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Abstract This paper proposes novel methods for the

modeling and control of spar-type floating offshore wind

turbines (FOWTs) by focusing on the dependency of

the equilibrium and perturbed dynamics on the rotor

azimuth angle. In addition, three new reduced mod-

els for controller design are derived using trajectory

linearization by accounting for the dependency of the

equilibrium on the azimuth angle. A thorough simula-

tion study shows that the proposed models reproduce

the important dynamic characteristics of FOWTs more

accurately than the conventional models. Then, nonlin-

ear model predictive controllers (NMPCs) minimizing

the nonquadratic cost functions are developed for the

proposed models, which include nonlinear terms for the

rotor azimuth angle. These NMPCs suppress the vari-
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ation in the forces applied to the blades better than

the conventional linear MPCs while maintaining a low

computational cost. The best NMPC for the models is

one that accounts for the dependency of both the equi-

librium and perturbed dynamics on the rotor azimuth

angle. This NMPC suppresses the platform yaw and

forces added on the blades. The performance of such

an NMPC can be further improved by using the inflow

wind disturbance data predicted using a light detection

and ranging wind sensor.

Keywords Predictive control · Linearization tech-

niques · Floating offshore wind turbine

1 Introduction

Offshore wind energy has been receiving much at-

tention because of being a renewable source, and thus,

contributes to addressing the world’s energy problem.

According to the 2016 Offshore Wind Energy Resource

Assessment for the United States [1], the offshore wind

energy potential in the United States is approximately
two times the electricity used in the country in 2014.

Offshore wind turbines have been practically applied,

and the installed offshore wind power capacity has grown

remarkably [2]. Among the various offshore wind tur-

bines, floating offshore wind turbines (FOWTs) espe-

cially exhibit considerable potential for power genera-

tion [1]. Offshore wind turbines are mounted on bottom-

fixed foundations, whereas FOWTs are mounted on float-

ing platforms. Thus, FOWTs enable power generation

in deeper waters than bottom-fixed turbines.

To optimize the generated power, active control is

used in operating FOWTs. There are several regions of

operation to be considered in power optimization, as

shown in Fig. 1, and the goal of power optimization
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Fig. 1 Operating regions of FOWT

depends on the region [3]. If the actual wind speed is

below the rated wind speed (Region 2), the goal is to

maximize the generated power. If it is above the rated

wind speed (Region 3), the goal is to maintain the rated

power. This is because the rotor rotation at an exces-

sive speed can induce malfunctions in the wind turbine.

Blade-pitch control is commonly used to regulate the

rotor speed, and its control input is the blade-pitch an-

gle, which is defined as the attack angle of the rotor

blade relative to the rotor surface.

The most basic controller used in blade-pitch con-

trol is the gain-scheduled PI (GSPI) controller [4]. This

controller aims to regulate the rotor speed by feeding

back the difference between the measured and rated ro-

tor speeds to the blade-pitch angle. Thus, FOWTs are

treated as single-input single-output systems, where the

input is the collective blade-pitch (CBP) angle. This

means that the GSPI controller does not consider vari-

ables other than the rotor speed, such as the FOWT

attitude and structural loads. Consequently, this con-

troller induces negative damping in FOWTs [5], which

refers to an increase in the attitude oscillations due to

the resonance between the blade-pitch controller and

the platform pitch mode with low natural frequencies.

In FOWTs, oscillations in the platform attitude can

cause serious accidents and structural fatigue damages

[6]. Thus, it is important to regulate the attitude and

structural loads to reduce the malfunction risk.

These several control objectives have motivated re-

searchers to model and control FOWTs using various

methods [7]. Some studies have treated FOWTs as multiple-

input multiple-output (MIMO) systems [8–10], in which

the individual blade-pitch (IBP) angles are generally

used as the inputs. In contrast to CBP controllers, IBP

controllers need to adjust the inputs in accordance with

the rotor azimuth angle ψ, which is the angle between

the vertical line and rotor blade, as shown in Fig. 2. For

this reason, IBP controllers are designed to account for

the dependency of the dynamics on ψ. This dependency

is an inherent characteristic of wind turbines caused by

the rotating blades.
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Fig. 2 Configuration of FOWT

MIMO models for FOWTs can be categorized as

linear [8, 9] or nonlinear [10]. As the FOWT dynam-

ics strongly depend on ψ, linearization is performed at

each discretized point with respect to ψ, such as every

10 degrees of ψ. For this reason, the coefficient matri-

ces in the linearized model depend on ψ. That is, the

state-space representation is periodic in ψ with a period

of 2π. For the controller design, the dependency on ψ

is removed from the state-space representation by us-

ing the averaging operation [8] or multiblade coordinate

(MBC) transformation [9, 11].

Namik et al. [8] used linear models to design linear

quadratic regulators (LQRs) for CBP and IBP, focus-

ing on regulating the rotor speed and platform pitch. As

these LQRs do not consider load effects, they increase

the load variation on the blades and tower. Chaaban

and Fritzen [9] considered the effects of loads in addi-

tion to those of the rotor speed and platform attitude by

using linearization and linear model predictive control

(LMPC) for IBP. Raach et al. [10] proposed the use of a

nonlinear reduced model and a nonlinear model predic-

tive control (NMPC) for IBP. This nonlinear model was

found to be accurate and the controller performance

was improved. However, it was computationally expen-

sive because the nonlinear reduced model considers in-

teractions among subsystems: the aerodynamics, hy-

drodynamics, servo-elastics, and mooring line dynam-

ics. The mean time for solving the optimization problem

is 1.3 s while the sampling period is 0.2 s; thus, real-time

implementation is difficult.

Kane [12] applied machine learning control (MLC)

for IBP and achieved better performance than a base-

line PID controller. In MLC, the control logic archi-

tecture and parameters are learned through trials on a

detailed simulator for cost evaluation. However, MLC

learning on a cloud computer takes three days, which

is not suitable for practical controller design involving
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iterative tuning of the cost and specifications. In con-

trast, Sarkar et al. [13] proposed a simple IBP controller
by combining a linear quadratic controller with an in-

tegral action to reduce the aerodynamic loads. More-

over, Bagherieh et al. [14], Navalkar et al. [15], Zhao

and Nagamune [16], Zhang et al. [17], and Yu et al. [18]

applied sophisticated techniques such as input/output

feedback linearization, H∞ feedforward-feedback con-

trol, switching LPV control, sliding mode control, and

adaptive control. However, they used linearized models

removing the dependency on ψ.

Although high-performance controllers are desirable,

their implementation is difficult and impractical if they

are too complicated and computationally expensive. In

contrast, if a simple controller is designed based on

an oversimplified model not capturing the relevant dy-

namic characteristics, its control performance might be

limited. Therefore, it is necessary to investigate the

modeling and control of FOWTs in a systematic and

integrated manner from the viewpoints of validity and

computational cost, which has not yet been completely

addressed.

This paper proposes new reduced models that are

simple and capture the relevant dynamic characteris-

tics of FOWTs for controller design. This paper par-

ticularly focuses on spar-type FOWTs used in vari-

ous demonstration experiments because of its low con-

struction costs. In the proposed models, a FOWT is

linearized around a trajectory, unlike the case in the

previous studies [8, 9], where a FOWT was linearized

around a constant equilibrium point. As the dynamics

of a FOWT strongly depend on the rotor azimuth an-

gle ψ, it is natural to consider that the equilibrium and
perturbed dynamics also depend on ψ. We then design

IBP controllers on the basis of the proposed models. As

the models that account for the dependency of the equi-

librium on ψ include nonlinear terms for ψ, we propose

to use NMPC. In this NMPC, the cost function is non-

quadratic, unlike the conventional MPC, even though
the state equation is linear and time-invariant. Then,

we evaluate the proposed models and NMPC through

a simulation study that includes a comparison with the

conventional models and LMPC. We previously focused

on the dependency of only the equilibrium on ψ [19];

however, in this study, we focus on the dependency of

both the equilibrium and perturbed dynamics. In addi-

tion, we test the proposed controllers under wave dis-

turbance conditions, which was not considered in our

previous study. Furthermore, as the prediction of the

inflow wind disturbance by using light detection and

ranging (LIDAR) wind sensors has been shown to be ef-

fective for controlling FOWTs [7,10,15,20,21], we also

confirm that the NMPC performance can be further

Table 1 FOWT specifications

Parameter Value

Rating 5 MW
Rotor orientation Upwind
Configuration 3 Blades
Rotor diameter 126 m
Hub diameter 3 m
Hub height 90 m

Draft 80.4 m
Depth 93.8 m

Water depth 150 m
Cut-in, Cut-out wind speed 3, 25 m/s

Rated wind speed 11.4 m/s
Rated rotor speed 1.267 rad/s, (12.1 rpm)

Rotor mass 3.50× 105 kg
Tower mass 2.75× 105 kg

Platform mass 7.17× 106 kg

improved by using the predicted data on inflow wind

disturbance.

The rest of this paper is organized as follows. In

Section 2, we derive the reduced FOWT models by us-

ing trajectory linearization. In Section 3, we design the

controllers by using the proposed models. In Sections 4

and 5, we test the proposed models and controllers

through a numerical simulation. Finally, we conclude

this paper in Section 6.

2 FOWT Model

The specifications used to model a FOWT are listed

in Table 1. They are defined on the basis of the spec-

ifications used for an NREL 5-MW wind turbine [4].
The turbine is mounted on a spar platform, as shown

in Fig. 2, which comprises a single vertical cylinder and

has been used in various demonstration experiments,

such as in Norway [27] and Japan [28], because of its

low construction cost.

A full-dynamics model of the FOWT is reproduced

using FAST v7 [22], which was developed by the Na-

tional Renewable Energy Laboratory (NREL). FAST is

the standard software used for analyzing the complete

dynamics of wind turbines. Although a recent version

FAST v8 is available, FAST v7 is used in this study

because of its flexibility in linearization and coordina-

tion with the external software. FAST v7 is validated

through comparisons with the data obtained from scale

testing [23–25] and field measurements [26]. Thus, we

regard the FAST full model as an accurate model for

our FOWT.

Although the FAST full model is accurate, it is too

complicated to be used for controller design. Reduced

models in the form of state-space representations are
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Table 2 Linearization outputs

y1 surge translational displacement of platform [m]
y2 roll rotational displacement of platform [deg]
y3 pitch rotational displacement of platform [deg]
y4 yaw rotational displacement of platform [deg]
y5 rotor speed [rad/s]
y6 blade1 out-of-plane root bending moment [kNm]
y7 blade2 out-of-plane root bending moment [kNm]
y8 blade3 out-of-plane root bending moment [kNm]

essential for modern controller design for MIMO sys-

tems. In particular, a reduced model is crucial for the

real-time implementation of NMPC because the future

response of the model needs to be computed iteratively

for optimizing the control input within the sampling

interval.

In this paper, we derive reduced models for con-

troller design by using the capability of FAST to extract

linearized representations of the FAST full model. The
FAST full model is numerically linearized about a given

operating point to generate matrices in the state-space

representation depending on the rotor azimuth angle ψ.

Then, we derive five different models for different treat-

ments of the operating point and periodicity in the ro-

tor azimuth angle ψ, as discussed below. In particular,

we propose three new models by explicitly accounting

for the periodic equilibrium. The state vector x for lin-

earization is defined as x =
[
q⊤ q̇⊤]⊤, where vector q

includes the following eight degrees of freedom: surge

translational displacement of the platform, roll, pitch,

and yaw rotational displacements of the platform, rotor

azimuth angle ψ, and first bending modes of the three

blades. The input vector u is the IBP angles of the three

blades. The output vector y is defined in Table 2.

2.1 Conventional linearization method around a fixed

equilibrium

First, we briefly review the two models obtained us-
ing the conventional linearization method [8, 9], where

the full model is linearized around the constant equi-

libria x̄op and ȳop. As the FOWT dynamics change pe-

riodically depending on the rotor’s azimuth angle ψ, we

perform linearization for the FOWT at each ψ (0 ≤ ψ < 2π).

The state-space representation is then derived as

∆ẋ = A0 (ψ)∆x+B0 (ψ)∆u

∆y = C0 (ψ)∆x+D0 (ψ)∆u,
(1)

where

∆x := x− x̄op

∆y := y − ȳop

∆u := u− uop.

Here, ∆x is the perturbed state vector, ∆y is the per-

turbed output vector, and ∆u is the perturbed input
vector from the constant operating point uop. This state-

space representation contains nonlinear terms for ψ, be-

cause some elements of the coefficient matrices in (1)

include trigonometric functions of ψ, which is also an el-

ement of the state vector x. We remove this dependency

on ψ from the coefficient matrices for the controller de-

sign by using the same approach as that followed pre-

viously [8, 9].

2.1.1 Averaged model with a fixed equilibrium

In the first conventional model, we remove the de-

pendency on ψ from the model given in (1) in accor-

dance with [8]. We first average the coefficient matrices,

A0 (ψ), B0 (ψ), C0 (ψ), and D0 (ψ), with respect to ψ.

For example, A0 (ψ) is averaged as

Ā0 :=
1

2π

∫ 2π

0

A0 (ψ) dψ,

where the integration is performed numerically with

π/18 (10 degrees) increment in ψ. Then, we derive the

state-space representation as follows:

∆ẋ = Ā0∆x+ B̄0∆u

∆y = C̄0∆x+ D̄0∆u

∆u = u− uop

x = ∆x+ x̄op

y = ∆y + ȳop.

(2)

We refer to this model (2) as the “averaged model with

a fixed equilibrium (Av-F model).” It should be noted

that ψ does not appear in (2).

2.1.2 MBC model with a fixed equilibrium

In the second conventional model, we remove the

dependency on ψ from the model given in (1) through

MBC transformation [11] in accordance with [9]. MBC

transformation enables the state-space representation

in rotating coordinates to be rewritten as that in non-

rotating coordinates. The rotating coordinates are at-

tached to the individual blades, whose variables are

expressed in rotating coordinates. By expressing the

state-space representation in nonrotating coordinates,

we weaken the dependence on ψ. After the MBC trans-

formation, the periodicities are weakened; thus, the co-

efficient matrices can be averaged on ψ with little loss

of information. The details are given elsewhere [11].

Let qi (i = 1, 2, 3) be the variable corresponding to

the ith blade and ψ be the azimuth angle of blade1.
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Then, the MBC transformation T (ψ) is expressed as q1q2
q3

 =

1 cos ψ sin ψ

1 cos
(
ψ + 2

3π
)
sin

(
ψ + 2

3π
)

1 cos
(
ψ + 4

3π
)
sin

(
ψ + 4

3π
)
 qoqc

qs


= T (ψ) qnr,

where qo is the collective mode, qc is the cosine-cyclic

mode, and qs is the sine-cyclic mode. We consider that

vector qnr = [qo qc qs]
⊤
can be expressed in nonrotating

coordinates. The MBC transformation T (ψ) can trans-

form the input u, which comprises only three variables

for the three blades. In addition, we define MBC trans-

formations for the state x and output y, which include

the variables for the FOWT parts other than the blades,

as follows:

Tx (ψ) := block-diag

(
I5, T (ψ) , O5,

∂T

∂ψ
(ψ)

)
Ty (ψ) := block-diag (I5, T (ψ)) .

By applying MBC transformation to (1), we obtain

∆ẋnr = A0nr (ψ)∆xnr +B0nr (ψ)∆unr

∆ynr = C0nr (ψ)∆xnr +D0nr (ψ)∆unr,
(3)

where

∆xnr := Tx
−1 (ψ)∆x = Tx

−1 (ψ) (x− x̄op)

∆ynr := Ty
−1 (ψ)∆y = Ty

−1 (ψ) (y − ȳop)

∆unr := T−1 (ψ)∆u.

By averaging the coefficient matrices for 0 ≤ ψ < 2π,

the above equations can be rewritten as

∆ẋnr = Ā0nr∆xnr + B̄0nr∆unr

∆ynr = C̄0nr∆xnr + D̄0nr∆unr

∆unr = T−1 (ψ)∆u

x = Tx (ψ)∆xnr + x̄op

y = Ty (ψ)∆ynr + ȳop,

(4)

where the state equation is invariant with respect to ψ.

We refer to this model (4) as the “MBC model with

a fixed equilibrium (MBC-F model).” As the equilibria

x̄op and ȳop do not depend on ψ, they do not need to be

expressed in nonrotating coordinates. Thus, the equilib-

ria x̄op and ȳop are added to the outputs Tx (ψ)∆xnr

and Ty (ψ)∆ynr of the perturbed dynamics after MBC

transformation, as shown in Fig. 3. Note that ψ appears

in the coefficient matrices of∆u,∆xnr, and∆ynr in (4).

2.2 Proposed linearization method around a periodic

equilibrium

Next, we propose new methods to derive three dif-

ferent models, where the full model is linearized around
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Fig. 3 Flow of MBC model with a fixed equilibrium

the trajectories xop (ψ) and yop (ψ) instead of the con-

stant equilibria in the conventional method. By lin-

earizing the full model at each ψ (0 ≤ ψ < 2π) around

xop (ψ) and yop (ψ), we obtain the following state-space

representation:

∆ẋ = A (ψ)∆x+B (ψ)∆u

∆y = C (ψ)∆x+D (ψ)∆u,
(5)

where

∆x := x− xop (ψ)

∆y := y − yop (ψ)

∆u := u− uop.

(6)

The equilibria xop (ψ) and yop (ψ) depend on ψ in this

model (5), unlike model (1). The relation between the

fixed and periodic equilibria can be expressed as

x̄op :=
1

2π

∫ 2π

0

xop (ψ) dψ

ȳop :=
1

2π

∫ 2π

0

yop (ψ) dψ,

where the integrations are performed numerically with

π/18 increment in ψ.

2.2.1 Averaged model with a periodic equilibrium

In the first proposed model, we average the coeffi-
cient matrices of model (5) (A (ψ), B (ψ), C (ψ), and

D (ψ)) for 0 ≤ ψ < 2π in the same manner as that

for the Av-F model. We do not average the periodic

equilibria, xop (ψ), and yop (ψ). Instead, we construct

the continuous functions xop (ψ) and yop (ψ) by using

second-degree trigonometric interpolations of the equi-
libria for ψ = kπ/18 (k = 0, . . . , 35). We thereby obtain

∆ẋ = Ā∆x+ B̄ ∆u

∆y = C̄ ∆x+ D̄ ∆u

∆u = u− uop

x = ∆x+ xop (ψ)

y = ∆y + yop (ψ) .

(7)

We refer to this model (7) as the “averaged model with

a periodic equilibrium (Av-P model).” Note that ψ ap-

pears only in xop (ψ) and yop (ψ) in (7). That is, this

model accounts for the dependency of the equilibria

xop (ψ) and yop (ψ) on ψ but not that of the perturbed

dynamics of ∆x and ∆y on ψ.
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2.2.2 MBC model with a periodic equilibrium

In the second proposed model, by applying MBC

transformations to (5), we obtain the following equa-

tions:

∆ẋnr = Anr (ψ)∆xnr +Bnr (ψ)∆unr

∆ynr = Cnr (ψ)∆xnr +Dnr (ψ)∆unr,
(8)

where

∆xnr := Tx
−1 (ψ)∆x = Tx

−1 (ψ)x− xnrop (ψ)

∆ynr := Ty
−1 (ψ)∆y = Ty

−1 (ψ)y − ynrop (ψ)

∆unr := T−1 (ψ)∆u.

By averaging the coefficient matrices and equilibria for

0 ≤ ψ < 2π, we can rewrite these equations as

∆ẋnr = Ānr∆xnr + B̄nr∆unr

∆ynr = C̄nr∆xnr + D̄nr∆unr

∆unr = T−1 (ψ)∆u

x = Tx (ψ) (∆xnr + x̄nrop)

y = Ty (ψ) (∆ynr + ȳnrop) ,

(9)

where x̄nrop and ȳnrop are the averages of xnrop (ψ) and

ynrop (ψ), respectively. We refer to this model (9) as

the “MBC model with a periodic equilibrium (MBC-P

model).” Note that ψ appears in the coefficient matri-

ces of ∆u, ∆xnr+x̄nrop, and ∆ynr+ȳnrop in (9). As the

equilibria of x and y depend on ψ as Tx (ψ) x̄nrop and

Ty (ψ) ȳnrop, they also need to be expressed in nonrotat-

ing coordinates. Thus, the equilibria x̄nrop and ȳnrop in

nonrotating coordinates are added before MBC trans-

formation, as shown in Fig. 4, in contrast to the MBC-F

model shown in Fig. 3.

2.2.3 MBC model with a periodic equilibrium including

disturbance model

Finally, as the third proposed model, we derive a re-

duced model for the controller, which uses the predicted

wind disturbance data by adding the effect of wind dis-

turbance to the MBC-P model. We assume that the

inflow wind turbulence does not evolve and that the

LIDAR wind sensor exhibits the specified performance.

We define the disturbance input ud [m/s] as the hor-

izontal inflow wind speed that is perpendicular to the

rotor surface. By performing linearization, we obtain

the following equations:

∆ẋ = A (ψ)∆x+B (ψ)∆u+Bd (ψ)∆ud

∆y = C (ψ)∆x+D (ψ)∆u+Dd (ψ)∆ud,

where

∆x := x− xop (ψ)

∆y := y − yop (ψ)

∆u := u− uop

∆ud := ud − udop,

and ∆ud is the perturbed wind disturbance from the

constant operating point udop. Then, by applying MBC

transformations and averaging the coefficient matrices

for 0 ≤ ψ < 2π, we can rewrite the equations as

∆ẋnr = Ānr∆xnr + B̄nr∆unr + B̄dnr∆ud

∆ynr = C̄nr∆xnr + D̄nr∆unr + D̄dnr∆ud

∆unr = T−1 (ψ)∆u

x = Tx (ψ) (∆xnr + x̄nrop)

y = Ty (ψ) (∆ynr + ȳnrop) .

(10)

We refer to this model (10) as the “MBC model with a

periodic equilibrium including disturbance model (MBC-

P-D model).” Note that (10) is the same as (4), except

for the additional linear term of ∆ud.

Table 3 shows the differences among the five reduced

models, and Fig. 5 shows their relations. The simulation

results obtained for the comparison tests focusing on

these differences are presented in Section 4.

3 Controller Design

This section describes the controller design for the

models presented in the previous section. As the pro-

posed Av-P, MBC-P, and MBC-P-D models include

nonlinear terms for ψ, i.e., xop (ψ), yop (ψ), Tx (ψ), or

Ty (ψ), we propose to use NMPC for these models. They

include nonlinearities only in the equations for x and

y, and their state equations for ∆x or ∆xnr are linear

and time-invariant. To enable comparison tests to be

performed under the same conditions, we use LMPC

for the conventional Av-F and MBC-F models.

NMPC is a state feedback control achieved by solv-

ing an optimal control problem over a finite horizon at

each time. We consider a system governed by the fol-

lowing state equation:

ẋ (t) = f (x (t) , u (t)) .
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Linearize at every 𝜓

Full model
Fixed equilibrium

𝜓-dependent

model

𝜓-dependent

modelPeriodic equilibrium

(Trajectory linearization)

Averaged

MBC transf.

Av-F model

MBC-F model

Averaged

MBC transf.

Av-P model

MBC-P model

Conventional

methods

Proposed

methods

Fig. 5 Relations among Av-F, MBC-F, Av-P, and MBC-P models

Table 3 Differences among the five reduced models

Model Av-F (2) MBC-F (4) Av-P (7) MBC-P (9) MBC-P-D (10)

State equation is linear and time-invariant. ✓ ✓ ✓ ✓ ✓
Dependency of equilibrium on ψ
is considered.

✓ ✓ ✓

Dependency of perturbed dynamics on ψ

is considered.
✓ ✓ ✓

Wind disturbance is considered. ✓

In NMPC, the control input at each time t is deter-

mined as follows. First, an optimal control problem is

solved to minimize the cost function

J = φ (x (t+ T )) +

∫ t+T

t

L (x (τ) , u (τ)) dτ

and determine an optimal control u∗ (τ) (t ≤ τ ≤ t+ T ).

Then, the actual input to the system is given by the ini-

tial value of the optimal control on the horizon, u∗ (t).

Consequently, the state feedback control is achieved be-

cause the optimal control depends on the current state

x (t).

An important part of designing MPCs is defining

the cost functions φ and L. Here, we define the cost

function for each LMPC and NMPC. For the MPCs,

we set the reference values to the same values of x̄op

and ȳop. Then, the control objective is to minimize the

deviations x− x̄op and y− ȳop. In addition, we assume

that the state vector can be measured or estimated with

sufficient accuracy.

3.1 LMPC based on the Av-F model

First, we define the cost function for using the Av-F

model. Minimizing x− x̄op is equivalent to minimizing

∆x because x−x̄op = ∆x. The same is true for y−ȳop;

thus, we define the cost functions for the Av-F model

as

φ =
1

2
∆x⊤Qx∆x

L =
1

2

(
∆y⊤Qy∆y +∆u⊤R∆u

)
,

where Qx, Qy, and R are the weighting matrices. This

problem is LMPC because the model is linear and the
cost functions are quadratic.

3.2 LMPC based on the MBC-F model

For the MBC-F model, minimizing y − ȳop corre-

sponds to minimizing∆ynr because y−ȳop = Ty (ψ)∆ynr.

In accordance with the previous study [9], we define the

cost functions for the MBC-F model as

φ =
1

2
∆x⊤

nrQx∆xnr

L =
1

2

(
∆y⊤

nrQy∆ynr +∆u⊤
nrR∆unr

)
.

This problem is also LMPC because the model is linear

and the cost functions are quadratic.
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+

+

𝒖
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−

Fig. 6 Control system for LMPC based on the Av-F model

FOWT
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𝑇 𝜓

Δ𝒖𝑛𝑟
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+

+

𝒖
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Fig. 7 Control system for LMPC based on the MBC-F model

3.3 NMPC based on the Av-P model

Next, for the Av-P model, to minimize x− x̄op and

y − ȳop, we define the cost functions as

φ =
1

2
(x− x̄op)

⊤
Qx (x− x̄op)

L =
1

2

[
(y − ȳop)

⊤
Qy (y − ȳop) +∆u⊤R∆u

]
.

The output for the Av-P model is given as y = ∆y +

yop (ψ). Therefore, the equilibrium yop (ψ) depends on

ψ, and ȳop is not canceled in y−ȳop. Thus, this problem

is NMPC because the cost functions are not quadratic,

even though the state equation remains linear.

3.4 NMPCs based on the MBC-P and MBC-P-D

models

Similarly, for the MBC-P and MBC-P-D models, we

define the cost functions as

φ =
1

2
(x− x̄op)

⊤
Qx (x− x̄op)

L =
1

2

[
(y − ȳop)

⊤
Qy (y − ȳop) +∆u⊤

nrR∆unr

]
.

As the output is given as y = Ty (ψ) (∆ynr + ȳnrop)

in these models, the equilibrium Ty (ψ) ȳnrop depends

on ψ as it does in the Av-P model. Therefore, the cost

functions are not quadratic and this problem is NMPC

even though the state equations are linear.

Figures 6–9 show the closed-loop systems with the

designed MPCs. In Figs. 6 and 8, the MPC optimiza-

tion problems are formulated in rotating coordinates. In

Figs. 7 and 9, they are formulated in nonrotating coor-

dinates by using MBC transformation. In addition, the

FOWT

full modelΔ𝒖

𝒖𝑜𝑝

+

+

𝒖

Solve

NMPC problem Δ𝒙 𝒙

𝒙𝑜𝑝 𝜓

+

−
𝜓

Fig. 8 Control system for NMPC based on the Av-P model

FOWT

full model

MBC transf.

𝑇 𝜓

Δ𝒖𝑛𝑟

Δ𝒖

𝒖𝑜𝑝

+

+

𝒖

Solve

NMPC problem
Δ𝒙𝑛𝑟 𝒙𝑛𝑟 𝒙

ഥ𝒙𝑛𝑟𝑜𝑝

+

− MBC transf.

𝑇−1 𝜓

Fig. 9 Control system for NMPC based on the MBC-P model

equilibrium is subtracted after MBC transformation in

Fig. 9 and before MBC transformation in Fig. 7. This

is because the dependency of the equilibrium on ψ is

considered in the MBC-P model and not in the MBC-F

model.

In all MPCs, we set the horizon length T to 6 s and

the sampling period to 10ms by referring to the spec-

ifications for a nacelle-mounted Doppler LIDAR wind

sensor on the market [29]. Regarding the disturbance

prediction, we assume that the information on the hor-

izontal inflow wind speed can be used every 1 s, with ac-

curacy to one decimal place [29]. We select the weight-

ing matrices Qx, Qy, and R so that the platform at-

titude and rotor speed can be controlled as equally as

possible among the five methods. Then, the differences

arise primarily in the blade root bending moments, as

discussed in Section 5.

4 Model Comparison

We test the accuracy of the reduced models through

a numerical simulation performed using FAST on a

MATLAB/Simulink platform. First, we explain the pro-

cedures and conditions for the model comparison. We

linearize the full model with an interval of∆ψ = 10 [deg]

and construct the reduced models as described in Sec-

tion 2. Linearization is performed under steady wind

conditions (16m/s) without any wave disturbance. For

comparing the fundamental characteristics of the re-

duced models, the steady wind is assumed to be per-

pendicular to the rotor plane. Then, we apply the same

input as that used for the GSPI controller [4] to the five

reduced models and the full model for 1000 s. That is,

we control the full model by using the GSPI controller
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Fig. 10 Frequency responses for wind speed

and apply the time-series data of the control input to

the five reduced models. The full model is tested un-

der turbulent wind field conditions with a time step of

10ms without wave disturbance. The mean wind speed

is set to 16m/s and the turbulence intensity is set to

12% (NTM: normal turbulence model) in accordance

with the IEC design requirements [30]. Figure 10 shows

the frequency response of the wind speed, whose magni-
tude gradually attenuates toward a high frequency. The

MBC transformations and periodic equilibrium in the

reduced models are calculated from the actual azimuth

angle as output by the full model.

4.1 Effect of Modeling Approach on Model Accuracy

Figure 11 shows the transient responses of the five

reduced models and the FAST full model. In this sub-

section, we compare the four reduced models (Av-F,

MBC-F, Av-P, and MBC-P) by focusing on the differ-

ences in the modeling methods used. Then, we com-

pare the MBC-P and MBC-P-D models by focusing on

the effect of accounting for the inflow wind speed. As

shown in Fig. 11, in terms of rotor speed and platform

pitch, there are slight differences among the four re-

duced models (Av-F, MBC-F, Av-P, and MBC-P); in

contrast, in terms of platform roll and platform yaw,

there are significant differences. This indicates that the

rotor speed and platform pitch do not significantly de-

pend on the azimuth angle ψ, whereas the platform roll

and platform yaw do. The platform roll and yaw are

generated by the force distribution on the rotor surface,

which depends on the orientation of the three blades

(i.e., azimuth angle ψ). In contrast, the dynamics of

the rotor speed and platform pitch are based on the

total force applied on the rotor surface — which is af-

fected by factors other than ψ, particularly the inflow

wind speed.

In particular, for the platform yaw indicated in Fig. 11(e),

the amplitude and frequency for the MBC-F and MBC-

P models are more similar to those for the FAST full

model than those for the Av-F and Av-P models. In

other words, MBC transformation, in which the depen-

Fig. 11 Time-series data for first 50 s: (a) wind speed, (b)
rotor speed, (c) platform pitch, (d) platform roll, (e) platform
yaw, and (f) blade1 root bending moment

dency of the perturbed dynamics on ψ is considered,

is effective in modeling the platform yaw. This is be-

cause the perturbed dynamics have a more significant

effect on platform yaw than the variation in the equi-

librium. In fact, the Av-P model cannot reproduce the

platform yaw accurately because it considers only the

dependence of the equilibrium on ψ.

Next, we discuss the blade root bending moment by

focusing on the frequency responses at 0.2 Hz, where the

FAST full model exhibits a large variation. Figure 12

shows the frequency responses of blade root bending

moments of the five reduced models and the FAST full

model. As shown in Fig. 12, the Av-P and MBC-P mod-

els reproduce this variation at 0.2Hz, whereas the Av-F



10 Yuga Okada et al.

Table 4 Comparison of modeling approaches

Modeling approaches Rotor speed Platform pitch Platform yaw Blade root bending moment

Considering dependency of equilibrium
on ψ (Av-P, MBC-P)

Good for variation
around 0.2 Hz

Considering dependency of perturbed
dynamics on ψ (MBC-F, MBC-P)

Good

Considering inflow wind disturbance
(MBC-P-D)

Good Good
Good for variation over
a wide frequency range

Fig. 12 Frequency responses of out-of-plane blade1 root
bending moment for (a) Av-F, (b) MBC-F, (c) Av-P, (d)
MBC-P, and (e) MBC-P-D models compared with that for
the FAST full model

and MBC-F models do not. The variation in the blade

root bending moment at 0.2 Hz is caused by changes in

the blade orientation, as determined by ψ. Note that

Fig. 13 Frequency responses for the blade-pitch angle, i.e.,
the input

0.2 Hz corresponds to the cycle of the blade rotat-

ing at rotor speed ψ̇ around 1.26 [rad/s]. In the Av-

P and MBC-P models, the periodic equilibria, yop (ψ)

and Ty (ψ) ȳnrop, reproduce this variation at 0.2Hz. In

contrast, the Av-F and MBC-F models cannot repro-

duce a large variation that depends on ψ, because the

equilibrium is constant. In summary, by considering the

periodicity of the equilibrium, the reduced models can

reproduce the variation in the blade root bending mo-

ment with ψ and improve the accuracy.

4.2 Effect of Considering Inflow Wind Disturbance on

Model Accuracy

In this subsection, we compare the MBC-P and MBC-

P-D models by focusing on the effect of considering the

inflow wind speed. As shown in Figs. 11(b) and (c),

the MBC-P-D model reproduces the rotor speed and

platform pitch much more accurately than the MBC-

P model. That is, accounting for the inflow wind speed

improves the model accuracy in terms of the rotor speed

and platform pitch. This is because the dynamics of the

rotor speed and platform pitch are based on the rotor

torque and rotor thrust, respectively, which in turn de-

pend on the inflow wind speed.

By contrast, there is little difference in the platform

roll and platform yaw between the MBC-P and MBC-

P-D models, as shown in Figs. 11(d) and (e). As the

wind strikes the rotor surface mainly in the horizon-

tal direction, the inflow wind speed does not contribute

significantly to the platform roll and yaw. In addition,
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the MBC-P-D model uses only the horizontal compo-

nent of the inflow wind speed at the center of the rotor
surface. Therefore, accounting for the wind disturbance

does not make much difference for the platform roll and

yaw.

Regarding the blade root bending moment, a com-

parison of Figs. 12(d) and (e) shows that the MBC-

P-D model is more accurate than the MBC-P model

over a wide frequency range. In particular, the MBC-

P model does not reproduce the blade root moment of

the full model in both frequency ranges below 0.04 Hz

and above 0.2 Hz. This is because the MBC-P model

does not account for the fluctuation in the inflow wind

speed, whereas the MBC-P-D model does. In the low-

frequency range, the fluctuation in the wind speed is

dominant, as shown in Fig. 10, and consequently, its ef-

fect in the MBC-P-D model is not negligible. Although

the fluctuation in the wind speed attenuates in the high-

frequency range, it attenuates relatively slower than

that in the control input, which is the blade pitch an-

gle, as shown in Fig. 13. Therefore, it is still effective

to account for the inflow wind speed even in the high-

frequency range.

Table 4 summarizes the characteristics of the five

reduced models observed in the simulation results. To

summarize, if the information on the inflow wind speed

is not available, the MBC-P model is the most accurate

among the reduced models. In addition, by accounting

for the inflow wind speed model, the accuracy of the

MBC-P-D model is improved in terms of rotor speed,

platform pitch, and blade root bending moment.

5 Controller Comparison

In this section, we discuss the performance of the

controllers when implemented into the FAST full model.

We test the controllers under turbulent wind field con-

ditions with wave disturbance. The mean speed and

wind turbulence intensity are set to 16m/s and 14%
(NTM), respectively, in accordance with the IEC de-

sign requirements [30]. The wave disturbance is mod-

eled on the basis of the JONSWAP spectrum with a

significant wave height of 5m and a peak spectral pe-

riod of 20 s [5, 30]. The simulations are performed for

600 s with a time step of 10ms. The time step is set to

10ms because a sufficiently short time step enables us

to control the variation of up to 1Hz frequencies. To

prevent biased results, we use ten 600-s turbulent wind

field and wave disturbance patterns.

To solve the MPC optimization problems, we use

C/GMRES [31], which is a numerical algorithm for

NMPC problems that enables the optimal control prob-

lem to be solved in real time. We use an automatic code

Fig. 14 Power spectral density comparison of rotor speed
among four MPCs using one of the ten 600-s simulation re-
sults

generation tool AutoGenU for Maple [32,33] to generate

the C code of the algorithm and integrate this code into

FAST on the MATLAB/Simulink platform. In addi-

tion, we use the same algorithm for solving both LMPC

and NMPC optimization problems so that they can be

compared under the same conditions. We first compare

the results obtained for the MPCs based on the four

reduced models, which do not use the predicted wind

disturbance data, and discuss the differences caused by

linearization. Then, we compare the NMPCs based on

the MBC-P and MBC-P-D models to evaluate the effect

of using the predicted wind disturbance data.

Table 5 shows the RMSE with respect to each ref-

erence value, and Table 6 shows the damage equivalent

load (DEL) [34], which is used for quantifying the fa-

tigue damage in the structure. The smaller the DEL,

the lesser is the fatigue damage. All values are normal-

ized to their corresponding values for LMPC based on

the Av-F model. Table 7 shows the average computa-

tion time for one update of the MPC input obtained

by the simulation (Intel R○ Xeon R○ CPU E5-2667 v2 @

3.30GHz). All RMSEs, DELs, and computation times

are averaged over the 10 patterns of the simulation re-

sults.

5.1 Differences Caused by Modeling Approaches

As shown in Table 5, there are no significant differ-

ences in the rotor speed and platform pitch among the

four controllers: the two LMPCs based on the conven-

tional Av-F and MBC-F models and the two NMPCs

based on the proposed Av-P and MBC-P models. Thus,

it is not important whether the reduced model accounts

for the dependency on ψ for controlling the rotor speed.

One reason for this is that the weighting matrices are

tuned such that the rotor speed and attitude are con-

trolled equally among the four MPCs. Another reason

is that the four reduced models have similar accuracies

in terms of the rotor speed and platform pitch, as de-

scribed in Subsection 4.1. This is evident in Fig. 14,
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Table 5 Normalized root-mean-square errors of rotor speed and platform attitudes

Controller
LMPC
(Av-F)

LMPC
(MBC-F)

NMPC
(Av-P)

NMPC
(MBC-P)

NMPC#1
(MBC-P-D)

NMPC#2
(MBC-P-D)

Rotor speed 1 1.04 1.02 1.04 0.61 0.93

Platform pitch 1 1.00 1.01 1.02 1.02 0.89

Platform roll 1 1.35 0.63 1.02 0.95 0.67

Platform yaw 1 0.56 0.98 0.59 0.48 0.39

Platform surge 1 1.01 1.01 1.01 1.04 0.97

Table 6 Normalized damage equivalent load of forces and moments at blade and tower

Controller
LMPC
(Av-F)

LMPC
(MBC-F)

NMPC
(Av-P)

NMPC
(MBC-P)

NMPC#1
(MBC-P-D)

NMPC#2
(MBC-P-D)

Blade root shear force 1 0.93 0.83 0.81 0.78 0.66

Blade root bending moment 1 0.95 0.75 0.77 0.88 0.68

Tower base roll moment 1 1.20 0.67 0.92 0.91 0.65

Tower base pitch moment 1 0.96 0.97 0.94 0.99 0.92

Tower base yaw moment 1 1.54 0.81 0.92 0.93 0.75

Table 7 Computation time required for one update of control input

Controller
LMPC
(Av-F)

LMPC
(MBC-F)

NMPC
(Av-P)

NMPC
(MBC-P)

NMPC#1
(MBC-P-D)

NMPC#2
(MBC-P-D)

Computation time [ms] 0.7 0.8 0.9 1.1 1.1 1.1

Fig. 15 PSD comparison of platform yaw between MPCs
based on Av- models and those based on MBC- models using
one of the ten 600-s simulation results

which shows that the power spectral densities (PSDs)

of the four MPCs are similar.

Table 5 shows that the MPCs based on the MBC-F

and MBC-P models are highly effective in suppress-

ing the variation in platform yaw. Figure 15 also shows

that the two MPCs based on the MBC-F and MBC-P

models reduce the oscillation better than those based

on the Av-F and Av-P models. This is consistent with

the observation in Subsection 4.1, according to which

the MBC-F and MBC-P models reproduce the platform

yaw in the full model more accurately than the Av-F

and Av-P models.

As shown in Table 6, the NMPCs based on the Av-

P and MBC-P models reduce the blade fatigue damage

better than the LMPCs based on the Av-F and MBC-

Fig. 16 PSD comparison of blade1 out-of-plane root bending
moment between MPCs based on -F models and those based
on -P models using one of the ten 600-s simulation results

F models. This is mainly because the NMPCs based

on the Av-P and MBC-P models take the variation in

the blade moment with ψ into account, whereas the

LMPCs based on the Av-F and MBC-F models do not.
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This can also be observed around 0.2 Hz in Fig. 16. This

is a reasonable finding given that the Av-P and MBC-P
models can reproduce the blade root bending moment

in the full model, whereas the Av-F and MBC-F models

cannot, as discussed in Subsection 4.1.

In addition, it is also observed in Fig. 16 that the

NMPCs based on the Av-P and MBC-P models reduce

the variation in the blade root bending moment com-

pared to the LMPCs based on the Av-F and MBC-F

models in the frequency range of 0.04–0.08 Hz, where

the fluctuation of the wave height is dominant. That

is, the NMPCs based on the Av-P and MBC-P models

have lower sensitivity with respect to wave disturbances

than the LMPCs based on the Av-F and MBC-F mod-

els. This is again because the Av-P and MBC-P models

can reproduce the blade root bending moment in the

full model more accurately than the Av-F and MBC-F

models.

The computation times listed in Table 7 indicate

that the times for the two NMPCs are almost the same

as those for the two LMPCs. This is because the state

equation is linear and time-invariant even in the NM-

PCs, although the cost function is not quadratic. In

other words, the proposed NMPCs improve the con-

troller performance, especially in terms of the blade

moment, while maintaining the computational cost suf-

ficiently low for real-time implementation.

5.2 Differences Caused by Using the Predicted Wind

Disturbance Data

To verify the effect of using the predicted wind dis-

turbance data, we evaluate two types of NMPC based

on the MBC-P-D model. For NMPC#1 based on the

MBC-P-D model, we use the same weighting matrices

as those for NMPC based on the MBC-P model. For

NMPC#2 based on the MBC-P-D model, we retune

the weighting matrices by focusing more on the regu-

lation of the attitude and blade root bending moment

than on rotor speed.

Figure 17 shows PSDs in the simulations of the

three NMPCs. As shown in Fig. 17(a), the fluctuation

in the wind speed is dominant at frequencies below

0.04 Hz, and that of the wave height is dominant in

the frequency range of 0.04–0.08 Hz. We first compare

the NMPC based on the MBC-P model and NMPC#1

based on the MBC-P-D model. As shown in Table 5,

NMPC#1 can effectively regulate the rotor speed by

using the predicted wind disturbance data. As shown

in Figs. 17(a) and (b), NMPC#1 significantly reduces

the fluctuation in the rotor speed at frequencies below

0.04 Hz, compared to the NMPC based on the MBC-P

Fig. 17 PSD comparison among the three NMPCs based on
the MBC-P and MBC-P-D models by using one of the ten
600-s simulation results: (a) wind speed and wave height, (b)
rotor speed, (c) blade1 pitch angle, and (d) blade1 bending
moment

model. This is because the MBC-P-D model can re-

produce the rotor speed in the full model much more

accurately by accounting for the inflow wind speed,

as discussed in Subsection 4.2. By contrast, their re-

sponses remain almost the same from 0.04 to 0.08 Hz,

where the fluctuation in the wave height is dominant.

In other words, regarding the rotor speed, NMPC#1

(MBC-P-D) shows much lower sensitivity with respect

to the wind speed disturbance than NMPC (MBC-P),

whereas the two NMPCs show almost the same sensi-

tivity with respect to the wave height disturbance.

Regarding the platform pitch, there is no difference

between the two NMPCs, as shown in Table 5. This

is because the weight of the platform pitch is less than

that of the rotor speed in the weighting matrices. Thus,

accounting for the inflow wind speed affects the plat-

form pitch less than the rotor speed in the cost function

of NMPC#1 based on the MBC-P-D model.
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As shown in Table 6, NMPC#1 based on the MBC-

P-D model does not reduce the variation in the blade
root bending moment compared to the NMPC based

on the MBC-P model. This is because of the trade-off

between the rotor speed and blade root bending mo-

ment, which can be explained as follows. As shown in

Fig. 17(c), the input of NMPC#1 fluctuates more than

that of NMPC based on the MBC-P model at frequen-

cies below 0.04 Hz in order to regulate the rotor speed.

Thus, the variation in the blade root bending moment

is higher at low frequencies for NMPC#1, as shown in

Fig. 17(d).

Next, we compare NMPC based on the MBC-P model

and NMPC#2 based on the MBC-P-D model. As shown

in Tables 5 and 6, NMPC#2 reduces the RMSE and

DEL for all items more than NMPC based on the MBC-

P model. Compared with NMPC#1 based on the MBC-

P-D model, NMPC#2 does not focus on the regula-

tion of the rotor speed. Thus, the NMPC#2 input does
not fluctuate much at low frequencies, compared with

NMPC#1, as shown in Fig. 17(c). This means that

NMPC#2 based on the MBC-P-D model can suppress

the growth of the variation in the blade root bending

moment at low frequencies, as shown in Fig. 17(d).

Moreover, as shown in Fig. 17(d), NMPC#2 reduces

the variation in the blade root bending moment more

than that in NMPC based on the MBC-P model at fre-

quencies above 0.1 Hz, although this cannot be acheived

around 0.05 Hz. Accordingly, NMPC#2 based on the

MBC-P-D model can effectively reduce the variation

in the blade root bending moment at high frequencies,

and consequently, the blade fatigue damage, as shown

in Table 6.

Finally, as shown in Table 7, there is no difference

in computation time among the three NMPCs based on

the MBC-P and MBC-P-D models. The only difference

between the NMPCs based on the MBC-P and MBC-

P-D models is whether the wind disturbance terms are

added to the state equation and cost function. In other

words, even if NMPC uses the predicted wind distur-

bance data, the simplicity of the model is maintained,

and thus, the computational cost remains low. There-

fore, using the predicted wind disturbance data im-

proves the NMPC performance while maintaining a low

computational cost.

Table 8 summarizes the effectiveness of the con-

trol approaches for MPCs. In case of not using the LI-

DAR wind sensors, NMPC based on the MBC-P model

significantly suppresses the variations in the platform

yaw and blade root bending moment. In the proposed

NMPC using LIDAR wind sensor data, the performance

is improved, especially in regulating the rotor speed and

blade root bending moment.

6 Conclusions

This paper discusses how to model and actively con-

trol FOWTs by focusing on the dependency of their

dynamics on the rotor azimuth angle ψ. We proposed

three new reduced models, Av-P, MBC-P, and MBC-

P-D models, for controlling FOWTs by accounting for

the periodicity of the equilibrium. The simulation re-

sults indicated that the proposed models reproduce the

variation in the blade root bending moment more accu-

rately than the conventional models. In particular, if in-

formation on the inflow wind speed is not available, the

MBC-P model is most accurate. By accounting for the

model of the inflow wind speed, the MBC-P-D model

further improves the accuracy in terms of rotor speed,

platform pitch, and blade root bending moment.

In addition, we proposed NMPCs minimizing the

nonquadratic cost functions in accordance with the pro-

posed models, even though the state equations in the

proposed models are linear. As a result, we successfully

suppressed the blade fatigue damage better than the

LMPC based on the conventional models. Furthermore,

although NMPC is computationally demanding and its

real-time implementation is challenging, we successfully

reduced the computation time required for NMPC to

almost the same level as that for LMPC. In particular,

if LIDAR wind sensors are not available, the NMPC

based on the MBC-P model exhibits the best perfor-

mance. The performance can be further improved using

LIDAR wind sensors for NMPC based on the MBC-P-

D model. Future work includes modeling and control

of FOWTs in more complicated situations, such as a

yaw misalignment between the inflow wind and plat-

form orientation.
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