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Finding well-optimized special quasirandom structures with decision diagram
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The advanced data structure of the zero-suppressed binary decision diagram (ZDD) enables us to efficiently
enumerate nonequivalent substitutional structures. Not only can the ZDD store a vast number of structures in
a compressed manner, but also a set of structures satisfying given constraints can be extracted from the ZDD
efficiently. Here, we present a ZDD-based efficient algorithm for exhaustively searching for special quasirandom
structures (SQSs) that mimic the perfectly random substitutional structure. We demonstrate that the current
approach can extract only a tiny number of SQSs from a ZDD composed of many substitutional structures
(>1012). As a result, we find SQSs that are optimized better than those proposed in the literature. A series of
SQSs should be helpful for estimating the properties of substitutional solid solutions. Furthermore, the present
ZDD-based algorithm should be useful for applying the ZDD to the other structure enumeration problems.
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I. INTRODUCTION

Modeling a perfectly random structure using periodic
structures has been performed for several decades to esti-
mate the physical properties of substitutional solid solutions
using density functional theory (DFT) calculations. One ap-
proach adopts special quasirandom structures (SQSs) [1],
which are periodic structures almost identical to a perfectly
random structure in terms of correlation functions. SQSs have
been widely used with DFT calculations to estimate physical
properties of perfectly random structures such as formation
enthalpy [2–5], lattice distortion [6,7], elastic properties [8],
electronic properties including the band gap [9–11], paramag-
netic properties [12–15], and piezoelectric properties [16].

In a rigorous way, the periodic structures that mimic a
perfectly random structure are exhaustively explored from a
vast number of nonequivalent substitutional structures called
derivative structures [17]. However, the size of the entire set of
derivative structures increases exponentially with the number
of representative atoms included in derivative structures and
the number of atom types. A stochastic approach that can
approximate SQSs with moderate precision, such as simulated
annealing, has also been employed [18–20]. The stochastic
approach usually generates a reasonable SQS close to the
perfectly random structure for a given SQS size and given
set of clusters. On the other hand, the stochastic method does
not necessarily generate the best SQSs. Recently, a small
set of ordered structures (SSOSs) [21,22], which replaces a
perfectly random structure with a weighted average of several
periodic structures, has also been proposed. These approaches
as well as the exhaustive search of SQSs should be helpful.
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Recently, a compact data structure of the zero-suppressed
binary decision diagram (ZDD) [23] has been applied to the
efficient enumeration of derivative structures [24]. The ZDD
enables us to store many structures in a compressed manner
and enumerate more than 1015 derivative structures in a rea-
sonable time. Another advantage of using the ZDD is that a set
of structures satisfying given constraints can be extracted from
the ZDD efficiently, and the extraction of only nonequivalent
structures is such a constraint [24]. In the field of discrete
algorithms, the ZDD has been used to enumerate subgraphs of
a given graph with a specific property, such as all self-avoiding
paths between two vertices (s-t paths) [25,26]. This feature,
which efficiently narrows the list of derivative structures, is
crucial in the practical use of enumerated derivative structures.

The extraction of SQSs from the ZDD is also regarded as a
constraint for the enumeration of derivative structures. In this
study, we present an efficient algorithm for extracting SQSs
from the ZDD composed of many substitutional structures
without explicitly enumerating all derivative structures. Using
the ZDD-based algorithm, we find SQSs that are optimized
better than those proposed in the literature, which should be
helpful for estimating the properties of substitutional solid
solutions. This study should also help establish other ZDD-
based algorithms extracting a limited number of feasible
structures from many structures, such as a small number of
candidates for ground-state and metastable structures.

This paper is organized as follows. Section II introduces
the terminology for representing substitutional structures.
Section III formulates a combinatorial problem for searching
for SQSs by constructing a set of derivative structures sat-
isfying several constraints. Section IV presents an algorithm
for solving the problem with the ZDD. Section V shows the
application of the present ZDD-based method for SQSs for
face-centered cubic (fcc) and hexagonal close-packed (hcp)
structures in binary, ternary, and quaternary systems.
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FIG. 1. Illustration of two-dimensional derivative structure and
pair clusters. (a) Primitive cell with basis vectors A and a set of point
coordinates in the primitive cell, D. The shaded area represents the
primitive cell. (b) Supercell derived from the primitive cell in (a). The
index of its transformation matrix M is six, and there are six sites
in the supercell, DM = {d1, d2, d3, d4, d5, d6}. (c) Binary derivative
structure with the supercell in (b). When integers 0 and 1 represent
the blue and yellow atoms, respectively, the reduced labeling c =
(0, 0, 1, 0, 1, 1) indicates that the blue atoms occupy sites d1, d2, and
d4, and that the yellow ones occupy the other sites d3, d5, and d6.
(d) Pair cluster α = {d1, d2} corresponding to the nearest-neighbor
pair and its symmetrically equivalent pair clusters [α], represented
by the red arrows. In the supercell in (b), there are |[α]| = 12 pair
clusters equivalent to α due to the symmetry of the primitive cell.

II. TERMINOLOGY

Before we show the details of our algorithm for search-
ing for SQSs, we briefly define the terminology to represent
substitutional structures. Figure 1 illustrates the terminology
defined in this section with a two-dimensional example. It is
straightforward to generalize it to arbitrary dimensions.

A primitive cell in three dimensions is specified with its
basis vectors A = (a1, a2, a3) and point coordinates D, as
shown in Fig. 1(a). We consider a k-ary substitutional struc-
ture derived from the primitive cell and label the atoms in
the supercell with k integers {1, . . . , k}. A set of basis vectors
of the supercell is written as AM, where we refer to M as a
transformation matrix. We call the determinant of M the index
of the supercell. There are |D| · detM point coordinates in the
supercell and we denote them as DM = {d1, . . . , d|DM|}. Fig-
ure 1(b) shows a transformation matrix and the corresponding
supercell in the two-dimensional example. In the following,
we proceed to a discussion with a fixed transformation matrix
M and do not explicitly show the dependence of M in our
notation as long as there is no ambiguity.

A k-ary derivative structure [17] is defined as a sym-
metrically nonequivalent substitutional structure. The k-ary

derivative structure can be specified with a set of occupation
numbers and a transformation matrix of a supercell, M. We
write the occupation number of atom type p at site i as

c̃i,p =
{

1 (site i is occupied with atom type p)
0 (otherwise) . (1)

The sum of occupation numbers at each site i over atom types
should be one,

k∑
p=1

c̃i,p = 1 (i = 1, . . . , |DM|). (2)

We refer to the set of occupation numbers as labeling and
express it as

c̃ = (c̃1,1, . . . , c̃1,k, . . . , c̃|DM|,1, . . . , c̃|DM|,k ). (3)

We define the concentration of labeling c̃ of atom type p
for site I in the primitive cell as the average of occupation
numbers over all sites translationally equivalent to site I , [I].
This is written as

xI,p(c̃) = 1

|detM|
∑
j∈[I]

c̃ j,p. (4)

Note that sites in the primitive cell are represented with capital
symbols I, J, . . . to distinguish them from sites in the super-
cell. The sum of concentrations taken over atom types for each
site I should be one,

k∑
p=1

xI,p(c̃) = 1 (I = 1, . . . , |D|). (5)

A set of point coordinates is called a cluster. We focus on
pair cluster α and its correlation function. We denote a set of
symmetrically equivalent pair clusters with α as [α] (∈ DM ×
DM). Figure 1(d) shows the first nearest-neighbor (NN) pair
and its symmetrically equivalent pairs in the two-dimensional
example. We define the correlation function of pair cluster α

between atom types p and q as

�pq
α (c̃) =

{ 1
|[α]|

∑
(di,d j )∈[α] c̃i,pc̃ j,p (p = q)

1
|[α]|

∑
(di,d j )∈[α] (c̃i,pc̃ j,q + c̃i,qc̃ j,p) (p �= q)

.

(6)

In a binary system (k = 2), only the occupation numbers of
one atom types are needed to represent a derivative structure.
We denote the reduced labeling as

c = (c1, . . . , c|DM|) = (c̃1,2, c̃2,2, . . . , c̃|DM|,2). (7)

Figure 1(c) shows a binary derivative structure with the label-
ing representation c. We define the concentration of reduced
labeling c as the average of occupation numbers over all sites
equivalent to site I ,

xI (c) = 1

|detM|
∑
j∈[I]

c j . (8)

The correlation function for reduced labeling c can be defined
similarly to Eq. (6). For example, the correlation function of

113803-2



FINDING WELL-OPTIMIZED SPECIAL QUASIRANDOM … PHYSICAL REVIEW MATERIALS 5, 113803 (2021)

FIG. 2. Schematic diagram of the searching policy of SQSs in
this paper. The definitions of these sets are given in Sec. III.

the pair cluster shown in Fig. 1(d) is written as

�α (c) = 1
12 (c1c2 + c1c3 + 2c1c4 + c2c3 + 2c2c5

+ 2c3c6 + c4c5 + c4c6 + c5c6). (9)

Note that correlation functions of clusters are often formu-
lated with pseudospin variables σi = ±1 but not occupation
numbers. Because each of these two variables can be con-
verted to the other with a Vandermonde matrix [27], there is
no essential difference in which variables to use. In this paper,
we choose the definition of correlation functions represented
with the occupation numbers because it is suitable for being
regarded as a Boolean value of a combinatorial problem.

III. FORMULATION OF SEARCHING FOR SQS

We formulate the combinatorial problem to find SQSs as
enumerating labelings c̃ satisfying Boolean constraints. For a
given supercell with transformation matrix M, we consider
the set of all possible labelings and eliminate labelings by
imposing constraints that SQSs should satisfy. Figure 2 shows
a schematic diagram of the labeling elimination. Here, we
introduce a constraint for eliminating labelings different from
the perfectly random structure in terms of the concentration,
a constraint for eliminating equivalent labelings in terms of
the symmetry of the supercell, and a constraint for eliminat-
ing labelings different from the perfectly random structure
in terms of correlation functions. We define the set of all
possible labelings C̃all and the set of possible labelings with
the same concentration as the perfectly random structure,
C̃conc, in Sec. III A. In Sec. III B, we then define the set of
feasible labelings C̃feasible, which are nonequivalent labelings
out of C̃conc. In Sec. III C, we finally show the set of labelings
composed of SQSs, C̃Nc

SQS, which are the same as the perfectly
random structure in terms of correlation functions.

A. Concentration

Since the sum of occupation numbers at each site over atom
types is one [Eq. (2)], all possible labelings in a k-ary system
should belong to the following set:

C̃all =
{

c̃ ∈ {0, 1}k|DM|
∣∣∣∣∣

k∑
p=1

c̃i,p = 1 (∀i)

}
. (10)

When we consider a k-ary perfectly random structure whose
concentration of atom type p at site I is xI,p, a substitutional
structure that mimics the perfectly random structure is desired
to have the same concentration as xI,p. For simplicity, we
assume the concentrations at symmetrically equivalent sites in

the primitive cell are equal. Thus, its labeling representation c̃
belongs to the following set:1

C̃conc = {
c̃ ∈ {0, 1}k|DM| ∣∣ xI,p(c̃) = xI,p (∀I, p)

}
. (11)

When we consider a binary perfectly random structure with
concentration xI , the reduced labeling c corresponding to
a substitutional structure that mimics the perfectly random
structure belongs to the following set:

Cconc = {c ∈ {0, 1}|DM|| xI (c) = xI (∀I )}. (12)

Note that we do not need a one-hot encoding constraint such
as Eq. (10) in the binary system.

B. Derivative structures

Two distinct labelings may represent equivalent structures
owing to the symmetry of the supercell. For example, la-
belings (0, 0, 1, 0, 1, 1) and (0, 1, 1, 0, 0, 1) give equivalent
structures in the example of Fig. 1. Thus, we need to select a
representative among the symmetrically equivalent labelings,
which we call a nonequivalent labeling. We refer to the corre-
sponding substitutional structures as derivative structures. We
define the nonequivalent labeling as the minimum labeling
in the lexicographic order among the equivalent labelings
[28,29]: For example, labeling (0, 0, 1, 0, 1, 1) is smaller than
(0, 1, 1, 0, 0, 1) in the lexicographic order because the first el-
ements of both labelings are the same and the second element
of (0, 0, 1, 0, 1, 1) is smaller than that of (0, 1, 1, 0, 0, 1).
We denote the set of lexicographically minimum labelings as
C̃sym.

We refer to a nonequivalent labeling c̃ satisfying xI,p(c̃) =
xI,p for all atom types p and sites I as a feasible labeling. The
set of feasible labelings, C̃feasible, is the intersection among
the set of all possible labelings, the set of labelings with
concentration xI,p, and the set of nonequivalent labelings,

C̃feasible = C̃all ∩ C̃conc ∩ C̃sym. (13)

In the binary system (k = 2), we refer to the set of
nonequivalent reduced labelings as Csym, which is also the
set of lexicographically minimum reduced labelings. A set of
feasible reduced labelings is written as the intersection

Cfeasible = Cconc ∩ Csym. (14)

C. Correlation function and SQS

SQSs [1,30] are designed to exhibit the correlation func-
tions of given clusters that are the closest to those of
the perfectly random structure. For the perfectly random
structure, the correlation function can be determined by its
concentration. We denote the correlation function between

1The constraint in Eq. (11) is stricter than the composition con-
straint in Ref. [24]. The former fixes the concentration of each site,
whereas the latter only fixes the averaged concentration over all sites
in a supercell. The former constraint should be more appropriate to
search for the substitutional structure closest to the perfectly random
structure.
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atom types p and q for the perfectly random structure as

�
pq
α =

{
xI,pxJ,p (p = q)
xI,pxJ,q + xI,qxJ,p (p �= q) , (15)

where the two point coordinates of α are equivalent to sites I
and J in the primitive cell, respectively.

We give specific constraints for extracting SQSs from fea-
sible labelings C̃feasible. An SQS is represented by a feasible
labeling whose correlation functions are closest to the per-
fectly random structure. We hierarchically search for feasible
labelings whose correlation functions are the same as the
perfectly random structure from the smallest pair cluster to
a larger one because this hierarchical searching policy is com-
patible with a procedure for finding SQSs with the ZDD. We
define the set of labelings satisfying this constraint for pair
cluster α as

C̃α =
k⋂

p=1

k⋂
q=1

C̃ pq
α , (16)

where C̃ pq
α is a set of labelings satisfying �

pq
α (c̃) = �

pq
α ,

C̃ pq
α = {

c̃ ∈ {0, 1}k|DM| ∣∣ �pq
α (c̃) = �

pq
α

}
. (17)

Finally, finding SQSs is equivalent to constructing the fol-
lowing set:

C̃Nc
SQS = C̃feasible ∩

(
Nc⋂

n=1

C̃αn

)
, (18)

where αn indicates the nth NN pair cluster. Each labeling in
C̃Nc

SQS has the same correlation functions as the perfectly ran-
dom structure up to the Ncth NN pair cluster. In practice, the
maximum number of distinct pair clusters, Nc, is adaptively
incremented until immediately before C̃Nc

SQS becomes empty.
In the binary system, we write the correlation function for

the perfectly random structure as �α . We denote the set of
feasible reduced labelings satisfying �α (c) = �α as

Cα = {c ∈ {0, 1}|DM|| �α (c) = �α}. (19)

The binary SQSs are equivalent to the intersection of Eqs. (14)
and (19),

CNc
SQS = Cfeasible ∩

(
Nc⋂

n=1

Cαn

)
. (20)

For example, there are |Cconc| = 20 labelings with equiatomic
concentration AB for binary substitutional structures repre-
sented with the supercell shown in Fig. 1(b). When we
consider equiatomic SQSs up to the first NN pair cluster α1,
we search for reduced nonequivalent labelings c satisfying
�α1 (c) = �α1 = 1/4 out of Cconc. There are |Cfeasible| = 3 fea-
sible reduced labelings, two of which satisfy �α1 (c) = �α1 ;
such labelings are expressed as

CNc=1
SQS = Cfeasible ∩ Cα1

= {(0, 0, 1, 0, 1, 1), (0, 0, 0, 1, 1, 1)}.

IV. ZDD

The number of feasible labelings increases exponentially
with the index of supercell. To deal with the exponential

increase, we introduce an efficient data structure, the ZDD,
in Sec. IV A. We represent labelings with a fixed concentra-
tion using a ZDD in Sec. IV B. We apply the procedure to
represent nonequivalent labelings using the ZDD, which the
authors proposed in Ref. [24]. The procedure is summarized
in Sec. IV C. Finally, we introduce a procedure to construct a
ZDD for representing labelings whose correlation functions
are the same as those of the perfectly random structure in
Sec. IV D.

A. Relationship between binary decision tree and ZDD

A binary decision tree [31] represents a family of subsets
composed of n elements satisfying given conditions. By fixing
the order of choosing each element, we can express the family
of subsets as a tree structure. The binary decision tree consists
of terminal nodes, nonterminal nodes, and directed edges. The
terminal nodes are leaves of the binary decision tree. The
two kinds of terminal nodes, called the 1-terminal node and
0-terminal node, indicate whether or not the subset satisfies
the given conditions, respectively. Each nonterminal node,
which corresponds to one of the n elements, has two outgo-
ing edges, the 1-edge and 0-edge. These edges, respectively,
indicate whether or not the corresponding element belongs to
a subset. Thus, a path from the root node to the 1-terminal
node, called the 1-path, corresponds to a subset satisfying the
given conditions.

A ZDD is one of the canonical and compact representations
for a Boolean function [23,32]. A ZDD is derived by reducing
a redundant part of a binary decision tree with the following
two reduction rules:

(1) (Node elimination) All nonterminal nodes whose 1-
edges directly point to the 0-terminal nodes are deleted.

(2) (Node sharing) All equivalent nodes with the same
child nodes and the same variable are shared.

The obtained irreducible ZDD is guaranteed to be canon-
ical and independent of the order of applying the reduction
rules.

Figure 3(a) shows an example of a binary decision tree
representing a family of subsets, S = {{a, b}, {a, c}, {b, c}},
from three variables a, b, and c. The three 1-paths in the binary
decision tree correspond to the subsets in S, respectively.
Figure 3(b) shows a ZDD derived from the binary decision
tree shown in Fig. 3(a). The redundant nonterminal nodes are
eliminated and merged by following the node elimination and
node sharing rules.

Note that listing all the subsets is computationally heavier
than constructing a ZDD. Thus, if we construct a ZDD after
listing all subsets, we lose efficiency. Therefore, primitive set
operations (e.g., intersection of sets) between two ZDDs [33]
and a frontier-based method [32], which directly derives a
ZDD satisfying given constraints, have been used to improve
the computational efficiency of deriving ZDDs in general.

B. Concentration

The ZDDs for C̃conc and Cconc can be constructed with
a procedure similar to that for constructing a ZDD repre-
senting labelings with a fixed concentration, as introduced
in Ref. [24]. Figure 4(a) shows the ZDD corresponding to
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FIG. 3. Binary decision tree and its ZDD. The solid and bro-
ken arrows indicate 1-edge and 0-edge, respectively. The square
boxes with 1 and 0 indicate 1-terminal and 0-terminal nodes, re-
spectively. (a) Binary decision tree representing the family of subsets
{{a, b}, {a, c}, {b, c}}. (b) ZDD of the binary decision tree derived by
the reduction rules.

the binary equiatomic substitutional structures of Fig. 1(b).
The constraint for the equiatomic composition is equivalent to
choosing three 1-edges. There are (6

3) = 20 1-paths and cor-
responding equiatomic substitutional structures. In particular,
the following 1-path in the ZDD corresponds to the derivative
structure shown in Fig. 1(c),

c1
0-edge−−−−→c2

0-edge−−−−→ c3
1-edge−−−−→

c4
0-edge−−−−→ c5

1-edge−−−−→ c6
1-edge−−−−→ 1 .

C. Nonequivalent labelings

Recently, the authors have proposed the frontier-based
ZDD method for efficiently enumerating derivative structures
[24]. The algorithm for eliminating symmetrically equivalent
labelings is based on Ref. [34], in which the enumeration
of all nonisomorphic subgraphs of a given graph up to the
automorphism was proposed.

Figure 4(b) shows the ZDD corresponding to the binary
equiatomic derivative structures for the supercell shown in
Fig. 1(b). The derivative structure in Fig. 1(c) corresponds to
the following 1-path in the ZDD:

c3
1-edge−−−−→ c4

0-edge−−−−→ c5
1-edge−−−−→ c6

0-edge−−−−→ 1 .

In this 1-path, two nonterminal nodes, c1 and c2, are deleted
by the node elimination rule, which indicates c1 = c2 = 0. If
c1 or c2 is assigned to one, the constraint for Csym is never
satisfied with the equiatomic composition.

Note that the order of intersections in constructing a ZDD
strongly affects the total computational time and required
memory. In the two-dimensional example, we can construct
Cfeasible shown in Fig. 4(b) by extracting nonequivalent label-
ings from Cconc shown in Fig. 4(a) or by extracting labelings
with a fixed concentration from Csym shown in Fig. 4(d). We
empirically observe that the former procedure is more efficient

than the latter, which corresponds to the fact that the ZDD of
Cconc has fewer nonterminal nodes than that of Csym.

D. Correlation functions

After the ZDD for C̃feasible is constructed, we take the inter-
section between it and a ZDD to represent labelings satisfying
the constraint �

pq
α (c̃) = �

pq
α , ˜C pq

α . This constraint is regarded
as a quadratic equation of the labeling c̃. Because the left-hand
side of the equation monotonically increases with each label
c̃i, we can eliminate a partially determined labeling that cannot
satisfy the constraint. Moreover, two nodes in a ZDD are
merged when partially determined terms of �

pq
α (c̃) are equal.

This ZDD construction for SQSs avoids explicitly listing all
labelings and checking their correlation functions one by one
because the correlation functions are efficiently examined on
C̃feasible. Although the ZDDs for correlation functions C̃α and
Cα are represented by a compressed form of a correspond-
ing binary decision tree, their construction is computationally
more expensive than the other ZDDs. Thus, we impose the
constraints in terms of correlation functions after constructing
the set of feasible labelings C̃feasible and Cfeasible.

In a binary system, the ZDD for the constraint �α (c) = �α

can be constructed as well as the multicomponent systems.
Figure 5 shows the development of the ZDD Cfeasible ∩ Cα1 for
the two-dimensional example with the first NN pair cluster
α1. The equation attached to each edge in Cfeasible ∩ Cα1 cor-
responds to a partially determined value of the correlation
function for α1. Figure 4(c) shows the irreducible ZDD for
the two-dimensional example further compressed by the two
reduction rules.

V. RESULTS AND DISCUSSION

A. Pareto-optimal SQS

We demonstrate applications of the present ZDD-based
method for fcc-based and hcp-based SQSs. We show the
computational details of the present ZDD-based method. We
use SPGLIB [35] and PYMATGEN [36] to obtain symmetrically
nonequivalent pair clusters. We choose the c/a ratio to be
ideal for the hcp primitive cell. We use TDZDD [37,38] to im-
plement the frontier-based algorithm for constructing ZDDs.

We present an example of finding binary equiatomic fcc-
based SQSs with 40 sites (SQS-40). If we do not use a ZDD
and explicitly tabulate labelings when imposing constraints,
we have to store 240(∼1012) labelings. On the other hand,
the ZDD can store all the labelings in a compressed man-
ner. First, we enumerate all possible supercells of the fcc
structure with 40 sites by enumerating all nonequivalent Her-
mite normal forms whose index is 40 [28]. We obtain 286
nonequivalent transformation matrices and construct CNc

SQS for

every transformation matrix. The process of developing CNc
SQS

for transformation matrix

M =
⎛
⎝1 0 0

1 2 0
5 0 20

⎞
⎠ (21)

is shown in Table I. We construct the ZDD for represent-
ing 137 846 528 820 equiatomic labelings, Cconc, and extract
863 005 322 feasible labelings Cfeasible. Since fcc is a highly
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FIG. 4. ZDDs of the two-dimensional example shown in Fig. 1. The nonterminal node ci corresponds to the occupation number of atom
type 2 at site i in the supercell. (a) ZDD representing reduced labelings of the two-dimensional example with equiatomic composition Cconc,
which chooses three 1-edges from c1, . . . , c6. (b) ZDD representing feasible reduced labelings with equiatomic composition Cfeasible. (c) ZDD
representing SQSs up to the first NN pair cluster, CNc=1

SQS . (d) ZDD representing nonequivalent reduced labelings Csym.

symmetric structure, the constraint for eliminating equivalent
labelings significantly reduces the number of labelings by a
factor of about 100. We then extract feasible labelings that
are the same as the perfectly random structure in terms of the
first NN pair cluster by taking the intersection between Cfeasible

and Cα1 . Similarly, we extract feasible labelings that are the
same as the perfectly random structure in terms of up to the
tenth NN pairs by successively taking the intersection between
CNc−1

SQS and CαNc
. The number of labelings gradually decreases

from |CNc=1
SQS | = 77 521 770 to |CNc=10

SQS | = 12.

By developing CNc
SQS for other transformation matrices with

the index of 40, it is revealed that we can find labelings that
are the same as the perfectly random structure in terms of all

FIG. 5. Development of a ZDD for �α1 (c) = �α1 = 1/4 of the
two-dimensional example. A partially determined value of the cor-
relation function �α1 (c) is attached to each edge from nonterminal
nodes. An edge with “skipped” goes to the 0-terminal node because
the corresponding labeling is not a feasible labeling.

pairs up to the tenth NN. Thus, the final 12 structures with the
transformation matrix of Eq. (21) are obtained as SQS-40 up
to the tenth NN pair, and the upper bound of Nc not giving the
empty CNc

SQS, Nmax
c , is ten for SQS-40. If multiple labelings are

included in the final set of labelings, we pick up one of the
labelings that is the closest to the perfectly random structure
in terms of additional triplets or quadruples. The correlation
functions for the additional clusters can be calculated by a
general procedure without using the ZDD.

We search for SQSs up to the limit of the index imposed by
the computational resources.2 For fcc, the present ZDD-based
method exhaustively searches for SQSs with up to 40, 45, 40,
35, 50, 60, 27, 24, and 20 sites for compositions AB, A2B, A3B,

2We used a workstation powered by Intel®Xeon®Gold 6230
(2.1 GHz) with 3072 GB RAM.

TABLE I. Numbers of labelings in search for binary fcc-
based SQSs of AB with 40 sites with transformation matrix M =
[[1, 0, 0], [1, 2, 0], [5, 0, 20]].

Constraints Number of labelings

No constraint 1 099 511 627 776
+ Concentration AB 137 846 528 820
+ Nonequivalent 863 005 322
+ Up to the first NN 77 521 770
+ Up to the second NN 8 564 691
+ Up to the third NN 564 221
+ Up to the fourth NN 27 192
+ Up to the fifth NN 2 773
+ Up to the sixth NN 770
+ Up to the seventh NN 68
+ Up to the eighth NN 68
+ Up to the ninth NN 12
+ Up to the tenth NN 12
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TABLE II. Pareto-optimal fcc-based SQSs for AB, A2B, A3B, A3B2, A4B, A5B, ABC, A2BC, and ABCD. The second column shows the
number of sites in SQSs. The norms of the differences in correlation functions ||�α (c̃) − �

pq
α || for pair clusters up to the tenth NN are also

shown. For ternary and quaternary systems, the averages of the norms over atom types, p and q, are shown. The last column shows the
differences in correlation functions of the smallest triplet. The information of the pair clusters is shown in Appendix A.

Pair clusters Triplet cluster

SQS-N First Second Third Fourth Fifth Sixth Seventh Eighth Ninth Tenth Nearest

AB SQS-2 0 0.25 0 0.25 0 0.25 0 0.25 0 0 0
SQS-8 0 0 0.042 0.083 0 0 0.042 0.167 0 0 0
SQS-16 0 0 0 0 0 0 0 0.25 0 0 0
SQS-32 0 0 0 0 0 0 0 0 0.021 0.042 0
SQS-40 0 0 0 0 0 0 0 0 0 0 0

A2B SQS-3 0 0.111 0.111 0 0.111 0.111 0 0.111 0.111 0.222 0.037
SQS-9 0 0 0.028 0 0.037 0.028 0.019 0.037 0.037 0.074 0.009
SQS-12 0 0 0 0.014 0.014 0.181 0.014 0.167 0 0 0.005
SQS-18 0 0 0 0 0.023 0.028 0.002 0.093 0 0.046 0.009
SQS-21 0 0 0 0 0 0.044 0.008 0.016 0 0 0.005
SQS-27 0 0 0 0 0 0 0 0 0 0.056 0

A3B SQS-8 0 0.104 0 0.062 0.042 0.062 0.042 0.021 0 0 0.016
SQS-16 0 0 0 0.021 0.01 0.016 0.021 0.062 0.026 0.01 0
SQS-32 0 0 0 0 0 0 0 0.021 0.021 0.021 0

A3B2 SQS-25 0 0 0 0 0 0.02 0.015 0.04 0.013 0.027 0.001
A4B SQS-25 0 0 0 0 0 0 0.002 0.027 0 0.027 0.003

SQS-50 0 0 0 0 0 0 0 0 0 0.02 0.001
A5B SQS-6 0 0.028 0 0 0.028 0.056 0.028 0.028 0 0.028 0.005

SQS-12 0 0 0 0 0.014 0.014 0.007 0.028 0.014 0.097 0.005
SQS-36 0 0 0 0 0 0 0.005 0.009 0.016 0.019 0.001

ABC SQS-3 0 0.064 0.064 0 0.064 0.064 0 0.064 0.064 0.128 0.222
SQS-9 0 0 0.016 0 0 0.016 0 0 0.016 0.128 0.056
SQS-12 0 0 0 0.013 0.013 0.099 0.008 0.091 0.016 0 0.028
SQS-24 0 0 0 0 0 0.016 0 0.064 0 0 0.003
SQS-27 0 0 0 0 0 0 0 0 0 0.032 0

A2BC SQS-8 0 0.014 0.023 0.012 0.023 0.021 0.006 0.059 0.01 0.014 0.125
SQS-16 0 0 0.007 0.042 0.007 0 0 0.057 0 0.014 0

ABCD SQS-8 0 0.014 0.023 0.012 0.023 0.021 0.006 0.059 0.01 0.014 0.125
SQS-16 0 0 0.007 0.042 0.007 0 0 0.057 0 0.014 0

A3B2, A4B, A5B, ABC, A2BC, and ABCD, respectively. At the
same time, the SQSs with the maximum index are not neces-
sarily optimal because Nmax

c does not monotonically increase
with the index of a supercell. For example, Nmax

c is obtained
to be three for SQS-45 in A2B, which is smaller than that for
SQS-27. Thus, we select Pareto-optimal SQSs from the entire
set of SQSs, which are determined from the tradeoff rela-
tionship between the index and Nmax

c . The obtained fcc-based
Pareto-optimal SQSs are summarized in Table II. If multiple
SQSs are found for an index, we tabulate an SQS whose
correlation function of the smallest triplet cluster is closest
to the perfectly random structure, although different choices
of additional clusters are also possible. These Pareto-optimal
SQSs are presented in the Supplemental Material [39].

The fcc-based SQS-2 and SQS-8 derived by the ZDD-
based method for composition AB were reported in
Refs. [1,30]. The ZDD-based method newly finds SQS-32 and
SQS-40 with Nmax

c = 8 and 10, respectively. For illustration,
one of the obtained SQS-40 for fcc AB is shown in Fig. 6.
Similarly, the ZDD-based method newly finds SQS-27 with
Nmax

c = 9 for composition ABC, whereas an fcc-based SQS
with 18 sites and Nmax

c = 2 was reported in Ref. [19]. Refer-

ence [19] also showed stochastically searched ABC structures
with 24, 36, and 48 sites with Nmax

c = 3. Note that it is difficult
to fairly compare the current SQSs with the previous ones
because they are generated by using different procedures and
definitions of the similarity to the perfectly random structure.
Nevertheless, the newly found SQS-27 has a larger Nmax

c and

FIG. 6. Crystal structure of a binary fcc-based SQS-40 of AB.
The orange and blue balls represent atom types A and B, respectively.
The tilted cube with the dotted lines indicates a conventional fcc unit
cell.
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TABLE III. Pareto-optimal hcp-based SQSs for compositions AB, ABC, and ABCD. The information of the pair clusters is shown in
Appendix A.

Pair clusters Triplet cluster

SQS-N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Nearest

AB SQS-4 0 0.083 0 0.25 0.083 0 0.083 0.25 0 0.083 0 0 0.25 0 0.083 0 0 0.083 0.061
SQS-8 0 0 0 0 0.083 0 0.083 0.083 0 0 0 0 0.167 0 0.083 0 0 0 0.014
SQS-16 0 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0
SQS-24 0 0 0 0 0 0 0 0 0 0.014 0 0 0.097 0 0.014 0 0 0.056 0
SQS-32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ABC SQS-6 0 0 0.032 0.064 0.064 0.032 0 0 0.032 0.032 0.032 0 0 0 0 0.064 0.064 0.128 0.111
SQS-12 0 0 0 0.064 0 0 0.032 0.064 0 0.064 0 0 0.032 0 0 0 0 0 0.105
SQS-18 0 0 0 0 0.043 0 0.011 0.043 0 0.005 0 0 0.032 0 0.011 0 0 0.064 0.105

ABCD SQS-16 0 0 0 0.029 0.014 0 0.014 0.017 0 0.01 0 0 0.029 0 0.014 0 0 0 0.036

is represented by a smaller number of sites than the previously
reported stochastic ones.

The present ZDD-based method exhaustively searches for
hcp-based SQSs with up to 42, 27, and 20 sites for AB,
ABC, and ABCD, respectively. The hcp-based Pareto-optimal
SQSs are summarized in Table III. The hcp-based SQS-8 and
SQS-16 for AB, which are reproduced by the ZDD-based
method, were already reported in Ref. [40]. The ZDD-
based method searches for SQS-24 and SQS-32 with Nmax

c =
9 and 18, respectively, which were not previously reported.
The ZDD-based method also finds SQS-18 with Nmax

c = 4
for composition ABC, whereas ATAT provides an SQS-48 with
Nmax

c = 2 searched for by a stochastic method [41].

B. Computational performance

We compare the performance of the present ZDD-based
method with that of the previous enumeration method imple-
mented in GENSQS in ATAT [42]. The previous method searches
for SQSs by explicitly listing all nonequivalent derivative
structures with a given index and checking their correlation
functions one by one. We measure the runtime of both meth-
ods for searching for binary and ternary fcc-based SQSs of
AB and ABC. Unlike the ZDD-based method, the previous
method needs to fix the range of considered pair clusters
beforehand to define the similarity to the perfectly random
structure. For a binary system, we limit the range of pair
clusters up to the eighth one. For a ternary system, we limit the
range of pair clusters up to the fifth one. Although the runtime
slightly depends on the choice of the clusters, the following
comparison is still useful. The results of these calculations are
shown in Fig. 7. The ZDD-based method improves the base
of the exponential runtime to around half that of the previous
enumeration method: Hence, the ZDD-based method can find
SQSs much faster than the previous method. For example,
the runtime for searching for binary SQS-24 with the ZDD
is about 3000 times shorter than the previous enumeration
method, and the improvement in runtime further increases
with a larger index. The improvement in runtime and the
decrease in the required amount of memory enable SQSs with
larger indices to be found. Thus, the ZDD-based method for
searching for SQSs is much more efficient than the previous
enumeration method. The stochastic approach for finding SQS

is also implemented in ATAT. In Appendix B, we compare
the performance of the present ZDD-based method with that
of the stochastic method in conjunction with describing their
methodological differences.

Finally, we mention the limitations of the current ZDD-
based method. First, as described above, the current ZDD-
based method finds fcc-based Pareto-optimal SQSs with up
to 16 sites for compositions A2BC and ABCD. However, they
reproduce the correlation functions of the perfectly random
structure only for up to the second NN pairs. Thus, the current
ZDD-based method is insufficient for finding larger SQSs that
reproduce the correlation functions of larger clusters. In such

FIG. 7. Computational times to search for equiatomic fcc-based
SQSs with the present ZDD-based method and the previous enumer-
ation method on a logarithmic scale. The blue open and closed circles
stand for the runtimes for constructing ZDDs for binary and ternary
systems, respectively. The orange open and closed squares stand
for the runtimes for naively searching for SQSs with the previous
method. The horizontal axis indicates the index of the supercell.
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a case, a stochastic method can be a practical solution. Sec-
ond, the current ZDD-based method is formulated using the
correlation functions of pair clusters. Although an extension
of the formulation to triplet and quadruple clusters is possible
in a straightforward manner, it causes a drastic increase in the
ZDD size. In practice, after the number of candidate structures
is significantly reduced by the ZDD-based method for pair
clusters, their correlation functions of triplet and quadruple
clusters can be easily calculated using a general procedure
without the ZDD. Similarly, it is possible to replace the con-
ditions that the correlation functions of the SQS are exactly
the same as those of the perfectly random structure with
relaxed conditions given by thresholds of the correlation func-
tions. However, the relaxation of the conditions should also
increase the ZDD size. Therefore, it is computationally chal-
lenging to apply such relaxation to a ZDD composed of many
structures.

C. Application to realistic systems

We apply Pareto-optimal SQSs to estimate the formation
energies of fcc-based and hcp-based perfectly random struc-
tures with DFT calculations to show the convergence behavior
of the formation energies. We select fcc-based SQSs for a
Cu-Au-Pd system and hcp-based SQSs for a Hf-Zr-Ti system.
In the Cu-Au-Pd system, Cu, Au, and Pd are in the ground
state with the fcc structure, and Cu0.5Pd0.5, Cu0.5Au0.5, and
Au0.5Pd0.5 are fcc-based solid solutions at temperatures of
around several hundred degrees, although B2 and L10 ordered
structures have been reported to exist in the Cu-Pd and Cu-Au
systems at low temperatures, respectively [43]. Similarly, in
the Hf-Zr-Ti system, Hf, Zr, and Ti are in the ground state
with the hcp structure at low temperatures, and Hf0.5Ti0.5,
Hf0.5Zr0.5, and Zr0.5Ti0.5 are hcp-based solid solutions at low
temperatures.

For each system, we calculate the formation energies of
equiatomic SQSs in the binary and ternary systems. DFT
calculations are performed using plane-wave basis sets and the
projector augmented wave (PAW) [44,45] with the Perdew-
Burke-Ernzerhof (PBE) exchange-correlation functional [46]
implemented in the Vienna ab initio Simulation Package
(VASP) [47–49] (version 5.4.4). The plane-wave-energy cutoff
is set at 400 eV. For each initial structure, the atomic po-
sitions and lattice constants are relaxed until residual forces
are less than 10−2 eV/Å. Electronic structure optimization is
performed with smearing with σ = 0.2 eV in the Methfessel-
Paxton scheme [50] until the energetic change is less than
10−4 eV/supercell. After structural relaxation, the total en-
ergy is calculated by the tetrahedron method with Blöchl
corrections [51].

Figure 8 shows the formation energies of SQSs computed
by the DFT calculations. In the top figure, the formation ener-
gies of the fcc-based SQSs in the binary and ternary systems
converge around 1 meV/atom with increasing number of sites
in SQSs. Also, the formation energies of the hcp-based SQSs
converge around 2 meV/atom in the binary system and around
10 meV/atom in the ternary system. In the currently selected
systems, the convergence behavior can be recognized by in-
cluding SQSs with a large number of sites such as SQS-27 and
SQS-32, although the formation energy converges at a smaller

FIG. 8. Formation energies of SQSs. The horizontal axis indi-
cates the number of sites in SQSs. The top figure shows the results
for fcc random structures. The blue circles, orange up triangles,
green down triangles, and red squares indicate Cu0.5Au0.5, Cu0.5Pd0.5,
Pd0.5Au0.5, and Cu0.33Pd0.33Au0.33, respectively. The bottom figure
shows the results for hcp random structures. The blue circles, or-
ange up triangles, green down triangles, and red squares indicate
Hf0.5Ti0.5, Hf0.5Zr0.5, Zr0.5Ti0.5, and Hf0.33Zr0.33Ti0.33, respectively.

number of sites. These results indicate that the Pareto-optimal
SQSs obtained by the current ZDD-based method closely
mimic the perfectly random structure.

VI. CONCLUSION

We have presented an efficient ZDD-based algorithm for
searching for SQSs, which works for arbitrary lattices. In
the current algorithm, ZDDs are sequentially constructed by
imposing constraints for extracting SQSs one by one, and the
obtained final ZDD represents a set of only SQSs. We have
also applied the current ZDD-based algorithm to search for
fcc-based and hcp-based SQSs in binary, ternary, and qua-
ternary systems. The current approach extracts only a small
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TABLE IV. Nonequivalent pair clusters for fcc. The unit of sizes of clusters is lattice constant a of an fcc conventional unit cell. The second
column shows the distance of the nth NN pairs. The third column shows the number of equivalent pairs in the primitive fcc cell. The fourth
and fifth columns show Cartesian coordinates of representatives of nonequivalent pairs.

nth neighbor Size Multiplicity Cartesian coordinates 1 Cartesian coordinates 2

1 0.7071 6 (0, 0, 0) (−0.5, 0.0, 0.5)
2 1.0000 3 (0, 0, 0) (0.0, 1.0, 0.0)
3 1.2247 12 (0, 0, 0) (1.0, 0.5, 0.5)
4 1.4142 6 (0, 0, 0) (0.0, 1.0, 1.0)
5 1.5811 12 (0, 0, 0) (0.0, −0.5, 1.5)
6 1.7321 4 (0, 0, 0) (−1.0, 1.0, −1.0)
7 1.8708 24 (0, 0, 0) (−1.5, −1.0, 0.5)
8 2.0000 3 (0, 0, 0) (0.0, 0.0, 2.0)
9 2.1213 12 (0, 0, 0) (−2.0, −0.5, 0.5)
10 2.1213 6 (0, 0, 0) (0.0, 1.5, 1.5)

number of SQSs from a ZDD composed of many candidate
derivative structures (more than 1012). Consequently, we pro-
pose SQSs that are better optimized than those proposed in the
literature. Therefore, the use of ZDDs significantly improves
the efficiency of enumerating derivative structures that satisfy
the constraints. Furthermore, the current algorithm and ideas
used to introduce constraints are also helpful for the enumera-
tion of feasible structures satisfying some constraints that are
not used in this study.
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APPENDIX A: PAIR CLUSTERS AND DEVELOPMENT
OF ZDDs

The nonequivalent pair clusters for fcc and hcp are tab-
ulated in Tables IV and V, respectively. The processes of
reducing the number of candidates for fcc-based SQSs are
shown in Tables VI and VII for concentrations ABC and
ABCD, respectively. The processes of reducing the number
of candidates for hcp-based SQSs are shown in Tables VIII,
IX, and X for concentrations AB, ABC, and ABCD, respec-
tively.

APPENDIX B: COMPARISON WITH
STOCHASTIC METHOD

Here, we compare SQSs generated by the ZDD-based
method and the stochastic method. We generate fcc-based
SQSs with 40 sites for composition AB and fcc-based
SQSs with 27 sites for composition ABC using a stochastic
method implemented in ATAT (MCSQS package [18]). They are

TABLE V. Nonequivalent pair clusters for hcp with the ideal c/a ratio. The unit of sizes of clusters is lattice constant a of an hcp
conventional unit cell.

nth neighbor Size Multiplicity Cartesian coordinates 1 Cartesian coordinates 2

1 1.0000 6 (0.0000, 0.0000, 0.0000) (−0.5000, 0.2887, −0.8165)
2 1.0000 6 (0.5000, 0.2887, 0.8165) (1.5000, 0.2887, 0.8165)
3 1.4142 6 (0.0000, 0.0000, 0.0000) (1.0000, −0.5774, −0.8165)
4 1.6330 2 (0.5000, 0.2887, 0.8165) (0.5000, 0.2887, 2.4495)
5 1.7321 6 (0.5000, 0.2887, 0.8165) (2.0000, −0.5774, 0.8165)
6 1.7321 12 (0.0000, 0.0000, 0.0000) (−1.0000, 1.1547, −0.8165)
7 1.9149 12 (0.0000, 0.0000, 0.0000) (1.0000, 0.0000, 1.6330)
8 2.0000 6 (0.5000, 0.2887, 0.8165) (1.5000, −1.4434, 0.8165)
9 2.2361 12 (0.0000, 0.0000, 0.0000) (2.0000, −0.5774, 0.8165)
10 2.3805 12 (0.0000, 0.0000, 0.0000) (1.5000, −0.8660, 1.6330)
11 2.4495 6 (0.0000, 0.0000, 0.0000) (2.0000, 1.1547, 0.8165)
12 2.5166 6 (0.0000, 0.0000, 0.0000) (0.5000, 0.2887, 2.4495)
13 2.5820 12 (0.0000, 0.0000, 0.0000) (1.0000, −1.7321, 1.6330)
14 2.6458 12 (0.0000, 0.0000, 0.0000) (−1.5000, 2.0207, −0.8165)
15 2.6458 12 (0.0000, 0.0000, 0.0000) (2.0000, 1.7321, 0.0000)
16 2.7080 6 (0.0000, 0.0000, 0.0000) (0.0000, 1.1547, 2.4495)
17 2.8868 12 (0.0000, 0.0000, 0.0000) (1.0000, 1.1547, −2.4495)
18 3.0000 6 (0.5000, 0.2887, 0.8165) (2.0000, −2.3094, 0.8165)
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TABLE VI. Numbers of labelings in searching for ternary fcc-
based SQSs of ABC supercell with 27 sites with transformation
matrix M = [[1, 0, 0], [0, 3, 0], [1, 3, 9]].

Constraints Number of labelings

No constraint 7 625 597 484 987
+ Concentration ABC 227 873 431 500
+ Nonequivalent 4 219 878 612
+ Up to the first NN 7 077 792
+ Up to the second NN 62 797
+ Up to the third NN 174
+ Up to the fourth NN 38
+ Up to the fifth NN 26
+ Up to the sixth NN 2
+ Up to the seventh NN 2
+ Up to the eighth NN 2
+ Up to the ninth NN 2

TABLE VII. Numbers of labelings in searching for quaternary
fcc-based SQSs of ABCD supercell with 16 sites with transformation
matrix M = [[1, 0, 0], [0, 2, 0], [1, 4, 8]].

Constraints Number of labelings

No constraint 4 294 967 296
+ Concentration ABCD 63 063 000
+ Nonequivalent 990 906
+ Up to the first NN 498
+ Up to the second NN 48

TABLE VIII. Numbers of labelings in searching for binary hcp-
based SQSs of AB supercell with 32 sites with transformation matrix
M = [[1, 0, 0], [1, 4, 0], [1, 1, 4]].

Constraints Number of labelings

No constraint 4 294 967 296
+ Concentration AB 165 636 900
+ Nonequivalent 5 182 744
+ Up to the first NN 1 018 101
+ Up to the second NN 104 616
+ Up to the third NN 19 531
+ Up to the fourth NN 3 218
+ Up to the fifth NN 716
+ Up to the sixth NN 110
+ Up to the seventh NN 2
+ Up to the eighth NN 2
+ Up to the ninth NN 2
+ Up to the tenth NN 2
+ Up to the eleventh NN 2
+ Up to the twelfth NN 2
+ Up to the thirteenth NN 2
+ Up to the fourteenth NN 2
+ Up to the fifteenth NN 2
+ Up to the sixteenth NN 2
+ Up to the seventeenth NN 2
+ Up to the eighteenth NN 2

TABLE IX. Numbers of labelings in searching for ternary hcp-
based SQSs of ABC supercell with 18 sites with transformation
matrix M = [[1, 0, 0], [0, 1, 0], [0, 4, 9]].

Constraints Number of labelings

No constraint 387 420 489
+ Concentration ABC 2 822 400
+ Nonequivalent 157 644
+ Up to the first NN 1 876
+ Up to the second NN 23
+ Up to the third NN 12
+ Up to the fourth NN 12

comparable with SQSs listed in Table II. The stochastic
method aims to solve the following minimization problem,

min
c∈Cconc

(∑
α

∣∣�α (c) − �α

∣∣ − ωL(c)

)
, (B1)

where the second term is the penalty function, L(c) is the
size of the largest cluster among perfectly matched clusters
with the perfectly random structure, and ω is a positive reg-
ularization coefficient. The penalty function is introduced so
that the correlation functions of small clusters become exactly
the same as those of the perfectly random structure. Note
that the current ZDD-based method does not introduce such a
regularization term explicitly. Instead, the current method uses
constraints that the correlation functions of pair clusters must
be exactly the same as those of the perfectly random structure.

In the function of Eq. (B1), we set the maximum pair
cluster to the tenth NN and ninth NN pairs for obtaining
SQSs of compositions AB and ABC, respectively. To minimize
the function of Eq. (B1), we perform simulated annealing
implemented in ATAT within approximately 105 s using four
different random seeds for each composition. For composition
AB, the stochastic method finds the same structures as the
perfectly random structure in terms of all pairs up to the sixth
NN. For composition ABC, it finds the same structures as
the perfectly random structure in terms of all pairs up to the
second NN. Thus, the stochastic method generates SQSs that
are not well optimized even when the ZDD-based method can
find the well-optimized SQS from the enormous search space.

Then, we compare the formation energies of the SQSs gen-
erated by the stochastic method and the ZDD-based method
in Cu0.5Au0.5 and Cu0.33Pd0.33Au0.33. DFT calculations are

TABLE X. Numbers of labelings in searching for quaternary
hcp-based SQSs of ABCD supercell with 16 sites with transformation
matrix M = [[1, 0, 0], [0, 2, 0], [2, 1, 4]].

Constraints Number of labelings

No constraint 4 294 967 296
+ Concentration ABCD 6 350 400
+ Nonequivalent 199 740
+ Up to the first NN 4 020
+ Up to the second NN 96
+ Up to the third NN 96
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TABLE XI. Formation energies of binary fcc-based SQSs with
40 sites of Cu0.5Au0.5 (units: meV/atom). The first column cor-
responds to the formation energy of SQS-40 generated by the
ZDD-based method shown in Table II. The other columns correspond
to the formation energies of SQSs generated by the stochastic method
with different random seeds, respectively.

ZDD Stochastic 1 Stochastic 2 Stochastic 3 Stochastic 4

−15.60 −15.54 −15.97 −13.30 −16.08

performed with the same computational procedure shown
in Sec. V C. Table XI lists the formation energies of SQSs
with 40 sites for Cu0.5Au0.5. As shown in Table XI, the
formation energy depends on the random seed used in the
stochastic method. The stochastic method shows a varia-
tion of approximately 3 meV/atom in the formation energy.

TABLE XII. Formation energies of ternary fcc-based SQSs with
27 sites of Cu0.33Pd0.33Au0.33 (units: meV/atom).

ZDD Stochastic 1 Stochastic 2 Stochastic 3 Stochastic 4

−86.66 −87.36 −85.04 −81.18 −80.93

Table XII lists the formation energies of SQSs with 27 sites for
Cu0.33Pd0.33Au0.33. The stochastic method involves a variation
of approximately 6 meV/atom in the formation energy. The
variations of the formation energy in the stochastic method
are significant compared with the converged value of the for-
mation energy obtained by the ZDD-based method. Although
the variations in the stochastic method and convergence be-
havior of the formation energy in the ZDD-based method
depend on the alloy system, the current results indicate that
the present ZDD-based method is useful for generating high-
quality SQSs.
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