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 (Research Objective): 

  In past years, the linear perturbation equations of tearing instability derived 
by Loureiro (Loureiro, et.al., Phys. Plasmas 2007 (Loureiro,PoP2007)) has been 
deeply explored by numerically solving as the initial value problem (Shimizu, 
AAPPS-DPP2018, KDK Research Report2018). The Loureiro’s linear 
perturbation equations are based on non-viscous case, but in this paper, two 
types of viscosity effect are introduced to the equations (Shimizu, 
AAPPS-DPP2021, KDK Research Report2020). Type 1 is a kind of non-uniform 
viscosity case and type 2 is uniform case, which respectively have different 
equilibriums. In addition, the WKB approximation introduced by Loureiro is 
extensively improved (Shimizu, SGEPSS2021). It is important that the 
improvement is established by the introduction of viscosity effect. In addition, the 
4th order differential magnetic diffusion is applied to the theory (Shimizu & 
Fujimoto, AOGS2021), where usual resistivity is the 2nd order magnetic 
diffusion.  
Introduction of Viscosity :  

 

                                                (3) 

Eq.(1) is the perturbation equation of momentum for the tearing instability, in 
which viscosity effect is introduced with a constant viscosity coefficient N(= ). 

Excepting the terms of N, eq.(1) is exactly the same as that of Loureiro’s 

perturbation equations (Loureiro,PoP2007). Also, eqs.(2), (3) and every notation 
are exactly the same as those of the Loureiro’s perturbation equations. Loureiro applied 

eq.(3) only to the inner region of the current sheet, i.e. <1.307, and assumed f( )=1.0 in 

the outer region, i.e. >1.307. However, when viscosity effect is introduced in the 

Loureiro’s equations, the change from eq.(3) to f( )=1 breaks down the equilibrium of the 

plasma flow field. To correctly study the perturbation theory, the equilibrium must be 

rigorously satisfied. To rigorously keep the equilibrium, we take two strategies shown below, 

which have been proposed by last year (Shimizu, AAPPS-DPP2021, and Shimizu, KDK 
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Research Report2020). The latest definition of viscosity coefficient N(= ) shown in eq.(1) 

has been slightly modified from that of AAPPS-DPP2021 and KDK Research Report 2020, 

but there is no essential difference of the numerical results originated from the slight 

modification.  

Strategy 1 (Viscosity effect only in inner region):  

 In this case, eqs.(1)-(3) are solved with non-zero constant N value in the inner region, i.e. 0<

<1.307. Meanwhile, eq.(1) with N=0 and eq.(2) are solved in the outer region, i.e. >1.307, 

where f( )=1 is constantly set instead of eq.(3). Hence, this setup of f( ) is exactly the same 

as that of the original Loureiro theory, where the outer region becomes a uniform magnetic 

field region. However, to rigorously satisfy the equilibrium of plasma flow field, N(= )=0 is 

assumed in the outer region. Hence, this is a kind of non-uniform viscosity case.  

How to solve the inner region as initial value problem is as follows. Firstly, when a set of , 

k, e(= ), N(= ), (0), ’(0), ’’(0), ’’’(0), (0), and ’(0) is given, we can 

uniquely obtain a perturbation solution of ( ) and ( ). Finally, we must find any 

physically acceptable solutions. Let us assume the physical symmetry condition at the origin, 

i.e. (0)= ’’(0)= ’(0)=0. This assumes that the tearing instability is symmetry for the 

current sheet plane. In addition, since eqs.(1) and (2) are homogeneous equations, (0)=1 

can be set without the lack of generality of solutions. Then, k, e and N are uniquely set for a 

specified physical state of tearing instability and current sheet. The remaining , ’(0) and 

’’’(0) are adjustable control parameters to obtain a physically acceptable solution. Hence, as 

the initial value problem of eqs.(1)-(3),   are numerically solved from =0 until 

=1.307. Then,  and  in the outer region must be solved, smoothly connecting from  

 obtained for the inner region. For the smooth connection, it is noted that eq.(1) must be 

simultaneously satisfied in both cases of non-zero N and N=0 at =1.307. In other words, the 

next equation must be satisfied at =1.307. 

                                       (4) 

This equation consists only of the N terms in eq.(1). Subsequently,  and  beyond 

 are numerically solved for eq.(1) of N=0, eq.(2), and f( )=1. Then, we can obtain 

an unique zero-crossing solution as a physically acceptable solution, which satisfies = =0 

at a location defined as c(>1.307). How to find such zero-crossing solutions is the same as 

that of non-viscous case (Shimizu, AAPPS-DPP2018). Finally, we can know how much is the 

linear growth rate of the zero-crossing solutions (Shimizu, AAPPS-DPP2021 and Fig.1(a) in 

KDK Research Report2020). In Figs.1(a) and (b), “Non-uniform-N” curves respectively 

show the k-dependence and N-dependence of the linear growth rate . As expected, Fig.1(b) 

shows that decreases for larger N. At this point, the slight increase of  for large N(= ) 

observed in Fig.2(a) of KDK Research Report2020, p.83, may be originated by numerical 

errors. In addition, in Fig.1(b) is plotted at N=0.0 and 0.004, which are extreme cases. The 

former is exactly obtained in the non-viscous (N=0) case. The latter almost coincides with 
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what is exactly obtained for the large N limit of eq.(1). The latter suggests that, even in 

extreme large N, for k=1 cannot reach zero. Such a suggestion is unexpected, but it may be 

remembered that this strategy is a kind of non-uniform viscosity case. Rather, we may have to 

examine the uniform viscosity case, i.e., Strategy 2 shown below.  

Strategy 2 (Uniform viscosity effect in all regions):  

Unlike Strategy 1, eq.(3) is not switched to f( )=1 at =1.307. Hence, the magnetic field 

intensity of the equilibrium, i.e, f( ), is monotonically weakened to zero for large . In this 

case, eqs.(1)-(3) are seamlessly solved beyond  This 

strategy is much simpler than Strategy 1, where the uniform viscosity is assumed not only in 

the inner region and also in the outer region with a constant N. The equilibrium of plasma 

flow field is rigorously satisfied. However, since the equilibrium inflow speed toward the 

current sheet is infinite at infinite , this strategy may be non-realistic as c is large. In 

order to uniquely find a physically acceptable solution, let us additionally require ’( c)=0 

at the crossing point. Let us call it zero-contact solution (e.g., Fig.1(b) in KDK Research 

Report2020). 

Finally, we can know how much is the linear growth rate  of the zero-contact solutions. In 

Figs.1(a) and (b), “Uniform-N” curves respectively show the k-dependence and 

N- I  plotted for N=0 is exactly obtained in 

the non-viscous (N=0) case. Meanwhile,  reaches zero beyond N=0.003, which is exactly 

obtained for the =0 limit of eqs.(1)-(2). It means that, in contrast to Strategy 1, Strategy2 has 

a critical N value for the tearing instability, beyond which it is stabilized.  

 
 Fig.1(a): Growth rate vs Wave number k     Fig.1(b): Growth rate vs Viscosity N 

Improvement of WKB approximation (for Strategy 2):  

Exactly, we may have to say that the original Loureiro’s perturbation equation is applicable 

only for k>1 because the lowest level of WKB approximation is applied there (i.e., see the 

translation from eqs.(6) and (7) to eqs.(8) and (9) in Loureiro, PoP2007). Hence, eqs.(1) and 

(2) based on eqs.(8) and (9) in his paper may be also inapplicable for k<1. Meanwhile, eqs.(6) 

and (7) in his paper will be applicable for k<1, but unfortunately cannot be solved at the 

origin, i.e. =0, until viscosity is introduced. In other words, eqs.(1) and (2) shown above can 

be extended to the higher level of WKB approximation. The resulting perturbation equations 
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to be solved are as follows.  

 

 It may be noted that these eqs.(5) and (6) are obtained by the combination of eqs.(6) and (7) 

in Loureiro,PoP2007 with eqs.(1) and (2) shown above. Basically, eqs.(5) and (6) can be 

solved in the same manner as Strategy 2, but unfortunately, any zero-contact solution of (5) 

and (6) is not found at present. Alternately, the behaviors of the zero-crossing solutions for the 

variations of ’( c) value are being explored (Shimizu, SGEPSS2021).  

Introduction of Hyper-viscosity effect:  

In general MHD studies, the resistivity is the 2nd order differential magnetic diffusion. In 

many numerical MHD studies, the resistivity is assumed to be uniform in time and space but 

some types of non-uniform resistivity are also often studied, which may be called anomalous 

resistivity (e.g., Ugai, JPP1977). Anyway, unfortunately, MHD cannot answer about the 

identity of the resistivity, which must be studied in kinetic plasma physics. It suggests that the 

2nd order differential magnetic diffusion, itself, must be reconsidered to efficiently promote 

the fast magnetic reconnection process. Recently, the 4th order differential magnetic diffusion 

is predicted in some kinetic plasma particle simulations (Fujimoto, Astrophys.J.Lett.2021), 

which may be called “hyper viscosity”. When the 4th order diffusion is introduced in MHD 

simulations of tearing instability, the reconnection rate tends to be higher in contrast to the 

case of usual resistivity, i.e. the 2nd order diffusion (Shimizu & Fujimoto, AOGS2021).  

 Hence, it will be worth to extend the linear perturbation theory of the tearing instability to 

the 4th order diffusion. To do so, firstly, the equilibrium must be found because eq.(3) is 

inapplicable in that case. Alternately, a new equilibrium has been found by numerically 

solving an initial value problem (Shimizu & Fujimoto, AOGS2021). Based on the new 

equilibrium, the perturbation equations are being numerically studied as another initial value 

problem, at present.  
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