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Abstract 

The shearing characteristics of rock joints govern the mechanical performance of discontinuous 14 

rock masses. The present study investigated the normal compression and shear behavior of rock 15 

joints through cyclic compression tests and direct shear tests. The irreversible relationship 16 

between the normal stress and the normal closure was confirmed by cyclic compression tests 17 

on rock joints. An elastoplastic model was proposed incorporating the aperture variation. A 18 

modified version of the critical state framework was developed for modeling the shearing and 19 

dilation behavior. Specifically, the initial state of the rock joints was determined according to 20 

the stress history. The proposed model for the mechanical behavior of rock joints was validated 21 

by predicting the experimental results. A parameter analysis was also performed to highlight 22 

the difference in the shear behavior of the rock joints due to the difference in the initial apertures. 23 

Keywords: Discontinuous rock mass, shearing behavior, joint aperture, dilation, elastoplastic, 24 

critical state theory   25 



1 Introduction 

The mechanical performance of rock masses is an overwhelmingly important research 26 

topic for the design and construction of deep underground structures, such as geological 27 

repositories for nuclear waste, underground storage facilities for resources and geothermal 28 

production well for heat energy exploitation, because these projects have high safety standards 29 

and require long-term stability. Rock joints are critical constituents in discontinuous rock 30 

masses, and their properties often govern the mechanical behavior of the fracture materials. 31 

Therefore, incorporating the joint features and correctly predicting the shear behavior are of 32 

great significance for rock mass stability analyses. 33 

The characteristics of rock joints have been investigated for developing constitutive laws, 34 

such as the Barton-Bandies model that considers joint roughness [1], a tangent formulation that 35 

considers the dislocated shear displacement [2], the JRC-JMC model that takes account of the 36 

matching condition [3], and the Grasselli-Egger model that is based on three-dimensional 37 

surface parameters [4]. Moreover, many theories have been applied to construct shear models. 38 

Contact theory models were formulated for modeling the shear behavior, which largely depends 39 

on the topography characteristics [5, 6]. Plasticity theory models, considering asperity 40 

degradation, have been established too [7, 8]. A constitutive model, considering the specific 41 

volume of soft rock, has also been developed based on the extended critical state theory [9]. 42 

The effect of joint planes on the strength and structure of soft rock has been investigated, and 43 



one bounding surface plasticity model was proposed [10, 11]. However, the joint aperture has 44 

not been taken into account in the modeling of the shear behavior of discontinuous rock masses 45 

despite the sensitivity of the aperture to changes in the applied load and the great influence of 46 

the aperture on the shear behavior of rock joints. Thus, the incorporation of the aperture 47 

variation is necessary for modeling the shearing behavior of discontinuous rock masses. 48 

The joint aperture, which depends upon the matching properties and surface geometry, 49 

controls the maximum deformation of the joints and the mechanical responses of discontinuous 50 

rock masses under the normal loading process. A closed joint (e.g., rock with an interlocked 51 

joint or well-matched joint) can only cause a slight movement of the joint walls. An open joint 52 

(e.g., rock with a mismatched joint or degraded asperities) allows for a considerable amount of 53 

normal displacement of the upper half of the specimen, as the joint tends to approach the 54 

complete state [3, 12, 13]. Simultaneously, the normal stiffness is substantially larger for a 55 

perfectly matched joint with a small joint aperture than an unmatched joint with a large joint 56 

aperture [3, 12, 14, 15]. In addition, the matched and unmatched types of rock joints with 57 

different apertures both demonstrated the plastic behavior of the initial loading cycles and the 58 

elastic behavior of the subsequent loading cycles in the extensive results obtained from cyclic 59 

compressive experiments [14–20]. Hence, based on the distinct effects and the variation in joint 60 

aperture, the evolution of each aperture under cyclic normal stress needs to be carefully 61 

considered.  62 



The initial aperture response to the matching properties of the joint walls governs the peak 63 

shear strength and dilation movement during the shear process. A smaller initial aperture usually 64 

indicates that the rock joint has a mated interface. A higher peak shear stress is then required to 65 

shave the contact asperities on the matched joint surfaces. In contrast, a larger initial aperture 66 

indicates an unmated interface. The rock joint has relatively lower peak shear strength due to 67 

the loosely interlocked asperities [3, 13, 15]. In addition, the change of joint aperture from the 68 

interlocked state to the dislocated state is closely associated with the movement of dilation 69 

during the shear process [21–24]. Moreover, an increase in the initial aperture caused by the 70 

asperity degradation has been seen to decrease the dilation in multiple shear tests conducted on 71 

the same rock joint [8, 13]. Similarly, the reduced initial porosity has been confirmed to increase 72 

the volumetric strain in quartz material [25]. Therefore, the joint aperture is a vital and sensitive 73 

parameter that influences and can be used to predict the shear and dilation behavior of rock 74 

joints in the shear process. 75 

The present study models the shear behavior of rock joints in conjunction with the dilation 76 

of joint apertures. Cyclic loading and unloading tests were carried out to observe the aperture 77 

variation of rock joints. The elastoplastic relationship between the normal stress and the relative 78 

normal displacement was found to capture the rock joint aperture variation. A modified version 79 

of the critical state framework [26, 27] was applied to delineate the rock joint’s shearing and 80 

dilation behavior in a unified manner. Moreover, the subloading surface concept [28] was 81 



adopted to describe the plastic deformation before the critical state. The applicability of the 82 

model was validated by performing direct shear tests and comparing the results with those of 83 

the numerical modeling. Parameter analyses were conducted to discuss the effects of the initial 84 

apertures on the numerical response of the joint granite specimens.  85 

2 Experimental evidence of compression and shear behavior of rock joint  

Granite samples were analyzed to determine the mineral components, while the joint 86 

geometry was profiled to quantify the surface roughness. Then, multiple compression tests were 87 

carried out in three cycles of loading and unloading to observe the discontinuity's deformation 88 

and to calculate the rock joint's aperture. Direct shear tests were subsequently conducted under 89 

the constant normal loading condition to investigate the rock joint's shear and dilation behavior. 90 

2.1 Material and methods 

Granite specimens were sampled from a quarry located in the Inada district (specimens G1 91 

and G2) and from a tunnel located in the Inagawa district (specimens G3 and G4), Japan. The 92 

mineral compositions of the granite specimens were determined by the X-ray diffraction (XRD) 93 

method. The Inada samples (G1 and G2) consisted of 56.75% quartz mineral, 42.00% feldspar 94 

mineral, and 1.25% biotite mineral. The Inagawa samples (G3 and G4) consisted of 30.10% 95 

quartz mineral, 33.67% feldspar mineral, and 36.23% biotite mineral. In addition, uniaxial 96 

compressive tests were conducted on intact granite to obtain the uniaxial compressive strength. 97 

Direct shear tests with different normal stress levels were conducted on rock with a flat joint 98 



plane to obtain the frictional angle. The mechanical properties of the granite specimens are 99 

given in Table 1. 100 

The joint granite specimens were prepared with a cross-section of 120 mm × 80 mm and 101 

a height of 120 mm. A single fracture was created along the center horizontal plane of each 102 

specimen. The profiled contour maps of the joint surfaces of one specimen (G1) are shown in 103 

Fig. 1 as an example. The specimen was placed in a shear box for vertical and horizontal loading 104 

tests. The compression and shear units were used to measure the load and displacement in the 105 

normal and shearing directions, respectively. An outline of the specimens and apparatus is given 106 

in Fig. 2. 107 

For each specimen, the experimental procedure was repeated two times (two cases). Case-108 

1 is the first experimental procedure. It included the surface profiling test and the enclosure of 109 

the specimen in the shear box, followed by the uniaxial compressive test and the direct shear 110 

test conducted on the specimen within the shear box. After the shear test in Case-1, the sheared 111 

rock was moved back to the original position and taken out of the shear box. The debris and 112 

gouge materials were removed, and the geometrical surfaces were profiled again. Then, the 113 

compression and shear tests were performed for Case-2. In the uniaxial compressive tests, the 114 

confining pressure was applied across the rock specimen from the initial loading stress to the 115 

final predetermined confining stress in the first loading process. Subsequently, the unloading 116 

process back to the initial stress condition was applied. The second and third loading and 117 



unloading cycles were then performed successively under the same confining pressure process. 118 

In the following direct shear tests, the corresponding constant normal pressure was loaded on 119 

the specimen until reaching the residual state. During the shear process, the constant shear rate 120 

of 0.1 mm/min was applied within the standardized shear rate of 0.02-0.2 mm/min (ISRM 1985). 121 

The experimental conditions are shown in Table 2. The Joint Roughness Coefficient (JRC) 122 

value of each joint interface was calculated by the backward analytical method of the Barton-123 

Bandies model [1] and are shown in Table 2. 124 

2.2 Results of compression tests and shear tests 

As one example, the compression test results of specimen G1 are plotted in Fig. 3. The 125 

non-linear relationship between the normal stress-displacement in the two cases is given in Fig. 126 

3 (a). After experiencing the compression and shear process in Case-1, the degradation of the 127 

contact asperities caused the rough surfaces to flatten. Then, the poorly matching conditions 128 

begin, and the normal displacement increases remarkably in the second compression process 129 

(Case-2). An enlarged view of the process for Case-1 is shown in Fig. 3 (b). Large irreversible 130 

displacement is observed in the first loading and unloading cycle. However, the permanent 131 

closure seems to disappear during the second and third cycles, and the ensuing loading and 132 

unloading process almost follows the same path. The discrepancy in the normal displacement 133 

between the first loading path and the latter unloading/reloading paths is attributed to the stress 134 

history. Here, the permanent closure in the initial loading process is referred to as irrecoverable 135 



deformation. Simultaneously, the deformation of the normal displacement in the latter process 136 

is regarded as recoverable behavior.  137 

As the normal deformation is dependent on the stress history, the maximum closure was 138 

measured in the third unloading path. As mentioned in the previous study, the compression 139 

behavior can be approximately described by a hyperbolic function [15, 29]. In our study, Fig. 4 140 

shows that the third unloading path of Case-1 for specimen G1 can be approximately fitted as 141 

a hyperbolic curve. With the increase in normal stress, the path approaches a vertical line 142 

asymptotically. The vertical asymptote represents the maximum normal displacement or the 143 

maximum joint closure, which means the joint surfaces have been tightly matched under higher 144 

normal stress. The hyperbolic closure model of Bandies [1] was applied to characterize the 145 

relationship of the normal stress–displacement of the rock joint. This hyperbolic function is 146 

given in Eq. (1). 147 

σ𝑛 =
𝑣𝑗𝑘𝑛𝑉𝑚𝑐

𝑉𝑚𝑐 − 𝑣𝑗
(1) 148 

where σ𝑛, 𝑣𝑗 , 𝑘𝑛, and 𝑉𝑚𝑐 are the normal stress, the normal closure, the normal stiffness of 149 

the discontinuous rock mass, and the maximum closure of the joint aperture, respectively.  150 

The joint aperture is defined as the mean distance between the adjacent joint surfaces. In 151 

the third unloading path of the compression test, the current joint aperture is calculated by 152 

subtracting the normal closure from the maximum joint closure as shown in Fig. 4. According 153 

to the fitted hyperbolic curves, the initial aperture in the shear process was regarded as the 154 



current aperture under the corresponding confining stress. The obtained initial apertures in the 155 

first process (Case-1) and second shear process (Case-2) are given in Table 2. Comparing the 156 

initial apertures and JRC values in the two cases of the four joint specimens, the results show 157 

that the JRC value decreased and the initial aperture expanded after the shear test. After 158 

undergoing the crushing of the asperities in the shear process, the decrease in the JRC values 159 

indicates that the rougher surfaces are shaved to be smooth. Simultaneously, the increase in the 160 

initial apertures indicates that the originally tightly matched condition of the adjacent surfaces 161 

is declined to the later loosely matched condition. Hence, the expansion of the void space 162 

between the lower and upper surfaces is induced. Consequently, applying the same normal 163 

stress on the same specimen, enlarged initial apertures occur at the beginning of the second 164 

shear process. 165 

The shear stress-shear displacement relationship and the dilation curves of the first shear 166 

and second shear tests on the four specimens are shown in Fig. 5. The apparent peak stress and 167 

remarkable softening behavior were observed in the first shear process of Case-1. However, the 168 

second shear process of Case-2 only shows the hardening behavior and not the salient peak 169 

shear strength, except for in the case of specimen G2. During the shear process, the dilation is 170 

assumed to equal the relative normal displacement of the upper half of the specimen. The 171 

dilation increases with the shear displacement in both the first and second shear experiments. 172 

Comparing the shear stress and dilation of the two shear cases, incorporating the initial aperture 173 



given in Table 2, the rock joint with a small initial aperture in the first shear process exhibits 174 

higher frictional resistance and larger dilation than the rock joint with a large initial aperture in 175 

the second shear process. Therefore, the discrepancy of the shear behavior due to the difference 176 

in the initial aperture must be considered in developing a model for rock joints.  177 

3 Elastoplastic model for rock joint considering aperture variation  

The aperture variation during the compression process can be obtained according to the 178 

fitted hyperbolic curve and asymptote. The relationship between the joint aperture and normal 179 

stress can be reconstituted as a straight virgin compression line and a set of straight loading and 180 

unloading lines in a semi-logarithmic plot of normal stress and aperture. Fig. 6 shows the 181 

variation of aperture during the cyclic loading and unloading tests of Case-1 for specimen G-1. 182 

Here, a permanent change of the aperture was observed in the first loading path; and thus, 183 

the variation in joint aperture in the first loading process was regarded as irreversible. The 184 

aperture variations in the first unloading path, second loading/unloading paths, and third 185 

loading/unloading paths were similar. The aperture variations in these paths are referred to as 186 

reversible. The aperture variation of the rock joint from irreversible to reversible behavior is 187 

similar to the volumetric transition of soil from the normal consolidation line to the swelling 188 

line. The previous study indicated that the crushing of the rock joint’s asperity contributes to 189 

irreversible fracture deformation, whereas elastic deformation contributes to reversible 190 

deformation [20]. Therefore, a hypothesis was conceived whereby the rock joint possesses a 191 



transition from elastoplastic to elastic behavior in the first and latter compression processes. 192 

Based on this hypothesis, an elastoplastic model incorporating the aperture variation was 193 

introduced for modeling the shear behavior. The repeated loading and unloading process can be 194 

simplified by the typical deformation behavior of the first cycle in the rock joint, as exhibited 195 

in Fig. 7. 196 

It is assumed that the incremental total relative displacement of the rock joint 197 

𝑑𝜹(= (
𝑑𝛿𝑛
𝑑𝛿𝑠

)) , can be decomposed into elastic component 𝑑𝜹𝑒 (= (
𝑑𝛿𝑛

𝑒

𝑑𝛿𝑠
𝑒))  and plastic 198 

component 𝑑𝜹𝑝 (= (
𝑑𝛿𝑛

𝑝

𝑑𝛿𝑠
𝑝)). Superscripts e and p denote the elastic and plastic parts of the 199 

deformation, respectively, and subscripts n and s denote normal and shear components, 200 

respectively. 201 

𝑑𝜹 = 𝑑𝜹𝑒 + 𝑑𝜹𝑝 (2) 202 

3.1 Elastic stress–relative displacement relationship 

According to the elastic behavior of the rock joint, shown in Fig. 7, the elastic stress-203 

relative normal displacement relationship is assumed as  204 

𝛿𝑛
𝑒 = 𝜅𝑙𝑛

𝜎𝑛

𝜎𝑛0
(3) 205 

where 𝜅 is the unloading compression index, 𝜎𝑛 is the current normal stress, and 𝜎𝑛0 is the 206 

initial normal stress where 𝛿𝑛
𝑒 = 0. Applying Taylor’s expansion, Eq. (3) can be rewritten in 207 

the following incremental form: 208 



𝑑𝜎𝑛 =
𝜎𝑛
𝜅⏟
𝑘𝑛

𝑑𝛿𝑛
𝑒 (4)

 209 

where 𝑘𝑛 is the normal stiffness dependent on the confining pressure, 𝜎𝑛. Then, an elastic 210 

relationship is assumed as 211 

𝑑𝝈 = [
𝑘𝑛 𝑘𝑛𝑠
0 𝑘𝑠

]
⏟      

𝑫𝒆

𝑑𝜹𝒆 (5) 212 

where 𝑑𝝈(= (
𝑑𝜎𝑛
𝑑𝜎𝑠

)) is the incremental traction vector, 𝑫𝒆 is the elastic stiffness tensor, and 213 

𝑘𝑠  is the shear stiffness. For the dilatant joint, the joint normal stress depends on both the 214 

normal stiffness and the shear displacement [30]. Hence, 𝑘𝑛𝑠  is proposed to describe the 215 

stiffness controlling the effect of shearing on the confining stress. Two ratios, 𝛼 and 𝜇, are 216 

introduced to link shear stiffness with normal stiffness. 217 

𝑘𝑠 = 𝜇𝑘𝑛 (6) 218 

𝑘𝑛𝑠 = 𝛼𝑘𝑛 (7) 219 

Moreover, the joint aperture variation, ∆𝑏, is considered to be equal to the relative normal 220 

displacement during the compression tests.  221 

−∆𝑏𝑛
𝑒 = 𝛿𝑛

𝑒 (8) 222 

Here, the compression direction is positive for the normal elastic displacement, 𝛿𝑛
𝑒. 223 

3.2 Yield function considering the change in aperture 

From the experimental evidence, the shear stiffness, shear strength, and dilation are 224 

primarily controlled by the aperture. A smaller aperture in a rock joint corresponds to larger 225 



joint stiffness, shear strength, and dilation. A larger aperture in a rock joint results in smaller 226 

joint stiffness, shear strength, and dilation. The effects of the joint aperture on the above aspects 227 

are similar to the effects of the specific volume (void ratio) on soils/intact rocks. Moreover, an 228 

asymptotic critical state is reached at very large shear displacement. At the critical state, shear 229 

displacement increases without any further changes in the shear stress ratio and joint aperture. 230 

The shear stress ratio at the critical state is a unique, constant value specific to the rock joint. 231 

The joint aperture at the critical state is also a unique value given as a function of normal 232 

confining stress. These properties are likewise analogous to the critical state of soils and weak 233 

rocks. In the present study, the kernel concept assumes that  234 

a) A unique critical state line in the space of confining pressure, shear stress, and aperture 235 

plays a central role in modeling a rock joint's behavior.  236 

b) A rock joint’s response is controlled by the difference of joint apertures between the 237 

current and the critical states. A joint having smaller apertures exhibits higher stiffness, strength, 238 

and dilation.  239 

The procedure for developing the model is given below.  240 

At a shear stress ratio, 
𝜎𝑠

𝜎𝑛
 , of zero, aperture 𝑏  is assumed to stay on the first normal 241 

loading/compression line (NCL) or lower. 242 

𝑏 ≤ 𝑏𝑛 − 𝜆𝑙𝑛
𝜎𝑛
𝑝𝑎

(9) 243 



Here, 𝑏𝑛 is the joint aperture on the first normal loading line under atmospheric pressure. 𝜆 244 

is the slope of the first normal loading line, and 𝑝𝑎 (= 98 kPa) is the atmospheric pressure.  245 

After applying large shear displacement, the rock joint eventually leads to the critical state. 246 

The aperture on the critical state line (CSL) is given as 247 

𝑏 = 𝑏𝑠 − 𝜆𝑙𝑛
𝜎𝑛
𝑝𝑎

(10) 248 

where 𝑏𝑠 is the aperture on the critical state line at 𝜎𝑛 = 𝑃𝑎. 249 

In this study, the cyclic loading and unloading tests were conducted before the shear 250 

process. The influence of the stress history was considered in the modeling. Barton [4] claimed 251 

that the influence of the stress history on the rock joints is similar to that on the soil. The 252 

terminology “over-closed” was proposed to distinguish the normally-loaded and the pre-loaded 253 

joints, which, in concept, is close to the over-consolidated state of soil material [1, 10, 14, 31]. 254 

Here, after the cyclic loading/unloading process, the rock joint is defined at the over-closed 255 

state. Under the constant normal load condition, it finally reaches the critical state after the 256 

shear process. The aperture variation is shown in Fig. 8. 257 

Aperture 𝑏𝑠𝑏𝑠 on the state boundary surface can be obtained by 258 

𝑏𝑠𝑏𝑠 = 𝑏𝑛 − (𝑏𝑛 − 𝑏𝑠)𝜁(𝜂) − 𝜆𝑙𝑛
𝜎𝑛
𝑝𝑎

(11) 259 

where 𝜁(𝜂)  is an increasing function of the stress ratio. It satisfies 𝜁(0) = 0  on the 260 

compression line and 𝜁(𝑀) = 1 on the CSL. In this study, the state function is defined as 261 



𝜁(𝜂) =
ln {1 + (

𝜂
𝑀)

2

}

ln 2
(12)

 262 

In the present study, the subloading surface concept was adopted to describe the plastic 263 

closure induced by the stress inside the yield surface. It is an unconventional elastoplastic model 264 

that satisfies the mechanical requirements involving the continuity condition and the 265 

smoothness condition [28]. State parameter Ω is introduced to describe the distance between 266 

the current state and the state boundary surface. Based on this concept, the stress inside the 267 

yield surface can smoothly approach the state boundary surface. Fig. 9 illustrates the modeling 268 

of the aperture with state parameter Ω . The distance of the current aperture from the state 269 

boundary surface is represented as 270 

𝛺 = 𝑏𝑠𝑏𝑠 − 𝑏 = 𝑏𝑛 − (𝑏𝑛 − 𝑏𝑠)𝜁(𝜂) − 𝜆𝑙𝑛
𝜎𝑛
𝑝𝑎
− 𝑏 (13) 271 

Then, combining the subloading concept and the critical state, the arbitrary aperture is obtained 272 

by rewriting Eq. (13), as follows: 273 

𝑏 = 𝑏𝑛 − (𝑏𝑛 − 𝑏𝑠)𝜁(𝜂) − 𝜆𝑙𝑛
𝜎𝑛
𝑝𝑎
− 𝛺 (14) 274 

The initial aperture, 𝑏0, is calculated by inputting the initial normal stress as 𝜎𝑛 = 𝜎𝑛0, the 275 

shear stress as 𝜎𝑠 = 0, and the stress ratio as 𝜂 = 0 in Eq. (15).  276 

𝑏0 = 𝑏𝑛 − 𝜆𝑙𝑛
𝜎𝑛0
𝑝𝑎
− 𝛺0 (15) 277 

The increment of aperture, Δ𝑏, is the magnitude from the initial state to the current state. Δ𝑏 278 

can be calculated by substituting Eq. (14) into Eq. (15). 279 



𝛥𝑏 = (𝑏𝑛 − 𝑏𝑠)𝜁(𝜂) − 𝜆𝑙𝑛
𝜎𝑛
𝜎𝑛0

+ (𝛺 − 𝛺0) (16) 280 

By substituting Eqs. (3), (10), and (16) into Eq. (2), plastic displacement deformation Δ𝛿𝑛
𝑝
 can 281 

be obtained. 282 

𝛥𝛿𝑛
𝑝 = (𝑏𝑛 − 𝑏𝑠)𝜁(𝜂) + (𝜆 − 𝜅)𝑙𝑛

𝜎𝑛
𝜎𝑛0

+ (𝛺 − 𝛺0) (17) 283 

From Eq. (17), the yield function involves the variation of aperture and can be written as 284 

follows: 285 

𝑓 = (𝑏𝑛 − 𝑏𝑠)𝜁(𝜂) + (𝜆 − 𝜅)𝑙𝑛
𝜎𝑛
𝜎𝑛0

+ (𝛺 − 𝛺0) − 𝛿𝑛
𝑝 (18) 286 

In the condition of d𝛿𝑛
𝑝 = 0, from Eq. (17), the evolution of Ω can be given as 287 

𝑑𝛺 = −(𝑏𝑛 − 𝑏𝑠)𝜁(𝜂) − (𝜆 − 𝜅)𝑙𝑛
𝑑𝜎𝑛
𝜎𝑛
  (19) 288 

or for d𝛿𝑛
𝑝  ≠ 0, Ω gradually reaches zero with the plastic movement.  289 

𝑑𝛺 = −𝑅(𝛺)|𝑑𝜹𝒑| (20) 290 

where 𝑅(Ω)  is a function of Ω . Parameter ω  is introduced to describe the rate of plastic 291 

strain approaching the normal yield surface. 292 

𝑅(Ω) = 𝜔Ω2 (21) 293 

3.3 Associated flow rule 

The associated flow rule is adopted in the proposed model for simplicity. Potential plastic 294 

function 𝑔  is assumed to equal yield function f. The increment in plastic displacement is 295 

calculated by  296 



𝑑𝛿𝑝 = 𝑑Λ
𝜕𝑓

𝜕𝝈
(22) 297 

(
d𝛿𝑛

𝑝

d𝛿𝑠
𝑝) = 𝑑Λ

(

 
 

𝜕𝑓

𝜕𝜎𝑛
𝜕𝑓

𝜕𝜎𝑠)

 
 

(23)
 298 

where 𝑑Λ is a plastic multiplier. 299 

At the critical state (𝜂 = 𝑀) and under the continuous loading condition (𝑑Λ > 0), the 300 

increment in relative plastic displacement is 𝑑𝛿𝑛
𝑝 = 0. Then, 𝑏𝑠 can be calculated by  301 

𝑏𝑠 = 𝑏𝑛 − 𝑙𝑛2(𝜆 − 𝜅) (24) 302 

3.4 Elastoplastic stress-relative displacement relationship 

During elastoplastic displacement deformation, the stress stays on the yield surface, and 303 

the yield function is equal to zero. The consistency condition is satisfied as 304 

𝑑𝑓 =
𝜕𝑓

𝜕𝝈
𝑑𝝈 +

𝜕𝑓

𝜕𝛿𝑛
𝑝 𝑑𝛿𝑛

𝑝 +
𝜕𝑓

𝜕Ω
𝑑Ω = 0 (25) 305 

Substituting Eqs. (2), (4), (20), and (21) into Eq. (23), the plastic multiplier is calculated as 306 

𝑑Λ =

𝜕𝑓
𝜕𝝈
∙ 𝑫𝒆: 𝑑𝜹

𝜕𝑓
𝜕𝜎𝑛

+
𝜕𝑓
𝜕𝝈
:𝑫𝒆:

𝜕𝑓
𝜕𝝈
+ 𝑅(Ω) |

𝜕𝑓
𝜕𝝈
|

(26) 307 

The elastic relationship is given by incorporating Eq. (22). 308 

𝑑𝝈 = 𝑫𝒆: (𝑑𝜹 − 𝑑𝜹𝒑) = 𝑫𝒆: (𝑑𝜹 − 𝑑Λ
𝑑𝑓

𝑑𝝈
) (27) 309 

Then, the elastoplastic stress-strain relationship can be expressed as 310 

𝑑𝝈 = [𝑫𝒆 −
𝑫𝑒:

𝜕𝑓
𝜕𝝈
⨂
𝜕𝑓
𝜕𝝈
:𝑫𝑒

𝜕𝑓
𝜕𝜎𝑛

+
𝜕𝑓
𝜕𝝈
:𝑫𝒆:

𝜕𝑓
𝜕𝝈
+ 𝑅(Ω) ‖

𝜕𝑓
𝜕𝝈
‖
] ∙ 𝑑𝜹 (28) 311 

Here, 𝑫𝒆𝒑 is the elastoplastic stiffness tensor. 312 



𝑫𝒆𝒑 = 𝑫𝒆 −
𝑫𝑒:

𝜕𝑓
𝜕𝝈
⨂
𝜕𝑓
𝜕𝝈
:𝑫𝑒

𝜕𝑓
𝜕𝜎𝑛

+
𝜕𝑓
𝜕𝝈
:𝑫𝒆:

𝜕𝑓
𝜕𝝈
+ 𝑅(Ω) ‖

𝜕𝑓
𝜕𝝈
‖

(29) 313 

The effect of changing the aperture on the shearing behavior of joints is taken into account 314 

properly. An elastoplastic model is proposed for the interface between intact rock masses. In 315 

addition, a unified description of the stiffness, strength, and dilation characteristics can be 316 

achieved by applying the modified critical state theory. The model can be easily implemented 317 

to joint/interface elements in the FEM or FDM [32, 33]. Thus, the application of the model to 318 

practical issues is relatively easy.  319 

3.5 Determination of constitutive parameters  

Use of the constitutive model reported in this paper requires the specifications of the 320 

compression indexes, initial apertures, and critical state stress ratio. The constitutive parameters 321 

(𝜆, 𝜅, and 𝑏0) can be determined by cyclic loading and unloading tests. Loading compression 322 

index 𝜆 and unloading compression index 𝜅 are the slope of the first loading line and the 323 

slope of the first unloading line in the semi-logarithmic plot, respectively. Initial aperture 𝑏0 324 

can be measured from the third unloading process by subtracting the normal closure from the 325 

maximum closure. Critical state stress ratio 𝑀 can be calibrated from the results of the direct 326 

shear tests.  327 

Parameter 𝑏𝑛 is the average aperture under atmospheric pressure that corresponds to the 328 

theoretical maximum value of the average aperture. This parameter is obtained from a backward 329 



analysis. The value is assumed to equal the calibrated results for the aperture at the residual 330 

state. The rest of the parameters (𝛼, 𝜇, and 𝜔), which control the deformation of the horizontal 331 

and vertical directions, and the rate of plastic strain, can be obtained by fitting the results of a 332 

numerically simulated test to the results of the direct shear experiment.  333 

4 Model prediction  

To validate the capability of the proposed model, the shear behavior of discontinuous rock 334 

masses was analyzed. Comparisons were made between the numerical simulation responses 335 

and the experimental results from the direct shear tests. The cases under consideration include 336 

the first shear process and the second shear process of the four granite specimens, which have 337 

different initial apertures, uniaxial compressive strength, and confining pressure. 338 

4.1 Direct shear tests on discontinuous rock masses 

The fresh joint before the shear process is seen to have a relatively smaller initial aperture 339 

than afterwards, since the upper and lower joint surfaces of the specimen match well. The first 340 

shear process was conducted on four jointed granite specimens to check the numerical 341 

simulation result. The constitutive parameters are shown in Table 3. Fig. 10 presents a 342 

comparison between the first shear experimental and numerical simulation results for the four 343 

granite specimens. The comparison results demonstrated that the numerical simulation results 344 

have an excellent agreement with the experimental results for the four fresh rock joints with 345 

different initial apertures. It was confirmed that the proposed model is able to capture the 346 



softening tendency of the shear process and the tendency of dilatancy in the discontinuous rock 347 

mass. The peak and residual shear stress can be predicted by the proposed model. Moreover, a 348 

good concordance can be observed between the experimental and numerical curves of dilation. 349 

For the fresh specimens, the peak strength in the experimental results occurs later or earlier than 350 

in the analytical prediction. These observations suggest that the fresh upper and lower surfaces 351 

need a small horizontal displacement to be tightly contacted and perfectly matched. The 352 

inaccuracies in the peak shear displacement between the experiment and the analysis stem from 353 

the initial contact condition in the shear box. The deviated displacement principally depends on 354 

the conditions of the experimental set-up.  355 

The second shear process conducted on the four jointed granite specimens was also utilized 356 

to validate the proposed model. The constitutive parameters are shown in Table 4. After the 357 

first shear process, the breaking of the asperity creates a loosely matched joint and then causes 358 

an enlargement of the initial aperture. The initial apertures of the four sheared specimens 359 

increased to a certain extent more than the initial apertures of the fresh samples, respectively. 360 

Moreover, the loading/unloading compression indices also increased after the shear process. 361 

Fig. 11 shows a comparison between the experimental and numerical simulation results of the 362 

second shear process for the four sheared specimens. The constitutive model shows a good 363 

agreement with the evolution of the dilation during the shear process. Moreover, the constitutive 364 

model can capture the hardening tendency of the sheared rock joints. The peak strength is 365 



reasonably well predicted by the model, although specimen G2 of the second shear process still 366 

shows large peak strength in the initial shear phase. This peak strength is attributed to the 367 

presence of the remaining rough asperity on the interfaces, which is not taken into account in 368 

the proposed model. 369 

Overall, the softening and hardening behavior in the first and second shear processes was 370 

properly described by the proposed model, respectively. The aperture dilation was also well 371 

captured during the two shear processes. Moreover, the relationship between the initial aperture 372 

and the shear strength and dilation was confirmed by the analysis model. The smaller initial 373 

aperture in the fresh rock joints tends to cause the apparent peak shear strength and larger 374 

dilation. Conversely, the larger initial aperture in the sheared rock joints demonstrates the non-375 

salient peak shear strength and smaller dilation. The influence of the initial aperture on the 376 

mechanical behavior is discussed in the following section. 377 

4.2 Parametric study via the proposed model  

The influence of the initial aperture on the numerical shear response was investigated by 378 

applying the developed model. The constitutive parameters for specimen G1 in Case-1 and the 379 

same constant confining stress were employed to simulate the shear stress, the normal 380 

displacement, and the aperture dilation during the shear process. The analysis was performed 381 

with different initial apertures ranging from 0.01 mm to 0.12 mm. Fig. 12 shows the effect of 382 

the different initial apertures on the shear behavior of specimen G1. 383 



From Figs. 12 (a) and (b), it is observed that the initial aperture significantly affects the 384 

shear stress and the normal displacement in the numerical simulation. As with the initial 385 

aperture increasing, both the peak shear stress and the dilation of the normal displacement 386 

decrease during the shear process. Namely, the smaller initial aperture corresponds to the higher 387 

peak shear strength and the more significant dilation. This tendency coincides with the present 388 

experimental results in the first and second shear process. Meanwhile, the responses whereby 389 

the open rock joints have lower frictional resistance and small dilation than the closed rock 390 

joints were also confirmed by the previous study [13, 34]. Fig. 12 (c) presents the aperture 391 

evolution, with different initial values, predicted by the proposed model. In contrast with the 392 

larger initial aperture, the smaller aperture must deform greatly to reach the final aperture state. 393 

5 Conclusion  

This study highlighted the variation and the effect of the joint aperture in cyclic 394 

compression tests and repeated shear tests. An elastoplastic model was proposed for rock joints 395 

incorporating the critical state concept and the aperture variation. 396 

The model performance was validated by predicting the experimental results of rock joints. 397 

The hardening and softening shear behavior in the first and second shear processes was 398 

successfully described by the proposed model. Moreover, the dilation behavior in the fresh and 399 

sheared rock joints was also replicated during the two shear processes. The parameter study 400 

showed that the initial aperture controls the peak shear strength and dilation of rock joints. It 401 



was seen that a rock joint mass with a small initial aperture tends to cause the apparent peak 402 

shear stress, while a rock joint mass with a larger initial aperture usually reaches the final shear 403 

state without salient peak shear stress. In addition, it was found that a small initial aperture 404 

usually responds to the great normal displacement during the shear process.  405 

The proposed model is an elastoplastic model for the interface between intact rock masses. 406 

A unified description of the stiffness, strength, and dilation characteristics can be achieved by 407 

applying the modified critical state theory. Thus, the developed model can be readily employed 408 

in the analysis methods by incorporating the joint aperture.  409 
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σ𝑛, σ𝑛0 normal stress and initial normal stress 493 

𝑣𝑗 closure of joint aperture 494 
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𝜹 total relative displacement 496 

𝝈 traction vector 497 

𝜹𝒆, 𝜹𝒑 elastic and plastic components of total relative displacement 498 

𝛿𝑛, 𝛿𝑠 normal relative displacement and shear relative displacement 499 

𝛿𝑛
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𝑒 elastic component of normal and shear relative displacement 500 
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𝑝
, 𝛿𝑠

𝑝
 plastic component of normal and shear relative displacement 501 

𝜆, 𝜅 loading compression index and unloading compression index 502 

𝑘𝑛, 𝑘𝑠 normal stiffness and shear stiffness 503 
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𝜇, 𝛼 constant coefficients 506 

𝑏, ∆𝑏 joint aperture and joint aperture variation 507 

𝑏𝑛, 𝑏𝑠 joint aperture on first normal loading line and critical state line under atmospheric pressure 508 

𝑏𝑠𝑏𝑠 joint aperture on state boundary surface 509 

𝜂, 𝜁(𝜂) stress ratio and function of stress ratio 510 

𝑀 critical state stress ratio 511 

𝛺, 𝑅(Ω) distance of current joint aperture from state boundary surface and function of 𝛺 512 

𝜔 rate of plastic strain approaching normal yield surface 513 

𝑓, 𝑔 yield function and potential plastic function 514 

𝑑Λ plastic multiplier 515 
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 568 

 569 

Specimen 

No. 

Uniaxial 

compressive 

strength 

[MPa] 

Basic  

friction  

angle 

[°] 

Normal 

stiffness 

[MPa/mm] 

G1 140.31 38.8 60.85 

G2 140.31 38.8 60.85 

G3 80.5 42.3 2.673 

G4 80.5 42.3 2.673 

Specimen 

No. 

Case 

No. 

Compression test 

Loading stress 

(𝜎𝑛, MPa) 

Shear test 

Loading 

stress 

(𝜎𝑛, MPa) 

Joint 

roughness 

coefficient 

(JRC) 

Initial joint 

aperture 

(𝑏0, mm) 

G1 
Case-1 0.5-3.0 3.0 13.45 0.0285 

Case-2 0.3-3.0 3.0 3.84 0.0449 

G2 
Case-1 0.3-3.0 3.0 16.15 0.0043 

Case-2 0.3-3.0 3.0 8.53 0.0654 

G3 
Case-1 0.1-1.0 1.0 20.93 0.0147 

Case-2 0.1-1.0 1.0 9.74 0.0283 

G4 
Case-1 0.1-1.0 1.0 18.81 0.0243 

Case-2 0.1-1.0 1.0 8.50 0.0451 
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 Table 4 Constitutive parameters for rock joint after shear process   572 

Index Parameter G-1 G-2 G-3 G-4 

𝜆 Loading compression index 0.0191 0.0320 0.0423 0.0560 

𝜅 Unloading compression index 0.0021 0.0069 0.0302 0.0355 

𝑀 Critical state stress ratio 0.9459 0.9459 0.9099 0.9099 

𝑏𝑛 Average aperture under atmospheric pressure 1.2 1.2 1.2 1.2 

𝑏0 Initial aperture 0.0285 0.0043 0.0147 0.0243 

μ Ratio between 𝑘𝑠 and  𝑘𝑛 1 1 1 1 

𝛼 Ratio between  𝑘𝑛𝑠 and  𝑘𝑛 0.1 0.3 0.3 0.3 

ω Rate of the evolution 0.85 1.40 0.85 0.80 

Index Parameter G-1 G-2 G-3 G-4 

𝜆 Loading compression index 0.0703 0.1806 0.0763 0.0969 

𝜅 Unloading compression index 0.0216 0.0868 0.0691 0.0895 

𝑀 Critical state stress ratio 0.9459 0.9459 0.9099 0.9099 

𝑏𝑛 Average aperture under atmospheric pressure 1.2 1.2 1.2 1.2 

𝑏0 Initial aperture 0.0449 0.0654 0.0283 0.0451 

μ Ratio between 𝑘𝑠 and  𝑘𝑛 1 1 1 1 

𝛼 Ratio between  𝑘𝑛𝑠 and  𝑘𝑛 0.2 0.5 0.2 0.2 

ω Rate of the evolution 0.01 0.60 0.10 0.10 
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(a) Lower surface of G1                       (b) Upper surface of G1 575 

Fig. 1 Contour map of joint surface roughness of specimen G1: (a) Lower surface of G1 and (b) Upper surface of 576 

G1 577 
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(a) 580 

 581 

(b) 582 

Fig. 2 Outlines of rock sample and apparatus: (a) Rock sample with single joint and (b) Apparatus including 583 

compression and shear unit [35] 584 
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(a) 587 

 588 

(b) 589 

Fig. 3 Normal displacement-stress relation of cyclic loading and unloading tests in granite specimen G1: (a) 590 

Overview and (b) Enlarged view of Case-1 591 
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Fig. 4 Fitted hyperbolic curve of third unloading path of Case-1 in specimen G1 600 

 601 

 602 

 603 

(a) 604 

 605 

(b) 606 
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(c) 608 

 609 

(d) 610 

Fig. 5 Shear displacement-stress relationship of two cases in four granite specimens: (a) Case-1 and (b) Case-2 611 

 612 

Fig. 6 Aperture evolution during compression tests of Case-1 in specimen G1 613 

 614 



 615 

Fig. 7 Typical deformation behavior of Case-1 in specimen G1 616 

 617 

 618 

Fig. 8 Modeling of aperture in rock joint  619 

 620 
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Fig. 9 Modeling of aperture in rock joint with state parameter Ω 623 

 624 
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(d) 635 

Fig. 10 Comparison of first shear experimental and numerical simulation results on four granite specimens: (a) 636 

Specimen G1 under confining stress of 𝜎𝑛=3 MPa, (b) Specimen G2 under confining stress of 𝜎𝑛=3 MPa, (c) 637 

Specimen G3 under confining stress of 𝜎𝑛=1 MPa, and (d) Specimen G4 under confining stress of 𝜎𝑛=1 MPa 638 
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(c) 645 

 646 

 647 

(d) 648 

Fig. 11 Comparison of second shear experimental and numerical simulation results on four granite specimens: (a) 649 

Specimen G1 under confining stress of 𝜎𝑛=3 MPa, (b) Specimen G2 under confining stress of 𝜎𝑛=3 MPa, (c) 650 

Specimen G3 under confining stress of 𝜎𝑛=1 MPa, and (d) Specimen G4 under confining stress of 𝜎𝑛=1 MPa 651 
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(b) 656 

 657 

(c) 658 

Fig. 12 Simulation results of effect of initial aperture on shear behavior: (a) Influence on shear strength, (b) 659 

Influence on normal displacement, and (c) Influence on aperture dilation 660 
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