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 (Research Objective): 

 The energetic electron precipitation (EEP) induced by chorus waves is the main cause of 

pulsating auroras and one of the processes removing energetic electrons from the Earth's outer 

radiation belt. Several simulations provided direct evidence showing the chorus-driven EEP (i. 

e., Rosenberg et al. (1990), Hikishima et al. (2010), and Miyoshi et al. (2010)). However, the 

simulations are all under the parallel propagation assumption. Oblique whistler mode 

wave-particle interactions accelerate electrons and lower their equatorial pitch angles via 

Landau resonance efficiently. Landau resonance does not occur in parallel wave-particle 

interactions. Based on this phenomenon, the Landau resonance should contribute to the 

precipitation of 10–100 keV electrons or even relativistic electrons. From in situ observations, 

there are many events of oblique chorus emissions in the Earth’s magnetic field. The relation 

between chorus-driven EEP and the Landau resonance has not been clarified yet. In this study 

we check the process of oblique chorus induced EEP and how important the wave normal 

angles contribute to the precipitation by test-particle simulations.  

 

 (Computational Aspects): 

  Test-particle simulations and Green’s function method are applied to calculate the 

wave-particle interactions between chorus emissions and energetic electrons. Our target 

location is around an L=4.5 shell in the Earth’s magnetosphere. About the wave models, 

generally, we have a pair of emissions propagate from the equator toward high latitudes. 

Subpacket structures are applied for wave amplitudes, and rising tone is employed for wave 

frequencies. We have 4 Green’s function sets. For cases 1–3, the maximum amplitudes are 2.1 

nT and the maximum wave normal angles are 0°, 20°, and 60°, respectively. For case 4, the 

maximum amplitude is 370 pT and the maximum wave normal angle is 60°. Fig 1 shows the 
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wave model of case 4. A Green’s function G(K,K0, , 0, , 0) is a result in (K, , ) of a group 

of electrons initially at (K0, 0, 0), where K, , and  are kinetic energy, equatorial pitch angle, 

and longitude, respectively, interacting with a pair of emission. For one Green’s function, we 

input 3600 electrons in test particle simulation. For a Green’s function set, we calculate K0 

from 10 keV to 6 MeV and 0 from 5° to 89°. We submitted 183,600,000 electrons for one set. 

Both MPI and OpenMP methods are employed for parallel computing. After generating the 

Green’s functions, we applied the convolution integral method to simulate electrons 

interacting with consecutive emissions.  

 

Fig.1 Wave model of Case 4 for test particle simulation. 

 

Accomplishments : 

We focused on the results of electrons precipitating from the magnetosphere into the 

atmosphere, namely, the electrons with  < loss cone angle 4.56°. We verified the 

contributions of different wave normal angles and wave amplitudes to electron precipitation. 

1. Pitch Angle Scatterings among different wave normal angles 

We test electrons initially at high equatorial pitch angles for cases 1–3 to test the pitch angle 

scattering rates among different wave normal angles. The wave amplitude is a control variable 

in this comparison. We found that low-equatorial-pitch-angle electrons can be moved to the 

loss cone within 3 emissions. While it requires more interaction cycles, namely longer 

interaction time, for high-equatorial-pitch-angle electrons to approach the loss cone. Fig 2 

shows the electron distributions after interaction cycles 1, 5, and 10, for MeV electrons. Fig 2 

indicates that a larger wave normal angle contributes to a higher pitch angle scattering rate. 

Fig 3a is electron precipitation fluxes after 2 mins and 5 mins from the beginning of chorus 

events. The figure clearly shows that a higher wave normal angle causes larger electron 

precipitation. The reason is Landau resonance. Nonlinear trapping via Landau resonance can 

low equatorial pitch angle of resonant electrons. A larger wave normal angle contributes to 

stronger Landau resonance and causes stronger electron precipitation. 
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2. Comparison precipitation fluxes between different wave amplitudes 

Fig 3b and 3c are precipitation fluxes of case 3 and case 4, respectively. The wave normal 

angle is the control variable here. Obviously, the figures tell that amplitude highly affects 

precipitation. A larger wave amplitude case has more electron precipitation fluxes in all 

energies. 

 
Fig.2 Comparison of pitch angle scattering rate among different wave normal angles.  

Fig.3 Precipitated electron fluxes for different wave normal angles and wave amplitudes. 

3. Two-Step Precipitation Process in Oblique Wave-Particle Interaction 

Previously (The KDK 2020 report) we have verified that Landau resonance is not able to 

scatter the electron into the loss cone. Most of the precipitation is directly caused by cyclotron 

resonance. Based on this description and the results shown above, we propose a two-step 

precipitation process for oblique chorus emissions that contributes to more electron loss: 

(a) Through Landau resonance interaction with a chorus emission, electrons at high pitch 

angles are effectively accelerated in the parallel direction, and their pitch angles become 
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lower.  

(b) The electrons bounce back toward the equator, and they are pushed into the loss cone 

through nonlinear scattering due to cyclotron resonance with another chorus emission. The 

combination of Landau resonance and cyclotron resonance by oblique chorus emissions 

results in a higher precipitation rate than the single cyclotron resonance by purely parallel 

chorus emissions. 
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