 2017; Riga et al., 2017) was performed for two lines derived from two parental matings ($\mathrm{S} _1 \varphi \times \mathrm{R} _1 \delta^{\lambda}$ and $\mathrm{S} _2 q \times \mathrm{R} _2 \delta^{\lambda}$) on leaf disks $(2 \times 2 \mathrm{~cm})$ placed in a growth chamber $\left(28^{\circ} \mathrm{C}, 60 \% \mathrm{RH}\right.$, and $16-\mathrm{h}$ light $/ 8-\mathrm{h}$ dark photoperiod; Fig. S1). All individuals used for the mating experiments were subjected to genotyping of PSST and CYP392A3 by direct sequencing. Eight F1 hybrid females were separately backcrossed with S_1 (or S_2) adult males. Eight female offspring produced by females heterozygous for both $\operatorname{PSST}(\mathrm{H} 110 / \mathrm{H} 110 \mathrm{R})$ and CYP392A3 (INS2-/INS2+) in each generation were used for the next backcrossing until the B6 generation.

Then, 16 mother-son matings between B6 females and their male offspring were performed for each line. The mothers were kept at $10^{\circ} \mathrm{C}$ during development of their offspring to adulthood. Twelve B7 females from B6 females that were heterozygous for both PSST and CYP392A3, and mated with sons of H110R and INS2+ (or H110 and INS2-), were used for the next mother-son matings. The B8 offspring from one B7 female fixed to H110R and INS2+ (or H110 and INS2-) were chosen from each line
and propagated as the H110R and INS2+ homozygous subline (RR_1 [or RR_2]) (or H110 and INS2- homozygous subline; SS_1 [or SS_2]) (Fig. S1).

Pyridaben susceptibilities and CYP392A3 expression levels of the paternal lines and congenic sublines were examined by the toxicological analysis (Section 2.7.1) and RTqPCR analysis (Supplementary information 1), respectively. For RT-qPCR, we designed a new forward primer for CYP392A3 (5'-AAAGAGCTTTTCAAACACCAGAATG-3'; amplification efficiency $E=1.90$), because a nucleotide mismatched to NPS was found in the original forward primer (Table S3; see Section 2.8.2). GAPDH and ubiquitin were used as reference genes.

The expression levels of CYP392A3 of $\mathrm{R} _\mathrm{i}$ and $\mathrm{RR} \mathrm{i}(\mathrm{i}=1$ or 2$)$ lines, against the S_i and SS_i lines, respectively, were evaluated based on $\Delta C q$ values by two-way ANOVA without interaction (performed using the "aov" module). Differences in Log2FC between R_i and RR_i lines (the calibrators were S_i and SS_i, respectively) were evaluated by two-way ANOVA without interaction using the "aov" module, following the multiple comparison by the Tukey-Kramer method using the "TukeyHSD" module. Prior to the two-way ANOVA, Bartlett's test was performed in all genes using the "bartlett.test" module.

2.9.2. Uncoupling of resistant congenic line (R R_i)-derived PSST (H110R) and CYP392A3 (INS2+ type) alleles

We performed marker-assisted crossing to establish homozygous strains that had either mutant PSST or INS2+ type CYP392A3 (Fig. S2). Genotypes of PSST and CYP392A3 of all mites used in the uncoupling process were monitored by the highresolution melting (HRM) analysis using a LightCycler 96 system with TB Green

Premix Ex Taq II (Tli RNaseH Plus) (Supplementary information 2). Crude DNA samples of mites, as well as direct sequencing as described in Section 2.8.2 (Supplementary information 2), were used for HRM. Genotypes of PSST and CYP392A3 of all crude DNA samples associated with the established uncoupled strains in all generations were finally confirmed by the direct sequencing after the crossing experiments had been completed, and no discrepancies were observed.

Twelve unmated F1 females from 12 individual crosses between SS_1 (or SS_2) females and RR_1 (or RR_2) males (two unmated females per pair) laid haploid male F2 (F2M) eggs on leaf disks ($1.5 \times 1.5 \mathrm{~cm}$) in a growth chamber $\left(28^{\circ} \mathrm{C}, 60 \% \mathrm{RH}\right.$, and 16-h light/8-h dark photoperiod). The resulting 84 F2M males (7 per F1 female) were individually mated with SS_1 (or SS_2) females.

Four mating pairs from the SS_2 $q \times$ RR_2才 line, where the genotypes of F2M were H110R PSST and INS2+ type CYP392A3 (R-INS2+), H110 and INS2- type (H-INS2-), H110R and INS2- type (R-INS2-), and H110 and INS2+ type (H-INS2+), respectively, were selected for mother-son mating (a series of recombinant F2Ms was not obtained in the SS_1 $\odot \times$ RR_1 $\begin{gathered}\text { dine; see Table S8). Twelve F3 females (F3F) from }\end{gathered}$ each of the four pairs (48 females in total) were mated with their own sons (F4M). Sixteen offspring females (F4F), produced by F3F that mated with F4M of the same genotypes as F2M, were used for the next mother-son matings. The F5 offspring of one F4F homozygote in both PSST and CYP392A3 loci were chosen for each of the four F2M genotypes and propagated as uncoupled sublines.

Toxicological bioassay and RT-qPCR analysis of CYP392A3 of uncoupled strains were performed and evaluated statistically, as described in Section 2.7.1 and 2.9.1, respectively. To compute $\log 2 \mathrm{FC}$ of $C Y P 392 A 3$, the expression data of $\mathrm{S}_{-} 1$ (i.e., the
lowest expression level) were used as a calibrator, to align the standards for comparison among uncoupled strains.

3. Results

3.1. Maternal effects of pyridaben resistance inheritance in the F1 egg stage

The LC_{50} values of F 1 eggs were $1.19,12.6,5,916$, and $61,310 \mathrm{mg} \mathrm{L}^{-1}$ in NPS (우) \times NPS ($\left.{ }^{\text {}}\right)$, NPS \times NPR, NPR \times NPS, and NPR \times NPR, respectively (Fig. 1, Table 2), confirming the maternal effects first observed by Sugimoto and Osakabe (2014) for these strains.

3.2. Sequencing ND1 and ND5 subunits of complex I

No sequence polymorphisms were observed between NPR and NPS for NAD1 (Supplementary information 3). For NAD5, the 495th amino acid residue was fixed to leucine (TTA) and methionine (ATA) in NPS and NPR, respectively (Supplementary information 3). The corresponding residue in the London strain (Grbić et al. 2011), which is a pyridaben susceptible strain (Dermauw et al. 2013), is a methionine (M495). Moreover, L495 is not located in the postulated quinone-binding region (Bos taurus ND5, Nakamaru-Ogiso et al. 2003; Supplementary information 3), and substitution preference of leucine to methionine is favored in all protein types (Betts and Russell 2003), suggesting that this substitution is much likely not involved in pyridaben resistance in T. urticae.
3.3. Involvement of cytochrome P450 activity in the maternal effects on eggs

3.3.1. CYP activities in adult females and eggs

The 7EFC-O-deethylation activity was significantly higher in NPR than NPS in eggs, whereas the difference was only marginally significant in adult females (Fig. 2a). In the F1 generation, after reciprocal crosses between NPR and NPS, activity was equivalent between RS and SR in F1 adult females, but was higher in RS than SR eggs (Fig. 2b).
3.3.2. Effects of CYP inhibition in females on the pyridaben resistance of their eggs

Two-way ANOVA indicated significant effects of pyridaben treatment on eggs $\left(F_{[1}\right.$, $\left.{ }_{20]}=54.617, P=3.88 \times 10^{-7}\right)$ and PBO treatment on females $\left(F_{[1,20]}=5.879, P=\right.$ 0.0249), and of their interaction $\left(F_{[1,20]}=9.588, P=5.69 \times 10^{-3}\right)$ on egg hatchability. Treatment of adult females with PBO alone (PBO+/Pyr-) did not affect egg hatchability, similar to the group treated without PBO and pyridaben $\left(\mathrm{PBO}^{-} / \mathrm{Pyr}-\right.$) (Fig. 3). However, 81.7% of the eggs produced by PBO-untreated females hatched after pyridaben treatment $(\mathrm{PBO}-/ \mathrm{Pyr}+$), whereas treatment with PBO combined with pyridaben $(\mathrm{PBO}+/ \mathrm{Pyr}+)$ reduced the egg hatchability to 36.6%, indicating synergistic toxicity.

3.4. RNA-seq of pyridaben resistant and susceptible strains

Of over 24 million reads generated for each replicate, $\geq 91 \%$ passed the trimming process (Table S5). The reference transcriptome assembly consisted of 28,406 genes with 39,245 transcripts, and the N50 and E90N50 values of the assembly at the gene level were $2,473 \mathrm{bp}$ and $3,318 \mathrm{bp}$, respectively (Table S6).

The numbers of up- and downregulated DEGs in NPR compared to NPS were

1,544 and 456, respectively, in samples induced with pyridaben, and 1,429 and 405, respectively, in those without induction (Supplementary Data 1). In contrast, no DEGs were detected between samples with and without induction by pyridaben treatment. Sixteen CYPs were upregulated in NPR, compared to NPS in either or both of induced and non-induced samples (Fig. 4). Of the five CYPs with the highest (>4) M-values $\left[\log _{2}(\mathrm{NPR})-\log _{2}(\mathrm{NPS})\right]$, CYP392D8 (coverage of gene length aligned with top hit transcript $=11.3 \%$), CYP392D2 (25.9\%), CYP389C1_1 (14.9\%), and CYP392E4 (14.8%) showed negative A-values $\left[\left\{\log _{2}(\mathrm{NPR})+\log _{2}(\mathrm{NPS})\right\} \times 2^{-1}\right]$, indicating low expression levels in both NPR and NPS. In contrast, CYP392A3 (coverage $=78.3 \%$) showed a positive A-value (2.62) with a high M-value (4.75; 26.9-fold). Among the other 11 CYPs, nine and two genes showed positive and negative A-values, respectively. Four CYPs (CYP392B1, CYP392A10, CYP389C12, and CYP389C11) and two CYPs (CYP387A1 and CYP382A1) were detected as DEGs in samples with and without pyridaben induction, respectively. Next, we determined 14 of the 16 CYPs upregulated in NPR as candidate resistance factors (CYP387A1 and CYP382A1 were excluded as these were not detected as DEGs in the mites induced with pyridaben); these were subjected to RT-qPCR validation, as described in Section 2.7.3.

The SNP introducing the H110R mutation in the PSST gene was detected in all replicates of the NPR strain (Table S7). The rate of resistant (H110R) reads was 100\% in the NPR strain and 0% in the NPS strain.

Additionally, NADPH-cytochrome P450 reductase was upregulated twice (M-value $=1.04$) in NPR than NPS in both induced and non-induced samples (Supplementary Data 1).

3.5. Effects of PSST mutation and CYP expression level on pyridaben susceptibility in local populations

3.5.1. Toxicological bioassay

The LC_{50} values of NPR and NPS were 7,756 and $4.03 \mathrm{mg} \mathrm{L}^{-1}$, respectively (Table 3; Fig. S3). Six local strains (Iwate, Yokote, Izu2, SoKg, SoOm2, and Tsukuba) had significantly lower LC_{50} values than the concentration registered for field use (200 mg L^{-1}). Several individuals of Yokote and SoKg survived at concentrations higher than this concentration (Fig. S3). The LC_{50} of Masu exceeded the field concentration (Table 3). Yawata and SoOm1 strains showed high resistance levels.

3.5.2. PSST mutation frequency and expression levels of CYPs

The PSST was fixed to H 110 in the five pyridaben-susceptible local strains (Iwate, Izu2, SoKg, SoOm2, and Tsukuba; Fig. S4). The H110R frequencies were $0.06,0.05$, and 0.3 in Yokote, NPS, and Masu, respectively. In contrast, the alleles in NPR, Yawata, and SoOml were fixed for the H110R mutation. Consequently, the H110R frequencies were significantly correlated with the LC_{50} values to pyridaben (Fig. S5).

No obvious associations were observed between the LC_{50} values for pyridaben and Log2FC of CYP genes, although CYP392A3 expression frequently tended to be higher in strains with high H110R frequency in PSST (Fig. S4). Linear regression analysis detected significant correlations between the $\log 2 \mathrm{FC}$ and LC_{50} values for five CYP genes (Fig. S6); CYP385C1 and CYP388C11 showed negative correlations, while CYP392A3, CYP392B1, and CYP392D4 showed positive correlations. The largest slope was 0.950 for CYP392A3, although three susceptible strains (Izu2, Yokote, and Iwate) also showed significant increases in CYP392A3 expression levels (Fig. S4).

In PCA, the first (PC1) and second (PC2) components explained 49.9% of the total variance, and the variances were > 1 in PC1-PC4 (Fig. S7). Plots for PC1 and PC2 indicated higher PC2 values for strains that had high LC_{50} values for pyridaben (NPR, Yawata, SoOm1, and Masu; Fig. 5a). According to factor loading, higher PC2 values suggested higher PSST H110R frequencies and CYP392A3 expression levels (Fig. 5b). The NPR and Masu strains showed characteristically high expression levels of CYP392B1, causing separation from the Yawata and SoOm1 strains on the scatter plot (Fig. 5a). The Izu2 strain was close to the Yawata and SoOm1 strains, likely due to the high expression level of CYP392A3 in Izu2. This suggested an association of the high PSST H110R frequency and high CYP392A3 expression level with pyridaben resistance.
3.6. Sequence analysis of CYP392A3

3.6.1. Cloning and sequencing of CYP392A3 alleles of NPR

 DNA sequence alignment of the four CYP392A3 clones of the NPR strain with that of the London strain (tetur07g06460; Grbić et al., 2011) showed two insertions with 12 and 9 nucleotides between bases 783 and 784 (c.783_784insGATGCGTTACAA; INS1), and between bases 1,242 and 1,243 (c.1242_1243insAATATTACC; INS2) (Supplementary information 4; INS2+ type in Section 2.9). These nucleotide insertions resulted in the insertion of four (p.K261T_V262IinsDALQ; INS1) and three (p.E414_N415insNIT; INS2) amino acid residues, respectively (Fig. S8a; Supplementary information 5). One nonsynonymous SNP (c.314C>A [P105H]) was found in one clone (A3-1; Fig. S8a). We named the variants Ins-1 and Ins-2 for P105 and P105H, respectively.3.6.2. Direct sequencing of CYP392A3 alleles in males of local strains

Partial sequencing of the insertion region revealed that all males of all strains had INS1. However, individuals with INS1, but without INS2 (INS2- type in Section 2.9) had two SNPs in their INS1 DNA sequence in comparison with NPR (Table 4). The SNPs were nonsynonymous substitutions, resulting in p.K261_V262insDSLE (Fig. S8b). In the NPS strain, all males (93.8\%) had the INS2- type CYP392A3, except for one male with the INS2+ type (with both INS1 and INS2), while all NPR, Izu2, and Masu males had the INS2+ type (Table 4). The INS2+ type frequency was $\sim 60 \%$ in the SoOm1 and Yawata strains.

Amplicon sequencing revealed several nonsynonymous substitutions in INS2--type alleles. Consequently, the INS2- type included three variants: Del-1, Del-2, and Del-3 (Fig. S8b). The CYP392A3 of males that had INS2 were all Ins- 1 variant.

3.7. Effects of the combination of mutant PSST and highly expressed CYP392A3

3.7.1. Double introgression of mutant PSST and candidate CYP392A3 alleles (INS2+ type) into susceptible strain by marker-assisted backcrossing

The LC_{50} values of congenic lines against pyridaben were not significantly different (the 95\% CIs overlapped) from their parental lines with the same alleles in PSST and CYP392A3 (Fig. 6a, Table 5).

CYP392A3 expression levels were significantly higher in RR_1 and RR_2 compared to SS_1 and SS_2 (two-way ANOVA, $F_{[1,9]}=86.08, P=6.65 \times 10^{-6}$ and $F_{[1,9]}$ $=103.75, P=3.07 \times 10^{-6}$), respectively, as well as $R_{-} 1$ and $R_{-} 2$ compared to $S_{-} 1$ and S_2 $\left(F_{[1,9]}=80.17, P=8.9 \times 10^{-6} ;\right.$ and $F_{[1,9]}=20.64, P=0.0014$, respectively; Fig. 6b) . Significant differences between reference genes were detected for all lines $(P<0.01)$
except the combination of R_2 and S_2 $\left(F_{[1,9]}=3.874, P=0.081\right)$. Two-way ANOVA of Log2FC in CYP392A3 expression level revealed a significant difference between the R_i and RR_i lines $\left(F_{[3,19]}=6.666, P=0.003\right)$ while no differences were detected between reference genes $\left(F_{[1,19]}=0.023, P=0.88\right)$. Multiple comparison analysis indicated that the Log2FCs of RR_1 and RR_2 were not significantly different from R_2 (Tukey-Kramer method, $P=0.545$ and 0.74 , respectively) but lower than R_1 $(P=$ 0.004 and 0.008 , respectively). The difference between $\mathrm{R} _1$ and $\mathrm{R} _2$ was marginal ($P=$ $0.065)$.

3.7.2. Uncoupling of resistant congenic line (R R_i)-derived PSST (H110R) and CYP392A3 (INS2+ type) alleles

The rates of meiotic recombination between PSST and CYP392A3 loci in F2 males produced by F1 females from SS_1 \times RR_1 $(n=79)$ and SS_2 \times RR_2 $(n=75)$ were 2.5% and 2.7%, respectively (Table S8). Recombinants from SS_2 \times RR_2 were one R-INS2- and one H-INS2+, whereas those from SS_1 \times RR_1 were two H-INS2+. Consequently, we obtained a series of four lines (R-INS2+, R-INS2-, H-INS2+, and H-INS2-) from the parental crosses of SS_2 and RR_2. However, H-INS2+ did not grow well, so we could obtain only limited data in this line. The following analyses were mainly performed using the R-INS2+, R-INS2-- and H-INS2- strains.

The LC_{50} of H-INS2- ($3.55 \mathrm{mg} \mathrm{L}^{-1}$; Fig. 7a, Table 6) was equivalent to or lower than that of S_i and SS_i (Table 5). Nevertheless, the level of CYP392A3 expression was unexpectedly increased in the H-INS2- line, and was ~ 9-fold higher than in S_1 (Fig. 7b).

The LC_{50} value of the R-INS2- line was not significantly different from that of the

R-INS2+ line (Fig. 7a, Table 6), and both were significantly lower than those of the R_i and RR_i lines (Table 5). The relative expression levels of CYP392A3 in the R-INS2+ line were 7.1 - or 8.2 -fold (with reference to GAPDH and ubiquitin, respectively) higher than those of S_1, but not significantly different from those of H-INS2- (Fig. 7b). The CYP392A3 expression level of the R-INS2- line was significantly lower than those of the R-INS2+ and H-INS2- lines, but 2.6-fold higher than S_1 (Fig. 7b). In the H-INS2+ line, the mortality rates were 100% and $\leq 10 \%$ at concentrations of >6 and $\leq 0.6 \mathrm{mg}$ L^{-1}, respectively (Fig. S9a), suggesting high susceptibility. The expression level of CYP392A3 in H-INS2+ (without replicates) was equivalent to H-INS2- (analyzed simultaneously), and 10-fold higher than S_1 (Fig. S9b).

4. Discussion

A differential maternal effect of pyridaben resistance on the inheritance of resistance in eggs from reciprocal crosses between resistant and susceptible strains was reported previously (Stumpf and Nauen, 2001; Sugimoto and Osakabe, 2014). Maternal effects could be conferred by a target site mutation encoded in mitochondrial DNA, as reported for bifenazate resistance caused by mutations in mitochondrial cytochrome b (Van Leeuwen et al., 2006; Van Nieuwenhuyse et al., 2009). However, the maternal effect of pyridaben-resistance is limited to eggs, and is weakened or absent in the adult stage (Devine et al., 2001; Stumpf and Nauen, 2001; Sugimoto and Osakabe, 2014; Van Pottelberge et al., 2009). This makes the involvement of a mitochondrial DNA-encoded target site mutation less likely. Indeed, there was no evidence of contributions of nonsynonymous mutations in the mitochondria encoded subunits ND1 and ND5 from complex I in NPR.

Bajda et al. (2017) suggested that maternally synthesized PSST proteins (H110 or H110R) may be important for determination of susceptibility in early life stages of eggs. In contrast, we found higher CYP activity in the pyridaben-resistant strain compared to the susceptible strain at the egg stage, and the maternal effect in eggs was correlated with CYP activity. Moreover, CYP inhibition treatment of maternal females of the resistant strain markedly reduced the resistance levels of their eggs to pyridaben. Eggs inherit mitochondria from females; thus, PSST protein of eggs, at least in the early stages, is likely produced by the mother (Bajda et al., 2017). Our results suggested additional involvement of CYPs with the egg limited maternal effects. This also supports the importance of CYPs in pyridaben resistance (Kim et al., 2006; Sugimoto and Osakabe, 2014; Van Pottelberge et al., 2009), in combination with mutant PSST. However, several susceptible strains exhibited high expression levels of several CYP genes, including CYP392A3, a candidate factor causing high resistance levels in this study, without PSST H110R mutation. This suggest that CYPs alone might only marginally contribute to resistance, and other mechanisms, such as cumulative or synergistic effects, are involved in high resistance levels.

PCA following RT-qPCR analysis indicated the effects of the combination of mutant PSST and high expression of CYP392A3 on pyridaben resistance. CYP392A3 was one of the CYPs composing a cluster closely linked to PSST and located within the QTL region, as reported by Bajda et al. (2017). To validate the combined effect, we confirmed that double introgression of resistant strain-derived mutant PSST and INS2+ type CYP392A3 (alternative marker for overexpression) alleles conferred high resistance levels $\left(\mathrm{LC}_{50}>10,000 \mathrm{mg} \mathrm{L}^{-1}\right)$ in a different susceptible genetic background. The highly resistant congenic lines (RR_1 and RR_2) retained higher CYP392A3
expression levels, although they were lower than one of the two parental resistant strains, $R _1$. The resistance levels of the congenic resistant lines (R R_1 and RR_2) were conspicuously higher than the previous congenic lines produced by introgression of mutant PSST $\left(\operatorname{LC}_{50}=\sim 200 \mathrm{mg} \mathrm{L}^{-1}\right)$, as described by Bajda et al. (2017). The susceptible strain used in this study was the same strain used by Bajda et al. (2017). Therefore, the congenic strains obtained in these studies had a similar genetic background. However, the donor of mutant PSST in the study of Bajda et al. (2017) (MR-VP) was a multi-resistant Belgium strain, which showed no overexpression of CYP392A3 or CYPs in the same cluster (Khalighi et al. 2016). This suggested that the high pyridaben resistance levels detected in this study were likely conferred by the combination of mutant PSST and overexpressed CYP392A3, or by other unknown factors linked to CYP392A3.

To determine the effects of overexpressed CYP392A3 combined with mutant PSST, we attempted to uncouple these alleles derived from the resistant congenic strains. However, of the four resulting uncoupled lines, the CYP392A3 expression levels of $\mathrm{H}-$ INS2- and R-INS2- lines were unexpectedly high and intermediate between resistant and susceptible parental congenic lines, respectively. This suggested that separation of the alternative marker (indel) and an actual determinant of CYP392A3 expression level occurred during the uncoupling process between closely linked PSST and CYP392A3 loci, e.g., meiosis in the ovary of F1F to produce F2M eggs. Therefore, we could not evaluate the effects of mutant PSST alone in this study. Nevertheless, together with the observation that the H-INS2+ line with high CYP392A3 expression level was undoubtedly susceptible, this clearly indicated that overexpression of CYP392A3 alone did not confer pyridaben resistance. Moreover, this was also compatible with the RT-
qPCR data of the local populations; significant increases in CYP392A3 expression were detected not only in resistant strains, but also in the three susceptible strains.

The LC_{50} value of R-INS2- equivalent to that of R-INS2+ showed that the indel mutation of CYP392A3 was not functionally involved in pyridaben resistance. On the other hand, the expression level of the R-INS2- line was significantly lower than the RINS2+ line. This made it difficult to interpret the combined effects of CYP392A3 expression levels and mutant PSST on pyridaben resistance levels. Therefore, we tentatively tested the effects of CYP inhibition by PBO on the resistance levels of the uncoupled congenic lines and their parental lines (Supplementary information 6). Consequently, 100% of R-INS2+, R-INS2-, R_2, and RR_2 females pretreated with PBO died after spraying with pyridaben at a concentration of $>16 \mathrm{mg} \mathrm{L}^{-1}$, equivalent to the susceptibility of parental susceptible lines (S_i and SS_i) without PBO treatment shown in Fig. 6a. All PBO-pretreated females died at doses $>0.16 \mathrm{mg} \mathrm{L}^{-1}$ in S_2 and SS_2, whereas slightly higher pyridaben concentration of $>0.8 \mathrm{mg} \mathrm{L}^{-1}$ was required to kill PBO-pretreated females of H-INS2- with a high CYP392A3 expression level. This also suggested a contribution of CYP392A3 or other CYPs to pyridaben resistance in NPR, where the presence of mutant PSST was essential.

Little information is available regarding how the target site mutations that, in isolation, provide only low resistance, contribute to high resistance levels. We tentatively analyzed the correlations between LC_{50} values and $\log 2 \mathrm{FCs}$ in CYP392A3, in congenic and parental lines with mutant PSST ($\mathrm{R} _i, R_{R} _i, R-I N S 2+$, and $R-I N S 2-$). The Log2FC values of CYP392A3 were recomputed using S_1 as a common calibrator for standardization prior to the analysis. The results indicated a significant positive correlation between these factors (Fig. S10). Overall, CYP392A3 still remains a
candidate gene for the high pyridaben resistance level, due to the possibility of synergistic effects.

Our findings clearly show the contribution of CYP to the high resistance levels of pyridaben. Indeed, total activity of CYPs tended to be correlated with pyridaben resistance, especially in eggs, although the trend was marginal in adult females. A spurious correlation of CYP392A3 should also be considered, however, because the locus of this gene is closely linked to PSST and formed a cluster including the highly similar CYP392A1 and CYP392A4 (identity > 84\%). Moreover, genome wide QTL analysis using SNPs in MR-VP suggested the involvement of a cytochrome P450reductase gene in pyridaben resistance in T. urticae (Snoeck et al. 2019). As CYP contributes in ways other than increasing expression of a specific, single gene (e.g., functional changes and cumulative effects of multiple CYPs), there may be contributions of trans-acting elements genetically linked to PSST, and CYP392A3 selected as a candidate resistance factor in this study.

5. Conclusion

Our findings clearly indicated that the high pyridaben resistance levels were conferred by the PSST H110R mutation and CYP392A3, or by genetically associated but unknown factors. Due to the clear response to the inhibition of CYP activity, the unknown factors should be associated with CYP genes via cis- or trans-acting regulation. We concluded that the high pyridaben resistance is probably due to a synergistic or cumulative effect of the combination of mutant PSST and associated CYP activity.

Accession numbers

Raw sequencing data for mitochondrial genomic DNA were submitted to the NCBI database (BioProject PRJNA663742). Raw RNA-seq data were deposited to DDBJ under accession number DRA010496. The cDNA and genomic DNA sequences of CYP392A3 variants are available from the DDBJ/EMBL/GenBank databases under accession numbers LC581389-LC581418.

Acknowledgements

We thank Dr. K. Sugiyama (Shizuoka Plant Protection Office), Dr. M. Doi (Shizuoka Prefectural Research Institute of Agriculture and Forestry), and Dr. K. Funayama (Akita Fruit-Tree Experiment Station) for collecting spider mites.

Funds

This study was supported by a grant of "Genomics-based Technology for Agricultural Improvement (no. PRM05)" from the Ministry of Agriculture, Forestry and Fisheries of Japan. MO was supported by JSPS KAKENHI (no. 26660042).

Appendix A. Supplementary data

Supplementary data to this article can be found online at \#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\# .

References

Abbott, W. S., 1925. A method of computing the effectiveness of an insecticide. J. Econ.

Entomol. 18, 265-267. https://doi.org/10.1093/jee/18.2.265a
Aoki, S., 2011. Statistic Analysis Using R, Ohmsha, Tokyo.
Bajda, S., Dermauw, W., Panteleri, R., Sugimoto, N., Douris, V., Tirry, L., Osakabe, M., Vontas, J., Van Leeuwen, T., 2017. A mutation in the PSST homologue of complex I (NADH:ubiquinone oxidoreductase) from Tetranychus urticae is associated with resistance to METI acaricides. Insect Biochem. Mol. Biol. 80, 79-90. https://doi.org/10.1016/j.ibmb.2016.11.010

Bernt, M., Donath, A., Jühling, F., Externbrink, F., Florentz, C., Fritzsch, G., Pütz, J., Middendorf, M., Stadler, P. F., 2013. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenetics Evol. 69, 313-319. https://doi.org/10.1016/j.ympev.2012.08.023

Betts, M. J., Russell, R. B., 2003. Amino acid properties and consequences of substitutions, in: Barnes, M. R., Gray, I. C. (Eds.), Bioinformatics for Geneticists. John Wiley \& Sons, Chichester, pp. 289-316.

Bolger, A. M., Lohse, M., Usadel, B., 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120. https://doi.org/10.1093/bioinformatics/btu170

Demaeght, P., Osborne, E. J., Odman-Naresh, J., Grbić, M., Nauen, R., Merzendorfer, H., Clark, R. M., Van Leeuwen, T., 2014. High resolution genetic mapping uncovers chitin synthase-1 as the target-site of the structurally diverse mite growth inhibitors clofentezine, hexythiazox and etoxazole in Tetranychus urticae. Insect Biochem. Mol. Biol. 51, 52-61. https://doi.org/10.1016/j.ibmb.2014.05.004 den Dunnen, J. T., Antonarakis, S. E., 2000. Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion. Hum. Mutat. 15, 7-12.
https://doi.org/10.1002/(SICI)1098-1004(200001)15:1<7::AID-
HUMU4>3.0.CO;2-N
Dermauw, W., Wybouw, N., Rombauts, S., Menten, B., Vontas, J., Grbić, M., Clark, R. M., Feyereisen, R., Van Leeuwen, T., 2013. A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticae. Proc. Natl. Acad. Sci. USA 110, E113-E122. https://doi.org/10.1073/pnas. 1213214110

Devine, G. J., Barber, M., Denholm, I., 2001. Incidence and inheritance of resistance to METI-acaricides in European strains of the two-spotted spider mite (Tetranychus urticae) (Acari: Tetranychidae). Pest Manag. Sci. 57, 443-448. https://doi.org/10.1002/ps. 307

Feyereisen, R., Dermauw, W., Van Leeuwen, T., 2015. Genotype to phenotype, the molecular and physiological dimensions of resistance in arthropod. Pest. Biochem. Physiol. 121, 61-77. https://doi.org/10.1016/j.pestbp.2015.01.004

Grbić, M., Van Leeuwen, T., Clark, R.M., Rombauts, S., Rouze, P., Grbić, V., Osborne, E.J., Dermauw, W., Phuong Cao Thi, N., Ortego, F., Hernandez-Crespo, P., Diaz, I., Martinez, M., Navajas, M., Sucena, E., Magalhaes, S., Nagy, L., Pace, R.M., Djuranovic, S., Smagghe, G., Iga, M., Christiaens, O., Veenstra, J.A., Ewer, J., Mancilla Villalobos, R., Hutter, J.L., Hudson, S.D., Velez, M., Yi, S.V., Zeng, J., Pires-daSilva, A., Roch, F., Cazaux, M., Navarro, M., Zhurov, V., Acevedo, G., Bjelica, A., Fawcett, J.A., Bonnet, E., Martens, C., Baele, G., Wissler, L., Sanchez-Rodriguez, A., Tirry, L., Blais, C., Demeestere, K., Henz, S.R., Gregory, T.R., Mathieu, J., Verdon, L., Farinelli, L., Schmutz, J., Lindquist, E., Feyereisen, R., Van de Peer, Y., 2011. The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature 479, 487-492. https://doi.org/10.1038/nature10640

Haas, B.J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P.D., Bowden, J., Couger, M.B., Eccles, D., Li, B., Lieber, M., Macmanes, M.D., Ott, M., Orvis, J., Pochet, N., Strozzi, F., Weeks, N., Westerman, R., William, T., Dewey, C.N., Henschel, R., Leduc, R.D., Friedman, N., Regev, A., 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494-512. https://doi.org/10.1038/nprot.2013.084

Hollingworth, R. M., Ahammadsahib, K. I., Gadelhak, G., McLaughlin, J. L., 1994. New inhibitors of complex I of the mitochondrial electron transport chain with activity as pesticide. Biochem. Soc. Trans. 22, 230-233. https://doi.org/10.1042/bst0220230

Khalighi, M., Dermauw, W., Wybouw, N., Bajda, S., Osakabe, M., Tirry, L., Van Leeuwen, T., 2016. Molecular analysis of cyenopyrafen resistance in the twospotted spider mite Tetranychus urticae. Pest Manag. Sci. 72, 103-112. https://doi.org/10.1002/ps. 4071

Kim, Y. J., Lee, S. H., Lee, S. W., Ahn, Y. J., 2004. Fenpyroximate resistance in Tetranychus urticae (Acari: Tetranychidae): cross-resistance and biochemical resistance mechanisms. Pest Manag. Sci. 60, 1001-1006. https://doi.org/10.1002/ps. 909

Kim, Y. J., Park, H. M., Cho, J. R., Ahn, Y. J., 2006. Multiple resistance and biochemical mechanisms of pyridaben resistance in Tetranychus urticae (Acari: Tetranychidae). J. Econ. Entomol. 99, 954-958. https://doi.org/10.1093/jee/99.3.954

Kunimoto, Y., Imamura, T., Doi, M., Nakano, R., Osakabe, M., 2017. Construction of a
spraying system to replace the rotary distributing sprayer. Jpn. J. Appl. Entomol. Zool. 61, 192-194. https://doi.org/10.1303/jjaez.2017.192

Langmead, B., Trapnell, C., Pop, M., Salzberg, S. L., 2009. Ultrafast and memoryefficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25. https://doi.org/10.1186/gb-2009-10-3-r25

Li, H., 2011. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987-2993. https://doi.org/10.1093/bioinformatics/btr509

Li, X., Schuler, M. A., Berenbaum, M. R., 2007. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu. Rev. Entomol. 52, 231-253. https://doi.org/10.1146/annurev.ento.51.110104.151104

Livak, K. J., Schmittgen, T. D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-\Delta \Delta C_{T}}$ method. Methods 25, 402-408. https://doi.org/10.1006/meth.2001.1262

Maeoka, A., Yuan, L., Itoh, Y., Saito, C., Doi, M., Imamura, T., Yamaguchi, T., Imura, T., Osakabe, M., 2020. Diagnostic prediction of acaricide resistance gene frequency using quantitative real-time PCR with resistance allele-specific primers in the two-spotted spider mite Tetranychus urticae population (Acari: Tetranychidae). Appl. Entomol. Zool. 55, 329-335. https://doi.org/10.1007/s13355-020-00686-7

Nakamaru-Ogiso, E., Sakamoto, K., Matsuno-Yagi, A., Miyoshi, H., Yagi, T., 2003. The ND5 subunit was labeled by a photoaffinity analogue of fenpyroximate in bovine mitochondrial complex I. Biochemistry 42, 746-754. https://doi.org/10.1021/bi0269660

Obata, T., Fujii, K., Yoshiya, H., Tsusyumiushi, K., Yoshioka, H., 1992. Synthesis and insecticidal and acaricidal activity of new $N-(\alpha$-substituted phenoxybenzyl)-4pyrimidinamines. Pest Manag. Sci. 34, 133-138.
https://doi.org/10.1002/ps. 2780340207
Osakabe, M., Imamura, T., Nakano, R., Kamikawa, S., Tadatsu, M., Kunimoto, Y., Doi, M., 2017. Combination of restriction endonuclease digestion with the $\Delta \Delta \mathrm{Ct}$ method in real-time PCR to monitor etoxazole resistance allele frequency in the two-spotted spider mite. Pestic. Biochem. Physiol. 139, 1-8. https://doi.org/10.1016/j.pestbp.2017.04.003

Pfaffl, M. W., 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, 2002-2007. https://doi.org/10.1093/nar/29.9.e45

R Core Team, 2017. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

Riga, M., Bajda, S., Themistokleous, C., Papadaki, S., Palzewicz, M., Dermauw, W., Vontas, J., Van Leeuwen, T., 2017. The relative contribution of target-site mutations in complex acaricide resistant phenotypes as assessed by marker assisted backcrossing in Tetranychus urticae. Sci. Rep. 7, 9202. https://doi.org/10.1038/s41598-017-09054-y

Schmittgen, T. D., Zakrajsek, B. A., Mills, A. G., Gorn, V., Singer, M. J., Reed, M. W., 2000. Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: comparison of endpoint and real-time methods. Anal. Biochem. 285, 194-204. https://doi.org/10.1006/abio.2000.4753

Shuler, F., Casida, J., 2001. Functional coupling of PSST and ND1 subunits in NADH:ubiquinone oxidoreductase established by photaffinity labeling. BBA-

Bioenergetics 1506, 79-87. https://doi.org/10.1016/S0005-2728(01)00183-9
Snoeck, S., Kurlovs, A. H., Bajda, S., Feyereisen, R., Greenhalgh, R., Villacis-Perez, E., Kosterlitz, O., Dermauw, W., Clark, R. M., Van Leeuwen, T., 2019. Highresolution QTL mapping in Tetranychus urticae reveals acaricide-specific responses and common target-site resistance after selection by different METI-I acaricides. Insect Biochem. Mol. Biol. 110, 19-33. https://doi.org/10.1016/j.ibmb.2019.04.011

Stumpf, N., Nauen, R., 2001. Cross-resistance, inheritace, and biochemistry of mitochondrial electron transport inhibitor-acaricides resistance in Tetranychus urticae (Acari: Tetranychidae). J. Econ. Entomol. 94, 1577-1583. https://doi.org/10.1603/0022-0493-94.6.1577

Sugimoto, N., Osakabe, M., 2014. Cross-resistance between cyenopyrafen and pyridaben in the twospotted spider mite Tetranychus urticae (Acari: Tetranychidae). Pest Manag. Sci. 70, 1090-1096. https://doi.org/10.1002/ps. 3652

Sugimoto, N., Takahashi, A., Ihara, R., Itoh, Y., Jouraku, A., Van Leeuwen, T., Osakabe, M., 2020. QTL mapping using microsatellite linkage reveals target-site mutations associated with high levels of resistance against three mitochondrial complex II inhibitors in Tetranychus urticae. Insect Biochem. Mol. Biol. 123, 103410. https://doi.org/10.1016/j.ibmb.2020.103410

Sun, J., Nishiyama, T., Shimizu, K., Kadota, K., 2013. TCC: an R package for comparing tag count data with robust normalization strategies. BMC Bioinformatics 14, 219. https://doi.org/10.1186/1471-2105-14-219

Van Leeuwen, T., Dermauw, W., 2016. The molecular evolution of xenobiotic metabolism and resistance in chelicerate mites. Annu. Rev. Entomol. 61, 475-498.
https://doi.org/10.1146/annurev-ento-010715-023907
Van Leeuwen, T., Van Pottelberge, S., Tirry, L., 2005. Comparative acaricide susceptibility and detoxifying enzyme activities in field-collected resistant and susceptible strains of Tetranychus urticae. Pest Manag. Sci. 61, 499-507. https://doi.org/10.1002/ps. 1001

Van Leeuwen, T., Tirry, L., Nauen, R., 2006. Complete maternal inheritance of bifenazate resistance in Tetranychus urticae Koch (Acari: Tetranychidae) and its implications in mode of action considerations. Insect Biochem. Mol. Biol. 36, 869-877. https://doi.org/10.1016/j.ibmb.2006.08.005

Van Leeuwen, T., Vanholme, B., Van Pottelberge, S., Van Nieuwenhuyse, P., Nauen, R., Tirry, L., Denholm, I., 2008. Mitochondrial heteroplasmy and the evolution of insecticide resistance: non-Mendelian inheritance in action. Proc. Natl. Acad. Sci. USA 105, 5980-5985. https://doi.org/10.1073/pnas. 0802224105

Van Leeuwen, T., Vontas, J., Tsagkarakou, A., Dermauw, W., Tirry, L., 2010. Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: a review. Insect Biochem. Mol. Biol. 40, 563-572. https://doi.org/10.1016/j.ibmb.2010.05.008

Van Leeuwen, T., Demaeght, P., Osborne, E. J., Dermauw, W., Gohlke, S., Nauen, R., Grbić, M., Tirry, L., Merzendorfer, H., Clark, R. M., 2012. Population bulk segregant mapping uncovers resistance mutations and the mode of action of a chitin synthesis inhibitor in arthropods. Proc. Natl. Acad. Sci. USA 109, 44074412. https://doi.org/10.1073/pnas. 1200068109

Van Nieuwenhuyse, P., Van Leeuwen, T., Khajehali, J., Vanholme, B., Tirry, L., 2009. Mutations in the mitochondrial cytochrome b of Tetranychus urticae Koch (Acari:

Tetranychidae) confer cross-resistance between bifenazate and acequinocyl. Pest Manag. Sci. 65, 404-412. https://doi.org/10.1002/ps. 1705

Van Pottelberge, S., Van Leeuwen, T., Nauen, R., Tirry, L., 2009. Resistance mechanisms to mitochondrial electron transport inhibitors in a field-collected strain of Tetranychus urticae Koch (Acari: Tetranychidae). Bull. Entomol. Res. 99, 23-31. https://doi.org/10.1017/S0007485308006081

Winer, J., Jung, C. K. S., Shackel, I., Williams, P. M., 1999. Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro. Anal. Biochem. 270, 4149. https://doi.org/10.1006/abio.1999.4085

Figure legends

Fig. 1. Pyridaben concentration-mortality plots for F1 eggs of NPS $Q \times$ NPS $\widehat{\gamma}$ (open triangles), $\operatorname{NPS} q \times \mathrm{NPR} \widehat{ }$ (gray triangles), $\mathrm{NPR} q \times \mathrm{NPS} \AA^{\lambda}$ (gray circles), and $\mathrm{NPR} q \times$ NPR ${ }^{\text {® }}$ (solid circles).

Fig. 2. 7EFC- O-deethylation activity (a) in adult females and eggs of pyridabenresistant (NPR) and -susceptible (NPS) strains, and (b) in F1 generation after reciprocal crosses. RS: $\mathrm{NPR} q \times \mathrm{NPS} \widehat{\delta}, \mathrm{SR}: \mathrm{NPS} q \times \mathrm{NPR} \widehat{\delta} . P$-values were computed by one-way ANOVA, assuming that the replicates were paired observations.

Fig. 3. Synergistic effects of PBO-treated females on the egg hatchability of the pyridaben-resistant strain (NPR) after pyridaben treatment. The symbols " + " and " - " represent treated and untreated, respectively. Error bars represent the standard error. Different letters above bars indicate significant differences in egg hatchability ($P<$ 0.05) by the Tukey-Kramer method.

Fig. 4. (a) Coverage of contigs, (b) averaged ($\log _{2}$) expression level (A-values), and (c) $\log _{2}$ fold changes (M-values) for differentially expressed genes (DEGs) of cytochrome P450 (CYP) upregulated in NPR in comparison with NPS, in adult females induced with pyridaben (open circles) and non-induced adult females (open triangles). Bars indicate average values between the induced and non-induced samples. A-value: averaged expression level $\left(\log _{2}\right)$ between NPR and NPS; M-value: $\log _{2}$-fold change in

NPR. CYP389Cl was automatically divided into two distinctive contigs and parameters were computed separately.

Fig. 5. Principal component analysis of the frequency of PSST H110R mutation and standardized $\log 2$-fold change ($-\Delta \Delta \mathrm{Cq}$) of expression levels in 12 CYP genes analyzed in 11 T. urticae strains. (a) Scatter plot of the first (PC1) and second (PC2) principal components. (b) Factor loadings. Solid plots in (a) show strains resistant to pyridaben $\left(\mathrm{LC}_{50}>200 \mathrm{mg} \mathrm{L}^{-1}\right)$.

Fig. 6. Pyridaben susceptibility and CYP392A3 expression levels in parental and congenic lines after double introgression. (a) Concentration-mortality plots for backcrossed lines (RR_i and SS_i; $\mathrm{i}=1$ or 2) and their parental single female lines ($\mathrm{R} _\mathrm{i}$ and S_i). RR_1 (solid rhombuses) and SS_1 (solid squares) were separated from the same backcrossed line derived from the parental cross between an S_1 female (open squares) and an R_1 male (open rhombuses). RR_2 (solid circles) and SS_2 (solid triangles) were derived from the cross between an S_2 female (open triangles) and R_2 male (open circles). (b) $\log _{2}$ fold change $(\log 2 \mathrm{FC}=-\Delta \Delta \mathrm{Cq})$) in the expression level of CYP392A3 of R_i and RR_i lines against S_i and SS_i lines, respectively. Gray and open bars represent Log2FC calculated using GAPDH and ubiquitin as reference genes, respectively. Asterisks above bars indicate that CYP392A3 expression levels evaluated with $\Delta \mathrm{Cq}$ values are significantly higher in $\mathrm{R}_{-} i$ and $R R_{-} i$ in comparison with $S_{-} i$ and SS_i, respectively (two-way ANOVA, ${ }^{* * *} P<0.001$, ** $P<0.01$). Significant differences between reference genes were detected for all genes tested ($P<0.01$) except in the combination of R_2 and S_2 $(P=0.081)$. Different letters above bars indicate
significant differences of log2FC values among lines (Tukey-Kramer method, $P<$ $0.05)$.

Fig. 7. Resistance levels and CYP392A3 expression levels of strains, with uncoupling of PSST and CYP392A3 from the pyridaben-resistant strain. (a) Concentration-mortality plots for congenic lines, with uncoupling of PSST and CYP392A3 alleles of RR_2. RINS2+: PSST H110R + CYP392A3 with insertion (originally found in resistant strains), R-INS2-: PSST H110R + CYP392A3 with deletion (originally found in susceptible strains), H-INS2-: PSST H110 + CYP392A3 with deletion. (b) The $\log _{2}$ fold change $(\log 2 \mathrm{FC}=-\Delta \Delta \mathrm{Cq})$ in expression level of CYP392A3 of $\mathrm{R} _\mathrm{i}$ and RR i lines against S_1 line. Gray and open bars represent Log2FC calculated using GAPDH and ubiquitin as reference genes, respectively. Different letters above bars indicate significant differences in log2FC values among lines (Tukey-Kramer method, $P<0.05$).

Fig. 1.
(a)

(b)

Fig. 2.

Fig. 3.
(a)

(b)

(c)

Fig. 4.
(a)

(b)

Fig. 5
(a)

(b)

Fig. 6.
(a)
-- - - H-INS2- ——R-INS2+ ---O--- R-INS2-
(b)
-GAPDH \quad Ubiquitin

Fig. 7.

Table 1. Collection records for Tetranychus urticae strains.

Strains	Dates	Localities	Host plants
NPR $^{\text {a }}$	May, 2010	Heguri, Nara Pref. $\left(34.6^{\circ} \mathrm{N}, 135.7^{\circ} \mathrm{E}\right)$	Rose
NPS $^{\text {a }}$	1998	Katsuragi, Nara Prefecture $\left(34.5^{\circ} \mathrm{N}, 135.7^{\circ} \mathrm{E}\right)$	Chrysanthemum
Iwate $^{\text {b }}$	Oct, 1999	Morioka, Iwate Pref. $\left(39.7^{\circ} \mathrm{N}, 141.2^{\circ} \mathrm{E}\right)$	Apple
Yokote $^{\text {b }}$	Jun, 2014	Yokote, Akita Pref. $\left(39.3^{\circ} \mathrm{N}, 140.6^{\circ} \mathrm{E}\right)$	Apple
Izu2 $^{\mathrm{b}}$	Feb, 2013	Izunokuni, Shizuoka Pref. $\left(35.0^{\circ} \mathrm{N}, 138.9^{\circ} \mathrm{E}\right)$	Strawberry
Masu $^{\text {b }}$	Jan, 2012	Shizuoka $\left(35.0^{\circ} \mathrm{N}, 138.5^{\circ} \mathrm{E}\right)$	Strawberry
Yawata $^{\text {b }}$	Oct, 2014	Yawata, Kyoto Pref. $\left(34.9^{\circ} \mathrm{N}, 135.7^{\circ} \mathrm{E}\right)$	Japanese pear
SoKg $^{\mathrm{c}}$	Jan, 2012	Shizuoka $\left(34.8^{\circ} \mathrm{N}, 138.0^{\circ} \mathrm{E}\right)$	Strawberry
SoOm1 $^{\mathrm{b}}$	Jan, 2012	Omaezaki, Shizuoka Pref. $\left(34.6^{\circ} \mathrm{N}, 138.1^{\circ} \mathrm{E}\right)$	Strawberry
SoOm2 $^{\text {O }}$	Apr, 2013	Omaezaki, Shizuoka Pref. $\left(34.6^{\circ} \mathrm{N}, 138.1^{\circ} \mathrm{E}\right)$	Strawberry
Tsukuba ${ }^{\text {b }}$	Unknown	Laboratory strain	Kidney bean

${ }^{\text {a }}$ Sugimoto and Osakabe (2014) and Bajda et al. (2017)
${ }^{\mathrm{b}}$ Osakabe et al. (2017)
${ }^{\mathrm{c}}$ Sugimoto et al. (2020)

Table 2. Pyridaben susceptibility of F1 eggs from reciprocal crosses between resistant NPR and susceptible NPS strains

Crosses $\left(q \times \delta^{7}\right)$	$\mathrm{n} \pm \mathrm{SD}^{\mathrm{a}}$	$\mathrm{LC}_{50}\left(\mathrm{mg} \mathrm{L}^{-1}\right)$	95% confidence limit	Regression lines	RR^{b}
$\mathrm{NPS} \times \mathrm{NPS}$	819 ± 69.6	1.19	$1.11-1.27$	$Y=1.34 X+4.90$	1
$\mathrm{NPS} \times \mathrm{NPR}$	534.4 ± 41.4	12.6	$11.15-14.18$	$Y=0.78 X+4.15$	10.59
$\mathrm{NPR} \times \mathrm{NPS}$	852 ± 179.4	5916	$5593-6268$	$Y=1.47 X-0.56$	4971
$\mathrm{NPR} \times \mathrm{NPR}$	457.3 ± 22.5	61,310	$44,956-100,599$	$Y=2.00 X-4.58$	51,521

[^1]Table 3. Logarithmic dose-probit mortality regression line data against pyridaben expressed as LC_{50}, slope, and resistance ratio (RR) in laboratory-selected resistant (NPR) and susceptive (NPS) strains and field strains without laboratory selection.

Strains	$\mathrm{LC}_{50}\left(\mathrm{mg} \mathrm{L}^{-1}\right)$	$95 \% \mathrm{CI}\left(\mathrm{mg} \mathrm{L}^{-1}\right)$	Regression line	DF^{a}	RR^{b}
NPR	7756	$6061-10915$	$Y=1.64 X-1.36$	1	1925
NPS	4.03	$3.53-4.60$	$Y=2.06 X+3.75$	4	1
Iwate	1.76	$1.59-1.94$	$Y=3.51 X+4.14$	4	0.44
Yokote	11.5	$9.02-14.5$	$Y=1.21 X+3.71$	7	2.85
Izu2	8.04	$7.16-9.03$	$Y=2.80 X+2.47$	4	2.00
Masu	272.2	$193.3-379.0$	$Y=0.71 X+3.27$	5	67.54
Yawata	$>10,000$				>2481
SoKg	11.1	$8.82-13.8$	$Y=1.07 X+3.88$	7	2.75
SoOm1	$>10,000$				>2481
SoOm2	11.1	$9.81-12.8$	$Y=2.15 X+2.74$	5	2.75
Tsukuba	5.96	$5.34-6.67$	$Y=2.71 X+2.90$	4	1.48

${ }^{\text {a }}$ Degree of freedom for regression line
${ }^{\mathrm{b}}$ Resistance ratio to NPS

Table 4. Number of males of the two indel types (INS2+/INS2-) in CYP392A3 detected by the direct sequencing

Strains	No of males tested	INS2- type (\%) ${ }^{\text {a }}$	INS2+ type (\%) ${ }^{\text {b }}$
NPS	16	$15(93.8)$	$1(6.3)$
Izu2	12	$0(0)$	$12(100)$
Masu	12	$0(0)$	$12(100)$
SoOm1	10	$4(40)$	$6(60)$
Yawata	11	$4(36.4)$	$7(63.6)$
NPR	8	$0(0)$	$8(100)$

a c.783_784insGATTCGTTAGAA without c.1242_1243ins
b c.783_784insGATGCGTTACAA with c.1242_1243insAATATTACC

Table 5. Logarithmic dose-probit mortality regression line data against pyridaben expressed as LC_{50}, slope, and resistance ratio (RR) in backcrossed lines (RR_i and SS_i) and their parental single female lines (R_i and S_i).

Lines $^{\mathrm{a}}$	$\mathrm{LC}_{50}\left(\mathrm{mg} \mathrm{L}^{-1}\right)$	$95 \% \mathrm{CI}\left(\mathrm{mg} \mathrm{L}^{-1}\right)$	Regression line	DF^{b}	RR $^{\mathrm{c}}$
RR_1	17,048	$12620-31510$	$Y=2.47 X-5.44$	1	4230
SS_1	8.95	$8.28-9.70$	$Y=3.76 X+1.42$	4	2.22
RR_2	10,989	$8943-14870$	$Y=2.27 X-4.18$	2	2727
SS_2	4.13	$3.84-4.43$	$Y=4.29 X+2.36$	4	1.02
R_1	29,592	$17367-157164$	$Y=2.22 X-4.92$	1	7343
S_1	8.39	$7.82-9.03$	$Y=4.26 X+1.06$	4	2.08
R_2	7711	$6398-9808$	$Y=1.98 X-2.69$	3	1913
S_2	4.32	$4.02-4.65$	$Y=4.20 X+2.33$	4	1.07

${ }^{\text {a }}$ RR_1 and SS_1 lines were separated from the same backcrossed line started from the parental cross between an
S_1 female and an R_1 male. RR_2 and SS_2 lines were derived from the cross between an S_2 female and an R_2 male.
${ }^{\mathrm{b}}$ Degree of freedom for regression line
${ }^{\mathrm{c}}$ Resistance ratio to NPS in Table 3

Table 6. Logarithmic dose-probit mortality regression line data against pyridaben expressed as LC_{50}, slope, and resistance ratio (RR) in uncoupled lines.

Lines $^{\mathrm{a}}$	$\mathrm{LC}_{50}\left(\mathrm{mg} \mathrm{L}^{-1}\right)$	$95 \% \mathrm{CI}\left(\mathrm{mg} \mathrm{L}^{-1}\right)$	Regression line	DF^{b}	RR^{c}
R-INS2+	3820	$3531-4136$	$Y=3.91 X-8.99$	4	947.9
R-INS2-	3482	$3148-3883$	$Y=2.74 X-4.72$	3	864.0
H-INS2-	3.55	$3.29-3.84$	$Y=3.62 X+3.01$	6	0.88

${ }^{\text {a }}$ Uncoupled lines were established from a parental cross between SS_2 female and RR_2 male.
${ }^{\mathrm{b}}$ Degree of freedom for regression line
${ }^{\mathrm{c}}$ Resistance ratio to NPS in Table 3

Combination of target site mutation and associated CYPs confers high-level resistance to pyridaben in Tetranychus urticae Itoh et al.

Supplementary information 1:

Quantitative real-time PCR (qPCR) condition

Section 2.7.2. PSST mutation frequency analysis
The qPCR was performed using TB Green Premix Ex TaqTM II (Tli RNaseH Plus) (TaKaRa Bio, Kusatsu, Japan) for $20 \mu \mathrm{~L}$ reaction solution containing 2 ng DNA samples and forward and reverse primers ($0.4 \mu \mathrm{M}$ each $)$. The reaction mixtures were incubated at $95^{\circ} \mathrm{C}$ for 10 min , followed by 45 cycles of $95^{\circ} \mathrm{C}$ for $10 \mathrm{~s}, 60^{\circ} \mathrm{C}$ for 10 s , and $72^{\circ} \mathrm{C}$ for 10 s using the LightCycler 96 System (Roche Diagnostics, Tokyo, Japan).

Section 2.7.3, and 2.9. RT-qPCR analysis for CYPs up-regulated in $R N A$ seq
The gene expression levels of the 12 CYP genes were evaluated for the cDNA samples by RT-qPCR analysis using Lightcycler 96 system (Roche Diagnostics). The reaction mixture ($20 \mu \mathrm{~L}$) consisted of $10 \mu \mathrm{~L}$ of TB Green Premix Ex Taq II (Tli RNaseH Plus), cDNA synthesized from 1-2 ng total RNA, and a primer set ($0.4 \mu \mathrm{M}$ each; Table S2). The PCR conditions were pre-incubation at $95^{\circ} \mathrm{C}$ for 5 s ; followed by 40 cycles of $95^{\circ} \mathrm{C}$ for 5 s, $60^{\circ} \mathrm{C}$ for 30 s , and $72^{\circ} \mathrm{C}$ for 30 s .

Supplementary information 2:

Sanger sequencing

Section 2.8.1. $P C R$ amplification of $c D N A$ for cloning and sequencing of CYP392A3 in NPR

PCR amplification of cDNA: The CYP392A3 were amplified by PCR in a reaction mixture ($20 \mu \mathrm{~L}$) consisted of cDNA synthesized from 1-2 ng total RNA, 0.4 unit KOD FX Neo, $1 \times$ KOD FX Neo Buffer, 0.4 mM dNTPs, and $0.25 \mu \mathrm{M}$ forward and reverse primers. PCR amplification was performed with temperature cycles at $94^{\circ} \mathrm{C}$ for 2 min ; followed by 40 cycles of $98^{\circ} \mathrm{C}$ for $10 \mathrm{sec}, 60^{\circ} \mathrm{C}$ for 30 sec , and $68^{\circ} \mathrm{C}$ for 45 sec ; and at $68^{\circ} \mathrm{C}$ for 7 min .

Cycle sequencing reaction: Cycle sequencing reaction was performed using BigDye Terminator v3.1 Cycle sequencing Kit (Thermo Fisher Scientific, Waltham, MA, USA). Reaction solution ($20 \mu \mathrm{~L}$) was composed of $136-160 \mathrm{ng}$ plasmid DNA, $3.5 \mu \mathrm{~L}$ $5 \times$ Sequencing Buffer, $1 \mu \mathrm{~L}$ BigDye Terminator v3.1 Ready Reaction Mix, and $0.075 \mu \mathrm{M}$ primer. The solution was reacted with temperature cycles at $96^{\circ} \mathrm{C}$ for 1 min ; followed by 25 cycles of $96^{\circ} \mathrm{C}$ for $10 \mathrm{~s}, 50^{\circ} \mathrm{C}$ for 30 s , and $60^{\circ} \mathrm{C}$ for 4 min . For purification of the reaction solution, $2.5 \mu \mathrm{LEDTA}(0.125 \mathrm{M}, \mathrm{pH} 8.0)$ and $30 \mu \mathrm{~L}$ ethanol (99.5%) were added and mixed. After 15 min , the reaction was centrifuged $(15,000 \mathrm{rpm})$ at $4^{\circ} \mathrm{C}$ for 30 min . The supernatant was discarded by pipetting. After 70\% ethanol wash, the pellet was dried and dissolved in $10-20 \mu \mathrm{~L}$ of Hi-Di Formamide (Thermo Fisher Scientific). Then, applied for the analysis by the Genetic Analyzer 3130 (Thermo Fisher Scientific).

Sections 2.7.2, 2.8.2, and 2.9. Direct sequencing

Crude DNA sample preparation: Adult females and males were individually homogenized in $20 \mu \mathrm{~L}$ lysis buffer (10 mM Tris- HCl [pH 8.0], 0.1 mM EDTA [pH 8.0], 0.5% IGEPAL CA-630 (Sigma-Aldrich, St. Louis, MO, USA), 10 mM NaCl , and $0.5 \mu \mathrm{~L}$ proteinase K [$350 \mathrm{UmL}-1$; TaKaRa Bio]). The homogenate was kept at $65^{\circ} \mathrm{C}$ for 15 min and then heated at $95^{\circ} \mathrm{C}$ for 10 min using a thermal cycler (TP3000, TaKaRa Bio). The crude DNA samples of females and males were diluted 40- and 10 -fold with $0.1 \times$ TE buffer, respectively, before used for PCR amplification.

Template amplification: The CYP392A3 and PSST were amplified by PCR in a reaction mixture ($5 \mu \mathrm{~L}$) consisted of $1 \mu \mathrm{~L} 40$-fold diluted crude DNA solution, 0.1 unit KOD FX Neo, $1 \times$ KOD FX Neo Buffer, 0.4 mM dNTPs, and $0.25 \mu \mathrm{M}$ forward and reverse primers for CYP392A3 and $0.5 \mu \mathrm{M}$ forward and reverse primers for PSST. PCR amplification was performed with temperature cycles at $94^{\circ} \mathrm{C}$ for 2 min ; followed by 40 cycles of $98^{\circ} \mathrm{C}$ for $10 \mathrm{sec}, 60^{\circ} \mathrm{C}$ for 30 sec , and $68^{\circ} \mathrm{C}$ for 90 sec ; and at $68^{\circ} \mathrm{C}$ for 2 min .

Purification of PCR products: For purification, $20 \mu \mathrm{~L}$ of 12.5% polyethylene glycol (PEG8000, Promega)- $12.5 \mathrm{M} \mathrm{MgCl}_{2}$ solution was mixed with the PCR solution ($5 \mu \mathrm{~L}$). The mixture was centrifuged by $15,000 \mathrm{rpm}$, at $4^{\circ} \mathrm{C}$, for 30 min . After washing with 70% ethanol twice, the pellet was dissolved in $20 \mu \mathrm{~L}$ Milli-Q water. The purified PCR products were used for cycle sequencing.

Cycle sequencing reaction: Cycle sequencing reaction was performed using BigDye Terminator v3.1 Cycle sequencing Kit. Reaction solution ($5 \mu \mathrm{~L}$) was composed of 0.875 $\mu \mathrm{L} 5 \times$ Sequencing Buffer, $0.25 \mu \mathrm{~L}$ BigDye Terminator v3.1 Ready Reaction Mix, and $0.075 \mu \mathrm{M}$ primer. The solution was reacted with temperature cycles at $96^{\circ} \mathrm{C}$ for 1 min ; followed by 25 cycles of $96^{\circ} \mathrm{C}$ for $10 \mathrm{~s}, 50^{\circ} \mathrm{C}$ for 30 s , and $60^{\circ} \mathrm{C}$ for 4 min . For purification of the reaction solution, $1.25 \mu \mathrm{~L}$ EDTA $(0.125 \mathrm{M}, \mathrm{pH} 8.0)$ and $15 \mu \mathrm{~L}$ ethanol (99.5\%) were added and mixed. After 15 min , the reaction was centrifuged ($15,000 \mathrm{rpm}$) at $4^{\circ} \mathrm{C}$ for 30 min . The supernatant was discarded by pipetting. After 70% ethanol wash, the pellet was dried and dissolved in $10-20 \mu \mathrm{~L}$ of Hi-Di Formamide (Thermo Fisher Scientific). Then, applied for the analysis by the Genetic Analyzer 3130 (Thermo Fisher Scientific).

Section 2.9.2 High resolution melting analysis

Reaction solution ($10 \mu \mathrm{~L}$) was composed of $5 \mu \mathrm{~L}$ of TB Green Premix Ex Taq II (Tli RNaseH Plus), $0.4 \mu \mathrm{~L}$ each of $10 \mu \mathrm{M}$ forward and reverse primers, $2.2 \mu \mathrm{~L}$ of distilled water, and $2 \mu \mathrm{~L}$ of crude DNA sample. Sequences of the forward and reverse primers for PSST were 5'-ACGTGGTTCATTATGGCCTTTG-3' and 5'-
CATCAGCTTGCCTAGGACTTG-3', respectively, and for CYP392A3 were 5'-CTAACCTGGGCCAGCATGTAC- 3^{\prime} and 5^{\prime}-ATACGCTGGACTTCATAAAGAAAGG3^{\prime}, respectively. The PCR conditions consisted of preheating for 5 s at $95^{\circ} \mathrm{C}$, followed
by 40 cycles of 5 s at $95^{\circ} \mathrm{C}, 30 \mathrm{~s}$ at $60^{\circ} \mathrm{C}$, and 30 s at $72^{\circ} \mathrm{C}$ and one cycle of 60 s at $95^{\circ} \mathrm{C}, 60 \mathrm{~s}$ at $40^{\circ} \mathrm{C}$, and 1 s at $65^{\circ} \mathrm{C}$. HRM was then performed by heating to $97^{\circ} \mathrm{C}$ with 15 readings per $1^{\circ} \mathrm{C}$.

Shapes of melting curve of PSST fragments for four pairs of parental S_i (H110/H110) females and R_i (H110R) males and their F1 females (H110/H110R; one F1 female for each pair)

Shapes of melting curve of CYP392A3 fragments for four pairs of parental S_i (INS2-/INS2-) females and R_i (INS2+) males and their F1 females (INS2-/INS2+; one F1 female for each pair)

Supplementary information 3:

Alignment of NAD1 and NAD5 between the pyridaben susceptible (NPS) and pyridaben resistant (NPR) strain of T. urticae

The position of the non-synonymous sequence polymorphism (resulting in M495L) in NAD5 of NPS is indicated in red font.

NAD5

NPS ATTATTTTTATTAATATATTTAAAATTTTTTTGATAACGTCTTTAATTATATCTTTAATAATGATTAATA NPR

150	160	170	180	190	200	210	
. \|						
TATATTAGTGTT	TATA	TCT	tta	CAATT	тTTTA		

NPS AGATTCATAAATATTTATATAAATTCTAACAAAAATATAAAAGTTTTTTTTTTTATAACAAAAATTTTTA NPR

NPS TTATTTCTATATTTTTACTTGTATTTTCATTTAATTTATGAACAATAATTTTAGGTTGGGAAGGTTTAGG NPR

360	370	380	390	400	410	420

NPS AATAAGATCTTTTTTTTTAATTTTTTATTACAACAATTTTGAGAGATGAAAAAGAGCAATTAAAACATTT NPR

```
    _...|....|....|....|....|....|....||....|....|....|.....|.....|....|.....|
NPS ATTAATAATAAAATAGGGGATTGTTTAATTTTAATATCTATAATTTACTCAACTATAAATTTAAATTCAT
NPR
    500 510 520 530 540
```



```
NPS TTAAAATAGTTACATTAATATTCTTAATTTCAATAATAACAAAAAGTGCACAATATCCATTTATATCATG
NPR
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 570 & 580 & 590 & 600 & 610 & 620 & 630 \\
\hline & & & & 1 & & \\
\hline
\end{tabular}
NPS GTTACCTATAGCTATAGCCGCCCCCACTCCAATTTCAGCAATAGTTCATAGTTCAACTCTTGTAACAGCA
NPR
    640 650 660 670 680 690
```



```
NPS GGGTTATTTTATTATATTTCGTTTAATTAATAATTTTTTTTACAAAAACAAATTCAAATCTAATTGTCAATT
NPR
\begin{tabular}{lllllll}
710 & 720 & 730 & 740 & 750 & 760 & 770
\end{tabular}
NPS TATGCTTATTATCAATATTTGTTAGAGGTATAAAAGCTGTAAGAGAAAAAGATATAAAGAAAATAATTGC
NPR
```



```
NPS TTTATCAACATTAAGACAAATTGGATTAATTTTTTTTTTTTTTAATTAATAACATAAAAATTATTGCATTT
NPR
    850 860 870 880 890
    \ldots..|....|....|....|....|....|....|....|....|....|.....|....|..........|
NPS ATTTATATATGTAATCATGCTTTATTTAAATCTCTAATTTTTATTAATATAGGTTTTATAATGATAAATA
NPR
NPS ACTTTTCAAATCAATTGAAATTCAATATATTTAATAAAAATATGTGTTCAATCTTTATTTTTATCATATAA
NPR
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 990 & 1000 & 1010 & 1020 & 1030 & 1040 & 1050 \\
\hline & & & & . & - & \\
\hline
\end{tabular}
NPS AATTTCTTGTTTAAACTTAATAAATTTGTCTTTTTTTTCATCTTTTTTTATTAAAGAAAAAATATTAATA
NPR
```

1060	1070	1080	1090	1100	1110	1120
\|	,	.		

NPS AATTTAAGATCAAATTTTTTTAGTATAATAAAATTCATCATTTTTTTAGTAAGAAGCTTCTTTACTATAA

1130	1140	1150	1160	1170	1180	1190

NPS ACTATAGAATTAAAATAATATTCTTTTTTAATAGAAAAAACTTTAAAATTAAAAGAAATAATGAATTTAA NPR

NPS AACAAAAAATTATTATAAATCACTTTTTTTAATAAATATCTTTTCAATTTGTTATAGAAGATTCATAATA NPR

1270	1280	1290	1300	1310	1320	1330

 NPS GAAATAATTTTATTTGTTGATATAATAAATCTATTAATTATAATATTTTATTTAATTTCAATAACAATAA NPR

1340	1350	1360	1370	1380	1390	1400

NPS ATTACAAAATTTATTCAATAAGTTTTAGTTTTATTAATTCTTTAGCTTATACAGAATTTAGTATATATAT NPR

NPS TTATCCTTTTAAAATAATAAAATATAGTTTAGATATTAATGAGTTATGGATAGAAAAGATTTCTCTAAAC NPR

1480	1490	1500	1510	1520	1530	1540
,						
тTTTATTTTTTA	AAATAA	ATTTTT	价TС	AAATT	TTAATT	

$1550 \quad 1560$

NPS TATTAATTATTTTAATATTTATTTAA NPR

NPS GAGTATATATCTTCTTTATTTAGCTTCATTTTTTTGATTGAGTACGGTTTTTTTTTATATATAATAATAC NPR
$\begin{array}{lllllll}710 & 720 & 730 & 740 & 750 & 760 & 770\end{array}$

NPS TAATTAATTTTTTCTTTTTTTTAAATGATTTTTTTACGTTAATATTGATTTTTTTTTGTTATTTGAACTCG NPR

NPS TTCATTTTTTCCACGGTTTCGGTATGATAAAATACTATACTTTTTTTGAAAAGAAGTTGTCTTATTAATT NPR

850
.... |.......... \mid.
NPS ATATATCTTTATATTT
NPR \qquad

Amino acid sequence alignment of NAD5 in NPS and NPR strains with that of Bos taurus (YP_209215 ND5 Bos)

Red font indicates predicted Q-binding domain of ND5 subunit (Nakamura-Ogiso et al. 2003
https://pubs.acs.org/doi/10.1021/bi0269660)

Green shading $=\mathrm{L} 495 \mathrm{M}$ mutation in NPR			
NPS	1	---IIFINMFKIFMSLTMSL----------MMINNTFLMN QMLIL	
NPR	1		36
YP_209215 ND5 Bos	1	MNMFSSLSLVTLL L TP. MMSFNTYKPSNYPLYVKTAISYA ITSM. P	
NPS	37	NEVIFL---------------TYKNFMLVLDMYSESFFIVSIVVFNV	
NPR	37		69
YP_209215 ND5 Bos	51	TM. IHSGQELIISNWHWLTIQT KLSLSFKM YF.MM IPVALF TWSI	100
NPS	70	LS MNIMNSNK MKVEDFMTKIEITS FLTVFSFNIWTMILCN゙®CLGMS	119
NPR	70		119
YP_209215 ND5 Bos	101	ME SMW . Y DP INK . KYLLL L T LI . TAN . FQLFI . . . V IM	150
NPS	120	SEFLI-FY NNFESWKS IKTFIN KMEDCLILMS IYSTMNISFKMVT	168
NPR	120		168
YP_209215 ND5 Bos	151	L. GWW GRADANTA LQAILY.RI. IGFILA AWFLT . . TWDLQQ	200
NPS	169	LMFI------------ISMMTKSA YPFMS	205
NPR	169		205
YP_209215 ND5 Bos	201	IFM NPSDSNMPLIGLALAATG . . . FGLHP . . S. . EG . . V . . LL	250
NPS	206	HLTAELMFRINNFFKTN---SNLIVNTCLLSMFVSGKVSEKM	252
NPR	206		252
YP_209215 ND5 Bos	251	.M.V. . I. LLI. FYP--L.EN.KYIQSITLC. GAITTLFTA.C.LTQN. I	298
NPS	253	KMMALSTSOIGIFFFLIN MKIIAEIYM N L SKSIEINM FMMM	302
NPR	253	. .	302
YP_209215 ND5 Bos	299	. .I. F. .S. L. .MMVTIGI.QPYL. .LHI.T. . F. .AML.MCS.SIIH	348
NPS	303	NNFSNLKFN FNKNMCSIEILSYKIS-CNMNLSESSEFIKEKMLMN	351
NPR	303		351
YP_209215 ND5 Bos	349	SLNDE.DIRK. GGLFKAMP. TTTAL.VGS.A.TGMP. LTG. YS. DLIIEA	398
NPS	352	LSSNFFSMMKFIIFVSSFEMNYSIKMM Finsknckiksnnerkik -	400
NPR	352		400
YP_209215 ND5 Bos	399	ANTSYTNAWALLMT IATS . AI . TRII. ALLGQPRFPTLVNINEN. P	448
NPS	400	----YYSTLMNIES--------------ICYSSFMMEMITFVMMN-	430
NPR	400	-	430
YP_209215 ND5 Bos	449	LLINSI R.LIGSL AGYIISNNIPPTTIPQMTMPYYLKTTA. I. TILGF	498
NPS	431	LIMMFYLISMTMN KIYSMSSINSIAYTEFSY-IYPFKMMKYSL-	478
NPR	431	. -	478
YP_209215 ND5 Bos	499	I ALEISNMTKNLK HYP NA K STL G FPTI HRLA YMNLSM QKS	548
NPS	478	--INEL M KISLN--------FYFLTKNIIFTFNMN NLIMMLL	515
NPR	478	.	515
YP_209215 ND5 Bos	549	ASSLLDLI L A LPKTISLAQMKASTLVTNQ GLI LYFLS LITILIS	598
NPS	516	ITMFI-- 521	
NPR	516-- 521	
YP 209215 ND5 Bos	599	M. FNFHE 606	

Supplementary information 4:

Alinement of DNA sequences for CYP392A3 clones of NPR (A3-1-4) and tetur07g06460 (London strain; Grbić et al. 2011)

CLUSTAL 2.1 multiple sequence alignment with some modification

A3-1	CCATTACCTTTTATTTACTTGTTCTTGAGTCTG 33
A3-4	---CCATTACCTTTTATTTACTTGTTCTTGAGTCTG 33
A3-3	-CCATTACCTTTTATTTACTTGTTCTTGAGTCTG 33
A3-2	CCATTACCTTTTATTTACTTGTTCTTGAGTCTG 33
tetur07g06460	atGTTGCTTCTTGATTACTTTAGTGTGCCATTACCTTTTATTTACTTGTTCTTGAGTCTG

A3-1	TCCATTATTTGGATCATCAAATATCTTTTCCAATCTGTGAAACGCTTATATTCATTACCA 93
A3-4	TCCATTATTTGGATCATCAAATATCTTTTCCAATCTGTGAAACGCTTATATTCATTACCA 93
A3-3	TCCATTATTTGGATCATCAAATATCTTTTCCAATCTGTGAAACGCTTATATTCATTACCA 93
A3-2	TCCATTATTTGGATCATCAAATATCTTTTCCAATCTGTGAAACGCTTATATTCATTACCA 93
tetur07g06460	TCCATTATTTGGATCATCAAATATCTTTTCAAATCTGTGAAACGAATATATTCATTACCT 120
A3-1	CCAGGACCATTTGGAATTCCAATATTTGGTTATTACCCGTTCTTGAAACATCACAGTTAC 153
A3-4	CCAGGACCATTTGGAATTCCAATATTTGGTTATTACCCGTTCTTGAAACATCACAGTTAC 153
A3-3	CCAGGACCATTTGGAATTCCAATATTTGGTTATTACCCGTTCTTGAAACATCACAGTTAC
A3-2	CCAGGACCATTTGGAATTCCAATATTTGGTTATTACCCGTTCTTGAAACATCACAGTTAC 153
tetur07g06460	CCAGGACCATTTGGATTTCCGATTTTTGGTTATTATCCGTTCTTAAAGGATCATAGTTAT

A3-1	ATACAATTCGATCGACTATCTAAAAAGTATGGACCAGTTTTCAGTCTAAAGTTGGGTCAA 213
A3-4	ATACAATTCGATCGACTATCTAAAAAGTATGGACCAGTTTTCAGTCTAAAGTTGGGTCAA 213
A3-3	ATACAATTCGATCGACTATCTAAAAAGTATGGACCAGTTTTCAGTCTAAAGTTGGGTCAA 213
A3-2	ATACAATTCGATCGACTATCTAAAAAGTATGGACCAGTTTTCAGTCTAAAGTTGGGTCAA 213
tetur07g06460	ATACAATTTGATCGACTATCCAAAAAGTATGGACCAGTTTTCAGTCTAAAGTTGGGTCAA 240
	$* *$

A3-1 TATGATACTATTGTTGTCTGTGATTGGGATAACCTTAAAGACGCCTTCGCAAATGATGCT 273
A3-4 TATGATACTATTGTTGTCTGTGATTGGGATAACCTTAAAGACGCCTTCGCAAATGATGCT 273
A3-3 TATGATACTATTGTTGTCTGTGATTGGGATAACCTTAAAGACGCCTTCGCAAATGATGCT 273
A3-2
tetur07g06460

A3-1
A3-4
A3-3
A3-2
tetur07g06460

㑆
*** ******************

TTATTGGCTCGTCATGCTAAAGGTTTCTTATCAGGAATAGAGAACACGCTTTCGATTATT 333 TTATTGGCTCGTCCTGCTAAAGGTTTCTTATCAGGAATAGAGAACACGCTTTCGATTATT 333 TTATTGGCTCGTCCTGCTAAAGGTTTCTTATCAGGAATAGAGAACACGCTTTCGATTATT 333 TTATTGGCTCGTCCTGCTAAAGGTTTCTTATCAGGAATAGAGAACACGCTTTCGATTATT 333 TTATTGGCTCGTCCTGCTAAAGGTTTCTTATCAGGAATAGAGAACACGCTTTCGATTATT 360
$* * * * * * * * * * * * * ~ *$

A3-1

A3-4
A3-3
A3-2 tetur07g06460

A3-1
A3-4
A3-3
A3-2
tetur07g06460

A3-1
A3-4
A3-3
A3-2
tetur07g06460

A3-1
A3-4
A3-3
A3-2
tetur07g06460

A3-1

> A3-4

A3-3
A3-2
tetur07g06460

A3-1
A3-4
A3-3
A3-2
tetur07g06460

A3-1
A3-4
A3-3
A3-2
tetur07g06460

A3-1
A3-4
A3-3
A3-2
tetur07g06460

TCAATGTCGGGTGATGCTTGGCGTGAACACAGACGGTTGTCATTACATGTTTTGCGTAAT 393 TCAATGTCGGGTGATGCTTGGCGTGAACACAGACGGTTGTCATTACATGTTTTGCGTAAT 393 TCAATGTCGGGTGATGCTTGGCGTGAACACAGACGGTTGTCATTACATGTTTTGCGTAAT 393 TCAATGTCGGGTGATGCTTGGCGTGAACACAGACGGTTGTCATTACATGTTTTGCGTAAT 393 TCAATGTCGGGTGATGCTTGGCGTGAACATAGACGGTTGTCATTACATGTTTTGCGTAAT 420 $* *$

GTTGGTTTGGGTAAACGAGAAATGGAAACTTTGATCTCGGAAGAAATTCATCAATTTTTG 453 GTTGGTTTGGGTAAACGAGAAATGGAAACTTTGATCTCGGAAGAAATTCATCAATTTTTG 453 GTTGGTTTGGGTAAACGAGAAATGGAAACTTTGATCTCGGAAGAAATTCATCAATTTTTG 453 GTTGGTTTGGGTAAACGAGAAATGGAAACTTTGATCTCGGAAGAAATTCATCAATTTTTG 453 GTTGGTTTGGGTAAACGAGAAATGGAAAATTTGATCTCGGAAGAAATTCACCAATTTTTG 480 **************************** ********************* *********

TCTTCACTTGAAAATGATGCAAATGACTTGCCTCAACGTCTAATGCAAAGTGTCTCTAAT 513 TCTTCACTTGAAAATGATGCAAATGACTTGCCTCAACGTCTAATGCAAAGTGTCTCTAAT 513 TCTTCACTTGAAAATGATGCAAATGACTTGCCTCAACGTCTAATGCAAAGTGTCTCTAAT 513 TCTTCACTTGAAAATGATGCAAATGACTTGCCTCAACGTCTAATGCAAAGTGTCTCTAAT 513 TATTCACTTGAAAATGATGCGAATGACTTGTCTCAACGTCTAATGCAAAGTGTCTCTAAT 540

* $* * * * * * * * * * * * * * * * * * ~ * * * * * * * * * ~ *$

AACATTTCGCTTATGCTATTTGGTCATATTTTTGATTATGATGATCCAGATAAAGTGGCG 573 AACATTTCGCTTATGCTATTTGGTCATATTTTTGATTATGATGATCCAGATAAAGTGGCG 573 AACATTTCGCTTATGCTATTTGGTCATATTTTTGATTATGATGATCCAGATAAAGTGGCG 573 AACATTTCGCTTATGCTATTTGGTCATATTTTTGATTATGATGATCCAGATAAAGTGGCG 573 AACATTTCGCTTATGCTATTTGGTCATATTTTTGATTATGATGATCCAGATAAAGTGGCG 600 $* *$

ATTGATGAAAGTCTGAGAGATTATTGCCAAGCATTTCAATTTTCAGGCATAACGAGCTAT 633 ATTGATGAAAGTCTGAGAGATTATTGCCAAGCATTTCAATTTTCAGGCATAACGAGCTAT 633 ATTGATGAAAGTCTGAGAGATTATTGCCAAGCATTTCAATTTTCAGGCATAACGAGCTAT 633 ATTGATGAAAGTCTGAGAGATTATTGCCAAGCATTTCAATTTTCAGGCATAACGAGCTAT 633 ATTGATGAAAGTCTGAGAGATTATTGCCAAGCATTTCAATTTTCAGGCATAACGAGCTAT 660 $* *$

TTACCATGGTTAACTAAACCCTTAATTGCTTTAGGTAAAGCTAACCTTAAAATTATTCAG 693 TTACCATGGTTAACTAAACCCTTAATTGCTTTAGGTAAAGCTAACCTTAAAATTATTCAG 693 TTACCATGGTTAACTAAACCCTTAATTGCTTTAGGTAAAGCTAACCTTAAAATTATTCAG 693 TTACCATGGTTAACTAAACCCTTAATTGCTTTAGGTAAAGCTAACCTTAAAATTATTCAG 693 TTACCATGGTTAACTAAACCACTGATTGCTTTAGGTAAAGCTAACCTTAAAATTATACAA 720 $* \quad *$

AAAGCTCAAATGCATCTAAACGACTTCATTTCAAAAGAGCTTTTCAAACACCAGAATGCG 753 AAAGCTCAAATGCATCTAAACGACTTCATTTCAAAAGAGCTTTTCAAACACCAGAATGCG 753 AAAGCTCAAATGCATCTAAACGACTTCATTTCAAAAGAGCTTTTCAAACACCAGAATGCG 753 AAAGCTCAAATGCATCTAAACGACTTCATTTCAAAAGAGCTTTTCAAACACCAGAATGCG 753 AAAGCTCAAATGCATCTAAACGACTTCATTTCAAAAGAGCTTTTCAAACACCAGAATGGG 780 $* *$

INS1
ACAGATGCGTTACAAATTGAAAACTACATTGATGGATACTTAAATGTCCAGTCTAAGCGG 813 ACAGATGCGTTACAAATTGAAAACTACATTGATGGATACTTAAATGTCCAGTCTAAGCGG 813 ACAGATGCGTTACAAATTGAAAACTACATTGATGGATACTTAAATGTCCAGTCTAAGCGG 813 ACAGATGCGTTACAAATTGAAAACTACATTGATGGATACTTAAATGTCCAGTCTAAGCGG 813 AAA----------GTTGAAAACTACATTGATGGATACTTAAATGTCCAGTCTAAGCGG 828

[^2]A3-1
A3-4
A3-3
A3-2 tetur07g06460

A3-1
A3-4
A3-3
A3-2
tetur07g06460

A3-1
A3-4
A3-3
A3-2
tetur07g06460

A3-1
A3-4
A3-3
A3-2
tetur07g06460

A3-1
A3-4
A3-3
A3-2
tetur07g06460

A3-1
A3-4
A3-3
A3-2
tetur07g06460

A3-1
A3-4
A3-3
A3-2
tetur07g06460

A3-1
A3-4
A3-3
A3-2
tetur07g06460

AAAGATCAACTATTCAATAATGCAACATTAAAAAGGAATGTTGCCACATTCTTTGTTGCA 873 AAAGATCAACTATTCAATAATGCAACATTAAAAAGGAATGTTGCCACATTCTTTGTTGCA 873 AAAGATCAACTATTCAATAATGCAACATTAAAAAGGAATGTTGCCACATTCTTTGTTGCA 873 AAAGATCAACTATTCAATAATGCAACATTAAAAAGGAATGTTGCCACATTCTTTGTTGCA 873 AAAGATCAACTATTCAATAATGCAACATTAAAAAGGAATGTTGCCACATTCTTTGTTGCA 888
**

GGATCAGAGACCGTTGCCGGTACTCTAACCTGGGCCAGCATGTACCTAGTAAAATATCCT 933 GGATCAGAGACCGTTGCCGGTACTCTAACCTGGGCCAGCATGTACCTAGTAAAATATCCT 933 GGATCAGAGACCGTTGCCGGTACTCTAACCTGGGCCAGCATGTACCTAGTAAAATATCCT 933 GGATCAGAGACCGTTGCCGGTACTCTAACCTGGGCCAGCATGTACCTAGTAAAATATCCT 933 GGATCAGAGACCGTTGCCGGTACTCTAACCTGGGCCAGCATGTACCTAGTAAAATATCCT 948
**

CAATATCAAGAGAGGATTCGATTAGAAATAAAAGAAGTTATTGGAACTGAAAAGAGACCA 993 CAATATCAAGAGAGGATTCGATTAGAAATAAAAGAAGTTATTGGAACTGAAAAGAGACCA 993 CAATATCAAGAGAGGATTCGATTAGAAATAAAAGAAGTTATTGGAACTGAAAAGAGACCA 993 CAATATCAAGAGAGGATTCGATTAGAAATAAAAGAAGTTATTGGAACTGAAAAGAGACCA 993 CAATATCAAGAGAGGATTCGATTAGAAATAAAAGAAGTTATTGGAACTGAAAAACGACCA 1008 *** *****

GATTTCTCGGATCGTCTAAGAATGCCTTTTACTCTAGCCTTTCTTTATGAAGTCCAGCGT 1053 GATTTCTCGGATCGTCTAAGAATGCCTTTTACTCTAGCCTTTCTTTATGAAGTCCAGCGT 1053 GATTTCTCGGATCGTCTAAGAATGCCTTTTACTCTAGCCTTTCTTTATGAAGTCCAGCGT 1053 GATTTCTCGGATCGTCTAAGAATGCCTTTTACTCTAGCCTTTCTTTATGAAGTCCAGCGT 1053 GATTTCTCGGATCGTCTAAGAATGCCTTTTACTCTCGCCTTTCTTTATGAAGTCCAGCGT 1068
*********************************** ************************

ATTGAGTCAATCGTGGCTACAAATCTTATACGAAGAGCTTCACAAGACACAAAGATTGGT 1113 ATTGAGTCAATCGTGGCTACAAATCTTATACGAAGAGCTTCACAAGACACAAAGATTGGT 1113 ATTGAGTCAATCGTGGCTACAAATCTTATACGAAGAGCTTCACAAGACACAAAGATTGGT 1113 ATTGAGTCAATCGTGGCTACAAATCTTATACGAAGAGCTTCACAAGACACAAAGATTGGT 1113 ATTGAATCCATCGTCGCTACAAATCTTATACGAAGAGCTTCACAAGACACAAAGATTGGT 1128
***** $* *$

CCTTATAATGTTCCAAAAGATAGTCTGGTTCTGTTCAATTTCTGGTCCGTCCATCATGAT 1173 CCTTATAATGTTCCAAAAGATAGTCTGGTTCTGTTCAATTTCTGGTCCGTCCATCATGAT 1173 CCTTATAATGTTCCAAAAGATAGTCTGGTTCTGTTCAATTTCTGGTCCGTCCATCATGAT 1173 CCTTATAATGTTCCAAAAGATAGTCTGGTTCTGTTCAATTTCTGGTCCGTCCATCATGAT 1173 CCTTATAATGTTCCAAAAGATAGTCTGGTTCTGTTCAATTTCTGGTCTGTCCATCATGAT 1188
*** ************

INS2

CCCAAACTGTGGCCTAATCCTGATAAATTTGATCCAAATCGATTCCTTGCTGAAAATATT 1233 CCCAAACTGTGGCCTAATCCTGATAAATTTGATCCAAATCGATTCCTTGCTGAAAATATT 1233 CCCAAACTGTGGCCTAATCCTGATAAATTTGATCCAAATCGATTCCTTGCTGAAAATATT 1233 CCCAAACTGTGGCCTAATCCTGATAAATTTGATCCAAATCGATTCCTTGCTGAAAATATT 1233 CCAAAACTTTGGTCTAATCCCGATAAATTTGATCCAAATCGATTCCTTACCGAA------ 1242 $* *$

ACCAATAGTACCAAAGTAATAAAGTCTCCATATTTAGTGCCATTTAGTGCTGGTAAAAGA 1293 ACCAATAGTACCAAAGTAATAAAGTCTCCATATTTAGTGCCATTTAGTGCTGGTAAAAGA 1293 ACCAATAGTACCAAAGTAATAAAGTCTCCATATTTAGTGCCATTTAGTGCTGGTAAAAGA 1293 ACCAATAGTACCAAAGTAATAAAGTCTCCATATTTAGTGCCATTTAGTGCTGGTAAAAGA 1293 ---AATGGTAACAAAGTAGTAAAGCCTCCATATTTAGTGCCATTTAGTGCTGGTAAAAGA 1299
*** $* * * ~ * * * * * * * ~ * * * * * ~ *$

A3-1	GCTTGTCCAGGTGAAGGCTTAGCTAATGTGGAGCTATTTTTGTACACAGTTGGTATACTT 1353
A3-4	GCTTGTCCAGGTGAAGGCTTAGCTAATGTGGAGCTATTTTTGTACACAGTTGGTATACTT 1353
A3-3	GCTTGTCCAGGTGAAGGCTTAGCTAATGTGGAGCTATTTTTGTACACAGTTGGTATACTT 1353
A3-2	GCTTGTCCAGGTGAAGGCTTAGCTAATGTGGAGCTATTTTTGTACACAGTTGGTATACTT 1353
tetur07g06460	GCTTGTCCAGGTGAAGGCTTAGCTAATGTGGAGCTATTTTTATACACAGTTGGTATACTT 1359

A3-1	CAACGATTCAAAATCAAATCAGACAAACCATTGTCATTTGAAGCAATTAACGGTCTCACT 1413
A3-4	CAACGATTCAAAATCAAATCAGACAAACCATTGTCATTTGAAGCAATTAACGGTCTCACT 1413
A3-3	CAACGATTCAAAATCAAATCAGACAAACCATTGTCATTTGAAGCAATTAACGGTCTCACT 1413
A3-2	CAACGATTCAAAATCAAATCAGACAAACCATTGTCATTTGAAGCAATTAACGGTCTCACT 1413
tetur07g06460	CAACGATTCAAAATCAAATCAGATAAACCATTATCCTTTGAAGCAATTAACGGTCTCACT 1419
	************************* ******** ** $* *$
A3-1	CGACGTCCTAAATACAAA----------------------------1431
A3-4	CGACGTCCTAAATACAAA-----------------------------1431
A3-3	CGACGTCCTAAATACAAA---------------------------1431
A3-2	CGACGTCCTAAATACAAA----------------------------1431
tetur07g06460	CGACGTCCAAAATACAAACCAGATTTAATCTTCCAAAGAGTATAA 1464
	******** $* * * * *$

Supplementary information 5:

Alinement of amino acid sequences for CYP392A3 clones of NPR (A3-1-4) and tetur07g06460 (London strain; Grbić et al. 2011)

CLUSTAL 2.1 multiple sequence alignment with some modification

A3-1
A3-4
A3-3
A3-2
tetur07g06460

A3-1
A3-4
A3-3
A3-2
tetur07g06460
--_-_----PLPFIYLFLSLSIIWIIKYLFQSVKRLYSLPPGPFGIPMFGYYPFLKHHSY 51 --------PLPFIYLFLSLSIIWIIKYLFQSVKRLYSLPPGPFGIPMFGYYPFLKHHSY 51 ---------PLPFIYLFLSLSIIWIIKYLFQSVKRLYSLPPGPFGIPMFGYYPFLKHHSY 51 ---------PLPFIYLFLSLSIIWIIKYLFQSVKRLYSLPPGPFGIPMFGYYPFLKHHSY 51 MLLLDYFSVPLPFIYLFLSLSIIWIIKYLFKSVKRIYSLPPGPFGFPIFGYYPFLKDHSY 60 ********************* **** ********* * ******** ***

MQFDRLSKKYGPVFSLKLGQYDTIVVCDWDNLKDAFANDALLARHAKGFLSGMENTLSII 111 MQFDRLSKKYGPVFSLKLGQYDTIVVCDWDNLKDAFANDALLARPAKGFLSGNENTLSII 111 MQFDRLSKKYGPVFSLKLGQYDTIVVCDWDNLKDAFANDALLARPAKGFLSGMENTLSII 111 MQFDRLSKKYGPVFSLKLGQYDTIVVCDWDNLKDAFANDALLARPAKGFLSGMENTLSII 111 IQFDRLSKKYGPVFSLKLGQYDTIVVCDWDNLKDAFANDALLARPAKGFLSGIENTLSII 120
*** ******* *******

SMSGDAWREHSRLSLHVLRNVGLGKREMETLISEEIHQFLSSLENDANDLPQRLMQSVSN 171 SMSGDAWREHSRLSLHVLRNVGLGKREMETLISEEIHQFLSSLENDANDLPQRLMQSVSN 171 SMSGDAWREHSRLSLHVLRNVGLGKREMETLISEEIHQFLSSLENDANDLPQRLMQSVSN 171 SMSGDAWREHSRLSLHVLRNVGLGKREMETLISEEIHQFLSSLENDANDLPQRLMQSVSN 171 SMSGDAWREHRRLSLHVLRNVGLGKREMENLISEEIHQFLYSLENDANDLSQRLMQSVSN 180
********** ****************** ********** ********* *********

NISLMLFGHIFDYDDPDKVAIDESLSDYCQAFQFSGMTSYLPWLTKPLIALGKANLKIIQ 231 NISLMLFGHIFDYDDPDKVAIDESLSDYCQAFQFSGMTSYLPWLTKPLIALGKANLKIIQ 231 NISLMLFGHIFDYDDPDKVAIDESLSDYCQAFQFSGMTSYLPWLTKPLIALGKANLKIIQ 231 NISLMLFGHIFDYDDPDKVAIDESLSDYCQAFQFSGMTSYLPWLTKPLIALGKANLKIIQ 231 NISLMLFGHIFDYDDPDKVAIDESLRDYCQAFQFSGITSYLPWLTKPLIALGKANLKIIQ 240
************************* ********** ***********************
p-INS1
KAQMHLNDFISKELFKHQNATDALQIENYIDGYLNVQSKRKDQLFNNATLKSNVATFFVA 291 KAQMHLNDFISKELFKHQNATDALQIENYIDGYLNVQSKRKDQLFNNATLKSNVATFFVA 291 KAQMHLNDFISKELFKHQNATDALQIENYIDGYLNVQSKRKDQLFNNATLKSNVATFFVA 291 KAQMHLNDFISKELFKHQNATDALQIENYIDGYLNVQSKRKDQLFNNATLKSNVATFFVA 291 KAQMHLNDFISKELFKHQNGK----VENYIDGYLNVQSKRKDQLFNNATLKRNVATFFVA 296 ******************* $\quad * ~ * * * * * * * *$

GSETVAGTLTWASMYLVKYPQYQESIRLEMKEVIGTEKSPDFSDRLSMPFTLAFLYEVQR 351 GSETVAGTLTWASMYLVKYPQYQESIRLEMKEVIGTEKSPDFSDRLSMPFTLAFLYEVQR 351 GSETVAGTLTWASMYLVKYPQYQESIRLEMKEVIGTEKSPDFSDRLSMPFTLAFLYEVQR 351 GSETVAGTLTWASMYLVKYPQYQESIRLEMKEVIGTEKSPDFSDRLSMPFTLAFLYEVQR 351 GSETVAGTLTWASMYLVKYPQYQERIRLEIKEVIGTEKRPDFSDRLRMPFTLAFLYEVQR 356

IESIVATNLMRSASQDTKIGPYNVPKDSLVLFNFWSVHHDPKLWPNPDKFDPNRFLAENI 411 IESIVATNLMRSASQDTKIGPYNVPKDSLVLFNFWSVHHDPKLWPNPDKFDPNRFLAENI 411 IESIVATNLMRSASQDTKIGPYNVPKDSLVLFNFWSVHHDPKLWPNPDKFDPNRFLAENI 411 IESIVATNLMRSASQDTKIGPYNVPKDSLVLFNFWSVHHDPKLWPNPDKFDPNRFLAENI 411 IESIVATNLIRRASQDTKIGPYNVPKDSLVLFNFWSVHHDPKLWSNPDKFDPNRFLTE-- 414 ********* * ******************************** *********** *

TNSTKVMKSPYLVPFSAGKSACPGEGLANVELFLYTVGMLQRFKIKSDKPLSFEAINGLT 471 TNSTKVMKSPYLVPFSAGKSACPGEGLANVELFLYTVGMLQRFKIKSDKPLSFEAINGLT 471 TNSTKVMKSPYLVPFSAGKSACPGEGLANVELFLYTVGMLQRFKIKSDKPLSFEAINGLT 471 TNSTKVMKSPYLVPFSAGKSACPGEGLANVELFLYTVGMLQRFKIKSDKPLSFEAINGLT 471 -NGNKVVKPPYLVPFSAGKRACPGEGLANVELFLYTVGILQRFKIKSDKPLSFEAINGLT 473

* $* *$

RRPKYK-------- 477
RRPKYK-------- 477
RRPKYK-------- 477
RRPKYK-------- 477
RRPKYKPDLIFQRV 487 ******

Supplementary information 6:

Twenty-five adult females were introduced to a kidney bean leaf disk ($3 \times 3 \mathrm{~cm}$). The leaf disk was sprayed with 0.3 mL PBO solution $\left(100 \mathrm{mg} \mathrm{L}^{-1}\right.$ in a solvent of acetone:water $=$ 1:1) using a glass chromatograph sprayer. Four hours later, the leaf disk was sprayed with pyridaben solution 1 mL at assigned concentration. Mortality was checked after 24 h . Pyridaben application and assessment were performed as well as toxicological bioassay (section 2.6.1). Consequently, 100% of R_2, RR_2, R-INS2+, and R-INS2- females died at the concentration of $>16 \mathrm{mg} \mathrm{L}^{-1}$. All females died at $>0.16 \mathrm{mg} \mathrm{L}^{-1}$ in S_2 and SS_2 and $>0.8 \mathrm{mg} \mathrm{L}^{-1}$ in H-INS2-. Therefore, marked synergistic effect on pyridaben toxicity was shown in all congenic strains by the inhibition of CYP activity with PBO pretreatment.

Mortality-dose curve for adult females sprayed with pyridaben after PBO pretreatment. (a) R_2 and S_2 strains, (b) RR_2 and SS_2 strains, (c) R-INS2+, R-INS2-, and H-INS2strains.

Female: S_i Male: R_i
(P)

(B1-B5)
(B8)

Fig. S1. Procedure of the marker-assisted back crossing for double introgression of mutant PSST and high-expression CYP392A3 alleles into susceptible strain. R _ $\mathrm{i}(\mathrm{i}=1,2$): single-female lines of NPR that had alleles of c.329A>G (H110R) in PSST and c.1242_1243insAATATTACC (p.E414_N415insNIT; INS2+ type; see section 3.7) in CYP392A3 homogeneously. S_i $(\mathrm{i}=1,2)$: single-female lines of NPS that had alleles of 329A (H110) in PSST and no insertion (c.1246_1247; INS2- type) in CYP392A3 homogeneously

Fig. S2. Procedure of the marker-assisted crossing for uncoupling of mutant PSST and INS2+ type CYP392A3 (see section 3.7) alleles in RR_i $(\mathrm{i}=1,2)$ constructed in section 2.8.1. This Figure shows the procedure to establish R-INS2- (PSST H110R + CYP392A3 INS2- type) strain as an example.

Fig. S3. Pyridaben concentration-mortality curves for T. urticae populations.

Fig. S4. Frequency of H110R $\left(=2^{-\Delta \Delta \mathrm{Cq}}\right)$ in PSST and $\log 2$-fold change $(\log 2 \mathrm{FC}=-\Delta \Delta \mathrm{Cq})$ of expression levels against NPS in CYP genes up-regulated in RNA-seq in the 11 T. urticae strains. In CYPs, gray and white bars shows log2FC calculated using GAPDH and ubiquitin as reference genes, respectively. Asterisks above and below bars indicate significant difference from NPS in the $\Delta \mathrm{Cq}$ values (Dunnett contrasts; ${ }^{* * *} P<0.001,{ }^{* *} P<0.01$, * $P<0.05$)

Fig. S5 Regression analysis between the LC_{50} for pyridaben and H110R substitution frequency in PSST genes in the 11 T. urticae strains. Bars on the plots show SE.

Fig. S6. Regression analysis between the LC_{50} for pyridaben and $\log 2$-fold change ($\log 2 \mathrm{FC}=$ $-\Delta \Delta \mathrm{Cq})$) in the expression level of 12 CYP genes up-regulated in RNA-seq in the 11 T. urticae strains. Solid circles and open triangles indicate the expression levels computed using GAPDH and ubiquitin as references. Vertical bars on the plots show SE.

Fig. S7. Variances (open circles) and cumulative contribution (solid circles) of principal components.
(a)

(b)

Fig. S8. Insertion (INS1 and INS2) and substitutions of amino acid residues in CYP392A3. (a) Comparison between the standard London strain (tetur07g06460) and CYP392A3 of NPR cloned into plasmids (A3-1-4). (b) Amino acid sequences determined from males of local populations. Numbers shown above amino acid residues indicate the numbering for tetur07g06460. INS1: p.K261T_V262Iins, INS2: E414_N415ins.

Fig. S9. Mortalities by pyridaben (a) and CYP392A3 expression (b) in H-INS2+ line. (a) Numbers of females used for each concentration were 10.4 ± 0.5 (gray circles) and 3.8 ± 0.4 (open triangle). (b) Hold change was computed using $\mathrm{S}_{-} 1(\Delta \mathrm{Cq})$ as a calibrator with no replication. The experiment of qPCR was performed once separately from that in Fig. 7. Although a sample of R-INS2+ was also applied for qPCR, data was not available due to technical error.

Fig. S10. Correlation between LC_{50} values to pyridaben and gene expression levels (Log2FC) of CYP392A3 in congenic lines having H110R mutation in PSST. Log2FC of all lines were re-computed using S_1 as a common calibrator and GAPDH and ubiquitin as reference genes. Plots express averaged Log2FC for three biological replications per congenic line and vertical bars show standard errors. Each biological replication (three per congenic line) was used as a sample for the linear regression analysis, which was performed using ' lm ' module of R software.

Assuming only the effects of mutant PSST without CYP392A3 and thus given the expression level decreased to that equivalent to $\mathrm{S}_{-} 1$, estimated LC_{50} values based on the regression lines were 290 and $195 \mathrm{mg} \mathrm{L}^{-1}$ in GAPDH and ubiquitin, respectively. When using S_2 values as a calibrator, the similarly estimated LC_{50} values were 457 and $499 \mathrm{mg} \mathrm{L}^{-1}$, respectively (Data was not shown). Those values were roughly corresponding with the data in Bajda et al. (2017).

Table S1. Primers used for amplification of nadl and nad5 from T. urticae strains NPS and NPR

Target gene	Primer name	Sequence (5'-3')	$\mathrm{T}_{\mathrm{m}}\left({ }^{\circ} \mathrm{C}\right)$	Amplicon size
NAD1	nad1_F	TTGCCCATCACTTTCATTTTT	59.4	1559 bp
	nad1_R	CCCGATAAAAGCGGATCCTA	61.3	
NAD5	nad5_F1	ATAGCTGCCCCAACTCCAAT	60.9	890 bp
	nad5_R1	GAAATCTTTTCCATCCATAATTCA	58.4	
	nad5_F2	TGTGTCAATTGTTGTTTTTAATGTTTT	60.0	1713 bp
	nad5_R2	AGGGGGAACCCCTATCTTTA	58.8	

Table S2. Primer sets for PSST mutation frequency analysis

Primer	Forward $\left(5^{\prime}-3^{\prime}\right)$	$E^{\text {a }}$

Resistance allele-specific primer set

tu_PSST_222F	TGGAGAGTTTGCTATGGCTCGAATG	1.87
tu_PSST330T_357R	TTCTAAATCATAACGAGGAGCAGCTATTC	

Common primer set for internal reference

tu_PSST_308F	GTTGTGCCGTTGAAATGATGCAC	R: 1.98
tu_PSST_419R	GTACCAGCGACAATCATGACATCAG	S: 1.90

[^3]Table S3. Primer sets for qPCR of 12 CYP genes upregulated in NPR in RNA-seq

Genes	Gene ID	Forward (5' -3^{\prime})	Reverse (5' -3^{\prime})	$E_{\text {cDNA }}$	$E_{\text {gDNA }}$
CYP385C1	tetur26g01470	TCTGGTTGGAACTACATTCGCT	AGCTTGTAAACCATCGTATAGACCA	2.01	NA
CYP389C1	tetur34g00510	CATGGTACGGCAAAAGTTCTGGAAG	GGATCACGGTGAGTGGAGGAA	2.02	1.93
CYP389C11	tetur05g06570	GTTGAACCCTTCTGTTGCTG	TAACCAAAAGGAATCCAAGCTG	2.00	1.98
CYP389C12	tetur05g06560	GGAAGTATTCCACTCAAAGCTGAAG	CAGTACAAGCTGCTAATTGTTGGAG	2.12	1.99
CYP392A3	tetur07g06460	AGCTTTTCAAACACCAGAATGCGA	CGGCAACGGTCTCTGATCCT	2.03	1.91
CYP392A14	tetur08g07950	TGATAGACACCGAGGGAAAC	CTCTGAACCAGCACCGAA	NA	1.93
CYP392A16	tetur06g04520	GGTAAACCTGCCGATTTTGA	ACTACACCGGCGAAGCTAAA	1.96	1.89
CYP392B1	tetur20g03200	GCCGCTACGATTGTTCCAG	AGGCTTGACTGCTTTGGTTC	2.00	1.90
CYP392D2	tetur03g04990	AAACTTGGAGGCAGCAAAGA	TCGCAACACTCAATCCATTC	2.13	1.91
CYP392D4	tetur03g05010	CAAAGGACGCTTTTGTCGT	GACTTGACAACCTTAGAACCATC	2.00	1.90
CYP392E4	tetur27g02598	CTGGTGAACGGTGGAAGGAAC	CGAAGCATACCATTGGCTTGGA	2.00	1.90
CYP392E8	tetur27g00350	ATGCCTACAAACAGATGACGGAGTT	GCCTCCAAGGTTCACCAGTCA	2.05	1.98
GAPDH	tetur25g00250	GCACCAAGTGCTAAAGCATGGAG	GAACTGGAACACGGAAAGCCATAC	1.94	1.88
Ubiquitin	tetur03g06910	GTCTCCGTGGTGGAATGC	TTGGATTTTGGCTTTCACG	1.98	1.96

E_{cDNA} : Amplification efficiency with cDNA, E_{gDNA} : Amplification efficiency with genomic DNA, NA: Not applicable because of the low expression level (CYP392A14, $\left.E_{\mathrm{cDNA}}\right)$ and presence of intron (CYP385C1, $\left.E_{\mathrm{gDNA}}\right)$.

Table S4. Primer used for Sanger sequencing

Gene/Vector	Primers	$5^{\prime}-3^{\prime}$
CYP392A3	CYP392A3fusion-F	GTGGTGGAATTCTGCCAAAATGTTGCTTCTTGATTACTTTAGTGT
	CYP392A3fusion-R	CTGTGCTGGATATCTTTATACTCTTTGGAAGATTAAATCTGG
	CYP392A3-forward	ATGTTGCTTCTTGATTACTTTAGTGT
	CYP392A3-reverse	TTATACTCTTTGGAAGATTAAATCTGG
	CYP392A3-692F	AAGTGGCGATTGATGAAAGTCTG
	CYP392A3-938R	AGTTGATCTTTCCGCTTAGACTG
pAc5.1/V5-HisA	Ac5-seq-F	ACACAAAGCCGCTCCATCAG
	Ac5-seq-R	TAGAAGGVAVAGTCGAGG
PSST	PSST-73F	GGAGCCGTTGCTTCTATTTCAACC
	PSST-664R	CAGTGGCTTGTCGCTTAATCCTC

Table S5. Statistics of RNA-seq reads of NPR and NPS strains

Strain	Treatment	Biological replicate	No. of reads		Rate of clean reads
			Raw	Clean	
NPR	Water	Rep1	30,861,954	28,368,112	91.92\%
		Rep2	27,273,852	24,980,852	91.59\%
		Rep3	30,201,616	27,785,640	92.00\%
	Pyridaben	Rep1	31,028,030	28,325,300	91.29\%
		Rep2	26,760,276	24,584,322	91.87\%
		Rep3	24,414,942	22,389,594	91.70\%
NPS	Water	Rep1	25,641,614	23,300,040	90.87\%
		Rep2	28,035,392	25,797,942	92.02\%
		Rep3	26,524,690	24,187,240	91.19\%
	Pyridaben	Rep1	25,921,118	23,709,410	91.47\%
		Rep2	29,352,400	26,944,552	91.80\%
		Rep3	24,750,876	22,788,432	92.07\%

Table S6. Statistics of reference transcriptome assembly

	transcripts	genes
No. of sequences	39,245	28,406
Total size (bp)	$54,954,726$	$33,087,068$
Average length (bp)	1,400	1,164
Maximum length (bp)	20,873	20,873
N50 (bp)	2,651	2,473
E90N50 (bp)	3,132	3,318
Number of predicted CDS	17,161	10,674
Number of blastn hits with gene set 20130928	21,598	12,965
Number of blastx hits with NCBI-nr	19,768	12,263

The reference transcriptome assembly was generated by de novo assembly using the six RNA-seq samples of NPR strain. Assembled contigs (transcripts) were clustered into genes (Trinity component) based on sequence similarity by Trinity software. Only longest contig per gene was used for calculating the statistics of the genes. E90N50 is an N50 value calculated using highly expressed contigs accounting for 90% of total expression, which is a more effective metrics for evaluating quality of the transcriptome assembly than the N50.

Table S7. The number of mapped RNA-seq reads with and without H110R mutation in PSST gene

Strain	Treatment	Biological replicate	No. of mapped reads		Rate of resistant reads
			$\mathrm{CAC}(\mathrm{H})$ (Susceptible)	CGC (R) (Resistant)	
NPR	Water	Rep1	0	147	100\%
		Rep2	0	109	100\%
		Rep3	0	174	100\%
	Pyridaben	Rep1	0	156	100\%
		Rep2	0	120	100\%
		Rep3	0	103	100\%
NPS	Water	Rep1	115	0	0\%
		Rep2	153	0	0\%
		Rep3	114	0	0\%
	Pyridaben	Rep1	90	0	0\%
		Rep2	110	0	0\%
		Rep3	111	0	0\%

Table S8. Recombination rate of PSST and CYP392A3 loci in F2 males in uncoupling experiments.

Parental crosses	No. of males detected ${ }^{\text {a }}$						Recombination rate
$\left(q \times \sigma^{\top}\right)$	R-INS2+	H-INS2-	R-INS2-	H-INS2+	$(\%)$		
SS_1 \times RR_1	34	43	0	2	2.5		
SS_2 \times RR_2	36	37	1	1	2.7		

${ }^{\mathrm{a}} \mathrm{R}$ and H indicate H110R and H110, respectively, in PSST, and INS2+ and INS2- show c. 1242 1243insAATATTACC
(p.E414_N415insNIT; INS2+ type) and c.1246_1247 (INS2- type) in CYP392A3.

[^0]: 2.7.4. Regression analysis and principal component analysis (PCA) of the correlation of the PSST mutation and upregulation of CYP genes with pyridaben susceptibility

[^1]: ${ }^{\text {a }}$ Averaged number of eggs used for the test at each concentration \pm standard deviation (SD)
 ${ }^{\mathrm{b}}$ Resistance ratio

[^2]: * $* \quad *$

[^3]: ${ }^{\text {a }}$ Amplification efficiency; data from Maeoka et al. (2020); " R " and " S " indicate E for DNA samples of NPR and NPS, respectively

