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ABSTRACT
Multi-robot systems have huge potential for practical ap-
plications, which include sensor networks, area surveillance,
environment mapping, and so forth. In many applications,
cooperative coordination of the robots plays a central role.
There are various types of coordination tasks such as consen-
sus, formation, coverage, and pursuit. Most developments
of control methods have been taken place for each task indi-
vidually so far. The purpose of this monograph is to provide
a systematic design method applicable to a wide range of
coordination tasks for multi-robot systems. The features of
the monograph are two-fold: (i) The coordination problem
is described in a unified way instead of handling various
problems individually, and (ii) a complete solution to this
problem is provided in a compact way by using the tools of
“group” and “graph” theories efficiently. As for item (i), it
is shown that various coordination tasks can be formulated
as a generalized coordination problem, where each robot
should converge to some desired configuration set under the
given information network topology among robots. In this
problem, the solvability (i.e., whether robots can achieve
the given coordination task or not) fully depends on the
characteristics of both the desired configuration set and
the network topology. Therefore, concerning item (ii), it
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is clarified when the generalized coordination problem can
be solved in terms of the desired configuration set and the
network topology. Furthermore, it is shown how to design
a controller which achieves the given configuration task. In
particular, the case where each robot can get only local
information (e.g., relative position between two robots) is
discussed.



1
Introduction

1.1 Background

Multi-robot systems have attracted a lot of attention because of its
potential to various applications, which include sensor networks, area
surveillance, object transport, environment mapping, building health
monitoring, air pollution monitoring, search and rescue after disasters
(Lima and Custodio, 2005; Darmanin and Bugeja, 2017). In many appli-
cations, cooperative coordination of multi-robots plays a central role. It
enhances efficiency, robustness, and reliability in many application tasks,
and is required to reduce human operations. Therefore, this topic has
been extensively studied in many disciplines, such as robotics, control
and measurement engineering, informatics, and so forth. In this mono-
graph, we focus on cooperative coordination problems of multi-robot
systems in (mainly two-dimensional or three-dimensional) space from a
viewpoint of control theory as Bullo et al., 2009; Cortes and Egerstedt,
2017, which are also investigated through the terminology of multi-agent
systems (Martínez et al., 2007; Shamma, 2008; Mesbahi and Egerstedt,
2010; Cao et al., 2012).

At this point, let us look at a simple example of coordination
problems, which may help us to understand some basic concepts that

3
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Figure 1.1: Example of a coordination task.

will be necessary in this section. Suppose that the given task is to shape
a formation by four robots in a plane as shown in Fig. 1.1a. In Fig. 1.1a,
the numbered squares describe a “desired configuration” that the robots
are expected to form. In Fig. 1.1b, each line represents the interaction
of robots, defining the “network topology” to determine the information
structure of the multi-robot system. The robots directly connected by
lines are called “neighbors”. For example, robots 1 and 3 are neighbors
of robot 2, but robot 4 is not. While, we say the network is “connected”,
when there exists a sequence of interaction lines between every pair of
nodes. The robots mainly interact with each other through sensing. We
say that “absolute” measurement is available if each robot can measure
the absolute positions (i.e., the positions in a global coordinate frame)
of its neighbors. When only the positions in its local coordinate frame
associated with each robot can be measured, we say that “relative”
measurement is available.

For cooperative coordination of multi-robots, distributed control
with relative measurement plays the key role. Distributed control is a
methodology to control each robot based on local information of its
neighboring robots, which is important because we can apply the control
method for any number of robots. This property is called scalability.
On the other hand, control with relative measurement is critical to the
autonomy of robots, because any external system to obtain absolute
measurement is not necessary. Many types of coordination problems have
been investigated based on distributed control with absolute/relative
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measurement so far, e.g., consensus (Olfati-Saber and Murray, 2004;
Olfati-Saber et al., 2007), coverage (Cortés et al., 2004), flocking (Olfati-
Saber, 2006; Tanner et al., 2007), pursuit (Marshall et al., 2004; Kim
et al., 2010), attitude synchronization (Igarashi et al., 2009; Ren, 2010),
assignment (Ji et al., 2006; Michael et al., 2008; Smith and Bullo, 2009),
and formation (Fax and Murray, 2004; Lin et al., 2005; Ren and Beard,
2008; Anderson et al., 2008; Krick et al., 2009; Dörfler and Francis,
2010; Lin and Jia, 2010; Oh et al., 2015; Queiroz et al., 2019).

1.2 Research trends in coordination control

Concerning control system synthesis, a fundamental question is whether
there exists a controller achieving the given task. In cooperative coordi-
nation of multi-robots, the answer fully depends on both the network
topology and the sensing capability of the multi-robot system. Once
the existence of such a controller is confirmed, we can proceed to the
controller design step. According to the surveys of formation control
literature (e.g., Oh et al., 2015; Tron et al., 2016; Ahn, 2020), many
of the methods can be classified as (a) Position-based control, (b)
Displacement-based control, and (c) Distance-based control accord-
ing to how to specify the desired configuration. Each control method
requires different types of network topology and sensing capability.

In the case of (a), the desired configuration is specified with the target
position of each robot in the global coordinate. Though there exist no
requirements on the network topology, we need absolute position of each
robot to achieve the formation task. In the case of (b), the relative target
positions of the robots are given to specify the desired configuration.
Hence, the absolute position of each robot does not matter, which allows
the translation of the shaped formation. Meanwhile, its rotation is not
allowed. To achieve this formation task, it turns out that the network
must be connected as Fig. 1.1b. Furthermore, though the absolute
position measurement is not required, the absolute direction should be
measured in each robot. In the case of (c), only the distances between
target positions are assigned to specify the desired configuration. So
neither the absolute position nor absolute direction is necessary. Instead,
more inter-robot interaction is needed. For example, in the case of Fig.
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1.1b, one more interaction line which connects robot 2 with robot 4
directly has to be added. In other words, the network must be getting
denser compared to the other cases (Anderson et al., 2008; Krick et al.,
2009; Queiroz et al., 2019).

In the same way, bearing-based and angle-based formations are
considered in Zhao and Zelazo, 2016; Zhao and Zelazo, 2019; Chen
et al., 2020, which yield more flexibility in coordination because these
formations are scale-free. The scale-free property is involved in different
ways in other papers, e.g., Han et al., 2016; Sakurama et al., 2018; Lin
et al., 2016; Zhao, 2018. Also, combinations of several constraints are
considered in many papers, e.g., Anderson et al., 2017; Sun et al., 2017;
Sakurama et al., 2019.

The existing results may be summarized in Table 1.1, from the
viewpoints of (D) requirements of the desired coordination, (N) nec-
essary network topology, and (M) necessary sensing capability. The
current research trend is to impose laxer requirements of the desired
configuration. Accordingly, the network should be denser, and the less
sensing capability is required.

1.3 Focus of the monograph

As shown in the above, various types of coordination problems have
been studied individually. However, there are so many tasks and their
variants. It is not efficient to describe all the existing methods one by
one. Instead, this monograph focuses on a generalized coordination
problem which can cover a wide range of coordination problems and
handle them in a unified manner instead of discussing various problems
individually. Then, a complete solution to the problem will be provided.

In the problem formulation, the following three components play
essential roles. First, coordination problems are generalized by repre-
senting the desired configuration appropriately. This representation
enables us to describe various coordination tasks in a unified way. Sec-
ond, related to sensing capability, relative measurements are precisely
and explicitly described, which can be done through coordinate trans-
formation between the global and local coordinate frames. Third, the
sensing network of multi-robot systems is modeled with a graph, which
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Table 1.1: Summary of the existing results on coordination problems

(a) Position-based formation
(D) absolute target positions are fixed
(N) none
(M) absolute positions are measurable

(b) Displacement-based formation
(D) relative target positions are fixed
(N) connectivity is required
(M) relative positions and absolute directions are measurable

(c) Distance-bases formation
(D) distances between target positions are fixed
(N) rigidity (a precise definition will be given later) is required
(M) relative positions are measurable

(d) Bearing-based formation
(D) bearing of the target formation is fixed
(N) bearing rigidity is required
(M) relative bearings and absolute directions are measurable

(e) Angle-based formation
(D) angles between the target robots are fixed
(N) angle rigidity is required
(M) relative bearings are measurable

will be necessary for compact presentation and rigorous analysis of the
system.

The solvability of the generalized coordination problem (i.e., whether
robots can achieve the given coordination task or not) fully depends on
the characteristics of the desired configuration, the available relative
measurements, and the network topology. Hence, we characterize a strict
class of desired configurations which can be achieved with available
relative measurements over the given network topology. A complete
solution to this problem is provided in a compact way by using the tools
of “group” and “graph” theories efficiently. Furthermore, a distributed
controller is designed to achieve the given configuration with relative
measurements.

The approach of the monograph has several advantages. First, sys-
tematic tools are provided to design distributed controllers for coordina-
tion problems, which are applicable to a wide range of coordination tasks
due to its general description. Moreover, various sensing devices can be
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handled by employing appropriate coordinate transformations. Second,
a kind of converse design problem can be discussed. Namely, given the
network topology and sensing capability of robots, it is possible to tell
what kind of coordination tasks can be achieved by distributed control
with the relative measurements.

This monograph is based on the authors’ papers, mainly Sakurama,
2021b, with Sakurama et al., 2012; Sakurama et al., 2015; Sakurama,
2016; Sakurama, 2018; Sakurama et al., 2019.

1.4 Organization of the monograph

Chapter 2 gives an overview of the coordination problem tackled in
this monograph. Part I provides mathematical preliminaries on group
theory in Chapter 3, graph theory in Chapter 4, and stability analysis
of gradient-flow systems in Chapter 5. Part II addresses the multi-robot
coordination problems. Chapter 6 considers a pairwise coordination
problem, which gives a basic idea of the conventional approaches. Chap-
ters 7 and 8 give complete solutions to the generalized coordination
problems with absolute and relative measurements, respectively. In
Chapter 9, the developed methods are applied to various examples.
Chapter 10 concludes the monograph.

1.5 Notation

For a set X and a subset N = {1, 2, . . . , n} of natural numbers, consider
n elements x1, x2, . . . , xn of X and a subset C of N consisting of c
distinct natural numbers. Let xC ∈ X c denote the c-tuple consisting of
xi for i ∈ C in order, i.e.,

xC = (xj1 , xj2 , . . . , xjc) for j1, j2, . . . , jc ∈ C (j1 < j2 < · · · < jc).

When X = Rd, the c-tuple xC ∈ (Rd)c is sometimes regarded as the
following matrix in Rd×c:

xC = [xj1 xj2 · · · xjc ] for j1, j2, . . . , jc ∈ C (j1 < j2 < · · · < jc).

Binary operations
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× the Cartesian product.
n the semidirect product (See Section 3.3).
∗ the binary operation of a group (See Section 3.1).
• the binary operation of a group action (See Section 3.2).

Basic sets

R the set of real numbers.
R+ the set of nonnegative real numbers.
Z+ the set of nonnegative integers.
Pn the set of permutations of n elements.
P(N ,N ∗) the set of bijective functions from a set N to N ∗.

Basic matrices and vectors

Id the identity matrix of dimension n.
edi the ith unit vector of dimension d, i.e., ith column of Id.
1d := [1 · · · 1]> ∈ Rd; the vector of dimension d with all

components 1.

Rot(θ) :=
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
; the two-dimensional rotation

matrix parametrized by θ ∈ [−π, π).
Refl(w) := Id − 2ww>; the reflection matrix with respect to a

unit vector w ∈ Rd.

Operations for matrices and functions

det(M) the determinant of a square matrix M .
tr(M) the trace of a square matrix M .
diag(dN ) the (block) diagonal matrix with the ith diagonal entry

di for i ∈ N .
f−1(0) := {x ∈ Rn : f(x) = 0}; the zero set of f : Rn → Rm.
L−ρ (f) := {x ∈ Rn : f(x) ≤ ρ}; the ρ-sublevel set of f : Rn →

R for ρ ∈ R.

Operations for sets

|C| the number of the elements in a finite countable set C.
cl(S) the closure of a set S.
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int(S) the interior of a set S.
pow(S) the power set (the set of all subsets) of a set S.
scaled(S) := {sS : s > 0, S ∈ S}; the scaled set of a set S.
orbH(S) := {H • x : H ∈ H, x ∈ S}; the H-orbit of S (See

Section 3.4).

Operations for n-tuples

〈x, y〉 the inner product of x, y ∈ X for a metric space X .
〈xN , yN 〉 :=

∑
i∈N
〈xi, yi〉; the inner product of xN , yN ∈ X n.

‖xN ‖ :=
√
〈xN , xN 〉; the norm of xN ∈ X n.

colm(xN ) := xm; the mth element of xN ∈ X n.
ave(xN ) := 1

n

∑
i∈N

xi; the average of the elements of xN ∈

X n.
cen(xN ) := xN−(ave(xN ), . . . , ave(xN )); the center of xN ∈

X n.
dist(xN ,D) := inf

yN∈D
‖xN − yN ‖; the distance from xN ∈ X n to

a non-empty set D ⊂ X n.
projC(D) := {xC ∈ X |C| : ∃xN ∈ X n s.t. xN ∈ D}; the pro-

jection of a set D ⊂ X n onto the space X |C| for
C ⊂ N .

Matrix sets

GL(d) := {M ∈ Rd×d : det(M) 6= 0}; the general linear group of
dimension d.

O(d) := {M ∈ Rd×d : M>M = Id}; the orthogonal group of
dimension d.

SO(d) := {M ∈ O(d) : det(M) = 1}; the special orthogonal
group of dimension d.

Skew(d) := {M ∈ Rd×d : M+M> = 0}; the set of skew-symmetric
matrices.

Notation on graphs

G = (N , E) the graph with a node set N and an edge set E ⊂ N 2.
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clq(G) the index set of the maximal cliques in graph G (See
Section 4.2).

clqi(G) the index set of the maximal cliques in G that node
i belongs to (See Section 4.2).

Ni := {j ∈ N : {i, j} ∈ E} ∪ {i}; the neighbor set of
node i.

Γr(G) the r-intersection graph of the maximal cliques in G
(See Section 4.5).

(xN , G) the framework of xN ∈ (Rd)n over graph G (See
Section 4.3).

(D, G) the set framework of D ⊂ (Rd)n over graph G (See
Section 4.4).

Sets of scalar functions

Vc1 the set of scalar, continuously differentiable func-
tions.

Vind(D) the set of indicators of a set D, defined in (7.6).
Vdis(G) the set of functions having distributed gradients,

defined in (7.8).
Vapp(D) the set of approximate indicators of a set D, defined

in (7.10).
Vrel(Mn B) the set of functions having relative gradients, defined

in (8.8).



2
Overview

This chapter overviews the issues discussed in this monograph for multi-
robot coordination problems. Section 2.1 provides an overall picture
of the control problem. In Section 2.2, control objectives are given. In
Section 2.3, the control system of each robot is described in detail.
Section 2.4 formulates the target problem in a formal way.

2.1 Overall picture

Consider a multi-robot coordination system consisting of n robots in a
d-dimensional space as shown in Fig. 2.1. Let N = {1, 2, . . . , n} be the
index set of the robots. Each robot is governed by the equation

ẋi(t) = fi(xi(t), ui(t), t), (2.1)

where xi(t) ∈ Rd and ui(t) ∈ Rd are the state and the input of robot
i ∈ N and fi : Rd×Rd×R+ → Rd describes the system dynamics which
could be nonlinear. The robots exchange information mainly by sensing
each other. The information structure is described by an undirected
graph G = (N , E), where E ⊂ N 2 denotes the set of edges. That is,
{i, j} ∈ E implies that two robots i and j exchange information with
each other. Also, Ni denotes the set of the neighbors of robot i which

12
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Figure 2.1: An example of a multi-robot system with a sensing network.

is defined by
Ni := {j ∈ N : {i, j} ∈ E} ∪ {i}.

Robot i detects the relative position x
[i]
j (t) ∈ Rd of the neighbor

robot j ∈ Ni in its local coordinate frame, e.g., x[i]
j (t) = xj(t)− xi(t).

Then, the control input ui(t) should be generated as

ui(t) = ci(x[i]
Ni(t)) (2.2)

for some function ci : (Rd)ni → Rd, where ni = |Ni| and x
[i]
Ni =

(x[i]
j1
, x

[i]
j2
, . . . , x

[i]
jni

) ∈ (Rd)ni describes the collection of the relative
positions of the neighbors j1, j2, . . . , jni ∈ Ni such that j1 < j2 <

· · · < jni . The control objective is to converge the collective states
xN := (x1, x2, . . . , xn) of all the robots to the set D ⊂ (Rd)n of the
desired configurations. We want to find ui(t)(i ∈ N ) of the form (2.2)
which aims to derive

lim
t→∞

xN (t) ∈ D.

2.2 Control objectives

Two types of coordination tasks will be considered as the control objec-
tives of the multi-robot system. The first one is pairwise coordination,
formulated with functions each of which depends only on a pair of robots.
This coordination is easily handled and has been widely employed in
many papers. The second one is the main target of this monograph,
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namely, generalized coordination, which is expressed with a distance
function from the desired configuration set. This coordination contains
a wide range of tasks including pairwise coordination, and leads to a
unified solution to multi-robot coordination problems.

2.2.1 Pairwise coordination

Let ψij : (Rd)2 → R+ be a non-negative function of xi and xj , the states
of a pair of robots i, j ∈ N , which determines a desired configuration of
the two robots. Then, we say that pairwise coordination with respect
to functions (ψij(xi, xj))i,j∈N ,i 6=j is achieved if

lim
t→∞

ψij(xi(t), xj(t)) = 0 ∀i, j ∈ N , i 6= j. (2.3)

Functions (ψij(xi, xj))i,j∈N ,i 6=j are said to be realizable if

∃x∗N ∈ (Rd)n s.t. ψij(x∗i , x∗j ) = 0 ∀i, j ∈ N , i 6= j. (2.4)

In general, there are infinitely many convergent points according to
(2.3). This makes the coordination control problem complicated, and
it will turn out to be important to clarify DOF (degrees of freedom)
of the coordination. Let us see this by typical examples of pairwise
coordination as follows.

Example 2.1. Displacement-based formation is to achieve a configu-
ration prescribed by the desired relative positions rij ∈ Rd between
robots as

lim
t→∞

(xi(t)− xj(t)) = rij ∀i, j ∈ N , i 6= j. (2.5)

This is a pairwise coordination problem (2.3) with respect to the
pairwise functions

ψij(xi, xj) = ‖xi − xj − rij‖2. (2.6)

The functions in (2.6) are realizable if there exists a collection of
vectors x∗N ∈ (Rd)n satisfying x∗i − x∗j = rij for all i, j ∈ N , i 6=
j. Note that under (2.5), the positions xN (t) of the robots can
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be translated from the configuration x∗N as Fig. 2.2. Hence, this
coordination has the DOF of translation.

Example 2.2. Distance-based formation is to achieve the desired
distance dij > 0 between robots as

lim
t→∞
‖xi(t)− xj(t)‖ = dij ∀i, j ∈ N , i 6= j. (2.7)

This is a pairwise coordination problem (2.3) with respect to the
pairwise functions

ψij(xi, xj) = (‖xi − xj‖2 − d2
ij)2. (2.8)

The functions in (2.8) are realizable if there exists a collection of
vectors x∗N ∈ (Rd)n satisfying ‖x∗i −x∗j‖ = dij for all i, j ∈ N , i 6= j.
Under (2.7), xN (t) can be translated, rotated, and reflected from
x∗N as illustrated in Fig. 2.3. Hence, this coordination has the DOF
of translation, rotation, and reflectiona.

aHere, not only rotation and translation, but also reflection is included in
DOF from the viewpoint of possible transformation.
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Figure 2.2: Displacement-based formation: the resultant configuration (x1, x2, x3)
can be translated from (x∗1, x∗2, x∗3).
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Example 2.3. Encircling formation is to achieve the two conditions
for a given target: (i) the desired distance from the target is attained
by each robot, (ii) the desired angle between each pair of the robots
around the target is achieved. Without loss of generality, assume
that the target is at the origin. Then, conditions (i) and (ii) are
described as follows:

limt→∞ ‖xi(t)‖ = di ∀i ∈ N

lim
t→∞

cos−1 〈xi(t), xj(t)〉
‖xi(t)‖‖xj(t)‖

= θij ∀i, j ∈ N , i 6= j,
(2.9)

where di > 0 is the desired distance of robot i and θij ∈ [0, π] is the
desired angle between robots i and j. This is a pairwise coordination
problem (2.3) with respect to the pairwise functions

ψij(xi, xj) = (‖xi‖2 − d2
i )2 + (‖xj‖2 − d2

j )2

+ (〈xi, xj〉 − didj cos θij)2. (2.10)

The functions in (2.10) are realizable when there exists a collection of
vectors x∗N ∈ (Rd)n satisfying ‖x∗i ‖ = di and 〈x∗i , x∗j 〉 = didj cos θij
for all i, j ∈ N , i 6= j. Note that under (2.9), xN (t) can be rotated
and reflected from x∗N as illustrated in Fig. 2.4. Hence, this coordi-
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Figure 2.3: Distance-based formation: the resultant configuration (x1, x2, x3) can
be translated, rotated, and reflected from (x∗1, x∗2, x∗3).
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nation has the DOF of rotation and reflection, but does not have
that of translation.

Example 2.4. We say that the robots reach consensus if

lim
t→∞

(xi(t)− xj(t)) = 0 ∀i, j ∈ N . (2.11)

This is a pairwise coordination problem (2.3) with respect to the
pairwise functions

ψij(xi, xj) = ‖xi − xj‖2. (2.12)

The functions in (2.12) are always realizable because (2.4) holds
when x∗i are the same for all i ∈ N .

Whether functions (ψij(xi, xj))i,j∈N ,i 6=j are realizable or not usu-
ally depends on the parameters describing the desired configurations.
Appropriate parameters can be easily determined from one desired
configuration x∗N ∈ (Rd)n. For example, in distance-based formation of
Example 2.2, once one x∗N is given, realizable functions in (2.8) can be
assigned with the desired distances dij = ‖x∗i − x∗j‖.
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Figure 2.4: Encircling formation: the resultant configuration (x1, x2, x3) can be
rotated and reflected from (x∗1, x∗2, x∗3).
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2.2.2 Generalized coordination

Pairwise coordination implicitly assumes that the coordination problem
in question is decomposable into coordination problems on pairs of
robots. However, this is not the case in general. To overcome this
drawback, we introduce generalized coordination. For a set D ⊂ (Rd)n,
we say that generalized coordination with respect to D is achieved if

lim
t→∞

dist(xN (t),D) = 0. (2.13)

The set D, called a desired configuration set, describes desired con-
figurations in a general way. Here, the distance function is defined
as

dist(xN ,D) := inf
yN∈D

‖xN − yN ‖

for xN ∈ (Rd)n and D ⊂ (Rd)n, where the norm ‖xN ‖ of the n-tuples
xN ∈ (Rd)n is defined with the Euclidean norms ‖xi‖ of vectors xi ∈ Rd

(i ∈ N ) as follows:

‖xN ‖ :=
√∑
i∈N
‖xi‖2.

For example, distance-based formation shown in Example 2.2 can
be expressed by (2.13) with

D = {xN ∈ (Rd)n : ‖xi − xj‖ = dij ∀i, j ∈ N , i 6= j}. (2.14)

Alternatively, we can express the set D in (2.14) as follows. Let x∗N ∈ D
be a desired configuration which is chosen arbitrarily in D, then any
xN ∈ D can be described as

xi = Sx∗i + τ (i ∈ N ) (2.15)

with an orthogonal matrix S ∈ Rd×d representing transformation of
rotation and reflection and a vector τ ∈ Rd representing translation
transformation of xN from x∗N . Both the transformations show DOF
(degrees of freedom) of the coordination as shown in Example 2.2. Hence,
defining S = O(d), T = Rd,

D = {xN ∈ (Rd)n : ∃(S, τ) ∈ S×T s.t. xi = Sx∗i +τ ∀i ∈ N} (2.16)
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is an alternative representation to (2.14), where O(d) denotes the or-
thogonal group of dimension d.

By extending both sets S and T to general ones, much broader
class of coordination can be defined by (2.16). The Cartesian set S ×T ,
which is named a coordination freedom set, directly determines DOF in
coordination. Specifically, S can give the DOF of rotation, scale, and
reflection, while T can give that of translation in coordination.

Various coordination tasks can be expressed by the generalized
coordination with respect to the set D of the form (2.16). Some examples
are given as follows.

Example 2.5. The examples of the pairwise coordination in Sub-
section 2.2.1 are expressed by the generalized coordination problem
(2.13) with respect to D in (2.16) through the following S × T .

◦ Displacement-based formation in Example 2.1 is given with
S × T = {Id} × Rd.

◦ Distance-based formation in Example 2.2 is given with S×T =
O(d)× Rd.

◦ Encircling formation in Example 2.3 is given with S × T =
O(d)× {0}.

The following are examples which cannot be described by the pairwise
coordination (2.3).

Example 2.6. Position-based formation is an individual regulation
problem for the desired position x∗i ∈ Rd as

lim
t→∞

xi(t) = x∗i ∀i ∈ N .

This is a generalized coordination problem (2.13) with respect to
the desired configuration set D in (2.16) for S × T = {Id} × {0}.
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Figure 2.5: Reflection-free formation: the resultant configuration (x1, x2, x3) can
be rotated and translated from (x∗1, x∗2, x∗3), where θ ∈ [−π, π) and τ ∈ Rd denote
rotation angle and translation vector, respectively.

Example 2.7. Reflection-free formation has the DOF of rotation
and translation as the distance-based formation (2.7), but prohibits
reflection from the desired configuration. This is characterized with
S × T = SO(d) × Rd in (2.16) instead of S × T = O(d) × Rd,
where SO(d) denotes the special orthogonal group of dimension d.
See Fig. 2.5 for an example in a d = 2-dimensional space, where
θ ∈ [−π, π) and τ ∈ R2 represent a rotation angle and translation
vector of xN from x∗N . In this case, S = Rot(θ) ∈ S and τ ∈ T are
assigned in (2.15), where Rot(·) represents the rotation matrix of
dimension 2 as

Rot(θ) :=
[
cos θ − sin θ
sin θ cos θ

]
.

Example 2.8. Scaling position-based formation is to achieve the
desired position x∗i ∈ Rd with an arbitrary scale as

∃s > 0 s.t. lim
t→∞

xi(t) = sx∗i ∀i ∈ N .

The scale factor s > 0 is common to the robots, and the resultant
configuration of xN (t) is similar to x∗N as illustrated in Fig. 2.6.
This task is a generalized coordination problem (2.13) with respect
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Figure 2.6: Scaling position-based formation: the resultant configuration
(x1, x2, x3, x4) can be scaled from (x∗1, x∗2, x∗3, x∗4).

to D in (2.16) for S × T = scaled({Id}) × {0}, where scaled(·)
represents the scaled set, i.e., scaled(S) := {sS : s > 0, S ∈ S} for
a set S.

Example 2.9. Scaling displacement-based formation is to achieve
the desired configuration with an arbitrary scale in the displacement-
based formation (2.5) as

∃s > 0 s.t. lim
t→∞

(xi(t)− xj(t)) = srij ∀i, j ∈ N , i 6= j.

This problem is characterized with S × T = scaled({Id})× Rd in
(2.16).

Example 2.10. Scaling distance-based formation is given as

∃s > 0 s.t. lim
t→∞
‖xi(t)− xj(t)‖ = sdij ∀i, j ∈ N , i 6= j

by adding the DOF of scale to the distance-based formation (2.7).
This problem is characterized with S × T = scaled(O(d))× Rd in
(2.16).
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Example 2.11. Scaling reflection-free formation is a generalized
coordination problem (2.13) with respect to D in (2.16) for S×T =
scaled(SO(d))× Rd.

The following examples are the generalized coordination that cannot
be expressed with D of the form (2.16).

Example 2.12. Formation selection is a task to select and form
one of the prescribed configuration patterns, as illustrated in Fig.
2.7. Let p ∈ Z+\{0} be the number of the patterns, and let Q =
{1, 2, . . . , p} denote the index set of the patterns. The qth desired
configuration pattern for q ∈ Q is prescribed by x∗qN ∈ (Rd)n. Then,
this task is represented as

∃q ∈ Q s.t. lim
t→∞

xi(t) = x∗qi ∀i ∈ N .

This task is a generalized coordination problem (2.13) with respect
to the desired configuration set

D = {xN ∈ (Rd)n : ∃q ∈ Q s.t. xN = x∗qN } =
⋃
q∈Q
{x∗qN }, (2.17)

which is a discrete set consisting of multiple points.

Example 2.13. Position assignment is to achieve the desired con-
figuration described by x∗1, x∗2, . . . , x∗n ∈ Rd with any assignment.
That is, xi(t) can be assigned to any of x∗1, x∗2, . . . , x∗n as long as the
assignments are not overlapped as illustrated in Fig. 2.8. This task
is represented as

∃α ∈ Pn s.t. lim
t→∞

xi(t) = x∗α(i) ∀i ∈ N , (2.18)

where Pn represents the set of permutations of n elements. Equation
(2.18) means that the reference x∗k for k = α(i) is assigned to robot
i through a permutation α ∈ Pn. This is a generalized coordination



2.2. Control objectives 23

x
1

*1

x
3

*1x
2

*1

1

2 3

1

2 3

x
1

x
2 x

3

x
4

*1

4
4

x
4

x
1

*2
x
3

*2x
2

*2

1 2 3

x
4

*2

4 1 2 3

x
1
x
2 x

3

4

x
4

!"

!"#$%&'()##%&*'"+'(%&,"##%-

./&'&%+01#)*#'2/*."30&)#"/*

401#"(1%'-%+"&%-

2/*."30&)#"/*'()##%&*+

Figure 2.7: Formation selection: the resultant configuration (x1, x2, x3, x4) is ex-
pected to form either of the desired patterns (x∗11 , x

∗1
2 , x

∗1
3 , x

∗1
4 ) or (x∗21 , x

∗2
2 , x

∗2
3 , x

∗2
4 ).

x
1

*

x
3

*x
2

*

1

2 3

2

4 3

x
2

x
4 x

3

x
4

*

4 1

x
1

4

2 1

x
4

x
2 x

1

3

x
3

!"#$%&'(&)*+(,-.$/'&-+(
0-&1)'##-.(2"(&)3

4(")5"#-/"5

*+(,-.$/'&-+(
!"#$%&'(&)*+(,-.$/'&-+(
0-&1)'##-.(2"(&)6

Figure 2.8: Position assignment: the resultant configuration (x1, x2, x3, x4) has to
form the desired configuration (x∗1, x∗2, x∗3, x∗4) with any assignment.

problem (2.13) with respect to the desired configuration set

D = {xN ∈ (Rd)n : ∃α ∈ Pn s.t. xi = x∗α(i) ∀i ∈ N}

=
⋃
α∈Pn

{(x∗α(1), x
∗
α(2), . . . , x

∗
α(n))}, (2.19)

which consists of multiple points and is discrete.
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2.3 Control with relative measurements

So far, everything is described in a global coordinate frame which is
common to all the robots. However, depending on the sensing capability,
measurements of each robot are given in its own local coordinate frame.
Hence, first, the relation between the global coordinate and the local
coordinate is explicitly stated. Second, kinematic models of robots will
be given. Third, admissible controllers subject to relative measurements
are described.

2.3.1 Frame transformation due to sensing capability

Let Σ and Σi(t) denote the global coordinate frame and the local
coordinate frame corresponding to robot i, respectively. Suppose p(t) ∈
Rd represents the position of a moving object at time t in the global
coordinate frame Σ, and p[i](t) ∈ Rd corresponds to its presentation in
the local coordinate frame Σi(t). Then, the following relation holds:

p(t) = Mi(t)p[i](t) + bi(t) (2.20)

with a matrix Mi(t) ∈ Rd×d and a vector bi(t) ∈ Rd. One simple
example in a two-dimensional space is shown in Fig. 2.9, where Mi(t) =
Rot(θi(t)) ∈ SO(2) represents the rotation of Σi(t), where θi(t) ∈ [−π, π)
is the bearing angle of the front of robot i, and bi(t) = xi(t) ∈ R2

represents the translation of Σi(t).
In general,Mi(t) and bi(t) are heterogeneous and cannot be specified

by anyone including robot i itself. However, we may assume that they
belong to some known setsM and B, i.e.,

Mi(t) ∈M, bi(t) ∈ B

holds. In the above example, these sets are given byM = SO(2), B = R2.
The pair (M,B) will define the possible transformation of the local
coordinate frame Σi(t). Therefore, the Cartesian product M× B is
called the frame transformation set. Since the frame transformation set
depends on the sensing capability of the robots, several examples will
be given below.
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Figure 2.9: Global and local coordinate frames Σ, Σi(t) in a two-dimensional space.

Example 2.14. If each robot recognizes its absolute position and
the absolute bearing by using a GPS (Global Positioning Sensor),
the global coordinate p(t) is directly measurable, implying that
p[i](t) = p(t). Then, (2.20) holds for Mi(t) = Id and bi(t) = 0, and
the global and local coordinate frames Σ,Σi(t) are equivalent. In this
case, the frame transformation set is assigned asM×B = {Id}×{0}.

Example 2.15. If there is a landmark observable by all the robots,
but the absolute bearing is unavailable to them, the origins of the
local coordinate frames Σi(t) of the robots can be assigned to the
position of the landmark, but the orientations cannot be aligned.
Then, bi(t) = 0 is obtained while the difference of the orientations is
expressed by a rotation matrixMi(t) ∈ SO(d) in (2.20). In this case,
the transformation in rotation can occur, andM×B = SO(d)×{0}
is obtained. See Fig. 2.10a for the illustration of the relation of the
coordinate frames in a two-dimensional space.

Example 2.16. If the absolute bearing is available to each robot
by using a compass while the absolute position is unavailable, the
orientations of Σ and Σi(t) can be aligned while the origins cannot
be at the same position. By assigning the position xi(t) of robot i to
the origin bi(t) of Σi(t),Mi(t) = Id and bi(t) = xi(t) are obtained in
(2.20). Because the value of xi(t) ∈ Rd is unknown, transformation
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Figure 2.10: Relation between global and local coordinate frames Σ,Σi(t): (a)
the origins of the frames correspond to the position of the landmark, while their
orientations do not coincide; (b) the origin of Σi(t) is at the robot position xi(t),
and neither of the orientations nor scales of the frames are not equivalent.

in translation occurs, and M× B = {Id} × Rd is achieved. See
Example A.2 for more details.

Example 2.17. Without the absolute bearing or the absolute posi-
tions, neither the orientations nor the origins of Σ and Σi(t) can
coincide. In this case, transformation in rotation and translation
occurs, and Mi(t) ∈ SO(d) and bi(t) = xi(t) are obtained. Then,
M×B = SO(d)× Rd is achieved, as illustrated by Fig. 2.9 for the
case of d = 2. Example A.1 describes the transformation in more
detail.

Example 2.18. In addition to Example 2.17, if the scale factors
of distance sensors are incorrect, the scales of the local coordinate
frames Σi(t) can be different among the robots, which causes trans-
formation in scale. Then, (2.20) is satisfied with Mi(t) = si(t)Ri(t)
for a rotation matrix Ri(t) ∈ SO(d) and a scale si(t) > 0. In this
case,M×B = scaled(SO(d))×Rd is obtained. The relation of the
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frames in a two-dimensional space is illustrated in Fig. 2.10b. See
Example A.3 for more details.

Example 2.19. In addition to Example 2.17, consider the situa-
tion that a flip ambiguity occurs from distance-based localization
(Kannan et al., 2007), which causes transformation in reflection
to Σi(t). Then, Mi(t) corresponds to either Ri(t) or Ri(t)Refl(w)
for a matrix Ri(t) ∈ SO(d) and a unit vector w ∈ Rd, where
Refl(w) := Id − 2ww> is the reflection matrix with respect to w.
Therefore, Mi(t) ∈ O(d) holds, andM×B = O(d)×Rd is obtained.
See Example A.4 for more details.

2.3.2 Kinematic models

For simplicity and clarity, kinematic models over the local coordinate
frame are employed. Namely, the state xi(t) ∈ Rd of robot i is supposed
to be governed by

ẋi(t) = Mi(t)ui(t), (2.21)

where ui(t) ∈ Rd represents the input to determine the local velocity and
Mi(t) ∈ M is a coordinate transformation matrix as shown in (2.20).
This implies that we assume that each robot is locally controlled so as
to move along with its velocity command in its local coordinate frame.
Note that the translation term bi(t) does not matter in kinematics, so
it does not appear here.

Some examples of the kinematics models according to the sensing
capability are given below.

◦ Corresponding to Examples 2.14 and 2.16, when the absolute
bearing is available, M = {Id} is obtained. Then, for Mi(t) =
Id, the model (2.21) is reduced to the single-integrator system
ẋi(t) = ui(t).

◦ Corresponding to Examples 2.15 and 2.17, if the absolute bearing
is unavailable, M = SO(d) is obtained. Then, the kinematic
model is given as (2.21) for Mi(t) = Ri(t) with a rotation matrix
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Ri(t) ∈ SO(d). Note that the input ui(t) cannot directly determine
which direction robot i moves toward because the motion depends
on the unknown rotation Ri(t).

◦ Corresponding to Example 2.18, if the scale factors of distance
sensors are incorrect,M = scaled(SO(d)) is employed. Then, the
kinematic model is provided as (2.21) for Mi(t) = si(t)Ri(t) with
Ri(t) ∈ SO(d) and si(t) > 0. Note that in this case, the speed
of robot i obtained from the velocity command ui(t) is unknown
because the unknown scale factor si(t) multiplies the velocity
command in (2.21).

2.3.3 Relative measurements

When robot i ∈ N observes robot j ∈ N in the local coordinate frame
Σi(t), the measured position is expressed from (2.20) as

x
[i]
j (t) = M−1

i (t)(xj(t)− bi(t)) (2.22)

for the position xj(t) ∈ Rd in Σ of robot j with some (Mi(t), bi(t)) ∈
M×B. Here, x[i]

j (t) is called the relative position of robot j in Σi(t).
Based on (2.22), various types of relative measurements can be

described as follows.

◦ Corresponding to Example 2.14, when the absolute position and
bearing are available to each robot, the absolute positions of the
neighbors can be obtained. Actually, forM×B = {Id}×{0}, (2.22)
with (Mi(t), bi(t)) = (Id, 0) ∈M×B is reduced to x[i]

j (t) = xj(t).

◦ Corresponding to Example 2.16, when the absolute bearing is avail-
able while the absolute position is not, the relative positions of the
neighbors are obtained in aligned local coordinate frames. Then,
forM×B = {Id} × Rd, (2.22) with (Mi(t), bi(t)) = (Id, xi(t)) ∈
M×B is reduced to x[i]

j (t) = xj(t)− xi(t).

◦ Corresponding to Example 2.17, when neither the absolute bearing
nor the absolute position is available, the relative positions of
the neighbors are obtained in misaligned local coordinate frames.
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Actually, for M× B = SO(d) × Rd, the relative position (2.22)
with (Mi(t), bi(t)) = (Ri(t), xi(t)) ∈M×B is reduced to x[i]

j (t) =
R>i (t)(xj(t)− xi(t)).

◦ Additionally, if the scale factors of distance sensors are incorrect,
M×B = scaled(SO(d))×Rd is obtained, corresponding to Exam-
ple 2.18. Then, the relative position (2.22) with (Mi(t), bi(t)) =
(si(t)Ri(t), xi(t)) ∈M×B is reduced to x[i]

j (t) = s−1
i (t)R>i (t)(xj(t)

−xi(t)).

2.3.4 Admissible controllers

Over the sensing network G = (N , E), each robot obtains the infor-
mation on the relative positions x[i]

Ni(t) of the neighbors, where the
neighbor set Ni is defined as

Ni := {j ∈ N : {i, j} ∈ E} ∪ {i}.

Then, the control input ui(t) has to be generated only with x[i]
Ni(t), and

thus a static controller can be implemented if it is of the form

ui(t) = ci(x[i]
Ni(t)) (2.23)

with a function ci : (Rd)|Ni| → Rd depending only on x
[i]
Ni(t). This

function ci(x[i]
Ni) is called a (static) distributed controller with relative

measurements. Here, we assume that only such a controller is admissible.
Fig. 2.11 illustrates the block diagram of the overall system, consist-

ing of the kinematic model (2.21), the relative positions (2.22) of the
neighbors for bi(t) = xi(t), and the distributed controller (2.23) with
relative measurements.

2.4 Problem formulation

The target problem is formulated from the control-theoretic viewpoint
in this section. The concepts of stability are defined as follows. Let a
closed set D ⊂ (Rd)n be an equilibrium set of the system (2.21) for
i ∈ N with some control input ui(t) ∈ Rd. The set D is said to be
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Figure 2.11: Block diagram of the overall system, consisting of the kinematic model
(2.21), the relative positions (2.22) for bi(t) = xi(t), and the distributed controller
(2.23) with relative measurements.

(Lyapunov) stable if for each ε > 0, there exists an open set ∆(ε) ⊃ D
such that

xN (0) ∈ ∆(ε)⇒ dist(xN (t),D) ≤ ε ∀t ≥ 0.

In addition, D is said to be asymptotically stable if D is stable and there
exists an open set ∆ ⊃ D such that

xN (0) ∈ ∆⇒ lim
t→∞

dist(xN (t),D) = 0.

To achieve the generalized coordination (2.13) with respect to a
desired configuration set D, we want to design a distributed controller
with relative measurements such that D is asymptotically stable. The
solvability of this problem fully depends on the characteristics of the
triple (D, G,M×B) since the measurements are transformed as (2.22)
by unknown (Mi(t), bi(t)) ∈ M× B and the available information is
limited as (2.23) by G. Hence, the condition of the triple to solve this
problem has to be specified.

The problem tackled in this monograph is summarized as follows.

Problem 2.1. For a desired configuration set D ⊂ (Rd)n, a graph
G, and a frame transformation setM×B ⊂ Rd×d×Rd, specify the
triple (D, G,M×B) such that there exists a distributed controller
(2.23) with relative measurements (2.22) for G and M× B such
that D is asymptotically stable for the kinematic model (2.21).
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Furthermore, design such a controller when it exists.

2.5 Notes and references

There are many reviews and books for multi-robot (multi-agent) coor-
dination problems through a control-theoretic approach such as Bullo
et al., 2009; Bai et al., 2011; Ren and Cao, 2011; Oh et al., 2015; Tron
et al., 2016; Cortes and Egerstedt, 2017; Sun, 2018; Queiroz et al.,
2019; Ahn, 2020. The features of this monograph are two-fold: (i) The
description of the coordination tasks is generalized as (2.13) with the
desired configuration set D, while individual tasks are treated in the
conventional research. (ii) The concept of the local coordinate frame
Σi(t) is generalized with the frame transformation setM×B, while only
M×B = SO(d)×Rd is employed in the conventional research. As a re-
sult, various types of coordination tasks and relative measurements can
be expressed in the same manners, and essential connections between
them are revealed through the triple (D, G,M× B) in the following
chapters. These formulations were firstly introduced in Sakurama et al.,
2015 and Sakurama, 2021b, respectively. While the form (2.16) of the
desired configuration has been taken for affine formation control as Lin
et al., 2016; Zhao, 2018, relative measurements are not considered in
these papers.

There are several possible extensions of the problem in this mono-
graph. First, instead of the kinematic model (2.21), we can consider
more general dynamics (2.1), e.g., passive systems. The approach of
this monograph, the gradient-flow method, is directly applicable to
passive systems even if the dynamics of the robots is heterogeneous or
includes uncertain parameters. See Bai et al., 2011; Hatanaka et al.,
2015 for details on passive systems. Non-holonomic systems are treated
in Section 9.4. Second, the static controller (2.23) can be extended to a
dynamic one to enhance control performance. For example, in Rozenheck
et al., 2015, a PI-type formation controller to remove tracking errors has
been proposed. In Sakurama, 2021a, a PI-type formation controller has
been employed to remove formation errors caused by uncertain body
rotations and input disturbances. Third, the gradient-flow approach is
practically useful to time-varying networks although theoretical results
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are valid only for time-invariant networks. See Section 9.3 for simulation
results with a state-dependent time-varying network.
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Mathematical Preliminaries



3
Group Theory

A group is a set with a binary operation satisfying the four axioms:
closure, associativity, identity, and inverse. Group theory is essential to
the control theory of multi-robot systems. Actually, the coordination
freedom set S ×T in Subsection 2.2.2 and the frame transformation set
M×B in Subsection 2.3.3 can be handled as a type of group, called
a semidirect product. Accordingly, a unified solution to multi-robot
coordination problems is provided using tools of group theory.

This chapter provides relevant concepts, including groups, subgroups,
group actions, semidirect products, free group actions, group orbits,
invariant subsets, and invariant functions.

3.1 Basics

A set H is called a group with respect to a binary operation ∗ if H
satisfies the following four properties:

◦ (closure) H1 ∗H2 ∈ H for any H1, H2 ∈ H;

◦ (associativity) (H1∗H2)∗H3 = H1∗(H2∗H3) for anyH1, H2, H3 ∈
H;

34
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◦ (identity) IH ∈ H, where IH is the identity element ofH, satisfying
IH ∗H = H ∗ IH = H for any H ∈ H;

◦ (inverse) H−1 ∈ H for any H ∈ H, where H−1 is the inverse
element of H, satisfying H−1 ∗H = H ∗H−1 = IH.

A subset Ȟ of H is said to be a subgroup of H if Ȟ is a group with
respect to the same operation as H.

Typical examples of groups are sets of matrices with respect to the
binary operations of multiplication and addition as follows.

Example 3.1. The following matrix sets are groups with respect to
multiplication.

◦ The general linear group GL(d) ⊂ Rd×d, i.e., the set of non-
singular matrices.

◦ The orthogonal group O(d) ⊂ GL(d), i.e., the set of orthogonal
matrices.

◦ The special orthogonal group SO(d) ⊂ O(d), i.e., the set of
orthogonal matrices with determinant 1.

◦ The set {Id}, consisting of only the identity matrix Id.

◦ The set {Id,Refl(w)}, consisting of the identity matrix Id and
the reflection matrix Refl(w) of a unit vector w ∈ Rd.

These groups are all subgroups of GL(d), and SO(d), {Id}, and
{Id,Refl(w)} are subgroups of O(d).

Example 3.2. The following vector sets are groups with respect to
addition.

◦ The Euclidean space Rd.

◦ Any subspaces of Rd.
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◦ The set {0} ⊂ Rd, consisting of only the zero vector.

Let us define the scaled set of a set H as

scaled(H) := {sH : s > 0, H ∈ H}.

If H is a group with respect to a binary operation ∗, scaled(H) is a group
with respect to the binary operation ∗s such that (s1H1) ∗s (s2H2) =
(s1s2)(H1∗H2) for s1, s2 > 0 andH1, H2 ∈ H. Note thatH is a subgroup
of scaled(H), and that if Ȟ is a subgroup of H, scaled(Ȟ) is a subgroup
of scaled(H).

Example 3.3. The scaled set of O(d) is given as

scaled(O(d)) = {sW ∈ Rd×d : s > 0,W ∈ O(d)},

which is a group with respect to production. For S ∈ scaled(O(d)),
S>S = s2W>W = s2Id holds with some s > 0,W ∈ O(d). Taking
the determinants of the both sides yields | det(S)|2 = (s2)d. Hence,
s = | det(S)|

1
d is obtained, and scaled(O(d)) is reduced to

scaled(O(d)) = {S ∈ Rd×d : S>S = |det(S)|
2
d Id}. (3.1)

3.2 Group actions

A group H is said to act on a set X with respect to a binary operation
• if the following three properties are satisfied:

◦ (closure) H • x ∈ X for any H ∈ H and x ∈ X ;

◦ (associativity) (H1 ∗H2) • x = H1 • (H2 • x) for any H1, H2 ∈ H,
and x ∈ X ;

◦ (identity) IH • x = x for any x ∈ X .

If a group H acts on X , H acts on X n in the following way:

H • xN := (H • x1, H • x2, . . . ,H • xn) ∈ X n (3.2)



3.3. Semidirect products 37

for H ∈ H, x1, x2, . . . , xn ∈ X , and N = {1, 2, . . . , n}. Moreover, H
acts on pow(X ) in the following way:

H • X ∗ := {H • x ∈ X : x ∈ X ∗} ∈ pow(X ) (3.3)

for H ∈ H and X ∗ ∈ pow(X ) (i.e., X ∗ ⊂ X ), where pow(·) represents
the power set (the set of all subsets) of a set.

3.3 Semidirect products

A semidirect product introduces a special transformation into a Carte-
sian product with a group action, associated with multi-robot coordina-
tion problems. Actually, the coordination freedom set and the frame
transformation set introduced in Subsections 2.2.2 and 2.3.1 are rede-
fined as semidirect products S n T andMn B, as shown below. Then,
analysis of the semidirect product plays a key role in revealing an impor-
tant relation between desired coordination and required measurements
through S n T andMn B.

Let S and T be groups with respect to multiplication and addition,
respectively, such that S acts on T with respect to multiplication. The
semidirect product of S and T , denoted by S n T , is the group of the
elements of the Cartesian product S × T with respect to the binary
operation ∗ defined as

(S1, τ1) ∗ (S2, τ2) := (S1S2, τ1 + S1τ2) ∈ S × T (3.4)

for (S1, τ1), (S2, τ2) ∈ S × T . From (3.4), the identity element of S n T
is given by (IS , 0), where IS and 0 are the identities of S and T ,
respectively, and the inverse element of (S, τ) ∈ S n T is derived as

(S, τ)−1 = (S−1,−S−1τ). (3.5)

The group action of the semidirect product is defined as follows. Let
X be a set such that S and T act on X with respect to multiplication
and addition, respectively. Then, the semidirect product S n T acts on
X in the following way:

(S, τ) • x := Sx+ τ ∈ X (3.6)

for (S, τ) ∈ S n T and x ∈ X .
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Through the semidirect products S n T andMn B, the transfor-
mations in multi-robot coordination problems can be expressed by the
group action (3.6) of the semidirect product together with (3.2) as
follows. First, the transformation (2.15) of the desired configuration can
be described as

xN = (S, τ) • x∗N = (Sx∗1 + τ, . . . , Sx∗n + τ) (3.7)

at once for all i ∈ N with (S, τ) ∈ S n T . Second, the coordinate
transformation (2.20) is described as

p(t) = (Mi(t), bi(t)) • p[i](t)

for (Mi(t), bi(t)) ∈ M n B. Accordingly, from the inverse (3.5) of the
semidirect product, the relative position (2.22) is expressed as

x
[i]
j (t) = (Mi(t), bi(t))−1 • xj(t). (3.8)

Example 3.4. Let S n T be scaled(SO(d)) nRd, and its element is
described as (S, τ) = (sR, τ) with s > 0, R ∈ SO(d), and τ ∈ Rd.
Then, (3.7) is reduced to

xN = (sR, τ) • x∗N = (sRx∗1 + τ, . . . , sRx∗n + τ) (3.9)

for (x∗1, . . . , x∗n) ∈ (Rd)n. Through (3.9), the vectors x∗1, . . . , x∗n ∈ Rd

are scaled, rotated, and translated according to scale s, rotation
R, and vector τ . By regarding x∗N as the apexes of a polygon in a
plane/space, xN in (3.9) can be considered as a polygon similar to
x∗N .

3.4 Group orbits

A group orbit is the set of all resultants of a group action. In multi-robot
coordination problems, the desired configuration set (2.16) is compactly
expressed as

D = {xN ∈ (Rd)n : ∃(S, τ) ∈ S n T s.t. xN = (S, τ) • x∗N }
= orbSnT (x∗N ) (3.10)
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with the group orbit defined below. Furthermore, the group orbit helps
us characterize the desired configuration set D achievable with relative
measurements under the frame transformation setM n B in Section
8.2.

Consider a set X and a group H acting on X . The H-orbit of a
subset X ∗ of X is defined as

orbH(X ∗) :=
⋃
H∈H

H • X ∗

= {H • x ∈ X : H ∈ H, x ∈ X ∗}, (3.11)

where the equation follows from (3.3). If X ∗ = {x∗} is a singleton of
x∗ ∈ X , we describe just orbH(x∗) for orbH({x∗}).

Example 3.5. The set D in (3.10) with S n T = scaled(SO(d))
nRd corresponds to the desired configuration set D for scaling
reflection-free formation in Example 2.11, described as

D = {(sRx∗1 + τ, . . . , sRx∗n + τ) : s > 0, R ∈ SO(d), τ ∈ Rd}
= orbscaled(SO(d))nRd(x∗N ) (3.12)

from (3.9). This set corresponds to the set of the polygons similar
to x∗N from Example 3.4.

Let projC(D) be the projection of a set D ⊂ X n onto the X |C|-space
for C ⊂ N = {1, 2, . . . , n}, defined as

projC(D) := {xC ∈ X |C| : ∃xN ∈ X n s.t. xN ∈ D}. (3.13)

The following lemma shows that the operations of projection and group
orbit are commutative.

Lemma 3.1. Consider a group H acting on Rd and a subset X ∗ of
(Rd)n. Then, for C ⊂ N = {1, 2, . . . , n}, the following holds:

projC(orbH(X ∗)) = orbH(projC(X ∗)). (3.14)
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Proof. From (3.11) and (3.13),

projC(orbH(X ∗)) = projC({H • xN : H ∈ H, xN ∈ X ∗})
= {H • xC : H ∈ H, xN ∈ X ∗}
= {H • y : H ∈ H, y ∈ projC(X ∗)}
= orbH(projC(X ∗))

holds, and (3.14) is achieved.

Consider the desired configuration set D of the orbit as (3.10). The
configuration set of a part of the robots, indexed by C ⊂ N , is described
as projC(D). Lemma 3.1 guarantees that this set is also of the form of
an orbit as follows:

projC(D) = projC(orbSnT (x∗N )) = orbSnT (projC(x∗N ))
= orbSnT (x∗C). (3.15)

Example 3.6. For the setD in Example 3.5 and C = {j1, j2, . . . , j|C|} ⊂
N ,

projC(D) = projC(orbscaled(SO(d))nRd(x∗N )) = orbscaled(SO(d))nRd(x∗C)
= {(sRx∗j1 + τ, . . . , sRx∗j|C| + τ) : s > 0, R ∈ SO(d), τ ∈ Rd}

is obtained from (3.12) and (3.15). This set corresponds to the set
of the polygons similar to x∗C .

3.5 Invariant subsets

For a set X and a group H acting on X , a subset D of X is said to be
H-invariant if H • x ∈ D holds for any H ∈ H and x ∈ D, which is
expressed as

H • D ⊂ D ∀H ∈ H (3.16)

according to (3.3).
Notably, any H-invariant subset can be characterized by an H-orbit

as follows.
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Lemma 3.2. For a set X and a group H acting on X , a subset D of
X is H-invariant if and only if there exists a subset X ∗ of X such
that D is of the form

D = orbH(X ∗). (3.17)

Proof. (Sufficiency) Consider the set D in (3.17). From the definition
(3.11) of the group orbit and the associativity of the group action, the
following holds for any H ∈ H:

H • D = H • (
⋃
H̄∈H

H̄ • X ∗) =
⋃
H̄∈H

(H ∗ H̄) • X ∗ ⊂
⋃
H̃∈H

H̃ • X ∗ = D,

where H̄ and H̃ are any elements of H, and the inclusion holds because
H ∗ H̄ ∈ H from the closure of the group operation. The inclusion (3.16)
is obtained.

(Necessity) Assume that a subset D of X is H-invariant. From (3.11)
and (3.16),

orbH(D) =
⋃
H∈H

H • D ⊂
⋃
H∈H

D = D

holds. The inverse inclusion follows from the definition (3.11) of the
orbit, and (3.17) holds for X ∗ = D.

Lemma 3.2 indicates that the desired configuration set D in (3.10),
namely orbSnT (x∗N ), is (S n T )-invariant. Furthermore, the following
lemma shows that the invariance of the desired configuration projC(D)
of a part of robots is preserved.

The projection of an H-invariant subset of X n is also an H-invariant
subset as follows.

Lemma 3.3. For a set X and a groupH acting on X , assume that D
is anH-invariant subset of X n. Then, for any C ⊂ N = {1, 2, . . . , n},
projC(D) is an H-invariant subset of X |C|.

Proof. From the assumption that D is an H-invariant subset of X n,
Lemma 3.2 guarantees that D = orbH(X ∗) holds with some X ∗ ⊂ X n.
Then, from Lemma 3.1,

projC(D) = projC(orbH(X ∗)) = orbH(projC(X ∗))
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holds. The right-hand side of this equation is of the form (3.17) for
projC(X ∗) instead of X ∗. Therefore, Lemma 3.2 guarantees that projC(D)
is an H-invariant subset.

3.6 Invariant functions

For a set X and a group H acting on X , a function v : X → R is said
to be H-invariant if

v(H • x) = v(x) ∀H ∈ H, x ∈ X . (3.18)

A function v(x) is said to be relatively H-invariant of weight µ : H → R
if

v(H • x) = µ(H)v(x) ∀H ∈ H, x ∈ X . (3.19)
For some semidirect products SnT , examples of (relatively) (SnT )-

invariant functions are given as follows.

Example 3.7. For rij ∈ Rd, the function v : (Rd)n → R+ given as

v(xN ) =
∑
{i,j}∈E

‖xi − xj − rij‖2 (3.20)

is ({Id}nRd)-invariant (i.e., invariant under translation), where E is
a set of pairs of the elements in N = {1, 2, . . . , n}. This function is
used to evaluate the achievement of displacement-based formation
(2.5). The invariance in (3.18) is verified for (Id, τ) ∈ {Id}nRd as

v((Id, τ) • xN ) = v(x1 + τ, . . . , xn + τ)

=
∑
{i,j}∈E

‖(xi + τ)− (xj + τ)− rij‖2

=
∑
{i,j}∈E

‖xi − xj − rij‖2 = v(xN ). (3.21)

Example 3.8. For dij > 0, the function v : (Rd)n → R+ given as

v(xN ) =
∑
{i,j}∈E

(‖xi − xj‖2 − d2
ij)2 (3.22)
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is (O(d) nRd)-invariant (i.e., invariant under translation, rotation,
and reflection). This function is used to evaluate the achievement of
distance-based formation (2.7). The invariance in (3.18) is verified
for (S, τ) ∈ O(d) nRd as

v((S, τ) • xN ) = v(Sx1 + τ, . . . , Sxn + τ)

=
∑
{i,j}∈E

(‖(Sxi + τ)− (Sxj + τ)‖2 − d2
ij)2

=
∑
{i,j}∈E

(‖S(xi − xj)‖2 − d2
ij)2 = v(xN ). (3.23)

Example 3.9. For dij > 0, the function v : (Rd)n → R+ given as

v(xN ) = inf
σ>0

∑
{i,j}∈E

(‖xi − xj‖2 − σ2d2
ij)2 (3.24)

is relatively (scaled(O(d)) nRd)-invariant of weight |det(S)|
4
d for

(S, τ) ∈ scaled(O(d))nRd, which is used to evaluate the achievement
of scaling distance-based formation (2.10). The relative invariance
in (3.19) is verified with S = sW ∈ scaled(O(d)) for s > 0 and
W ∈ O(d), and τ ∈ Rd as

v((S, τ) • xN )

= inf
σ>0

∑
{i,j}∈E

(‖(sWxi + τ)− (sWxj + τ)‖2 − σ2d2
ij)2

= s4 inf
σ>0

∑
{i,j}∈E

(‖xi − xj‖2 −
σ2

s2 d
2
ij)2

= s4 inf
σ̄>0

∑
{i,j}∈E

(‖xi − xj‖2 − σ̄2d2
ij)2

= s4v(xN ), (3.25)

where σ̄ = σ/s and s = |det(S)|
1
d from (3.1).

For certain SnT , the distance functions of (SnT )-invariant subsets
are (relatively) (S n T )-invariant functions as follows.
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Lemma 3.4. Assume that D is a non-empty, (S n T )-invariant
subset of (Rd)n. Consider the squared distance function v(xN ) =
(dist(xN ,D))2 for xN ∈ (Rd)n and D. If S n T is a subgroup of
O(d) n Rd, v(xN ) is (S n T )-invariant. If S n T is a subgroup of
scaled(O(d)) nRd, v(xN ) is relatively (S n T )-invariant of weight
| det(S)|

2
d for (S, τ) ∈ S n T .

Proof. We consider the case that SnT is a subgroup of scaled(O(d))n
Rd. Then, the case of O(d) n Rd is obvious because | det(S)| = 1 for
(S, τ) ∈ S n T ⊂ O(d) nRd.

Let (S, τ) ∈ S n T ⊂ scaled(O(d)) nRd, and from (3.1), (3.2), and
(3.6),

v((S, τ) • xN ) = (dist((S, τ) • xN ,D))2 = inf
yN∈D

‖(S, τ) • xN − yN ‖2

= inf
yN∈D

∑
i∈N
‖Sxi + τ − yi‖2 = inf

ȳN∈D

∑
i∈N
‖S(xi − ȳi)‖2

= inf
ȳN∈D

∑
i∈N

(xi − ȳi)>S>S(xi − ȳi)

= |det(S)|
2
d inf
ȳN∈D

∑
i∈N
‖xi − ȳi‖2 = | det(S)|

2
d v(xN )

holds, where ȳi = S−1(yi−τ) = (S, τ)−1•yi. Here, ȳN = (S, τ)−1•yN ∈
D holds because D is an (S n T )-invariant subset and (S, τ)−1 ∈ S n T .
Therefore, (3.19) holds, and v(xN ) is relatively (S n T )-invariant of
weight |det(S)|

2
d .

For multi-robot coordination, the squared distance function v(xN ) =
(dist(xN ,D))2 is used to evaluate the task achievement of the generalized
coordination (2.13) with respect to the desired configuration set D. The
set D in (3.10) is (S n T )-invariant from Lemma 3.2. Furthermore, as
shown in Section 2.2.2, SnT is given as a subgroup of scaled(O(d))nRd

in many cases. Then, this v(xN ) is relatively (S n T )-invariant from
Lemma 3.4. To evaluate the task achievement with this function, the
robots need to distinguish elements in D with resolution higher than
S n T . Sensing resolution is determined from the frame transformation
set M n B. Therefore, to achieve the generalized coordination with
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respect this D, S n T ⊃Mn B needs to be satisfied, which is shown
in Subsection 8.5.1.

3.7 Free group actions

For a set X and a group H acting on X , it is said that H acts freely on
X if for each x ∈ X ,

H1 • x = H2 • x,H1, H2 ∈ H ⇒ H1 = H2 (3.26)

holds, or, equivalently,

H • x 6= x ∀H ∈ H\{IH}. (3.27)

In other words, if y = H • x holds for x, y ∈ X , such an H ∈ H is
uniquely determined, when H acts freely on X .

For the desired configuration set D in (3.10), the achievement of
the generalized coordination (2.13), i.e., xN ∈ D, indicates that xN =
(S, τ) •x∗N with some (S, τ) ∈ S n T . If S n T acts freely, such an (S, τ)
is uniquely determined. The uniqueness of (S, τ) leads to the feasibility
of the coordination by distributed control with relative measurements,
which will be discussed in the next section.

Let us give a couple of examples of free and non-free group actions.

Example 3.10. The semidirect product scaled(SO(2)) n R2 acts
freely on (R2)2\{(x1, x2) : x1 = x2}, which is verified as follows. Let
(saRa, τa), (sbRb, τb) ∈ scaled(SO(2)) nR2 for sa, sb > 0, Ra, Rb ∈
SO(2), and τa, τb ∈ R2. For x1, x2 ∈ R2 satisfying x1 6= x2, from
(3.9), the assumption in (3.26) is reduced to

(saRa, τa) • (x1, x2) = (saRax1 + τa, saRax2 + τa)
= (sbRb, τb) • (x1, x2) = (sbRbx1 + τb, sbRbx2 + τb). (3.28)

The first element minus the second one in each two-tuple in (3.28)
is reduced to

saRa(x1 − x2) = sbRb(x1 − x2). (3.29)

Take the norms of the both sides of (3.29), and we obtain sa = sb
from x1 − x2 6= 0. Next, Ra = Rb holds because (3.29) is reduced
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to Rot(θa)(x1 − x2) = Rot(θb)(x1 − x2) by assigning Ra = Rot(θa)
and Rb = Rot(θb) with θa, θb ∈ [−π, π), and θa = θb is obtained
from x1 − x2 6= 0. Then, τa = τb holds from (3.28). Hence, the
conclusion of (3.26) is derived, and thus scaled(SO(2)) n R2 acts
freely on (R2)2\{(x1, x2) : x1 = x2}.

Example 3.10 implies that when two distinct vectors x1, x2 ∈ R2

are transformed in rotation, translation, and scale into distinct vectors
x̄1, x̄2 ∈ R2 simultaneously, such a transformation is uniquely deter-
mined.

Example 3.11. The semidirect product scaled(SO(2)) n R2 does
not act freely on R2\{0}, which is verified as follows. Let (saRa, τa),
(sbRb, τb) ∈ scaled(SO(2))nR2 for sa, sb > 0, Ra, Rb ∈ SO(2), and
τa, τb ∈ R2. For a non-zero x ∈ R2, from (3.9), the assumption in
(3.26) is reduced to

(saRa, τa) • x = saRax+ τa = (sbRb, τb) • x = sbRbx+ τb.

This equation holds for any sa, sb > 0, Ra, Rb ∈ SO(2), τa ∈ R2

by assigning τb = (saRa − sbRb)x+ τa. Hence, scaled(SO(2)) nR2

does not act freely on R2\{0}.

In contrast to Example 3.10, Example 3.11 implies that the transfor-
mations of one vector x ∈ R2 into x̄ ∈ R2 are not unique. This difference
can be explained by the free action number in the next section.

3.8 Free action numbers

For a set X and a group H acting on X , the free action number of the
group action of H on X is defined as

fanumX (H) := min{n ∈ Z+ : H acts freely on X n\Zn} (3.30)

for a set Zn ⊂ X n of measure zero such that H acts on X n\Zn. Ac-
cording to the definition (3.26) of the free group action, the free action
number (3.30) indicates the smallest integer n satisfying

H1 • xN = H2 • xN , H1, H2 ∈ H ⇒ H1 = H2 (3.31)
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Table 3.1: Free action numbers of typical semidirect products S n T on Rd

S T {0} 6= {0}
{Id} 0 1

scaled({Id}) 1 2
{Id,Refl(w)} 1 2

scaled({Id,Refl(w)}) 1 2
SO(d), d ≥ 2 d− 1 d

scaled(SO(d)), d ≥ 2 d− 1 d
O(d), d ≥ 2 d d+ 1

scaled(O(d)), d ≥ 2 d d+ 1

for almost each xN ∈ X n, where N = {1, 2, . . . , n}, or, from (3.27),

H • xN 6= xN ∀H ∈ H\{IH}. (3.32)

The following example is derived from Examples 3.10 and 3.11.

Example 3.12. The free action number of scaled(SO(2)) nR2 on
R2 is two, i.e., fanumR2(scaled(SO(2)) nR2) = 2.

Table 3.1 shows the free action numbers of typical semidirect prod-
ucts S n T on Rd. It is confirmed that the result of Example 3.12 is
extended to any dimension d, i.e., fanumRd(scaled(SO(d)) n Rd) = d

holds.
In the multi-robot coordination for the desired configuration set D in

(3.10), the free action number fanumRd(S n T ) indicates the minimum
number of robots to uniquely determine (S, τ) ∈ S n T satisfying
xN = (S, τ)•x∗N . This number indicates a degree of network connections
necessary to achieve coordination by distributed control with relative
measurements. For example, to achieve scaling reflection-free formation
in Example 2.11, the necessary degree of network connections is d from
Table 3.1 for SnT = scaled(SO(d))nRd. See Subsection 8.5.2 for more
details.

The results in Table 3.1 are shown after a preliminary lemma.
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Lemma 3.5. Let S and T be subgroups of GL(d) and Rd with re-
spect to multiplication and addition, respectively, and the following
relations hold:

fanumRd(S) ≤ d (3.33)

fanumRd(T ) =

0 if T = {0}
1 if T 6= {0}.

(3.34)

If S acts on T , the following equation holds:

fanumRd(S n T ) = fanumRd(S) + fanumRd(T ). (3.35)

Proof. We consider only the case of T 6= {0} because that of T = {0}
is trivial. The expressions (3.33), (3.34), and (3.35) are shown in order.

For a subgroup S of GL(d) and linearly independent vectors x1, . . . , xd
∈ Rd, (3.31) holds for n = d from det[x1 · · · xd] 6= 0 as

S1[x1 · · · xd] = S2[x1 · · · xd], S1, S2 ∈ S ⇒ S1 = S2.

Hence, S acts freely on (Rd)d\Zd, where Zd is the set of d-tuples of
linearly dependent vectors. From the definition (3.30) of the free action
number, (3.33) holds.

For a subgroup T 6= {0} of Rd and a vector x ∈ Rd, (3.31) holds as

x+ τ1 = x+ τ2, τ1, τ2 ∈ T ⇒ τ1 = τ2,

and fanumRd(T ) = 1 in (3.34) is obtained.
To prove (3.35), consider (x1, . . . , xn) ∈ (Rd)n for some n ∈ Z+.

From the definitions (3.2) and (3.6) of the group actions on multiple
vectors and semidirect groups, the assumption in (3.31) is reduced to

(S1, τ1) • (x1, . . . , xn) = (S1x1 + τ1, . . . , S1xn + τ1)
= (S2, τ2) • (x1, . . . , xn) = (S2x1 + τ2, . . . , S2xn + τ2) (3.36)

for (S1, τ1), (S2, τ2) ∈ S n T . Note that (3.36) holds if and only if the
following two hold:

S1x1 + τ1 = S2x1 + τ2. (3.37)
S1[x2 − x1 · · · xn − x1] = S2[x2 − x1 · · · xn − x1]. (3.38)
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For almost every [x2 − x1 · · · xn − x1] ∈ Rd×(n−1), (3.38) leads to
S1 = S2 if and only if n − 1 ≥ fanumRd(S). If S1 = S2, (3.37) yields
τ1 = τ2. Hence, (3.36) implies that (S1, τ1) = (S2, τ2) holds if and only
if n ≥ fanumRd(S) + 1. Therefore, from the definition (3.30) of the free
action number and (3.34), (3.35) is obtained.

Theorem 3.6. The free action numbers of semidirect products
S n T are obtained as Table 3.1.

Proof. Assume that T = {0}. The case of T 6= {0} follows from (3.34)
and (3.35) in Lemma 3.5. For (S, 0) ∈ S n T = H, (3.32) is reduced to

Sxi 6= xi ∃i ∈ {1, . . . , n} ∀S ∈ S\{Id}. (3.39)

Case of S = scaled({Id}): S ∈ S\{Id} is represented as S = sId for
s > 0, s 6= 1. Then, for a non-zero vector x1 ∈ Rd, Sx1 = sx1 6= x1 holds.
Hence, (3.39) is obtained for n = 1, and fanumRd(S) = 1 is achieved.

Case of S = {Id,Refl(w)} for a unit vector w ∈ Rd: S ∈ S\{Id} is
satisfied only when S = Refl(w). Then, for x1 ∈ Rd satisfying w>x1 6= 0,
Sx1 = Refl(w)x1 = (Id−2ww>)x1 6= x1 holds. Hence, (3.39) is obtained
for n = 1, and fanumRd(S) = 1 is achieved.

Case of S = scaled({Id,Refl(w)}): S ∈ S\{Id} takes the form of
either S = Refl(w) or S = sS̄ for S̄ ∈ {Id,Refl(w)} with s > 0,
s 6= 1. The former is the same as the previous case. In the latter case,
Sx1 = sS̄x1 6= x1 holds with any non-zero x1 ∈ Rd because if sS̄x1 = x1
holds, taking the norms of both the sides of the equation yields s = 1,
which contradicts s 6= 1. Hence, fanumRd(S) = 1 is achieved.

Case of S = O(d): For linearly independent vectors x1, . . . , xd−1 ∈
Rd, consider S = Refl(w) ∈ S\{Id} with the unit vector w ∈ Rd

orthogonal to all xi, i ∈ {1, . . . , d − 1}. Then, Sxi = Refl(w)xi =
(Id − 2ww>)xi = xi holds for each i ∈ {1, . . . , d− 1}. Hence, (3.39) is
not obtained for n = d− 1, and fanumRd(S) > d− 1 is obtained. From
(3.33) in Lemma 3.5, fanumRd(S) = d is achieved.

Case of S = SO(2): S ∈ S\{I2} is represented as S = Rot(θ) for
θ ∈ (0, 2π). Then, for any non-zero x1 ∈ R2, Sx1 = Rot(θ)x1 6= x1 holds.
Hence, (3.39) is obtained for n = 1, and fanumRd(S) = 1 is achieved.
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Case of S = SO(d) with an even positive integer d: From Reid and
Szendroi, 2005, S ∈ S\{Id} can be block-diagonalized as

S = W>diag(R1, . . . , Rd/2)W (3.40)

for some W ∈ O(d) and (R1, . . . , Rd/2) ∈ (SO(2))d/2 not equal to
(I2, . . . , I2). Let x1, . . . , xn ∈ Rd be linearly independent vectors, and we
regard xN as the corresponding matrix, i.e., xN = [x1 · · · xn] ∈ Rd×n

of full column rank. First, consider the case of n ≤ d − 2. Let W̄ ∈
O(d) be the matrix satisfying W̄xi = ciedi for every i ∈ {1, 2, . . . , n}
with some ci ∈ R, where edi ∈ Rd is the ith unit vector, and then
W̄xN = [C 0n×(d−n)]> ∈ Rd×n holds with C = diag(c1, . . . , cn), where
0n×(d−n) ∈ Rn×(d−n) is the zero matrix. Consider S of the form (3.40)
with W = W̄ , Rk = I2 for k ∈ {1, . . . , d/2− 1}, and Rd/2 6= Id. Then,
from (3.40),

SxN = W̄>diag(I2, . . . , I2, Rd/2)W̄xN

= W̄>diag(Id−2, Rd/2)[C 0n×(d−n)]> = W̄>[C 0n×(d−n)]>

= xN

holds from d− n ≥ 2. Hence, (3.39) does not hold, and fanumRd(S) >
d− 2 is achieved. Next, consider the case of n = d− 1. We assume that
(3.39) does not hold, and derive a contradiction. Then, from (3.40),

SxN = W>diag(R1, . . . , Rd/2)WxN = xN (3.41)

holds with some W ∈ O(d) and (R1, . . . , Rd/2) ∈ (SO(2))d/2 not equal
to (I2, . . . , I2). Without loss of generality, Rd/2 6= I2 is assumed. By
multiplying (3.41) by [02×(d−2) I2]W ∈ R2×d from the left, we obtain

[02×(d−2) I2]diag(R1, . . . , Rd/2)WxN

= Rd/2[02×(d−2) I2]WxN = [02×(d−2) I2]WxN ,

which leads to [02×(d−2) I2]WxN = 0 from the result of the case of
SO(2). Then, the two columns in the matrix ([02×(d−2) I2]W )> are
orthogonal to xN , which contradicts the assumption that xN ∈ Rd×(d−1)

is of full column rank. Therefore, (3.39) holds for n = d − 1, and
fanumRd(S) = d− 1 is achieved.
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Case of S = SO(d) with an odd positive integer d: From Reid and
Szendroi, 2005, S ∈ S\{Id} can be represented as

S = W>diag(1, R1, . . . , R(d−1)/2)W

for W ∈ O(d) and (R1, . . . , R(d−1)/2) ∈ (SO(2))(d−1)/2 not equal to
(I2, . . . , I2). Then, the same discussion as the case that d is even leads
to fanumRd(S) = d− 1.

The cases of S = scaled(O(d)) and S = scaled(SO(d)) are shown in
the same way as the case of S = scaled({Id,Refl(w)}).

3.9 Notes and references

Since group theory is profound, only limited concepts required to multi-
robot control theory are introduced in this chapter. The group theory
has been utilized in control theory to deal with the motion of rigid bodies
(Bullo and D. Lewis, 2004). Its usage is different in this monograph.
The group theory is introduced to describe the desired configuration
set D with the orbit of a semidirect product as (3.10), based on the
results of Sakurama, 2021b. Then, the invariance of groups will be
especially important to design a function evaluating the achievement
of the multi-robot coordination in Chapter 8. See Olver, 1995; Olver,
1999 for invariance of groups. The free action number was developed
in Sakurama, 2021b from the free group action, a standard concept of
graph theory, to describe a graph topological condition for achieving
coordination, as seen in Subsection 8.5.2.



4
Graph Theory

In multi-robot systems, a graph is used to describe a topology of the
sensing network of robots as Fig. 2.1. Then, distributed controllers
are defined in Subsection 2.3.4 as the controllers which use only the
information of neighbors over the graph.

This chapter provides graph-theoretical concepts which play impor-
tant roles in designing distributed controllers, such as neighbor sets,
maximal cliques, intersection graphs, rigidity, and clique rigidity.

4.1 Basics

A graph G = (N , E) is a pair of a node set N (a finite countable set)
and an edge set E ⊂ N 2 (a set of pairs of the nodes). Without loss of
generality, suppose that the nodes are indexed as N = {1, 2, . . . , n},
and an edge is of the form {i, j} for nodes i, j ∈ N . We assume that G
is simple and undirected. Hence, {i, i} 6∈ E , and {i, j} ∈ E if and only if
{j, i} ∈ E .

For node i ∈ N , a node directly connected by an edge, i.e., j ∈ N
such that {i, j} ∈ E , is called a neighbor of node i. The neighbor set of

52
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Figure 4.1: Example of a graph with 7 nodes.

node i is defined as

Ni := {j ∈ N : {i, j} ∈ E} ∪ {i}. (4.1)

For nodes k, ` ∈ N , a sequence of nodes (i1, i2, . . . , im) ∈ Nm such that
i1 = k, im = `, and {ih, ih+1} ∈ E for all h ∈ {1, 2, . . . ,m− 1} is called
a path between nodes k, `. Graph G = (N , E) is said to be connected if
there is a path between every pair of nodes.

For a node subset C ⊂ N , a subgraph G|C = (C, E|C) is said to be
induced by C if E|C consists of the edges containing the pairs of the
nodes in C, that is,

E|C = {{i, j} ∈ E : i, j ∈ C}.

Example 4.1. Consider the graph G = (N , E) in Fig. 4.1 for the
node set N = {1, 2, 3, 4, 5, 6, 7} and the edge set

E = {{2, 3}, {3, 4}, {3, 5}, {4, 5}, {4, 6}, {4, 7}, {5, 6}, {5, 7}, {6, 7}}.
(4.2)

The neighbor sets are given as

N1 = {1}, N2 = {2, 3}, N3 = {2, 3, 4, 5}, (4.3)
N4 = N5 = {3, 4, 5, 6, 7}, N6 = N7 = {4, 5, 6, 7}.

There is a path between nodes 2 and 6, e.g., (2, 3, 5, 6). This graph
is not connected because there is no path between node 1 and the
others. The subgroup induced by the node subset {2, 3, 4} is given
as G|{2,3,4} = ({2, 3, 4}, {{2, 3}, {3, 4}}).
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4.2 Cliques and maximal cliques

A clique is a node subset which induces a complete subgraph. For multi-
robot coordination, edge-based functions are conventionally employed
to design distributed controllers. In contrast, by employing clique-based
functions, distributed controllers perform the best as shown in Section
7.2. From this viewpoint, cliques are essential for design of distributed
controllers.

A node subset C is called a clique in graph G if the subgraph G|C
induced by C is complete, i.e., {i, j} ∈ E holds for any i, j ∈ C, i 6= j.
The number of the elements in C is called the order of clique C. A clique
C is said to be maximal if it is not contained by any other cliques. Let
C1, C2, . . . , Cq ⊂ N be the maximal cliques in G, and their index set is
described as clq(G) = {1, 2, . . . , q}. Let clqi(G) be the subset of the
indices of the maximal cliques that node i ∈ N belongs to, that is

clqi(G) := {k ∈ clq(G) : i ∈ Ck}. (4.4)

Example 4.2. Consider the graph G = (N , E) in Fig. 4.1 with the
edge set E given in (4.2). The cliques of order 1 and 2 are equivalent
to the nodes and the edges, respectively. The cliques of order 3
are {3, 4, 5}, {4, 5, 6}, {4, 5, 7}, {4, 6, 7}, and {5, 6, 7}. The clique of
order 4 is {4, 5, 6, 7}. The maximal cliques are the following four:

C1 = {1}, C2 = {2, 3}, C3 = {3, 4, 5}, C4 = {4, 5, 6, 7}, (4.5)

as illustrated in Fig. 4.2. Corresponding to the maximal cliques C1,
C2, C3, and C4 in (4.5), the index set of the maximal cliques in G is
given by clq(G) = {1, 2, 3, 4}. According to (4.4), the index subset
of the maximal cliques that each node belongs to is given from (4.5)
as follows:

clq1(G) = {1}, clq2(G) = {2}, clq3(G) = {2, 3},
clq4(G) = clq5(G) = {3, 4}, clq6(G) = clq7(G) = {4}. (4.6)

The following lemma gives the equivalence between the neighbor set
of each node and the maximal cliques of the node.
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Figure 4.2: Maximal cliques in the graph in Fig. 4.1.

Lemma 4.1. The following equation holds:

Ni =
⋃

k∈clqi(G)
Ck. (4.7)

Proof. From (4.1), j ∈ Ni if and only if {i, j} ∈ E . From the definition
of the maximal cliques and (4.4), j ∈

⋃
k∈clqi(G) Ck, i.e., j ∈ Ck for some

k ∈ clqi(G), if and only if {i, j} ∈ E .

Example 4.3. Consider the graph G = (N , E) in Fig. 4.1. From
(4.5) and (4.6), the union of Ck for k ∈ clq3(G) = {2, 3} is derived
as
⋃
k∈clq3(G) Ck = C2 ∪ C3 = {2, 3, 4, 5}. This is equivalent to N3 in

(4.3), and the relation (4.7) holds.

4.3 Conventional rigidity

Rigidity and global rigidity, introduced from the rigidity theory of bar-
and-joint frameworks, provide network-topological conditions to verify
the feasibility of the distance-based formation control in Example 2.2.
See Subsection 6.4.3 in detail.

For a graph G = (N , E) and an n-tuple of vectors x∗N ∈ (Rd)n,
associated with the nodes, the pair (x∗N , G) is called a framework of
x∗N over G. The framework (x∗N , G) is said to be globally rigid if the
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following holds for any xN ∈ (Rd)n:

‖xi − xj‖ = ‖x∗i − x∗j‖ ∀{i, j} ∈ E
⇒ ‖xi − xj‖ = ‖x∗i − x∗j‖ ∀i, j ∈ N . (4.8)

The framework (x∗N , G) is said to be rigid if there exists δ > 0 such
that for any xN ∈ (Rd)n,

‖xi − xj‖ = ‖x∗i − x∗j‖ ∀{i, j} ∈ E , ‖xi − x∗i ‖ < δ ∀i ∈ N
⇒ ‖xi − xj‖ = ‖x∗i − x∗j‖ ∀i, j ∈ N . (4.9)

In the condition (4.9) of the rigidity, continuous motion of a part
of the framework is not allowed with maintaining the lengths of the
edges. In contrast, in the global rigidity (4.8), any motion including
discontinuous one is not allowed. Hence, if a framework is globally rigid,
it is rigid, while the converse does not hold in general.

Examples of rigid and globally rigid frameworks are given as follows.

Example 4.4. Consider frameworks (x∗N , Ga), (x∗N , Gb), (x∗N , Gc),
and (x∗N , Gd) with 8 nodes in Fig. 4.3, where x∗N ∈ (R2)8 of the
frameworks are all the same.

(a) Framework (x∗N , Ga) is not rigid because the left two nodes
(the right two nodes) can move continuously while maintaining
the lengths of the edges.

(b) Framework (x∗N , Gb) is rigid but is not globally rigid because
any nodes cannot continuously move but some nodes (e.g.,
the left lower node) can flip with maintaining the lengths of
the edges.

(c) Framework (x∗N , Gc) is rigid but is not globally rigid in the
same way.

(d) Framework (x∗N , Gd) is globally rigid because neither continu-
ous motion nor discontinuous one can occur with maintaining
the lengths of the edges.
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(a) (x∗N , Ga) (b) (x∗N , Gb)

(c) (x∗N , Gc) (d) (x∗N , Gd)

Figure 4.3: Examples of frameworks: (a) (x∗N , Ga) is not rigid; (b), (c) (x∗N , Gb)
and (x∗N , Gc) are rigid but are not globally rigid; (d) (x∗N , Gd) is globally rigid.

4.4 Clique rigidity

Clique rigidity is a network-topological condition generalized from the
global rigidity, defined by using the connections between maximal cliques
rather than edges. The feasibility of the generalized coordination (2.13)
is verified with the clique rigidity of the set framework (D, G) for a
desired configuration set D and a graph G, as discussed in Section 7.5.

For a graph G and a set D ⊂ (Rd)n, the pair (D, G) is called a set
framework of D over G. Let C1, C2, . . . , Cq be the maximal cliques in
graph G. The set framework (D, G) is said to be clique rigid if

xCk ∈ projCk(D) ∀k ∈ clq(G) ⇒ xN ∈ D, (4.10)

where proj·(·) is the projection defined in (3.13). The clique rigidity gen-
eralizes the global rigidity. Actually, the framework (x∗N , G) is globally
rigid if and only if the set framework (D, G) is clique rigid for

D = {xN ∈ (Rd)n : ‖xi − xj‖ = ‖x∗i − x∗j‖ ∀i, j ∈ N , i 6= j}. (4.11)

The relation to the global rigidity is more discussed below.
The following example illustrates how to verify the clique rigidity of

the set framework (D, G) in a concrete case.
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Example 4.5. Consider the set D in (3.10) for SnT = SO(d)nRd,
that is,

D = orbSO(d)nRd(x∗N )
= {(Rx∗1 + τ, . . . , Rx∗n + τ) : R ∈ SO(d), τ ∈ Rd}, (4.12)

where n points x∗1, . . . , x∗n are transformed in rotation and transla-
tion. In contrast, from (3.15),

projCk(D) = orbSO(d)nRd(x∗Ck)
= {(Rkx∗i1 + τk, . . . , Rkx

∗
i|Ck|

+ τk) : Rk ∈ SO(d), τk ∈ Rd}
(4.13)

is obtained for maximal clique Ck = {i1, i2 . . . , i|Ck|}. Then, the
clique rigidity of the set framework (D, G) can be checked as illus-
trated by the upper frameworks in Table 4.1 as follows.

(i) Consider a framework (x∗N , G) for some x∗N ∈ D.

(ii) Divide the framework into the frameworks (x∗Ck , G|Ck) induced
by the maximal cliques Ck.

(iii) Derive frameworks (xCk , G|Ck) of xCk by transforming x∗Ck
in rotation and translation according to projCk(D) in (4.13).
Each node has to be at the same position even if it belongs
to different maximal cliques.

(iv) For the resultant framework (xN , G), check whether xN al-
ways can be obtained from x∗N through transformation in
rotation and translation according to D in (4.12).

Note that (iii) and (iv) correspond to the assumption and conclusion
in the statement (4.10), respectively. On the other hand, the set
framework in the lower row of Table 4.1 is not clique rigid because
(iv) is not necessarily satisfied.

For specific D associated with multi-robot coordination problems,
the clique rigidity of (D, G) is equivalent to the connectivity of G. We
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Table 4.1: Illustration of confirming clique rigidity: (upper) clique-rigid set frame-
work and (lower) non-clique-rigid one
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will show a couple of examples of such D. The first example is the
desired configuration set D in (2.17) given for the formation selection
in Example 2.12.

Proposition 4.1. Consider D =
⋃
q∈Q{x

∗q
N } with x

∗q
N ∈ (Rd)n, q ∈

Q = {1, 2, . . . , p} for an integer p ≥ 2, and assume that x∗qi 6= x∗q̃i
holds for any i ∈ N and q, q̃ ∈ Q, q 6= q̃. Then, the set framework
(D, G) is clique rigid if and only if G is connected.

Proof. For sufficiency, assume that G is connected and that the as-
sumption part of the statement (4.10) of clique rigidity holds, which is
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reduced to

∀k ∈ clq(G), ∃qk ∈ Q s.t. xCk = x∗qkCk . (4.14)

Consider a pair Ck, C`, k, ` ∈ clq(G), k 6= ` of maximal cliques, and let
k̂ ∈ Ck and ˆ̀ ∈ C` be contained nodes. From the assumption of the
connectivity, there is a path (i1(= k̂), i2, . . . , im(= ˆ̀)) between nodes k̂
and ˆ̀. Because each edge belongs to at least one maximal clique, there
exists kh ∈ clq(G) such that ih, ih+1 ∈ Ckh for all h ∈ {1, 2, . . . ,m− 1}.
Then, ih ∈ Ckh−1 ∩ Ckh is satisfied for h ∈ {2, 3, . . . ,m − 1}, and from
(4.14), xih = xih

∗qkh−1 = xih
∗qkh holds. Then, qkh−1 = qkh is derived from

the assumption. By iterating this process from h = 2 to m, we obtain
qk1 = qkm , yielding qk = q`. In this way, all qk for k ∈ clq(G) coincide
with some q ∈ Q. Then, from (4.14), xi = x∗qi holds for each i ∈ N , and
the conclusion part of (4.10) is derived.

The necessity is obvious because if G is not connected, the set
framework is not clique rigid.

The second example is the desired configuration set D for the
displacement-based formation in Example 2.5. In fact, the following
proposition holds.

Proposition 4.2. For D = orb{Id}nRd(x∗N ) with x∗N ∈ (Rd)n, the
set framework (D, G) is clique rigid if and only if G is connected.

Proof. From the properties (3.2) and (3.6) of the group action, and the
definition (3.11) of the group orbit, the assumption part of (4.10) is
equivalent to

∀k ∈ clq(G), ∃τk ∈ Rd s.t. xi = x∗i + τk ∀i ∈ Ck. (4.15)

For sufficiency, assume that G is connected and that (4.15) holds. Then,
in the same procedure as the proof of Proposition 4.1, from (4.15),
xih = x∗ih + τkh−1 = x∗ih + τkh is derived, and thus τkh−1 = τkh holds for
ih ∈ Ckh−1 ∩ Ckh . Then, all τk for k ∈ clq(G) coincide with some τ , and
from (4.15), the conclusion part of (4.10) is derived.

The necessity part holds because ifG is not connected, the framework
is not clique rigid.
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On the other hand, as for the desired set D for the distance-based
formation of Example 2.5, this set is equivalent to (4.11). Hence, the
clique rigidity of (D, G) is equivalent to the global rigidity of (x∗N , G).
This D is equivalent to orbO(d)nRd(x∗N ), and the following is obtained.

Proposition 4.3. For D = orbO(d)nRd(x∗N ) with x∗N ∈ (Rd)n, the
set framework (D, G) is clique rigid if and only if (x∗N , G) is globally
rigid.

Proof. For D = orbO(d)nRd(x∗N ), xN ∈ D means that xN = (S, τ) • x∗N
for some (S, τ) ∈ O(d) n Rd, which is equivalent to xN ∈ D for D in
(4.11) from Boutin and Kemper, 2004. Hence, the conclusion parts of
(4.8) and (4.10) are equivalent. Their assumption parts can be shown
to be equivalent in the same way.

As for D = orbSO(d)nRd(x∗N ), associated with the reflection-free
formation in Example 2.7, the set framework (D, G) is clique rigid only
if (x∗N , G) is rigid but the converse statement does not necessarily hold.
Actually, there is no corresponding conventional rigidity. See Sakurama
et al., 2019 in detail.

A few examples of clique rigid frameworks can be found in Fig. 4.3
as follows.

Example 4.6. Consider the set frameworks (D, Ga), (D, Gb), (D, Gc),
and (D, Gd) for the graphs in Fig. 4.3 and D = orbSnT (x∗N ) with
x∗N in Fig. 4.3 and the following S n T .

◦ For SnT = {I2}nR2, all the set frameworks are clique rigid
from Proposition 4.2 and Example 4.4.

◦ For SnT = O(2)nR2, only the framework (x∗N , Gd) is clique
rigid from Proposition 4.3 and Example 4.4.

◦ For S n T = SO(2) n R2, only the framework (x∗N , Gb) is
clique rigid.
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Figure 4.4: Examples of 2-intersection graphs: (a) graph Ga; (b) graph Gb; (c) the
2-intersection graph of Ga; (d) that of Gb.

4.5 Intersection graphs

For a positive integer r, the r-intersection graph of the maximal cliques
in G, denoted as Γr(G), is the graph (clq(G), Ĕr) with the edge set

Ĕr = {{k, `} ∈ (clq(G))2 : |Ck ∩ C`| ≥ r, k 6= `}. (4.16)

The intersection graph Γr(G) represents the topology of the maximal
cliques which connect to each other with at least r intersections.

Example 4.7. Consider graph Ga in Fig. 4.4a, consisting of 5 maxi-
mal cliques of order 3, and graph Gb in Fig. 4.4b, consisting of 4
maximal cliques of order 3. The 2-intersection graphs of Ga and Gb,
Γ2(Ga) and Γ2(Gb), are depicted in Figs. 4.4c and 4.4d, respectively.

Intersection graphs are used to verify the clique rigidity for the
desired coordination sets D of multi-robot coordination problems in
(3.10). For example, consider the graph Ga in Fig. 4.4a and the set D for
S n T = SO(d) nRd, and (Ga,D) can be guaranteed to be clique-rigid
from the connectivity of Γ2(Ga) in Fig. 4.4c. See Subsection 8.5.2 for
more details.
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4.6 Notes and references

For graph theory, abundant literature can be found, e.g., Bolloás, 1998.
See McKee and McMorris, 1999 for intersection graphs, which are not
treated in standard books.

As for how to find maximal cliques Ck (k ∈ clq(G)), although it is
an NP-complete problem, there are some algorithms. For example, the
method of Tomita et al., 2006 requires computation time of O(3n/3),
where O(·) is the Landau symbol. On the other hand, in multi-robot
coordination problems, each robot only needs to know the maximal
cliques that it belongs to, i.e., Ck (k ∈ clqi(G)). Lemma 4.1 indicates
that the maximal cliques Ck (k ∈ clqi(G)) can be identified from the
subgraph G|Ni of the neighbors. Hence, the computation time necessary
to robot i is O(3|Ni|/3), which is not so large if there are not many
neighbors.

From the rigidity theory of bar-and-joint frameworks (Sidman and
John, 2017), the concepts of rigidity and global rigidity were introduced
to verify the feasibility of the distance-based formation as summarized
in Anderson et al., 2008; Queiroz et al., 2019. On the other hand,
Sakurama, 2021b introduced clique rigidity to verify the feasibility of
the generalized coordination with respect to general D. This result will
be shown in Section 7.5. Clique rigidity for D = orbSO(d)nRd(x∗N ) can
be found in Sakurama et al., 2019.



5
Stability Theory for Gradient-flow Systems

In the following chapters, the gradient-flow approach will be employed to
design controllers for multi-robot coordination problems. According to
this approach, the system of each robot is reduced to the gradient-flow
system of v(xN ) as

ẋi(t) = −κi
∂v

∂xi
(xN (t)), xi(0) = x0

i (5.1)

with a gain κi > 0 and an initial state x0
i ∈ Rd for i ∈ N , where a

continuously differentiable function v : (Rd)n → R is called an objective
function. Under the system (5.1), the objective function v(xN (t)) is
monotonically non-increasing and is expected to converge to a minimum
point. Hence, we just have to design a function v(xN ) such that a
desired configuration is achieved at each minimum point. In the rest of
the chapter, we analyze the stability of the gradient-flow system (5.1).

5.1 Terminology

Consider a differential equation

ẋN (t) = F (xN (t)), xN (0) = x0
N ∈ (Rd)n (5.2)

64
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with a continuous function F : (Rd)n → (Rd)n. We assume that the
solution xN (t) ∈ (Rd)n of (5.2) uniquely exists for all t ∈ [0,∞) for
arbitrary x0

N ∈ (Rd)n. A closed set A ⊂ (Rd)n is called an equilibrium
set of (5.2) if

xN ∈ A ⇒ F (xN ) = 0. (5.3)

Let xN (t) ∈ (Rd)n be the solution of (5.2) for x0
N ∈ (Rd)n, and some

properties related to the stability of the system (5.2) are defined, which
are valid even when A is unbounded.

◦ The system (5.2) is said to be Lagrange stable if for any x0
N ∈

(Rd)n, there exists η = η(x0
N ) > 0 such that

‖xN (t)‖ ≤ η ∀t ≥ 0. (5.4)

◦ An equilibrium set A is said to be (Lyapunov) stable if for each
ε > 0, there exists an open set ∆(ε) ⊃ A such that

x0
N ∈ ∆(ε)⇒ dist(xN (t),A) ≤ ε ∀t ≥ 0. (5.5)

◦ An equilibrium set A is said to be attractive if there exists an
open set ∆ ⊃ A such that

x0
N ∈ ∆⇒ lim

t→∞
dist(xN (t),A) = 0. (5.6)

◦ An equilibrium set A is said to be asymptotically stable if A is
stable and attractive.

◦ An equilibrium set A is said to be globally attractive if A is
attractive for ∆ = (Rd)n in (5.6).

◦ An equilibrium set A is said to be globally asymptotically stable if
A is stable and globally attractive.

The other terminology is given as follows.

◦ A positive orbit through x0
N ∈ (Rd)n is defined as

O+(x0
N ) := {xN ∈ (Rd)n : ∃t ∈ [0,∞)

s.t. xN = xN (t), xN (0) = x0
N }.
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◦ A set I ⊂ (Rd)n is said to be positively invariant if

x0
N ∈ I ⇒ O+(x0

N ) ⊂ I.

◦ A function v : (Rd)n → R is said to be radially unbounded if
v(xN )→∞ as ‖xN ‖ → ∞.

5.2 Lagrange stability

Consider the gradient-flow system (5.1) with an objective function
v(xN ). From now on, we assume that the solution xN (t) ∈ (Rd)n of
this system uniquely exists for all t ∈ [0,∞) for arbitrary x0

N ∈ (Rd)n.
Although we assume that v(xN ) is continuously differentiable here,
non-differentiable functions can be treated as shown in Section 5.4.

First, three conditions of v(xN ) are provided for the Lagrange
stability of this system and the global attractiveness of the zero set
(∂v/∂xN )−1(0), where

∂v

∂xN
(xN ) =

(
∂v

∂x1
(xN ), . . . , ∂v

∂xn
(xN )

)
,(

∂v

∂xN

)−1
(0) =

{
xN ∈ (Rd)n : ∂v

∂xN
(xN ) = 0

}
.

For preliminaries, two lemmas are given, where cl(·) represents the
closure of a set.

Lemma 5.1. [Proposition 2.32 in Haddad and Chellaboina, 2008]
For the system (5.2), if a set I ⊂ (Rd)n is positively invariant, cl(I)
is positively invariant.

Lemma 5.2. (LaSalle’s invariance principle) [Theorem 3.3 in Had-
dad and Chellaboina, 2008] For the system (5.2), assume that
Dc ⊂ (Rd)n is a positively invariant, compact set, and that there
exists a continuously differentiable function v : Dc → R such that
v̇(xN ) ≤ 0 for any xN ∈ Dc, where v̇(xN ) = 〈∂v/∂xN (xN ), F (xN )〉.
Let I ⊂ Dc be the largest positively invariant set contained in
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{xN ∈ Dc : v̇(xN ) = 0}. Then, if x0
N ∈ Dc, limt→∞ dist(xN (t), I) =

0 holds.

Under the gradient-flow system (5.1), v(xN (t)) is monotonically
non-increasing with respect to t as

v̇(xN (t)) =
〈
∂v

∂xN
(xN (t)), ẋN (t)

〉
=

n∑
i=1

〈
∂v

∂xi
(xN (t)), ẋi(t)

〉

= −
n∑
i=1

κi

∥∥∥∥ ∂v∂xi (xN (t))
∥∥∥∥2
≤ 0. (5.7)

From this inequality, the stability properties are guaranteed as follows.

Theorem 5.3. If a continuously differentiable function v : (Rd)n →
R is radially unbounded, then the system (5.1) is Lagrange stable
and (∂v/∂xN )−1(0) is globally attractive.

Proof. From the radial unboundedness of v(xN ), if v(xN ) ≤ λ1 for
λ1 > 0, ‖xN ‖ ≤ λ2 holds for some λ2 = λ2(λ1) > 0. From (5.7),
v(xN (t)) ≤ v(x0

N ) holds, and thus ‖xN (t)‖ ≤ λ2(v(x0
N )) holds for all

t ≥ 0. According to (5.4), the system is Lagrange stable.
Let x̂N (t) ∈ (Rd)n be the solution of (5.1) for x̂0

N ∈ O+(x0
N ) instead

of x0
N . Because the positive orbit O+(x0

N ) is positively invariant under
(5.1), x̂N (t) ∈ O+(x0

N ) holds for all t ≥ 0. From Lemma 5.1, cl(O+(x0
N ))

is positively invariant, which is compact from the Lagrange stability. By
applying Lemma 5.2 for Dc = cl(O+(x0

N )), from (5.7), the solution xN (t)
of (5.1) is ensured to converge to the the largest positively invariant set
contained in the set where v̇(xN ) = 0. From (5.7), {xN ∈ Dc : v̇(xN ) =
0} = (∂v/∂xN )−1(0) ∩ Dc holds, and thus the following is obtained:

x0
N ∈ Dc ⇒ lim

t→∞
dist(xN (t),

(
∂v

∂xN

)−1
(0) ∩ Dc) = 0.

This discussion is valid for each x0
N ∈ (Rd)n. Hence, (∂v/∂xN )−1(0) is

globally attractive.

Theorem 5.3 assumes the radial unboundedness of the objective
function v(xN ). In contrast, the following two theorems do not assume
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it, and assume some invariance conditions of v(xN ) instead. The first
theorem requires invariance under translation, namely, ({Id} n Rd)-
invariance.

Theorem 5.4. If a continuously differentiable function v : (Rd)n →
R satisfies the following two conditions, then the system (5.1) is
Lagrange stable and (∂v/∂xN )−1(0) is globally attractive:

(i) v(xN ) is ({Id}nRd)-invariant.

(ii) There exists an n-tuple (i1, i2, . . . , in) of the distinct elements
in N such that for each ` ∈ {2, 3, . . . , n} there exists ˆ̀< `

satisfying ‖xi` − xiˆ̀‖ ≤ ζ`(v(xN )) with a monotonically
non-decreasing, non-negative function ζ` : R→ R+.

Proof. From (3.2), (3.6), and (3.18), condition (i) indicates that

v((Id, τ) • xN ) = v(x1 + τ, . . . , xn + τ) = v(xN )

holds for any τ ∈ Rd. By partially differentiating this equation with
respect to τ and substituting τ with 0,

0 = ∂v(xN )
∂τ

∣∣∣∣
τ=0

= ∂v(x1 + τ, . . . , xn + τ)
∂τ

∣∣∣∣
τ=0

=
∑
i∈N

∂v

∂xi
(x1 + τ, . . . , xn + τ)

∣∣∣∣
τ=0

=
∑
i∈N

∂v

∂xi
(xN )

is achieved. Hence, from (5.1), we obtain∑
i∈N

ẋi(t)
κi

= −
∑
i∈N

∂v

∂xi
(xN (t)) = 0,

which leads to ∑
i∈N

xi(t)
κi

=
∑
i∈N

x0
i

κi
. (5.8)

Without loss of generality, we assume that i` = ` in the n-tuple in
condition (ii). Then, because ζi(·) is monotonically non-decreasing for
any i ∈ {2, 3, . . . , n}, from (5.7),

n∑
i=2
‖xi(t)− xî(t)‖

2 ≤
n∑
i=2

ζi(v(xN (t))) ≤
n∑
i=2

ζi(v(x0
N )) (5.9)
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is obtained with some î < i. On the other hand,

n∑
i=2
‖xi − xî‖

2 +
∥∥∥∥∥∑
i∈N

xi
κi

∥∥∥∥∥
2

= ‖xNP‖2 ≥ (σmin(P ))2‖xN ‖2 (5.10)

holds with the matrix P ∈ Rn×n defined as

P =



1
κ1
−1 ∗ · · · ∗

1
κ2

1 ∗ . . . ...
1
κ3

0 1 . . . ∗
...

... . . . . . . ∗
1
κn

0 · · · 0 1


,

where ∗ takes 0 or −1 corresponding to î. In (5.10), xN is regarded as
the corresponding matrix [x1 · · · xn] ∈ Rd×n and σmin(·) represents the
smallest singular value of a matrix. Because κi > 0 from the assumption,
P is non-singular, and thus σmin(P ) > 0. From (5.8), (5.9), and (5.10),

‖xN (t)‖ ≤ 1
σmin(P )

√√√√ n∑
i=2

ζi(v(x0
N )) +

∥∥∥∥∥
n∑
i=1

x0
i

κi

∥∥∥∥∥
2

is obtained for any t ≥ 0, which yields (5.4). Hence, the system is
Lagrange stable.

The global attractiveness of (∂v/∂xN )−1(0) is shown in the same
way as Theorem 5.3.

Example 5.1. The functions in (3.20) and (3.22) in Examples 3.7
and 3.8 satisfy the conditions in Theorem 5.4. Regard E as the
edge set of a graph G = (N , E), and without loss of generality, we
assume that G is connected. Otherwise, we just have to consider
each connected component of G. Condition (i) is satisfied as shown
in (3.21) and (3.23). As for condition (ii), from the connectivity
of G, there exists an n-tuple (i1, i2, . . . , in) of the distinct elements
in N such that for each ` ∈ {2, 3, . . . , n}, {iˆ̀, i`} ∈ E holds for
some ˆ̀< `. Then, the function in (3.20) satisfies condition (ii) with
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ζ`(v) =
√
v + ‖ri`iˆ̀‖ because√
v(xN ) ≥ ‖xi` − xiˆ̀− ri`iˆ̀‖ ≥ ‖xi` − xiˆ̀‖ − ‖ri`iˆ̀‖.

Similarly, the function in (3.22) satisfies condition (ii). Note that the
functions in (3.20) and (3.22) are not radially unbounded because
they are invariant under translation, which means that by assigning
xi = x∗i + τ with some x∗i ∈ Rd, v(xN ) = v(x∗N ) holds for arbitrary
τ ∈ Rd.

The next theorem assumes the relative invariance under scale,
namely, relative (scaled({Id}) nRd)-invariance of functions.

Theorem 5.5. If a non-negative, continuously differentiable func-
tion v : (Rd)n → R+ is relatively (scaled({Id}) n {0})-invariant
of weight µ(s) for (sId, 0) ∈ scaled({Id}) n {0} with s > 0 satisfy-
ing dµ/ds(1) ≥ 0, then the system (5.1) is Lagrange stable and
(∂v/∂xN )−1(0) is globally attractive.

Proof. From (3.2), (3.6), and (3.19), the condition of the relative invari-
ance indicates that

v((sId, 0) • xN ) = v(sxN ) = µ(s)v(xN ). (5.11)

From (5.11) and the chain rule, we obtain
dµ
ds (1)v(xN ) = ∂µ(s)v(xN )

∂s

∣∣∣∣
s=1

= ∂v(sxN )
∂s

∣∣∣∣
s=1

=
〈
∂sxN
∂s

,
∂v

∂xN
(sxN )

〉∣∣∣∣
s=1

=
〈
xN ,

∂v

∂xN
(xN )

〉
. (5.12)

From (5.1), (5.12), and the non-negativeness of dµ/ds(1) and v(xN ),
d
dt‖xN (t)K−

1
2 ‖2 = 2〈xN (t), ẋN (t)K−1〉 = −2

〈
xN ,

∂v

∂xN
(xN )

〉
= −2dµ

ds (1)v(xN ) ≤ 0 (5.13)

is achieved, where K = diag(κN ) and xN is regarded as the correspond-
ing matrix [x1 · · · xn] ∈ Rd×n. From (5.13), we obtain

‖xN (t)‖ ≤ max
i∈N

√
κi‖xN (t)K−

1
2 ‖ ≤ max

i∈N

√
κi‖x0

NK
− 1

2 ‖
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for any t ≥ 0, which yields the Lagrange stability from (5.4).
The global attractiveness of (∂v/∂xN )−1(0) is shown in the same

way as Theorem 5.3.

Example 5.2. The function v(xN ) in (3.24) in Example 3.9 satisfies
the condition in Theorem 5.5 for µ(s) = s4 from (3.25). This
function is not radially unbounded because it is invariant under
translation.

5.3 Asymptotic stability

Under some assumptions including the Lagrange stability, the zero set
v−1(0) of the objective function is asymptotically stable as follows.

Theorem 5.6. Let v : (Rd)n → R+ be a non-negative, continuously
differentiable function such that v−1(0) is non-empty and v(xN )
is real analytic in an open set containing v−1(0). Assume that the
system (5.1) is Lagrange stable. Then, v−1(0) is asymptotically
stable.

Proof. Before proving the stability, some preliminaries are provided.
From (5.7), Barbalat’s lemma (Khalil, 2002) guarantees that

lim
t→∞

∂v

∂xN
(xN (t)) = 0 (5.14)

for the solution xN (t) of the system (5.1). For x̄N ∈ v−1(0), let Θ(x̄N )
be an open bounded set containing x̄N . Under the assumption that
the system is Lagrange stable, for each x0

N ∈ (Rd)n, the positive orbit
O+(x0

N ) ⊂ (Rd)n through x0
N is bounded. Let

Ô+(x̄N ) =
⋃

x0
N∈Θ(x̄N )

O+(x0
N ),

which is bounded, and

x0
N ∈ Θ(x̄N )⇒ xN (t) ∈ Ô+(x̄N ) ∀t ≥ 0 (5.15)
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holds from the definition of the positive orbit. Let Ω ⊂ (Rd)n be an
open set containing v−1(0) such that v(xN ) is real analytic in Ω. From
the compactness of cl(Ô+(x̄N )), there exists ρ(x̄N ) > 0 such that

L−ρ(x̄N )(v) ∩ cl(Ô+(x̄N )) ⊂ Ω, (5.16)

where L−ρ (v) = {xN ∈ (Rd)n : v(xN ) ≤ ρ} is the ρ-sublevel set of v(xN )
for ρ ∈ R.

First, we show that v−1(0) is stable. From the real analyticity of
v(xN ) in Ω, Lemma B.2 guarantees that for any compact set Ω1(x̄N ) ⊂
Ω, there exist positive β1(Ω1(x̄N )), θ1(Ω1(x̄N )) such that Łojasiewicz’s
inequality (B.1) holds for v(xN ), which is reduced to

dist(xN , v−1(0)) ≤
(

v(xN )
β1(Ω1(x̄N ))

) 1
θ1(Ω1(x̄N ))

∀xN ∈ Ω1(x̄N ). (5.17)

For a constant ε > 0, let

S1(x̄N , ε) = int(L−ρ1(x̄N ,ε)(v)) ∩Θ(x̄N ) (5.18)

Ŝ1(x̄N , ε) = int(L−ρ1(x̄N ,ε)(v)) ∩ Ô+(x̄N ) (5.19)

with ρ1(x̄N , ε) ∈ (0, ρ(xN )] determined later, where int(·) represents
the interior of a set. Then, from (5.7) and (5.15),

x0
N ∈ S1(x̄N , ε)⇒ xN (t) ∈ Ŝ1(x̄N , ε) ∀t ≥ 0 (5.20)

holds. In (5.17), we assign

Ω1(x̄N ) = L−ρ(x̄N )(v) ∩ cl(Ô+(x̄N )) ⊂ Ω, (5.21)

where the inclusion is from (5.16). This Ω1(x̄N ) is compact from the
compactness of cl(Ô+(x̄N )). Then, if x0

N ∈ S1(x̄N , ε), from (5.19) and
(5.20), v(xN (t)) ≤ ρ1(x̄N , ε) holds, and from this inequality and (5.17),

dist(xN (t), v−1(0)) ≤
(

v(xN (t))
β1(Ω1(x̄N ))

) 1
θ1(Ω1(x̄N ))

≤
(

ρ1(x̄N , ε)
β1(Ω1(x̄N ))

) 1
θ1(Ω1(x̄N ))

≤ ε ∀t ≥ 0 (5.22)

holds, where the last inequality holds by assigning ρ1(x̄N , ε) > 0 as

ρ1(x̄N , ε) = min{ρ(x̄N ), β1(Ω1(x̄N ))εθ1(Ω1(x̄N ))}.
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Let
∆(ε) =

⋃
x̄N∈v−1(0)

S1(x̄N , ε),

which is an open set containing v−1(0) from (5.18), and if x0
N ∈ ∆(ε),

the solution xN (t) satisfies (5.22) from the above discussion. This implies
that (5.5) holds for A = v−1(0), and thus v−1(0) is stable.

Second, we show that v−1(0) is attractive. From the real analyticity
of v(xN ), Łojasiewicz’s inequalities guarantee that for any compact
set Ω1(x̄) ⊂ Ω and bounded open set Ω2(x̄) ⊂ Ω, there exist positive
β1(Ω1(x̄)), θ1(Ω1(x̄)), β2(Ω2(x̄)), θ2(Ω2(x̄)), and ρ2(Ω2(x̄)) ≤ ρ(x̄) such
that (B.1) and (B.2) hold for v(xN ), which are reduced to

β1(Ω1(x̄))(dist(xN , v−1(0)))θ1(Ω1(x̄)) ≤ β2(Ω2(x̄))
∥∥∥∥ ∂v

∂xN
(xN )

∥∥∥∥θ2(Ω2(x̄))

∀xN ∈ Ω1(x̄) ∩ Ω2(x̄) ∩ int(L−ρ2(Ω2(x̄))(v)). (5.23)

We assign Ω1(x̄) as (5.21) and Ω2(x̄) as a bound open set satisfying
Ω1(x̄) ⊂ Ω2(x̄) ⊂ Ω, which is possible from (5.21). Then,

Ω1(x̄) ∩ Ω2(x̄) ∩ int(L−ρ2(Ω2(x̄))(v)) = cl(Ô+(x̄N )) ∩ int(L−ρ2(Ω2(x̄))(v))
(5.24)

holds. Let

S2(x̄N ) = int(L−ρ2(Ω2(x̄))(v)) ∩Θ(x̄N ) (5.25)

Ŝ2(x̄N ) = int(L−ρ2(Ω2(x̄))(v)) ∩ Ô+(x̄N ), (5.26)

and
x0
N ∈ S2(x̄N )⇒ xN (t) ∈ Ŝ2(x̄N ) ∀t ≥ 0 (5.27)

is achieved from (5.7) and (5.15). For the initial state x0
N ∈ S2(x̄N ),

from (5.24), (5.26), and (5.27),

xN (t) ∈ Ω1(x̄) ∩ Ω2(x̄) ∩ int(L−ρ2(Ω2(x̄))(v)) ∀t ≥ 0 (5.28)

holds. Then, from (5.14), (5.23), and (5.28), limt→∞ dist(xN (t), v−1(0)) =
0 holds. Let

∆ =
⋃

x̄N∈v−1(0)
S2(x̄N ),

which is an open set containing v−1(0) from (5.25), and (5.6) holds for
A = v−1(0). Therefore, v−1(0) is attractive.
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5.4 Remarks on non-differentiable functions

Assume that an objective function v : (Rd)n → R is Lipschitz contin-
uous and regular, but not necessarily differentiable. In this case, the
discussions in this chapter hold for the gradient-flow system in (5.1) by
some extension as follows.

Consider the differential equation (5.2) with a measurable and
essentially locally bounded (not necessarily continuous) function F :
(Rd)n → (Rd)n. An absolutely continuous function xN (t) ∈ (Rd)n is
called a Filippov solution if xN (t) satisfies the differential inclusion

ẋN (t) ∈ K[F ](xN (t)).

Here, K[F ] : (Rd)n → pow((Rd)n) is the set-valued map, defined as

K[F ](xN ) = co
{
yN ∈ (Rd)n : ∃Ξk ∈ (Rd)n\Z, k = 1, 2, . . .

s.t. lim
k→∞

Ξk = xN , lim
k→∞

F (Ξk) = yN

}
with a set Z ⊂ (Rd)n of measure zero, where co(·) is the closure of
the convex hull of a set. Let F−1(0) ⊂ (Rd)n be the zero set of F (xN ),
defined as

F−1(0) = {xN ∈ (Rd)n : 0 ∈ K[F ](xN )}.
A closed set A ⊂ (Rd)n is called an equilibrium set of the system (5.2)
if A ⊂ F−1(0) holds.

Let ∂F v : (Rd)n → pow(R) be the generalized derivative of v :
(Rd)n → R with respect to F : (Rd)n → (Rd)n, defined as

∂F v(xN ) = {a ∈ R : ∃yN ∈ K[F ](xN )

s.t. 〈zN , yN 〉 = a ∀zN ∈ K
[
∂v

∂xN

]
(xN )}. (5.29)

Then, for the Filippov solution xN (t) of (5.2), the following holds for
almost every t:

v̇(xN (t)) ∈ ∂F v(xN (t)). (5.30)
Consider the gradient-flow system (5.2) of v(xN ). Then, (5.30) holds

with F (xN ) = −∂v/∂xN (xN )diag(κN ), which yields

v̇(xN (t)) ≤ 0 (5.31)



5.5. Notes and references 75

because ∂F v(xN ) ⊂ [0,∞) holds from (5.29). Inequality (5.31) indicates
that v(xN (t)) is monotonically non-increasing, and the discussions in
Sections 5.2 and 5.3 are valid with the non-smooth version of LaSalle’s
invariance principle.

5.5 Notes and references

The terminology in this chapter mainly follows the standard control the-
ory for nonlinear systems (Khalil, 2002; Haddad and Chellaboina, 2008).
However, the contents are not the same because the equilibrium sets
are possibly not isolated or compact in this monograph. To handle such
equilibrium sets, the Lagrange stability is ensured by using invariance
conditions of objective functions in Theorems 5.4 and 5.5. In Theorem
5.6, Łojasiewicz’s inequalities are used to guarantee the asymptotic
stability. These ideas were taken in Sakurama et al., 2019. Łojasiewicz’s
inequalities were derived in the original paper (Łojasiewicz, 1965) and
the relative book (Łojasiewicz and Zurro, 1999). See Appendix B for
details about these inequalities and the real analyticity of functions. As
for the contents of Section 5.4, see Clarke, 1983 for the concepts on the
differential inclusion, and Shevitz and Paden, 1994; Eren et al., 2004
for the non-smooth version of LaSalle’s invariance principle.



Part II

Multi-robot Coordination
Problems



6
Pairwise Coordination

This chapter deals with the pairwise coordination of multi-robot systems
introduced in Subsection 2.2.1, that is,

lim
t→∞

ψij(xi(t), xj(t)) = 0 ∀i, j ∈ N , i 6= j (6.1)

with non-negative functions ψij : (Rd)2 → R+ for i, j ∈ N , i 6= j. The
pairwise coordination involves essential design and analysis methods
to help us shift smoothly to the rigorous control theory of multi-robot
coordination in the following chapters.

6.1 Problem formulation

Consider the local coordinate frame Σi(t) with a transformation matrix
Mi(t) ∈M, whereM⊂ GL(d) determines the class of transformation
matrices. The origin of the local coordinate frame is assumed to be set
at the position xi(t) ∈ Rd of robot i. Then, as shown in Section 2.3, the
kinematic model of robot i and the relative positions of its neighbors
j ∈ Ni are given as

ẋi(t) = Mi(t)ui(t), (6.2)

x
[i]
j (t) = M−1

i (t)(xj(t)− xi(t)) (6.3)

77
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with the input ui(t) ∈ Rd. For a graph G = (N , E), a distributed
controller with relative measurements is of the form

ui(t) = ci(x[i]
Ni(t)) (6.4)

with a function ci : (Rd)|Ni| → Rd.
Consider the pairwise coordination (6.1) with respect to realizable

functions (ψij(xi, xj))i,j∈N ,i 6=j . This coordination can be expressed by
the generalized coordination, introduced in Subsection 2.2.2 as

lim
t→∞

dist(xN (t),D) = 0, (6.5)

with respect to the desired configuration set

D = {xN ∈ (Rd)n : ψij(xi, xj) = 0 ∀i, j ∈ N , i 6= j}. (6.6)

Thanks to the realizability of the functions, this D is non-empty. The
asymptotic stability of D is the control objective, for which we expect
to design a distributed controller with relative measurements.

The problem is formulated as follows.

Problem 6.1. For a graph G = (N , E) and a frame transformation
matrix setM⊂ GL(d), consider the kinematic model (6.2) with the
relative positions (6.3) for Mi(t) ∈M. The set D is given as (6.6)
for non-negative functions ψij : (Rd)2 → Rd, i, j ∈ N , i 6= j such
that (ψij(xi, xj))i,j∈N ,i 6=j are realizable. Then, design a distributed
controller of the form (6.4) with relative measurements such that
D is asymptotically stable.

6.2 Controller design

The gradient-flow approach is employed. Then, the system is controlled
according to the gradient-flow system

ẋi(t) = −κi
∂v

∂xi
(xN (t)) (6.7)

with an objective function v : (Rd)n → R and a positive constant κi > 0.
To obtain (6.7) from (6.2), we just have to design a controller (6.4) for

ci(x[i]
Ni) = −κiM−1

i

∂v

∂xi
(xN ), (6.8)
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where x[i]
j = M−1

i (xj − xi) for Mi ∈M from (6.3).
From (6.6), we adopt the objective function

v(xN ) =
∑
{i,j}∈E

ψij(xi, xj) (6.9)

because when v(xN ) takes the minimum zero, ψij(xi, xj) = 0 holds for
every {i, j} ∈ E . Note that (6.9) does not contain ψij(xi, xj) for {i, j} 6∈
E to design a distributed controller. Hence, whether the asymptotic
stability of D is achieved or not depends on the topology of graph G.

The following theorem guarantees that the controller (6.8) with
v(xN ) in (6.9) is distributed with relative measurements under some
conditions on ψij(xi, xj).

Theorem 6.1. For a graph G = (N , E), consider the kinematic
model (6.2) and the relative positions (6.3) for Mi(t) ∈M with a
setM ⊂ GL(d). Let v(xN ) be given as (6.9) with non-negative
continuously differentiable functions ψij : (Rd)2 → R+ for {i, j} ∈
E .

(i) If ψij(xi, xj) is given as

ψij(xi, xj) = 1
4‖xi − xj‖

2, (6.10)

the controller (6.8), reduced to

ci(x[i]
Ni) = κi

∑
j∈Ni\{i}

x
[i]
j , (6.11)

is distributed with relative measurements.

(ii) IfM⊂ O(d) and each ψij(xi, xj) satisfies

ψij(M−1(xi − τ),M−1(xj − τ)) = ψij(xi, xj)
∀xi, xj , τ ∈ Rd, M ∈M, (6.12)
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the controller (6.8), reduced to

ci(x[i]
Ni) = −κi

∑
j∈Ni\{i}

(
∂ψij
∂xi

(0, x[i]
j ) + ∂ψji

∂xi
(x[i]
j , 0)

)
,

(6.13)
is distributed with relative measurements.

Proof. For v(xN ) in (6.9), (6.8) is reduced to

ci(x[i]
Ni) = −κiM−1

i

∑
j∈Ni\{i}

(
∂ψij
∂xi

(xi, xj) + ∂ψji
∂xi

(xj , xi)
)
. (6.14)

Under condition (i), for ψij(xi, xj) in (6.10),

∂ψij
∂xi

(xi, xj) + ∂ψji
∂xi

(xj , xi) = 1
2
∂‖xi − xj‖2

∂xi
= xi − xj

= −Mi(M−1
i (xj − xi)) = −Mix

[i]
j

holds. Then, (6.14) is reduced to (6.11) and is distributed under relative
measurements.

Under condition (ii), by partially differentiating (6.12) with respect
to xi, from the chain rule and the property of the orthogonal matrix,
we obtain

∂ψij
∂xi

(xi, xj) = ∂ψij(M−1(xi − τ),M−1(xj − τ))
∂xi

= (M−1)>∂ψij
∂xi

(M−1(xi − τ),M−1(xj − τ))

= M
∂ψij
∂xi

(M−1(xi − τ),M−1(xj − τ)), (6.15)

which holds for any M ∈ M and τ ∈ Rd. Assign M = Mi and τ = xi
in (6.15), and (6.14) with the resultant is reduced to (6.13) and is
distributed under relative measurements.

The functions ψij(xi, xj) satisfying conditions (i) and (ii) in Theorem
6.1 are used for consensus and other formation problems, respectively,
in Section 6.4.
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6.3 Stability analysis

The stability of the resultant gradient-flow system is guaranteed under
some assumptions as follows.

Theorem 6.2. For a graph G = (N , E) and non-negative con-
tinuously differentiable functions ψij : (Rd)2 → R+, {i, j} ∈ E ,
consider the gradient-flow system (6.7) of v(xN ) in (6.9). Assume
that functions ψij(xi, xj) for {i, j} ∈ E are all radially unbounded,
or they all satisfy the following two conditions:

ψij(xi + τ, xj + τ) = ψij(xi, xj) ∀τ ∈ Rd, (6.16)
‖xi − xj‖ ≤ ζij(ψij(xi, xj)) (6.17)

with monotonically non-decreasing functions ζij : R+ → R+. Then,
the system is Lagrange stable, and the following set is globally
attractive:

{xN ∈ (Rd)n :
∑

j∈Ni\{i}

∂ψij
∂xi

(xi, xj) = 0 ∀i ∈ N}. (6.18)

Additionally, if each ψij(xi, xj) is real analytic in an open set
containing ψ−1

ij (0, 0) and (ψij(xi, xj)){i,j}∈E are realizable, the
following set is asymptotically stable:

A(G) = {xN ∈ (Rd)n : ψij(xi, xj) = 0 ∀{i, j} ∈ E}. (6.19)

Proof. The case that ψij(xi, xj) are all radially unbounded follows from
Theorem 5.3 and is omitted.

Assume that (6.16) and (6.17) hold. Without loss of generality, we
assume that G is connected. Otherwise, we just have to consider each
connected component of G. From (6.9) and (6.16),

v((Id, τ) • xN ) = v(x1 + τ, . . . , xn + τ) =
∑
{i,j}∈E

ψij(xi + τ, xj + τ)

=
∑
{i,j}∈E

ψij(xi, xj) = v(xN )
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holds for any τ ∈ Rd. Hence, v(xN ) is ({Id} n Rd)-invariant, and
condition (i) in Theorem 5.4 is satisfied. From the connectivity of G
and (6.17), condition (ii) in Theorem 5.4 is shown to be satisfied in
the same way as Example 5.1. Hence, Theorem 5.4 guarantees that
the system is Lagrange stable, and that the zero set (∂v/∂xN )−1(0) is
globally attractive. This zero set is reduced to (6.18) from (6.9).

From the realizability of (ψij(xi, xj)){i,j}∈E , v−1(0) is non-empty for
v(xN ) in (6.9). From this and the real analyticity of v(xN ), Theorem
5.6 guarantees that the zero set v−1(0) is asymptotically stable. This
zero set is reduced to (6.19) from (6.9) and the non-negativeness of
ψij(xi, xj).

Theorem 6.2 guarantees the asymptotic stability of A(G) in (6.19),
while that of D in (6.6) is expected as stated in Problem 6.1. To achieve
this objective, it is sufficient to ensure D = A(G). Whether this equation
holds or not depends on the topology of G. This is discussed more in
the following section for concrete examples.

6.4 Examples

In this section, examples of pairwise coordination are given by assigning
concrete functions to ψij(xi, xj).

6.4.1 Consensus

For the consensus problem (2.11), consider the function ψij(xi, xj) in
(2.12), which is equivalent to (6.10) in condition (i) of Theorem 6.1.
Accordingly, the controller (6.8) is reduced to the distributed controller
(6.11) with relative measurements forM⊂ GL(d). Then, the control
input (6.4) is designed as

ui(t) = κi
∑

j∈Ni\{i}
x

[i]
j (t). (6.20)

Notably, Mi(t) ∈M in the relative position (6.3) can be an arbitrary
non-singular matrix, and thus various transformations of the local
coordinate frame are allowed, which is special to consensus.
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Furthermore, based on Theorem 6.2, the global asymptotic stability
of A(G) in (6.19) is guaranteed. For a connected graph G, the desired
configuration set D in (6.6) with ψij(xi, xj) in (6.10), reduced to

D = {xN ∈ (Rd)n : x1 = x2 = · · · = xn}, (6.21)

is globally asymptotically stable. Actually, the following proposition is
obtained.

Proposition 6.1. For a graph G = (N , E), consider the kinematic
model (6.2), the relative position (6.3) with a non-singular matrix
Mi(t) ∈ GL(d), and the distributed controller (6.20) with relative
measurements for a gain κi > 0. Then, the set D in (6.21) is globally
asymptotically stable if and only if G is connected.

Proof. Assume that G is connected. From the discussions just before
Theorem 6.1 and this proposition, by using the controller (6.20), the
system (6.2) is reduced to the gradient-flow system (6.7) with v(xN ) in
(6.9) for ψij(xi, xj) in (6.10). Because the function ψij(xi, xj) satisfies
(6.16) and (6.17), Theorem 6.2 guarantees that the set in (6.18) is
globally attractive, which is reduced to

{xN ∈ (Rd)n :
∑

j∈Ni\{i}
(xi − xj) = 0 ∀i ∈ N}. (6.22)

Each ψij(xi, xj) is real analytic and (ψij(xi, xj)){i,j}∈E are realizable
from Example 2.4. Thus, Theorem 6.2 guarantees that the set A(G) in
(6.19) is asymptotically stable, which is reduced to

A(G) = {xN ∈ (Rd)n : xi = xj ∀{i, j} ∈ E}. (6.23)

The sets in (6.22) and (6.23) are equivalent to the set D in (6.21) if
and only if G is connected (Mesbahi and Egerstedt, 2010). Hence, D is
globally asymptotically stable from the global attractiveness and the
asymptotic stability of the sets in (6.22) and (6.23).

Assume that G is not connected. Then, the set A(G)\D is non-
empty. For an initial state xN (0) ∈ A(G)\D, the state xN (t) does not
move because A(G) is an equilibrium set. Therefore, D is not globally
asymptotically stable.
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6.4.2 Displacement-based formation

For displacement-based formation (2.5), consider the function

ψij(xi, xj) = 1
4‖xi − xj − rij‖

2, (6.24)

equivalent to (2.6). Assume thatM = {Id}, and (6.12) is satisfied. Then,
Theorem 6.1 guarantees that the controller (6.8), reduced to (6.13), is
a distributed controller with relative measurements. For ψij(xi, xj) in
(6.24),

ui(t) = κi
∑

j∈Ni\{i}
(x[i]
j (t) + rij) (6.25)

is obtained under the assumption that rij = −rij .
Note that for Mi(t) ∈ M = {Id}, the relative position (6.3) is

reduced to
x

[i]
j (t) = xj(t)− xi(t). (6.26)

To measure the relative position (6.26), the robots need to obtain the
absolute bearing, e.g. by compasses, as discussed in Subsection 2.3.3.
This is in contrast to the consensus controller (6.11), which does not
require the absolute bearing because any non-singular matrix Mi(t) is
allowed in the relative position (6.3).

The desired configuration set D in (6.6) with ψij(xi, xj) in (6.24) is
given as

D = {xN ∈ (Rd)n : xi − xj = rij ∀i, j ∈ N , i 6= j}. (6.27)

This set is globally asymptotically stable for a connected graph G as
follows.

Proposition 6.2. Let rij ∈ Rd be vectors such that there exists
x∗N ∈ (Rd)n satisfying x∗i − x∗j = rij for any i, j ∈ N , i 6= j. For a
graph G = (N , E), consider the kinematic model (6.2), the relative
positions (6.26) with Mi(t) = Id, and the distributed controller
(6.25) with relative measurements for κi > 0. Then, the set D in
(6.27) is globally asymptotically stable if and only if G is connected.

Proof. From the assumption on rij , the functions ψij(xi, xj) in (6.24)
for i, j ∈ N , i 6= j are realizable. The rest of the proof follows from
Proposition 6.1 through the state transformation x̄i = xi − x∗i .
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6.4.3 Distance-based formation

For distance-based formation (2.7), let us consider the function

ψij(xi, xj) = 1
8(‖xi − xj‖2 − d2

ij)2, (6.28)

equivalent to (2.8). ForM = O(d), (6.12) is satisfied as follows:

ψij(M−1(xi − τ),M−1(xj − τ))

= 1
8(‖M−1(xi − τ)−M−1(xj − τ)‖2 − d2

ij)2

= 1
8(‖xi − xj‖2 − d2

ij)2 = ψij(xi, xj)

for M ∈ O(d), τ ∈ Rd. Then, from Theorem 6.1, the controller (6.8),
reduced to (6.13), is a distributed controller with relative measurements.
For ψij(xi, xj) in (6.28),

ui(t) = κi
∑

j∈Ni\{i}
(‖x[i]

j (t)‖2 − d2
ij)x

[i]
j (t) (6.29)

is obtained under the assumption that dij = dji.
From (6.3), the relative position is given as

x
[i]
j (t) = M>i (t)(xj(t)− xi(t)) (6.30)

for Mi(t) ∈ O(d). Compared with the relative position (6.26) for the
displacement-based formation, (6.30) involves the transformation in
rotation and reflection. This means that less measurement information
is required to the distance-based formation, that is, the absolute bearing
is unnecessary.

The desired configuration set D in (6.6) with ψij(xi, xj) in (6.28) is
reduced to

D = {xN ∈ (Rd)n : ‖xi − xj‖ = dij ∀i, j ∈ N , i 6= j}. (6.31)

This set is asymptotically stable if (x∗N , G) is a globally rigid framework
for some x∗N ∈ D as follows.
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Proposition 6.3. Let dij be positive numbers such that there exists
x∗N ∈ (Rd)n satisfying ‖x∗i −x∗j‖ = dij for any i, j ∈ N , i 6= j. For a
graph G = (N , E), consider the kinematic model (6.2), the relative
position (6.30) with Mi(t) ∈ O(d), and the distributed controller
(6.29) with relative measurements for κi > 0. Then, the set D in
(6.31) is asymptotically stable if (x∗N , G) is globally rigid.

Proof. Assume that (x∗N , G) is globally rigid. From the discussions
just before Theorem 6.1 and this proposition, by using the controller
(6.29), the system (6.2) is reduced to the gradient-flow system (6.7) with
v(xN ) in (6.9) for ψij(xi, xj) in (6.28). The function ψij(xi, xj) satisfies
(6.16) and (6.17), ψij(xi, xj) is real analytic, and (ψij(xi, xj)){i,j}∈E are
realizable from the assumption on dij , Hence, Theorem 6.2 guarantees
that A(G) in (6.19), reduced to

A(G) = {xN ∈ (Rd)n : ‖xi − xj‖ = dij ∀{i, j} ∈ E}, (6.32)

is asymptotically stable. From the definition (4.8) of the global rigidity,
(6.31), and (6.32), A(G) ⊂ D holds. The converse inclusion is obvious,
and A(G) = D is obtained. Hence, D in (6.31) is asymptotically stable.

6.5 Notes and references

Conventionally, the gradient-flow approach has been taken to design
a distributed controller with an objective function of the form (6.9)
consisting of pairwise functions, as summarized in Martínez et al., 2007.
Hence, the contents of this chapter are highly relevant to conventional
results on multi-robot and multi-agent systems.

As for consensus, the objective function v(xN ) in (6.9) with (6.10)
is called a Laplacian potential (Olfati-Saber and Murray, 2004), and
its gradient-flow system (6.7) is reduced to a linear system with a
graph Laplacian matrix. The property of this system can be analyzed
with the eigenvalues of the graph Laplacian matrix, associated with the
connectivity of the graph as Proposition 6.1. See Mesbahi and Egerstedt,
2010 for multi-robot coordination through a graph-theoretic approach.
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As for distance-based formation, graph topology has been investi-
gated under which distance-based formation is achievable in the lit-
erature. The key is the rigidity theory of bar-and-joint frameworks
as indicated in Section 4.6, which is summarized in Anderson et al.,
2008; Queiroz et al., 2019. Correspondingly, Proposition 6.3 indicates
that a sufficient condition for the asymptotic stability of D in (6.31)
is the global rigidity of (x∗N , G). The existing research shows that the
necessary and sufficient condition is the rigidity of (x∗N , G). This gap
is caused from obtaining A(G) = D in the proof of Proposition 6.3.
Actually, we just need the existence of an open set ∆ ⊃ D such that
A(G) ∩∆ = D, which implies the rigidity of (x∗N , G) defined in (4.9).



7
Generalized Coordination with “Absolute”

Measurements

Consider the generalized coordination problem, which is formulated in
Subsection 2.2.2 as

lim
t→∞

dist(xN (t),D) = 0, (7.1)

with respect to a desired configuration set D ⊂ (Rd)n. In this chapter, a
condition of (D, G) is specified such that there exists a distributed con-
troller to achieve (7.1) over a graph G, and such a distributed controller
is designed. Moreover, it is shown that even if this condition is not
satisfied, the designed controller achieves the generalized coordination
(7.1) in the best approximate way.

Here, we assume that the global and local coordinate frames are the
same, i.e., the absolute positions of the neighbors are available to each
robot. This assumption is removed in the next chapter.

7.1 Problem formulation

Under this assumption, the kinematic model is given by the single-
integrator system

ẋi(t) = ui(t) (7.2)

88
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as explained in Subsection 2.3.2. For a graph G = (N , E), the admissible
controller is of the form

ui(t) = ci(xNi(t)) (7.3)

with a function ci : (Rd)|Ni| → Rd, where Ni ⊂ N is the neighbor set of
robot i, defined in (4.1). Note that the function ci(xNi) in (7.3) depends
on the absolute positions xNi of the neighbors. A controller of the form
(7.3) is said to be distributed.

7.1.1 Gradient-flow approach

To achieve the generalized coordination (7.1) with respect to a set
D ⊂ (Rd)n, we design a distributed controller with which D is asymp-
totically stable. For this purpose, the gradient-flow approach is employed.
Consider the gradient-flow system

ẋi(t) = −κi
∂v

∂xi
(xN (t)) (7.4)

for a non-negative, continuously differentiable function v : (Rd)n → R+
and a positive constant κi > 0. Now, the requirements of the objective
function v(xN ) are listed as follows.

First, according to (7.4), the objective function v(xN (t)) is mono-
tonically non-increasing, and the state xN (t) locally converges to the
zero set v−1(0). Actually Theorem 5.6 guarantees that v−1(0) is asymp-
totically stable under some assumptions. Hence, for the asymptotic
stability of D, v(xN ) is expected to satisfy

v−1(0) = D. (7.5)

A non-negative function v(xN ) satisfying (7.5) is called an indicator of
D. Let Vind(D) be the set of indicators of D, that is,

Vind(D) = {v(xN ) : v−1(0) = D, v(xN ) ≥ 0 ∀xN ∈ (Rd)n}. (7.6)

Note that Vind(D) is always non-empty because the squared distance
function of D belongs to Vind(D), that is,

v(xN ) = (dist(xN ,D))2 ∈ Vind(D).
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Next, to obtain the gradient-flow system (7.4) from the single-
integrator system (7.2), the distributed controller in (7.3) is designed
as

ci(xNi) = −κi
∂v

∂xi
(xN ) (7.7)

for κi > 0. This equation indicates that the gradient of v(xN ) with
respect to xi can depend only on the states xNi of the neighbors of
robot i. Such a function v(xN ) is said to have a distributed gradient
for graph G. Let Vdis(G) be the set of the functions having distributed
gradients for graph G, that is

Vdis(G) = {v(xN ) ∈ Vc1 : ∀i ∈ N , ∃c̃i : (Rd)|Ni| → Rd

s.t. ∂v

∂xi
(xN ) = c̃i(xNi) ∀xN ∈ (Rd)n}, (7.8)

where c̃i(xNi) = −ci(xNi)/κi and Vc1 is the set of scalar, continuously
differentiable functions. Note that Vdis(G) is non-empty because the
zero function v(xN ) = 0 ∀xN ∈ (Rd)n is always contained.

7.1.2 Best approximate indicators

Now, we are faced with the key issue in this approach: the intersection
Vind(D) ∩ Vdis(G) is possibly empty, depending on D and G. In other
words, there might be no distributed controller of the form (7.7) which
asymptotically stabilizes D. Even in such a case, a relaxed condition

v−1(0) ⊃ D (7.9)

can be considered instead of (7.5). A non-negative function v(xN )
satisfying (7.9) is called an approximate indicator of D. Let Vapp(D) be
the set of approximate indicators of D, that is

Vapp(D) = {v(xN ) : v−1(0) ⊃ D, v(xN ) ≥ 0 ∀xN ∈ (Rd)n}. (7.10)

The intersection Vapp(D)∩Vdis(G) is always non-empty unlike Vind(D)∩
Vdis(G) because the zero function belongs to Vapp(D) ∩ Vdis(G).

Note that just finding a function v(xN ) ∈ Vapp(D) ∩ Vdis(G) makes
no sense because the zero function is contained. Hence, we need to find
the most appropriate function v̂(xN ) from Vapp(D)∩Vdis(G) in terms of



7.2. Characterization of the best approximate indicators 91

achieving the generalized coordination (7.1). Such v̂(xN ) can be defined
as the function of which zero set v̂−1(0) is the most similar to D in the
following sense:

D ⊂ v̂−1(0) ⊂ v−1(0) ∀v(xN ) ∈ Vapp(D) ∩ Vdis(G). (7.11)

A function v̂(xN ) ∈ Vapp(D)∩Vdis(G) satisfying (7.11) is called the best
approximate indicator of D under G. The gradient-flow system (7.4) of
the best approximate indicator v̂(xN ) can drive the robots to the point
nearest to D among all the functions in Vapp(D)∩ Vdis(G). Moreover, if
Vind(D) ∩ Vdis(G) is non-empty, v̂(xN ) is always an indicator of D.

7.1.3 Target problems

The first problem tackled in this chapter is to characterize the best
approximate indicator to design a distributed controller as follows.

Problem 7.1. For a graph G = (N , E) and a non-empty set D ⊂
(Rd)n, characterize the best approximate indicators, say v̂(xN ) ∈
Vapp(D) ∩ Vdis(G) satisfying (7.11). Moreover, design a distributed
controller via the gradient of one of the best approximate indicators,
and analyze the stability of the resultant system.

The next problem is to specify (D, G) such that there exists an
indicator having a distributed gradient.

Problem 7.2. Derive a necessary and sufficient condition of (D, G)
such that there exists an indicator of D having a distributed gradient
for G, that is, Vapp(D) ∩ Vdis(G) is non-empty.

7.2 Characterization of the best approximate indicators

Before addressing Problem 7.1, the functions having distributed gra-
dients, say v(xN ) ∈ Vdis(G), are characterized. Let C1, C2, . . . , Cq ⊂ N
be the maximal cliques in graph G. The key is the decomposability
into clique-based functions as follows, where proj·(·) is the projection
defined in (3.13).
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Theorem 7.1. For a graph G, a continuously differential function
v : (Rd)n → R belongs to Vdis(G) if and only if it can be of the
form

v(xN ) =
∑

k∈clq(G)
vk(xCk) (7.12)

with some functions vk(xCk) for maximal cliques Ck, k ∈ clq(G).
Moreover, if v(xN ) is non-negative and v−1(0) is non-empty, each
vk(xCk) can be chosen as an indicator of projCk(v−1(0)).

Proof. To show sufficiency, assume that a continuously differentiable
function v(xN ) is of the form (7.12) with some functions vk(xCk). Note
that ∂vk/∂xi(xCk) = 0 holds if k 6∈ clqi(G) because xCk does not include
xi. Then, by partially differentiating v(xN ) with respect to xi, we obtain

∂v

∂xi
(xN ) = ∂

∂xi

∑
k∈clq(G)

vk(xCk) = ∂

∂xi

∑
k∈clqi(G)

vk(xCk) = c̃i(xNi)

with some function c̃i(xNi) from the relation (4.7) between the neighbor
set Ni and the maximal cliques Ck for k ∈ clqi(G). Hence, v(xN ) ∈
Vdis(G) is satisfied from (7.8).

The necessity part follows from Lemma D.9. The latter part of this
theorem follows from Lemma D.7 (a).

In the characterization (7.12), the functions belonging to Vdis(G)
consist of clique-based functions vk(xCk), which are parameters to be
designed according to control objectives. Because Theorem 7.1 provides
a necessary and sufficient condition, the best performance is necessarily
obtained for any criterion with an objective function of the form (7.12)
by appropriate choice of vk(xCk).

The following theorem shows that we just have to assign indicators
of projCk(D) to vk(xCk) for attaining the best approximate indicators.

Theorem 7.2. For a graph G and a non-empty set D ⊂ (Rd)n, a
function v̂ : (Rd)n → R is the best approximate indicator of D
having a distributed gradient for G, i.e., v̂(xN ) ∈ Vapp(D)∩Vdis(G)
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satisfies (7.11), if and only if it can be of the form

v̂(xN ) =
∑

k∈clq(G)
v̂k(xCk) (7.13)

with indicators v̂k(xCk) of projCk(D) for the maximal cliques Ck,
k ∈ clq(G).

Proof. (Sufficiency) Let v̂(xN ) be a function of the form (7.13) with
indicators v̂k(xCk) of projCk(D). First, from Theorem 7.1, v̂(xN ) ∈
Vdis(G) holds. Next,

v̂−1(0) =
⋂

k∈clq(G)
{xN ∈ (Rd)n : xCk ∈ v̂

−1
k (0)}

=
⋂

k∈clq(G)
{xN ∈ (Rd)n : xCk ∈ projCk(D)} (7.14)

⊃ D

is obtained from (7.13), the indicators v̂k(xCk) of projCk(D), and the
definition of the projection. Hence, v̂(xN ) ∈ Vapp(D) holds from (7.10).
Finally, to show (7.11), consider a function v(xN ) ∈ Vapp(D) ∩ Vdis(G).
From v(xN ) ∈ Vdis(G) and its non-negativeness, Theorem 7.1 guaran-
tees that v(xN ) can be of the form (7.12) with indicators vk(xCk) of
projCk(v−1(0)). From v(xN ) ∈ Vapp(D), D ⊂ v−1(0) holds, which yields
projCk(D) ⊂ projCk(v

−1(0)) = v−1
k (0). Take the intersection of these

sets in (Rd)n for all k ∈ clq(G), and we obtain⋂
k∈clq(G)

{xN ∈ (Rd)n : xCk ∈ projCk(D)}

⊂
⋂

k∈clq(G)
{xN ∈ (Rd)n : xCk ∈ v

−1
k (0)} = v−1(0). (7.15)

From (7.14) and (7.15), (7.11) is obtained.
(Necessity) Assume that a function ṽ(xN ) ∈ Vapp(D) ∩ Vdis(G)

satisfies (7.11). Here, we show that ṽ(xN ) is of the form (7.13) after all.
From ṽ(xN ) ∈ Vapp(D), ṽ(xN ) is non-negative and ṽ−1(0) is non-empty.
From these facts and ṽ(xN ) ∈ Vdis(G), Theorem 7.1 guarantees that
ṽ(xN ) ∈ Vdis(G) is of the form as (7.12), i.e., the sum of indicators
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ṽk(xCk) of projCk(ṽ−1(0)) for k ∈ clq(G). Hence, to show that ṽ(xN ) is
of the form (7.13), it is sufficient to show that

projCk(ṽ−1(0)) = projCk(D) (7.16)

holds for any k ∈ clq(G). From ṽ(xN ) ∈ Vapp(D), D ⊂ ṽ−1(0) holds,
which leads to projCk(D) ⊂ projCk(ṽ

−1(0)). Because v̂(xN ) in (7.13)
also satisfies (7.11) from the sufficiency part, ṽ−1(0) = v̂−1(0) holds,
from which

projC`(ṽ
−1(0)) = projC`(v̂

−1(0))

= projC`(
⋂

k∈clq(G)
{xN ∈ (Rd)n : xCk ∈ projCk(D)})

⊂ projC`({xN ∈ (Rd)n : xC` ∈ projC`(D)})
= projC`(D)

is obtained with (7.14). Hence, (7.16) is achieved.

Theorem 7.2 shows that the zero set v̂−1(0) of (7.13), given in (7.14),
is the most similar to D in the sense of (7.11). Hence, the zero set v̂−1(0)
indicates the control performance achievable under graph G from the
viewpoint of how similar a configuration can be obtained by the robots.
This is explained through the following example.

Example 7.1. Consider the multi-robot system with n = 3 robots
in d = 1-dimensional space. We will compare two graphs Ga and
Gb in Figs. 7.1a and 7.1b, respectively, on the control performance
in terms of the zero sets v̂−1(0) of (7.13). First, consider Ga, which
contains two maximal cliques of order two (i.e., edges): C1 = {1, 2}
and C2 = {1, 3}. The desired configuration set D ⊂ (R1)3 and
the zero set v̂−1(0) for Ga are shown in Fig. 7.1c, where each axis
corresponds to the position xi ∈ R of each robot. In Fig. 7.1c, v̂−1(0)
is described by the dark gray area, that is, the intersection of the
elliptical cylinders {xN ∈ (Rd)n : xCk ∈ projCk(D)} for k = 1, 2
according to (7.14). Note that v̂−1(0) is different from D in this
case. Next, consider Gb, which contains one maximal clique of order
three: C1 = {1, 2, 3}. As shown in Fig. 7.1d, the zero set v̂−1(0) is
equivalent to D in this case. Accordingly, graph Gb can achieve



7.3. Controller design 95

! "

#C
1

C
2

(a) Graph Ga

! "

#

C
1

(b) Graph Gb

D v̂−1(0)

x
1

x
2

x
3

(c) Zero set v̂−1(0) for Ga

D = v̂−1(0)

x
1

x
2

x
3

(d) Zero set v̂−1(0) for Gb

Figure 7.1: Comparison of graphs on control performance in terms of the zero sets
v̂−1(0): (a), (b) graphs Ga, Gb; (c), (d) the corresponding zero sets v̂−1(0).

better performance than Ga. This illustrates the importance of
“cliques” rather than “edges”.

7.3 Controller design

To obtain the approximate indicator according to Theorem 7.2, we need
to design indicators v̂k(xCk) of projCk(D). A typical indicator is given
as follows.

Lemma 7.3. For a non-empty set D ⊂ (Rd)n and a node subset
Ck ⊂ N , the squared distance function of projCk(D) given by

vk(xCk) = γk
2 (dist(xCk ,projCk(D)))2 (7.17)

is an indicator of projCk(D) for γk > 0.

Proof. This lemma follows from the definition of the distance function.

From this lemma, an example of the functions satisfying the condi-
tions in Theorem 7.2 is given as follows.
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Theorem 7.4. For a graph G and a non-empty set D ⊂ (Rd)n,

v̂(xN ) =
∑

k∈clq(G)

γk
2 (dist(xCk ,projCk(D)))2 (7.18)

for γk > 0 is the best approximate indicator of D having a dis-
tributed gradient for G, i.e., v̂(xN ) ∈ Vapp(D) ∩ Vdis(G) satisfies
(7.11).

Proof. This theorem follows from Theorem 7.2 and Lemma 7.3.

The meaning of the function (7.18) is explained from the viewpoint
of optimization as follows. The target problem, namely, the generalized
coordination (7.1), corresponds to solving the optimization problem

dist(xN ,D) = inf
D∈D
‖xN −D‖. (7.19)

Because (7.19) depends on the states x1, x2, . . . , xn of all the robots, it
is solvable in a centralized way. Instead, by projecting (7.19) onto the
xCk -space, the optimization problem is reduced to

dist(xCk , projCk(D)) = inf
Dk∈projCk (D)

‖xCk −Dk‖, (7.20)

which is solvable in a distributed manner when Ck is a maximal clique.
Combination of the solutions to (7.20) for all Ck (k ∈ clq(G)) yields the
best approximate solution to the target problem (7.19). This procedure
corresponds to (7.18).

A distributed controller is designed as the gradient of the best
approximate indicator (7.18) as shown in the following theorem, where
cl(·) represents the closure of a set and colm(·) is the mth element of a
tuple.

Theorem 7.5. For a graph G and a non-empty set D ⊂ (Rd)n,
assume that the solution Dk to (7.20) exists as a function D̂k :
(Rd)|Ck| → cl(projCk(D)) of xCk for each k ∈ clq(G). Then, the
gradient-based controller (7.7) for v(xN ) = v̂(xN ) in (7.18) is
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reduced to the distributed controller

ci(xNi) = −κi
∑

k∈clqi(G)
γk(xi − colnki(D̂k(xCk))) (7.21)

for κi, γk > 0, where nki ∈ {1, 2, . . . , |Ck|} represents the order of
i ∈ N in the maximal clique Ck, i.e., xCk = (. . . , nkixi , . . .).

Proof. This theorem follows from Lemma C.1.

The distributed controller (7.21) can be systematically designed
according to G and D. To implement this controller, each robot has to
know the maximal cliques Ck, k ∈ clqi(G) that it belongs to. How to
find them is discussed in Section 7.6. Furthermore, each robot needs
to solve the optimization problem (7.20), which is considered in the
following chapters in some concrete cases.

7.4 Stability analysis

The stability of the system with the designed controller (7.21) is analyzed
under some assumptions on the desired configuration set D.

First, the Lagrange stability is ensured if D is compact.

Theorem 7.6. For a graph G and a non-empty, compact set D ⊂
(Rd)n, assume that the solution to (7.20) exists for each k ∈ clq(G).
Then, the system (7.2) under the control input (7.3) with the
distributed controller (7.21) is Lagrange stable and (∂v̂/∂xN )−1(0)
is globally attractive for v̂(xN ) in (7.18).

Proof. From Theorem 7.5, the distributed controller (7.21) is derived
from the gradient of v̂(xN ) in (7.18). Hence, the system is reduced to
the gradient-flow system (7.4) of v(xN ) = v̂(xN ). From Theorem 5.3, for
the Lagrange stability and the global attractiveness of (∂v̂/∂xN )−1(0),
it is sufficient to prove that v̂(xN ) is radially unbounded. Because D
is non-empty and compact, projCk(D) is non-empty and compact, and
thus dist(xCk , projCk(D)) is radially unbounded for any k ∈ clq(G).
When ‖xN ‖ → ∞, at least one vector satisfies ‖xi‖ → ∞, which leads
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to dist(xCk , projCk(D)) → ∞ for some k ∈ clqi(G) because each node
belongs to at least one maximal clique. Then, from (7.18), v̂(xN )→∞
is satisfied, which implies that v̂(xN ) is radially unbounded.

In the next chapter, the Lagrange stability will be ensured for
non-compact sets D, differently from Theorem 7.6.

Next, the asymptotic stability is ensured under some assumptions
including the Lagrange stability of the system. See Appendix B for real
analytic submanifolds.

Theorem 7.7. For a graph G and a non-empty set D ⊂ (Rd)n,
assume that (i) the solution to (7.20) exists for each k ∈ clq(G),
that (ii) the system (7.2) under the control input (7.3) with
the distributed controller (7.21) is Lagrange stable, and that (iii)
projCk(D) is a real analytic submanifold for each k ∈ clq(G). Then,
v̂−1(0) is asymptotically stable for v̂(xN ) in (7.18).

Proof. For v̂(xN ) in (7.18), the zero set v̂−1(0) is non-empty because
D is non-empty and v̂(xN ) ∈ Vapp(D). Because projCk(D) is a real
analytic submanifold from the assumption, Lemma B.1 guarantees
that (dist(xCk ,projCk(D)))2 is a real analytic function in an open set
containing projCk(D). Thus, v̂(xN ) in (7.18) is real analytic in an open
set containing

⋂
k∈clq(G){xN ∈ (Rd)n : xCk ∈ projCk(D)} = v̂−1(0).

Additionally because the system is assumed to be Lagrange stable,
Theorem 5.6 guarantees that v̂−1(0) is asymptotically stable.

7.5 Existence of indicators

To solve Problem 7.2, a condition of (D, G) will be derived such that
there exists an indicator of D having a distributed gradient for G,
i.e., Vind(D) ∩ Vdis(G) is non-empty. According to Theorem 7.2, this
condition is fulfilled if and only if the best approximate indicator v̂(xN )
in (7.13) satisfies (7.5) to be an indicator. Hence, it is sufficient to verify
whether v̂(xN ) satisfies (7.5) or not. From this viewpoint, the following
theorem is derived.
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Theorem 7.8. For a graph G and a non-empty set D ⊂ (Rd)n,
there exists an indicator of D having a distributed gradient for G,
i.e., Vind(D)∩Vdis(G) is non-empty, if and only if the set framework
(D, G) is clique rigid. Moreover, under this condition, a function
v : (Rd)n → R belongs to Vind(D) ∩ Vdis(G) if and only if it can
be of the form (7.13) for v̂(xN ) = v(xN ) with indicators v̂k(xCk)
of projCk(D) for the maximal cliques Ck, k ∈ clq(G).

Proof. From Theorem 7.2 and the discussion just before this theorem, it
is sufficient to verify that (7.5) holds for v(xN ) = v̂(xN ) in (7.13), where
v̂k(xCk) are indicators of projCk(D). From v̂(xN ) ∈ Vapp(D), v̂−1(0) ⊃ D
always holds. Hence, (7.5) holds if and only if the converse inclusion

v̂−1(0) =
⋂

k∈clq(G)
{xN ∈ (Rd)n : xCk ∈ projCk(D)} ⊂ D

holds, which is equivalent to the definition (4.10) of clique rigidity.

7.6 Notes and references

In the conventional research, the gradient-flow approach is employed
with an edge-based function v(xN ) =

∑
{i,j}∈E ψij(xi, xj), as men-

tioned in Chapter 6. The point of this chapter is the shift of objective
functions from edge-based functions to clique-based ones v(xN ) =∑
k∈clq(G) vk(xCk) in Theorem 7.1. Because each edge is contained by a

maximal clique, the set of clique-based functions contains that of edge-
based functions. Hence, clique-based functions always have potential
to enhance the control performance. Actually, Theorem 7.2 guarantees
that the best performance is obtained in terms of the generalized coordi-
nation by clique-based functions. This result was obtained in Sakurama
et al., 2012; Sakurama et al., 2015. According to this shift, the graph
conditions are generalized from conventional ones, e.g., connectivity
and global rigidity, into clique rigidity. Actually, Theorem 7.8 shows
that clique rigidity is a necessary and sufficient condition for achieving
the generalized coordination, which was first pointed out by Sakurama,
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2021b. See Section 4.4 for correspondence between clique rigidity and
conventional graph conditions.

One drawback of employing clique-based functions is that each robot
has to know the maximal cliques Ck, k ∈ clqi(G) that it belongs to from
the subgraph G|Ni of neighbors. To construct G|Ni , the information
on the connections between neighbors is required. Hence, whether this
information is available or not determines the applicability of this
method. Once G|Ni is obtained, it is not difficult to list the maximal
cliques Ck, k ∈ clqi(G) if there are not many neighbors, as discussed in
Section 4.6.



8
Generalized Coordination with “Relative”

Measurements

Consider the generalized coordination problem

lim
t→∞

dist(xN (t),D) = 0 (8.1)

with respect to a desired configuration set D ⊂ (Rd)n. The setting
different from the previous chapter is that the global and local coordinate
frames Σ,Σi(t) differ in general. As shown in Subsection 2.3.1, a global
coordinate p(t) ∈ Rd and the corresponding local coordinate p[i](t) ∈ Rd

are transformed into each other according to

p(t) = Mi(t)p[i](t) + bi(t) (8.2)

for (Mi(t), bi(t)) ∈ M n B. Here, we assume that the frame transfor-
mation setMn B has the structure of a semidirect product and is a
subgroup of scaled(O(d))nRd. This assumption is fulfilled with typical
frame transformation sets including the examples in Subsection 2.3.1.

We expect to design a distributed controller with relative measure-
ments over a graph G such that the generalized coordination (8.1)
is achieved. Whether such a controller exists depends on the triple
(D, G,M n B). In this chapter, we derive a necessary and sufficient
condition of (D, G,Mn B) for the existence of such a controller.

101
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8.1 Problem formulation

A frame transformation setMnB is given as a subgroup of scaled(O(d))n
Rd. As discussed in Section 2.3, under the coordinate transformation
(8.2) for (Mi(t), bi(t)) ∈Mn B, the kinematic model is given as

ẋi(t) = Mi(t)ui(t) (8.3)

and the relative position x[i]
j (t) of neighbor j ∈ Ni is given as

x
[i]
j (t) = M−1

i (t)(xj(t)− bi(t)) = (Mi(t), bi(t))−1 • xj(t) (8.4)

from (3.8). For a graph G = (N , E), the admissible controller is of the
form

ui(t) = ci(x[i]
Ni(t)) (8.5)

with a function ci : (Rd)|Ni| → Rd, where Ni ⊂ N is the neighbor set
of robot i, defined in (4.1). A controller of the form (8.5) is called a
distributed controller with relative measurements.

8.1.1 Gradient-flow approach

To achieve the generalized coordination (8.1) with respect to a set D ⊂
(Rd)n, we expect to asymptotically stabilize D. To design a controller for
this purpose, the gradient-flow approach is employed. The gradient-flow
system is given as

ẋi(t) = −κi
∂v

∂xi
(xN (t)) (8.6)

with a non-negative, continuously differentiable function v : (Rd)n → R+
and a positive constant κi > 0. As discussed in Subsection 7.1.1, to
asymptotically stabilize D, the objective function v(xN ) is expected to
be an indicator of D, that is, v(xN ) ∈ Vind(D). Furthermore, to obtain
the gradient-flow system (8.6) from the system (8.3) with the control
input (8.5), the controller is of the form

ci(x[i]
Ni) = −κiM−1

i

∂v

∂xi
(xN ), (8.7)

where x[i]
j = (Mi, bi)−1 • xj represents the relative position of neighbor

j ∈ Ni for (Mi, bi) ∈Mn B according to (8.4). Here, we consider the
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situation that the value of (Mi, bi) is unknown. Hence, (8.7) has to hold
for arbitrary (Mi, bi) ∈Mn B.

A function v(xN ) satisfying (8.7) can be characterized with Vrel(Mn
B) defined as follows:

Vrel(Mn B) = {v(xN ) ∈ Vc1 : ∀i ∈ N , ∃c̄i : (Rd)n → Rd

s.t. M−1
i

∂v

∂xi
(xN ) = c̄i((Mi, bi)−1 • xN )

∀xN ∈ (Rd)n, (Mi, bi) ∈Mn B}. (8.8)

A function v(xN ) ∈ Vrel(MnB) is said to have a relative gradient. Note
that Vrel(MnB) in (8.8) focuses on the relativity of the gradients rather
than distributedness. Actually, to satisfy (8.7), v(xN ) needs to have a
distributed, relative gradient, i.e., v(xN ) ∈ Vdis(G) ∩ Vrel(M n B), as
follows.

Proposition 8.1. For a graph G and a subgroupMnB of GL(d)n
Rd, there exists a function ci : (Rd)|Ni| → Rd satisfying (8.7) with
κi > 0, x[i]

j = (Mi, bi)−1 • xj for any xN ∈ (Rd)n and (Mi, bi) ∈
MnB for each i ∈ N , if and only if v(xN ) ∈ Vdis(G)∩Vrel(MnB).

Proof. We show only the sufficiency because the necessity can be shown
in the same way. Consider a function v(xN ) ∈ Vdis(G) ∩ Vrel(Mn B).
From (7.8) and (8.8),

∂v

∂xi
(xN ) = Mic̄i((Mi, bi)−1 • xN ) = c̃i(xNi) (8.9)

holds for any xN ∈ (Rd)n and (Mi, bi) ∈MnB. Let (Mi, bi) = (Id, 0) ∈
Mn B, and from (8.9),

c̄i(xN ) = c̃i(xNi) (8.10)

holds for any xN ∈ (Rd)n. By replacing xN with (Mi, bi)−1 • xN in
(8.10), and from (8.9),

c̃i((Mi, bi)−1 • xNi) = c̄i((Mi, bi)−1 • xN ) = M−1
i

∂v

∂xi
(xN ) (8.11)

is obtained. From (8.11), (8.7) is achieved for ci(x[i]
Ni) = −κic̃i(x[i]

Ni).
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8.1.2 Target problem

Now, we expect to design an objective function v(xN ) ∈ Vind(D) ∩
Vdis(G)∩Vrel(MnB). The existence of such a function depends on the
triple (D, G,Mn B). Our goal in this chapter is to identify the triples
with which such an objective function exists. Moreover, we design a
distributed controller with relative measurements with such an objective
function, and show that this controller asymptotically stabilizes D.

Problem 8.1. For a graph G, a non-empty set D ⊂ (Rd)n, and a sub-
groupMnB of scaled(O(d))nRd, specify the triples (D, G,MnB)
such that the intersection Vind(D) ∩ Vdis(G) ∩ Vrel(Mn B) is non-
empty. Next, characterize the functions belonging to this inter-
section. Then, design a distributed controller with relative mea-
surements from the gradient of such a function when it exists.
Finally, analyze the asymptotic stability of D for the system with
the designed controller.

8.2 Characterization of indicators

As the solution to the first part of Problem 8.1, the strict condition of
the triple (D, G,Mn B) for the non-emptiness of Vind(D) ∩ Vdis(G) ∩
Vrel(Mn B) is derived as follows.

Theorem 8.1. For a graph G, a non-empty set D ⊂ (Rd)n, and a
subgroupMnB of scaled(O(d))nRd, the set Vind(D)∩Vdis(G)∩
Vrel(MnB) is non-empty if and only if the following two conditions
are satisfied:

(A) The set framework (D, G) is clique rigid.

(B) The set D is of the following form with some non-empty set
X ∗ ⊂ (Rd)n.

D = orbMnB(X ∗) (8.12)
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Proof. (Necessity) Assume that Vind(D)∩Vdis(G)∩Vrel(MnB) is non-
empty. Then, from the non-emptiness of Vind(D) ∩ Vdis(G), Theorem
7.8 guarantees that condition (A) holds. The rest of the proof is to
derive condition (B). From the assumption, there exists a function
v(xN ) ∈ Vind(D)∩Vrel(MnB). Then, from (7.6), v(xN ) is non-negative
and v−1(0) = D is non-empty. Hence, Lemma 8.3 given below guarantees
that v(xN ) ∈ Vrel(M n B) is relatively (M n B)-invariant of weight
| det(M)|

2
d for (M, b) ∈ M n B. Let x̃N ∈ D and (M̃, b̃) ∈ M n B.

Then, from (7.6), v(x̃N ) = 0 holds. Furthermore, from the definition
(3.19) of the relative invariance, v((M̃, b̃) • x̃N ) = | det(M̃)|

2
d v(x̃N ) = 0

holds, and (M̃, b̃) • x̃N ∈ v−1(0) = D is obtained from (7.6). Hence,
D is (M n B)-invariant. Finally, Lemma 3.2 guarantees that such a
non-empty set D is of the form (8.12) with some non-empty set X ∗.

(Sufficiency) This part follows from Theorem 8.4 given below.

According to Theorem 8.1, the requirement to the triple (D, G,Mn
B) is decomposed into condition (A) of (D, G) and condition (B) of
(D,MnB). Condition (A) requires the set framework (D, G) to be clique
rigid in the same way as the absolute measurement case in Theorem 7.8
for the distributedness of controllers. Condition (B) is the additional
condition for the relativity by making D have the DOF corresponding
to the ambiguity in measurements, represented byMn B.

The following two lemmas are used to prove Theorem 8.1.

Lemma 8.2. For a subgroup M n B of GL(d) n Rd, a function
v(xN ) ∈ Vrel(Mn B) of xN ∈ (Rd)n satisfies

M
∂v

∂xi
(xN ) = ∂v

∂xi
((M, b) • xN ) (8.13)

for any (M, b) ∈Mn B for each i ∈ N .

Proof. By replacing (Mi, bi) = (Id, 0) in the equation of (8.8), c̄i(xN ) =
∂v/∂xi(xN ) is obtained. By applying (Mi, bi) = (M, b)−1 for (M, b) ∈
Mn B to the equation of (8.8), we obtain (8.13) as follows:

M
∂v

∂xi
(xN ) = c̄i((M, b) • xN ) = ∂v

∂xi
((M, b) • xN ).
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Lemma 8.3. For a subgroupMn B of scaled(O(d)) nRd, a non-
negative, continuously differentiable function v : (Rd)n → R such
that v−1(0) is non-empty belongs to Vrel(Mn B) if and only if it
is relatively (M n B)-invariant of weight | det(M)|

2
d for (M, b) ∈

Mn B.

Proof. Consider a non-negative, continuously differentiable function
v : (Rd)n → R such that v−1(0) is non-empty. From the chain rule, the
action on multiple vectors (3.2), and the action of a semidirect product
(3.6),

∂v((M, b) • xN )
∂xi

=
(
∂((M, b) • xi)

∂xi

)> ∂v(yN )
∂yi

∣∣∣∣
yN=(M,b)•xN

= M>
∂v

∂xi
((M, b) • xN ) (8.14)

holds for any (M, b) ∈Mn B.
(Sufficiency) Assume that v(xN ) is relatively (M n B)-invariant

of weight | det(M)|
2
d for (M, b) ∈ M n B. Partially differentiate the

definition (3.19) of the relative invariance with respect to xi by replacing
H = (Mi, bi) ∈ M n B and µ(H) = |det(Mi)|

2
d , and from (3.1) and

(8.14), we obtain

| det(Mi)|
2
dMi

∂v(xN )
∂xi

= Mi
∂v((Mi, bi) • xN )

∂xi
= MiM

>
i

∂v

∂xi
((Mi, bi) • xN )

= | det(Mi)|
2
d
∂v

∂xi
((Mi, bi) • xN ). (8.15)

Apply (Mi, bi)−1 instead of (Mi, bi) to (8.15), and we obtain

M−1
i

∂v(xN )
∂xi

= ∂v

∂xi
((Mi, bi)−1 • xN ) = c̄i((Mi, bi)−1 • xN )

for c̄i(xN ) = ∂v/∂xi(xN ). Hence, v(xN ) ∈ Vrel(M n B) holds from
(8.8).
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(Necessity) Assume that v(xN ) ∈ Vrel(Mn B). From (3.1), (8.13),
and (8.14),

∂v((M, b) • xN )
∂xi

= M>
∂v

∂xi
((M, b) • xN ) = M>M

∂v

∂xi
(xN )

= | det(M)|
2
d
∂v(xN )
∂xi

holds for any (M, b) ∈Mn B, which leads to

∂(v((M, b) • xN )− | det(M)|
2
d v(xN ))

∂xN
= 0. (8.16)

Integrate (8.16) with respect to xN according to the gradient theorem,
we obtain

v((M, b) • xN ) = |det(M)|
2
d v(xN ) + ξ(M, b) (8.17)

with a function ξ : M n B → R independent of xN . Consider x̃N ∈
v−1(0). Then, from (8.17),

v((M, b) • x̃N ) = |det(M)|
2
d v(x̃N ) + ξ(M, b) = ξ(M, b), (8.18)

0 = v(x̃N ) = v(((M, b) ∗ (M, b)−1) • x̃N )
= v((M, b) • ((M, b)−1 • x̃N ))

= |det(M)|
2
d v((M, b)−1 • x̃N ) + ξ(M, b) (8.19)

are obtained, where the associativity of the group action is used. From
(8.18) and (8.19),

ξ(M, b) = v((M, b) • x̃N ) = −| det(M)|
2
d v((M, b)−1 • x̃N )

is obtained, which yields ξ(M, b) = 0 for any (M, b) ∈Mn B because
v(xN ) is non-negative. Hence, from (8.17), v(xN ) satisfies the definition
of the relative invariance (3.19) with weight | det(M)|

2
d for (M, b) ∈

Mn B.

As a solution to the second part of Problem 8.1, the indicators
having distributed relative gradients, i.e., v(xN ) ∈ Vind(D) ∩ Vdis(G) ∩
Vrel(Mn B), are characterized as follows.
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Theorem 8.4. For a graph G, a non-empty set D ⊂ (Rd)n, and a
subgroupMnB of scaled(O(d))nRd, assume that conditions (A)
and (B) in Theorem 8.1 hold. Then, a continuously differentiable
function v̂ : (Rd)n → R belongs to Vind(D)∩Vdis(G)∩Vrel(MnB)
if and only if it can be of the form

v̂(xN ) =
∑

k∈clq(G)
v̂k(xCk) (8.20)

with indicators v̂k(xCk) of projCk(D), relatively (MnB)-invariant
of weight |det(M)|

2
d for (M, b) ∈Mn B for the maximal cliques

Ck, k ∈ clq(G).

Proof. (Sufficiency) Consider a continuously differentiable v̂(xN ) of
the form (8.20) with indicators v̂k(xCk) of projCk(D), relatively (Mn
B)-invariant of weight |det(M)|

2
d for (M, b) ∈ M n B. Theorem 7.8

guarantees that v̂(xN ) ∈ Vind(D)∩ Vdis(G). From the relative (MnB)-
invariance of v̂k(xCk), v̂(xN ) is relatively (Mn B)-invariant of weight
| det(M)|

2
d for (M, b) ∈Mn B as follows:

v̂((M, b) • xN ) =
∑

k∈clq(G)
v̂k((M, b) • xCk) =

∑
k∈clq(G)

|det(M)|
2
d v̂k(xCk)

= | det(M)|
2
d v̂(xN ).

Moreover, v̂(xN ) ∈ Vind(D) is non-negative and v̂−1(0) = D is non-
empty, and thus Lemma 8.3 guarantees v̂(xN ) ∈ Vrel(Mn B).

(Necessity) Consider a continuously differentiable function v̂(xN ) ∈
Vind(D)∩Vdis(G)∩Vrel(MnB). From Theorem 7.8, v̂(xN ) ∈ Vind(D)∩
Vdis(G) can be of the form (8.20) with indicators v̂k(xCk) of projCk(D)
for k ∈ clq(G). Additionally, each of these v̂k(xCk) can be chosen
as a relatively (M n B)-invariant function of weight | det(M)|

2
d for

(M, b) ∈Mn B from Lemma D.7 (b).

Compared to Theorem 7.8, which characterizes the functions belong-
ing to Vind(D)∩Vdis(G), Theorem 8.4 imposes the additional condition of
Vrel(Mn B). Accordingly, v̂k(xCk) is required to be relatively invariant.
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8.3 Controller design

A typical relatively (M n B)-invariant indicator vk(xCk), required in
Theorem 8.4, is given as follows.

Lemma 8.5. For a subgroupMn B of scaled(O(d)) nRd, assume
that a set D ⊂ (Rd)n satisfies condition (B) in Theorem 8.1. Then,

v̂k(xCk) = γk
2 (dist(xCk ,projCk(D)))2 (8.21)

with γk > 0 is an indicator of projCk(D), relatively (MnB)-invariant
of weight |det(M)|

2
d for (M, b) ∈Mn B.

Proof. The part of the indicator is obvious. From condition (B), D in
(8.12) is an (Mn B)-orbit. Then, Lemmas 3.2 and 3.3 guarantee that
projCk(D) is an (M n B)-invariant subset of (Rd)|Ck|. Hence, Lemma
3.4 guarantees that the distance function (8.21) is relatively (Mn B)-
invariant of weight |det(M)|

2
d .

From this lemma, an example of the functions characterized in
Theorem 8.4 is given as follows.

Theorem 8.6. For a graph G, a non-empty set D ⊂ (Rd)n, and
a subgroupMn B of scaled(O(d)) nRd, assume that conditions
(A) and (B) in Theorem 8.1 hold. Then,

v̂(xN ) =
∑

k∈clq(G)

γk
2 (dist(xCk ,projCk(D)))2 (8.22)

belongs to Vind(D) ∩ Vdis(G) ∩ Vrel(Mn B).

Proof. This theorem follows from Theorem 8.4 and Lemma 8.5.

To employ the function v̂(xN ) in (8.22), the following optimization
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problem has to be solved:

dist(xCk , projCk(D))
= inf

Dk∈projCk (D)
‖xCk −Dk‖

= inf
((Mk,bk),Ξk)∈(MnB)×projCk (X ∗)

‖xCk − (Mk, bk) • Ξk‖. (8.23)

The last equation follows from

projCk(D)
= projCk(orbMnB(X ∗)) = orbMnB(projCk(X ∗))
= {(Mk, bk) • Ξk ∈ (Rd)|Ck| : (Mk, bk) ∈ (Mn B),Ξk ∈ projCk(X ∗)}

for D in (8.12), where Lemma 3.1 is used. The optimization problem
(8.23) can be analytically solved for typicalM, B, and X ∗, as detailed
in Appendix E.

A distributed controller with relative measurements is derived from
v̂(xN ) in (8.22) as follows.

Theorem 8.7. For a graph G, a set D ⊂ (Rd)n, and a subgroup
MnB of scaled(O(d))nRd, assume that condition (B) in Theorem
8.1 holds, and that the solution to (8.23) exists as a function
((M̂k, b̂k), Ξ̂k) : (Rd)|Ck| → cl((M n B) × projCk(X

∗)) of xCk for
each k ∈ clq(G). Let

D̂k(xCk) = (M̂k(xCk), b̂k(xCk)) • Ξ̂k(xCk),

and the gradient-based controller (8.7) for v(xN ) = v̂(xN ) in (8.22)
is reduced to the distributed controller with relative measurements
as

ci(x[i]
Ni) = −κi

∑
k∈clqi(G)

γk(x
[i]
i − colnki(D̂k(x

[i]
Ck))) (8.24)

for κi, γk > 0, where nki ∈ {1, 2, . . . , |Ck|} represents the order of
i ∈ N in the maximal clique Ck, i.e., xCk = (. . . , nkixi , . . .).
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Proof. Under condition (B) in Theorem 8.1, Lemma 8.5 guarantees that
v̂k(xCk) in (8.21) is relatively (MnB)-invariant of weight |det(M)|

2
d for

(M, b) ∈MnB. This function is non-negative and v̂−1
k (0) is non-empty.

Thus, from Lemma 8.3, v̂k(xCk) ∈ Frel(Mn B) holds. From the inverse
(3.5) of a semidirect product, (8.13) in Lemma 8.2, and (C.3) in Lemma
C.1,

M−1
i

∂v̂k
∂xi

(xCk) = ∂v̂k
∂xi

((Mi, bi)−1 • xCk) = ∂v̂k
∂xi

(x[i]
Ck)

= x
[i]
i − colnki(D̂k(x

[i]
Ck)) (8.25)

is obtained, where x[i]
j = (Mi, bi)−1 • xj . From (8.7), (8.22), and (8.25),

(8.24) is obtained.

Theorem 8.7 does not require condition (A) in Theorem 8.1, that is,
the clique rigidity of the set framework (D, G). Without this condition,
the designed controller (8.24) is distributed with relative measurements,
and provides the best performance in the sense that the objective
function (8.22) is the best approximate indicator from Theorem 7.4.

8.4 Stability analysis

The stability of the system with the designed controller (8.24) is analyzed
under some assumptions onM, B, and X ∗. The assumptions are fulfilled
with typical semidirect products including the examples in Subsection
2.3.1.

First, Lagrange stability is ensured.

Theorem 8.8. For a graph G, a set D ⊂ (Rd)n, and a subgroup
M n B of scaled(O(d)) n Rd, consider the system (8.3) under
the control input (8.5) of the distributed controller (8.24) with
relative measurements. Assume the assumptions in Theorem 8.7,
and assume that M, B, and X ∗ satisfy either of the following
conditions:

(a)M, B, and X ∗ are all non-empty and compact;

(b)B = Rd, andM and X ∗ are non-empty and compact;
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(c) scaled({Id}) is a subgroup of M, and B and X ∗ are non-
empty.

Then, the system is Lagrange stable, and (∂v̂/∂xN )−1(0) is globally
attractive for v̂(xN ) in (8.22).

Proof. From condition (B) in Theorem 8.1, D is of the form (8.12).
From Theorem 8.7, the system (8.3) with the control input (8.5) and
(8.24) is equivalent to the gradient-flow system (8.6) for v̂(xN ) in (8.22).

First, under condition (a), D in (8.12) is non-empty and compact.
Then, Theorem 7.6 guarantees the Lagrange stability and global attrac-
tiveness.

Next, assume condition (b). Without loss of generality, we assume
that G is connected. Otherwise, we just have to discuss the following for
each connected component of G. We show that v̂(xN ) in (8.22) satisfies
conditions (i) and (ii) in Theorem 5.4. As for condition (i), from B = Rd,
{Id} n Rd is a subgroup of M n B. Hence, v̂k(xCk) in (8.21) can be
guaranteed to be ({Id}nRd)-invariant in the same way as Lemma 8.5.
Hence, v̂(xN ) in (8.22) is ({Id}nRd)-invariant. To verify condition (ii),
consider a pair i1, i2 ∈ Ck in a maximal clique Ck. According to (8.23),
the expressions

dist(xCk ,projCk(D))2

= ‖xCk − (M̂k, b̂k) • Ξ̂k‖2 =
∑
i∈Ck

‖xi − M̂kcolnki(Ξ̂k)− b̂k‖
2

≥ ‖xi1 − M̂kcolnki1 (Ξ̂k)− b̂k‖2 + ‖xi2 − M̂kcolnki2 (Ξ̂k)− b̂k‖2

≥ 1
2‖xi1 − M̂kcolnki1 (Ξ̂k)− b̂k − (xi2 − M̂kcolnki2 (Ξ̂k)− b̂k)‖2

= 1
2‖xi1 − xi2 − M̂k(colnki1 (Ξ̂k)− colnki2 (Ξ̂k))‖2

≥ 1
2(‖xi1 − xi2‖ − | det(M̂k)|

1
d ‖colnki1 (Ξ̂k)− colnki2 (Ξ̂k)‖)2

(8.26)
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hold from the parallelogram law and (3.1). From (8.22) and (8.26),

‖xi1 − xi2‖

≤
√

2dist(xCk , projCk(D)) + |det(M̂k)|
1
d ‖colnki1 (Ξ̂k)− colnki2 (Ξ̂k)‖

≤ 2
√
v̂(xN )
γk

+
√

2|det(M̂k)|
1
d ‖Ξ̂k‖ ≤ λ1

√
v̂(xN ) + λ2 (8.27)

is obtained, where

λ1 = 2√
mink∈clq(G) γk

> 0

λ2 =
√

2 max
M∈M

|det(M)|
1
d max
k∈clq(G)

max
Ξ∈projCk (X ∗)

‖Ξ‖ ≥ 0.

The constant λ2 exists under the assumption that M and X ∗ are
non-empty and compact. Note that each edge belongs to a maximal
clique, and from the assumption of the connectivity of G, there is an
n-tuple (i1, i2, . . . , in) of the distinct elements in N such that for any
` ∈ {2, 3 . . . , n}, there exists ˆ̀ < ` satisfying {iˆ̀, i`} ∈ E . Moreover,
for any ` ∈ {2, 3 . . . , n}, (8.27) holds for iˆ̀ and i` instead of i1 and i2.
Hence, condition (ii) in Theorem 5.4 is satisfied, and thus the system is
Lagrange stable and (∂v̂/∂xN )−1(0) is globally attractive.

Finally, consider condition (c). Then, scaled({Id})n{0} is a subgroup
ofMn B. In the same way as Lemma 8.5, we can show that v̂k(xCk)
in (8.21) is relatively (scaled({Id}) n {0})-invariant of weight s2 for
(sId, 0) ∈ (scaled({Id}) n {0}) with s > 0, and so is v̂(xN ) in (8.22).
Hence, Theorem 5.5 guarantees that the system is Lagrange stable and
(∂v̂/∂xN )−1(0) is globally attractive.

Next, the asymptotic stability of v̂−1(0) is guaranteed under the
assumption that M, B, and X ∗ are real analytic submanifolds. (See
Appendix B for the real analyticity of submanifolds.)

Theorem 8.9. For a graph G, a set D ⊂ (Rd)n, and a subgroup
M n B of scaled(O(d)) n Rd, consider the system (8.3) under
the control input (8.5) of the distributed controller (8.24) with
relative measurements. Assume that the assumptions in Theorem



114 Generalized Coordination with “Relative” Measurements

8.7 are satisfied, that the system is Lagrange stable, and that
M, B, and projCk(X

∗) are real analytic submanifolds for any
k ∈ clq(G). Then, v̂−1(0) is asymptotically stable for v̂(xN ) in
(8.22). Moreover, if the set framework (D, G) is clique rigid, D is
asymptotically stable.

Proof. The part of the asymptotic stability of v̂−1(0) follows from
Theorem 7.7. The asymptotic stability of D is achieved because if
(D, G) is clique rigid, v̂−1(0) = D holds from Theorem 7.8.

8.5 Relations between coordination, measurement, and networks

According to Theorem 8.1, this section provides the relations of the triple
(D, G,Mn B) to achieve the generalized coordination by a distributed
controller with relative measurements.

8.5.1 Relations between desired configuration and measurement
information

First, we focus on condition (B) in Theorem 8.1. Let D(M n B) ⊂
pow((Rd)n) be defined as the family of the desired configuration sets D
satisfying condition (B), that is,

D(Mn B) := {orbMnB(X ∗) ⊂ (Rd)n : X ∗ ⊂ (Rd)n}. (8.28)

From Theorem 8.1, the generalized coordination (8.1) with respect to D
is achievable by a distributed controller with relative measurements for
MnB over some graph G, if and only if D ∈ D(MnB). The following
theorem shows a relation between the achievable configuration set D
and the frame transformation setMn B through D(Mn B).

Theorem 8.10. For subgroupsMnB and M̃n B̃ of GL(d)nRd,
the following relation holds:

Mn B ⊂ M̃n B̃ ⇔ D(Mn B) ⊃ D(M̃n B̃). (8.29)

Proof. (⇒) Assume the left part of (8.29). Consider a set D̃ ∈ D(M̃nB̃),
and we prove D̃ ∈ D(M n B) to show the right part of (8.29). From



8.5. Relations between coordination, measurement, and networks 115

(8.28), there exists X̃ ∗ ⊂ (Rd)n such that D̃ = orbM̃nB̃(X̃ ∗). As shown
below,

orbM̃nB̃(X̃ ∗) = orbMnB(orbM̃nB̃(X̃ ∗)) (8.30)

holds, and D̃ = orbM̃nB̃(X̃ ∗) ∈ D(Mn B) is obtained because the set
in the right-hand side of (8.30) belongs to D(Mn B) from (8.28).

We show (8.30). From the definition (3.11) of the group orbit and
the property of the group action,

orbMnB(orbM̃nB̃(X̃ ∗))

=
⋃

(M,b)∈MnB
(M, b) • (

⋃
(M̃,b̃)∈M̃nB̃

(M̃, b̃) • X̃ ∗)

=
⋃

(M,b)∈MnB

⋃
(M̃,b̃)∈M̃nB̃

((M, b) ∗ (M̃, b̃)) • X̃ ∗

=
⋃

(M̂,b̂)∈M̃nB̃

(M̂, b̂) • X̃ ∗ = orbM̃nB̃(X̃ ∗)

is obtained, where (M̂, b̂) = (M, b) ∗ (M̃, b̃) ∈ M̃n B̃ holds for (M, b) ∈
Mn B and (M̃, b̃) ∈ M̃n B̃ from the left part of (8.29). Hence, (8.30)
holds.

(⇐) Assume that the right part of (8.29) holds but the left one
does not, and we show contradiction. From the second assumption,
there exists (M̄, b̄) ∈Mn B such that (M̄, b̄) 6∈ M̃n B̃. From the first
assumption and (8.28), if D ∈ D(M̃n B̃), i.e., there exists X̃ ∗ ⊂ (Rd)n
such that D = orbM̃nB̃(X̃ ∗), then D ∈ D(M n B) holds, i.e., there
exists X ∗(X̃ ∗) ⊂ (Rd)n such that D = orbMnB(X ∗(X̃ ∗)). Accordingly,
for any X̃ ∗ ⊂ (Rd)n, there exists X ∗(X̃ ∗) ⊂ (Rd)n such that

orbM̃nB̃(X̃ ∗) = orbMnB(X ∗(X̃ ∗)). (8.31)

By operating (M̄, b̄) to (8.31), we obtain

(M̄, b̄) • orbM̃nB̃(X̃ ∗) = (M̄, b̄) • orbMnB(X ∗(X̃ ∗))

=
⋃

(M,b)∈MnB
((M̄, b̄) ∗ (M, b)) • X ∗(X̃ ∗)

=
⋃

(M̂,b̂)∈MnB

(M̂, b̂) • X ∗(X̃ ∗)

= orbMnB(X ∗(X̃ ∗)) = orbM̃nB̃(X̃ ∗), (8.32)
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where (M̂, b̂) = (M̄, b̄) ∗ (M, b) ∈ M n B holds from (M, b) ∈ M n B
and (M̄, b̄) ∈Mn B. Let X̃ ∗ = {x∗N } for some x∗N ∈ (Rd)n, and from
(8.32), for any (M1, b1) ∈ M̃n B̃, there exists (M2, b2) ∈ M̃n B̃ such
that

(M̄, b̄) • ((M1, b1) • x∗N ) = ((M̄, b̄) ∗ (M1, b1)) • x∗N = (M2, b2) • x∗N .

If n ≥ fanum(M n B), from (3.31), (M̄, b̄) ∗ (M1, b1) = (M2, b2) is
obtained for almost every x∗N . Then, (M̄, b̄) = (M2, b2) ∗ (M1, b1)−1 ∈
M̃n B̃ holds, which contradicts the assumption. If n < fanum(MnB),
we can consider multiple x∗N and the same discussion holds with the
sufficient number of x∗N .

Theorem 8.10 indicates that as M n B is larger (measurement
information is more ambiguous), D(M n B) is smaller (the range of
achievable configuration sets D is narrower).

Let us consider the desired configuration set D in (2.16), that is,

D = orbSnT (x∗N ) (8.33)

with a coordination freedom set S n T and a desired configuration
x∗N ∈ (Rd)n. Then, the following corollary follows from Theorem 8.10.

Corollary 8.11. For subgroups S n T andMn B of GL(d) nRd,
the following relation holds:

Mn B ⊂ S n T ⇔ orbSnT (x∗N ) ∈ D(Mn B) ∀x∗N ∈ (Rd)n.
(8.34)

Corollary 8.11 indicates that if we wish to achieve the generalized
coordination with respect to the desired configuration set D in (8.33),
more precise measurement is required than the DOF of D in the sense
thatMn B ⊂ S n T .

8.5.2 Relation between desired configuration and network topology

Next, we consider condition (A) in Theorem 8.1, namely, clique rigidity.
The condition (4.10) of clique rigidity is sometimes difficult to check.
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Here, we give an intuitive condition of the clique rigidity for the set D
in (8.33) by using the free action number and the intersection graph as
follows.

Theorem 8.12. Assume that a set D ⊂ (Rd)n is of the form (8.33)
with a subgroup S n T of GL(d) nRd and some x∗N ∈ (Rd)n. For
a graph G, if the fanum(S n T )-intersection graph of the maximal
cliques in G, say Γfanum(SnT )(G), is connected, the set framework
(D, G) is clique rigid for almost every x∗N ∈ (Rd)n.

Proof. Assume that Γfanum(SnT )(G) is connected. Let xN ∈ (Rd)n sat-
isfy the assumption part of the definition (4.10) of clique rigidity. Con-
sider distinct k, ` ∈ clq(G) such that {k, `} is an edge of Γfanum(SnT )(G).
Then,

|Ck ∩ C`| ≥ fanum(S n T ) (8.35)

holds from (4.16). From the assumption part of (4.10), xCk ∈ projCk(D)
and xC` ∈ projC`(D) hold, equivalent to

xCk = (Sk, τk) • x∗Ck , xC` = (S`, τ`) • x∗C` (8.36)

with some (Sk, τk), (S`, τ`) ∈ S n T from (3.15). Take the elements of
tuples corresponding to the intersection Ck ∩ C` from (8.36), and we
obtain

xCk∩C` = (Sk, τk) • x∗Ck∩C` = (S`, τ`) • x∗Ck∩C` . (8.37)

From (8.35), S n T is free to (Rd)|Ck∩C`|\Zk` with a set Zk` of measure
zero, and (8.37) yields (Sk, τk) = (S`, τ`) for x∗Ck∩C` ∈ (Rd)|Ck∩C`|\Zk`
from (3.31). From the connectivity of Γfanum(SnT )(G), (Sk, τk) coincides
with some (S, τ) ∈ S n T for every k ∈ clq(G) for x∗N ∈ (Rd)n that
satisfies x∗Ck∩C` ∈ (Rd)|Ck∩C`|\Zk` for any edge {k, `} of Γfanum(SnT )(G).
Hence, xN = (S, τ) • x∗N holds from (8.36) because each node belongs
to a maximal clique. Then, xN ∈ D holds for D in (8.33), and thus
the conclusion part of (4.10) is satisfied. As a result, the set framework
(D, G) is clique rigid.

Theorem 8.12 indicates that as the coordination freedom set S n T
in (8.33) is larger (coordination is more flexible), the required number
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fanum(S n T ) of connections between maximal cliques in G is larger
(required network topology is denser). The number fanum(S n T ) of
connections between maximal cliques is required in order to make the
parameters (Sk, τk) coincide with each other in (8.37).

Example 8.1. For graphs Ga, Gb in Figs. 4.4a, 4.4b, and the
space of dimension d = 2, consider S = scaled({I2}), SO(2), or
scaled(SO(2)) with T = R2. Then, from Table 3.1, fanum(SnR2) =
2 holds. Figs. 4.4c and 4.4d depict Γ2(Ga) and Γ2(Gb), that is, the
2-intersection graphs of the maximal cliques in Ga and Gb. Only
the intersection graph Γ2(Ga) is connected, and thus Theorem 8.12
guarantees that the set framework (D, Ga) is clique rigid for D in
(8.33) for almost every x∗N ∈ (R2)n.

8.5.3 Comparison with conventional formation control

The conditions obtained here are compared with the conventional results.
From Corollary 8.11, the generalized coordination with respect to D
in (8.33) is achievable for the frame transformation setMn B if and
only if S n T ⊃ M n B. Let S n T = M n B, with which the most
precise coordination is achieved among D of the form (8.33). Then, the
following results are obtained for concrete S n T .

◦ Case of S n T =M n B = {Id} n Rd: From Example 2.5, D in
(8.33) corresponds to displacement-based formation in Example
2.1. As for graph topology, Proposition 4.2 guarantees that the set
framework (D, G) is clique rigid if and only if G is connected. This
result corresponds to the conventional results on displacement-
based formation control (Olfati-Saber et al., 2007; Fax and Murray,
2004).

◦ Case of S n T =Mn B = O(d) n Rd: From Example 2.5, D in
(8.33) corresponds to distance-based formation of Example 2.2.
In this case, Proposition 4.3 guarantees that the set framework
(D, G) is clique rigid if and only if (x∗N , G) is globally rigid. This
result is associated with the conventional results on distance-based
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formation control, e.g., Anderson et al., 2008; Krick et al., 2009;
Queiroz et al., 2019.

◦ Case of S n T =Mn B = SO(d) nRd: From Example 2.7, D in
(8.33) corresponds to reflection-free formation. In this case, the
set framework (D, G) is clique rigid only if (x∗N , G) is rigid, as
discussed just after Proposition 4.3.

8.6 Notes and references

It has been known that relative measurements can be expressed with
groups such as SO(d) as shown in Tron et al., 2016. The point of this
chapter is to specify the achievable desired configuration sets by those
groups through the orbit in Theorem 8.1. Then, the objective functions
to achieve the generalized coordination is characterized by clique-based
functions consisting of relatively invariant functions in Theorem 8.4.
Accordingly, the required graph condition is shown to be clique rigidity.
Furthermore, the clique rigidity is characterized with the free action
number and the intersection graph in Theorem 8.12. In this way, group-
and graph-theoretic concepts are deeply associated in the multi-robot
coordination problems. A part of the results were obtained in Sakurama,
2016; Sakurama et al., 2019 in the caseMn B = SO(d)× Rd, and the
results were completed in Sakurama, 2018; Sakurama, 2021b.



9
Application Examples

In this chapter, four coordination problems are considered to demon-
strate how to design distributed controllers according to the results
in Chapters 7 and 8. The first two problems, “formation selection”
and “scaling reflection-free formation”, can be solved straightforwardly.
The latter two problems, “position assignment with local indices” and
“formation control of non-holonomic robots”, are advanced applications.

9.1 Formation selection

Consider the formation selection problem in Example 2.12 under the
assumption that the absolute positions of neighbors are available and the
graph G is connected. Let us design a distributed controller according
to the results in Chapter 7.

From the assumption, each robot is governed by the single-integrator
system (7.2) with the control input (7.3). This task is described by the
generalized coordination (7.1) with respect to the desired configuration
set

D =
⋃
q∈Q
{x∗qN }. (9.1)

Here, x∗qN ∈ (Rd)n for q ∈ Q = {1, 2, . . . , p} are the prescribed configura-

120
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tion patterns, one of which is expected to form. Assume that x∗qi 6= x∗q̃i
holds for any i ∈ N and q, q̃ ∈ Q, q 6= q̃.

From Theorem 7.4, v̂(xN ) in (7.18) is the best approximate indicator.
Theorem 7.5 guarantees that a distributed controller is derived from its
gradient as (7.21), which is reduced to

ci(xNi) = −κi
∑

k∈clqi(G)
γk(xi − x∗q̂ki ) (9.2)

for

q̂k ∈ argmin
q∈Q

‖xCk − x
∗q
Ck‖. (9.3)

Note that (9.3) is obtained from (7.20) because

projCk(D) =
⋃
q∈Q
{x∗qCk} (9.4)

holds for D in (9.1). By using the distributed controller (9.2), D in
(9.1) is asymptotically stable, which is shown as follows. From the
assumptions of G and x∗qN , Proposition 4.1 guarantees that the set
framework (D, G) is clique rigid, and Theorem 7.8 guarantees that
v̂(xN ) is an indicator of D, that is, v̂−1(0) = D holds. Because D is
compact, the system is Lagrange stable from Theorem 7.6. From this
result and the real analyticity of (9.4), Theorem 7.7 guarantees that
v̂−1(0) = D is asymptotically stable.

We conduct simulations of n = 18 robots in d = 3-dimensional space
with the control gains κi = 2 and γk = 1 for all i ∈ N and k ∈ clq(G) in
(9.2). Let p = 2 be the number of the prescribed configuration patterns,
which are given by x∗1N , x∗2N ∈ (Rd)n depicted in Figs. 9.1a and 9.1b,
respectively. The edges of the graph G are given is these figures. Figs.
9.1c and 9.1d show the simulation results from different initial positions,
where the circles and squares with numbers represent the positions of
the robots at t = 0 and 20, respectively, and the dotted lines represent
the trajectories. We can see that either of the patterns x∗1N or x∗2N is
successfully achieved at t = 20 in each of Figs. 9.1c and 9.1d. Notably,
both the patterns are attained with the same controller.
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(a) Prescribed configuration 1: x∗1N (b) Prescribed configuration 2: x∗2N

(c) Simulation result 1 (d) Simulation result 2

Figure 9.1: Simulation results of formation selection: (a), (b) prescribed config-
uration patterns (numbered squares) and edges; (c), (d) trajectories from initial
positions (numbered circles) to terminal positions (numbered squares).

9.2 Scaling reflection-free formation

We consider the situation of Example 2.18, that is, the frame trans-
formation set is given asMn B = scaled(SO(d)) nRd, which involves
transformation in rotation, translation, and scale, caused by sensors.
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A distributed controller with relative measurements over a graph G is
designed according to the results in Chapter 8.

The kinematic model is given as (8.3) with the relative positions
(8.4) and the control input (8.5) for (Mi(t), bi(t)) ∈Mn B. We expect
to achieve the generalized coordination (8.1) with respect to the desired
configuration set D in (8.33) for a subgroup S n T and a desired
configuration x∗N ∈ (Rd)n. According to Corollary 8.11, M n B ⊂
S n T has to be satisfied to achieve the coordination. Here, S n T =
M n B is chosen. Notably, this coordination is the scaling reflection-
free formation in Example 2.11. In this way, fromMn B determined
by available measurement information, the achievable coordination is
naturally determined.

According to Theorem 8.7, a distributed controller with relative
measurements is derived from the gradient of v̂(xN ) in (8.22) as (8.24),
which involves the optimization problem (8.23). This problem is reduced
to

inf
(Mk,bk)∈scaled(SO(d))nRd

‖xCk − (Mk, bk) • x∗Ck‖,

which is analytically solvable as shown in Proposition E.4. Assume that
the set framework (D, G) is clique rigid. Then, by using the controller
(8.24), D is asymptotically stable, which is shown as follows. From Theo-
rem 8.6, v̂(xN ) is an indicator of D, that is, v̂−1(0) = D holds. Theorem
8.8 guarantees that the system is Lagrange stable because scaled({Id})
is a subgroup of M = scaled(SO(d)). Moreover, from Theorem 8.9,
v̂−1(0) = D is asymptotically stable because M = scaled(SO(d)),
B = Rd, and projCk(X ∗) = {x∗Ck} are all real analytic submanifolds.

We conduct simulations of n = 18 robots in d = 3-dimensional space,
where the transformation matrices Mi(t) ∈ scaled(SO(d)) are randomly
chosen, and the origins of the local coordinate frames are assigned to
the robot positions as bi(t) = xi(t). The control gains in (8.24) are
chosen as κi = 2 and γk = 1 for all i ∈ N and k ∈ clq(G). The desired
configuration x∗N of D in (8.33) is depicted in Fig. 9.2a with the edges
of the graph G. Because the 3-intersection graph of G is connected,
the set framework (D, G) is clique rigid from Theorem 8.12. Figs. 9.2b,
9.2c, and 9.2d show the trajectories of the robots from different initial
positions at t = 0 (numbered circles). Note that the scales of the figures
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(a) Desired configuration x∗N (b) Case 1

(c) Case 2 (d) Case 3

Figure 9.2: Simulation results of scaling reflection-free formation: (a) desired
configuration (numbered squares) and edges; (b)–(d) trajectories from initial positions
(numbered circles) and terminal positions (numbered squares).

are all different, and we can see that the terminal positions (numbered
squared) at t = 20 form the desired configuration x∗N in any cases with
different translations, rotations, and scales according to the DOF in D
for S n T = scaled(SO(d)) nRd.
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Figure 9.3: Outlines of other robots obtained by measuring distances of surround-
ings.

9.3 Position assignment with local indices

In this section, each robot is assumed to recognize its neighbors via
local indices. The local indices are made by each robot under its own
rule, which may be different from those of the others. Local indices
enable us to relax requirements of sensors because they can be obtained
from only the outlines of other robots, e.g., with LiDARs, as illustrated
in Fig. 9.3. In contrast, the conventional distributed controllers use
the global indices, which are common among all the robots. Obtaining
global indices requires (i) extra sensors detecting additional features of
robots, e.g., shapes, colors, and QR codes, to distinguish robots from
each other and (ii) extra effort to make the correspondence between
these features and the global indices.

Here, we consider the state-dependent graph G(xN ) = (N , E(xN ))
such that a pair of robots are connected when they are within distance
δ > 0. The edge set E(xN ) is given as

E(xN ) = {{i, j} : ‖xi − xj‖ < δ, i, j ∈ N , i 6= j}. (9.5)

This graph is called a proximity graph. Let Ni(xN ) ⊂ N be the neighbor
set of robot i, and let ni(xN ) = |Ni(xN )| be the number of the neighbors
of robot i. The set of local indices of robot i is given as

N ∗i (xN ) = {1, 2, . . . , ni(xN )}.

Each local index j∗ ∈ N ∗i (xN ) corresponds to a global one j ∈ Ni(xN )
via a bijective function φi(xN ) ∈ P(N ∗i (xN ),Ni(xN )). The relation
between the global and local indices is represented as φi(xN )[j∗] = j.
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Note that the correspondence φi(xN ) between the global and local
indices is unknown to anyone including robot i.

Assume that the absolute positions of the neighbors are available,
and that each robot is governed by the single-integrator system (7.2).
Note that although robot i can use the values of the absolute positions
xφi(xN )[j∗](= xj) of the neighbors j∗ ∈ N ∗i (xN ), it cannot specify whose
state xφi(xN )[j∗] is. Accordingly, the control input has to be generated
as

ui(t) = ci(xφi(xN (t))[1](t), . . . , xφi(xN (t))[ni(xN (t))](t)) (9.6)
with a function ci : (Rd)ni(xN (t)) → Rd. The controller of the form
(9.6) is said to be distributed over local indices. Compared with the
distributed controller over the global indices in (7.3), (9.6) contains the
unknown bijective function φi(xN ) ∈ P(N ∗i (XN ),Ni(XN )). To properly
define the control input by (9.6), the value of the control input has
to be invariant for any φi(xN ) ∈ P(N ∗i (XN ),Ni(XN )), which makes
designing this type of controller difficult.

To overcome this issue, we employ position assignment in Example
2.13 as a coordination task. This task can be expressed by the generalized
coordination (7.1) with respect to the desired configuration set

D =
⋃
α∈Pn

{(x∗α(1), x
∗
α(2), . . . , x

∗
α(n))}, (9.7)

where Pn represents the set of permutations of n elements. Then, the
controller is designed according to (7.21) with D in (9.7), which is
distributed over local indices from Theorem 7.5 and the fact that the
permutation α in D cancels the effect of the unknown bijective function
φi(xN ). Furthermore, the asymptotic stability of D is shown in the
same way as Section 9.1.

A collision avoidance term is added to the controller, and simulations
are conducted for the proximity graph (9.5) with δ = 1.5. Fig. 9.4a
shows the desired configuration x∗N of D in (9.7), and Figs. 9.4b, 9.4c,
and 9.4d depict the trajectories of the robots from different initial posi-
tions (numbered circles). These result show that the terminal positions
(numbered squared) at t = 15 form a shape of the desired configuration
x∗N in each case, while the positions of the robots are differently assigned.
Hence, the position assignment is successfully achieved. The snapshots
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of the simulation in Case 1 in Fig. 9.4b are shown in Fig. 9.5, indicating
that the graph topology varies according to the distances between the
robots according to the proximity graph in (9.5).
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Figure 9.4: Simulation results of position assignment: (a) desired configuration
(numbered squares) and edges; (b)–(d) trajectories from initial positions (numbered
circles) and terminal positions (numbered squares).
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Figure 9.5: Snapshots of the simulation result in Case 1 in Fig. 9.4.

9.4 Formation control of non-holonomic robots

Many practical robots including unmanned ground vehicles (UGVs) and
unmanned aerial vehicles (UAVs) have some non-holonomic constraints
under which robots cannot slide laterally. In this section, formation
control of such non-holonomic robots is treated.

We consider the frame transformation set M n B = SO(d) n Rd,
which involves transformation in rotation and translation as shown in
Example 2.17. The difference from the holonomic case in Subsection
2.3.2 is that (i) the orientation Mi(t) ∈M can be controlled, and that
(ii) the direction of the velocity ẋi(t) is fixed in the local coordinate
frame Σi(t). According to (i) and (ii), the kinematic model of this system
is given as

Ṁi(t) = Mi(t)Si(t) (9.8)
ẋi(t) = Mi(t)hiνi(t) (9.9)

for the state (Mi(t), xi(t)) ∈ SO(d) nRd and the input (Si(t), νi(t)) ∈
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Figure 9.6: Robot under the non-holonomic constraint.

Skew(d) × R with a unit vector hi ∈ Rd. Here, Si(t) ∈ Skew(d) and
νi(t) ∈ R correspond to the angular velocity and speed of robot i,
respectively, where Skew(d) denotes the set of skew-symmetric matrices
of dimension d. Equation (9.9) is derived from the holonomic model
(8.3) by limiting the velocity ui(t) to a direction hi ∈ Rd fixed in
Σi(t). Equation (9.8) represents the rotational motion, with which Mi(t)
always belongs to SO(d). Actually, the constraint of the orthogonal
matrix, namely, M>i (t)Mi(t) = Id, is always satisfied because

dM>i (t)Mi(t)
dt = Ṁ>i (t)Mi(t) +M>i (t)Ṁi(t) = S>i (t) + Si(t) = 0

holds from Si(t) ∈ Skew(d).
For example, consider a robot in the d = 2-dimensional space as Fig.

9.6. Let θi(t) ∈ [0, 2π) be the orientation of the robot from the X-axis of
the global coordinate frame Σ, and let ωi(t) ∈ R be the angular velocity.
Then, for Mi(t) = Rot(θi(t)) ∈ SO(2), hi = [1 0]>, and

Si(t) =
[

0 −ωi(t)
ωi(t) 0

]
∈ Skew(2),

the system consisting of (9.8) and (9.9) is reduced to the rolling coin
model given as

θ̇i(t) = ωi(t)

ẋi(t) =
[
cos(θi(t))
sin(θi(t))

]
νi(t).

Assume that the relative positions (8.4) of the neighbors are available
over a graph G. Then, distributed controllers with relative measurements
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are of the form

(Si(t), νi(t)) = (Ci(x[i]
Ni(t)), ci(x

[i]
Ni(t))) (9.10)

with functions Ci : (Rd)|Ni| → Skew(d) and ci : (Rd)|Ni| → R. Following
the discussion in Section 9.2, we expect to achieve the generalized
coordination (8.1) with respect to the desired configuration set D in
(8.33) for S n T =Mn B = SO(d) nRd.

To design a controller, the gradient-flow approach is adapted for the
non-holonomic system. Concretely, the gradient-based controller (8.7)
with an objective function v(xN ) is modified into

Ci(x[i]
Ni) = −κi(Id − hih>i )M−1

i

∂v

∂xi
(xN )h>i

+ κi((Id − hih>i )M−1
i

∂v

∂xi
(xN )h>i )>, (9.11)

ci(x[i]
Ni) = −κih>i M−1

i

∂v

∂xi
(xN ) (9.12)

by projections onto the subspaces associated with hi, where κi > 0 is a
gain. Now, we assign the objective function v(xN ) as v̂(xN ) in (8.22).
Then, from Theorem 8.7, there exist functions Ci(x[i]

Ni) and ci(x[i]
Ni)

satisfying (9.11) and (9.12). Furthermore, it can be shown that v̂−1(0)
is asymptotically stable under some assumptions. If the set framework
(D, G) is clique rigid, v̂(xN ) is an indicator of D, that is, v̂−1(0) = D
holds from Theorem 8.6, and thus D is asymptotically stable.

A simulation is conducted for the d = 2-dimensional space with
hi = [1 0]>. The control gains are chosen as κi = 2, γk = 1 in (9.11)
and (9.12) for v(xN ) = v̂(xN ) in (8.22). Fig. 9.7a shows the desired
configuration x∗N ∈ (Rd)n of D in (8.33), and Fig. 9.7b shows the
trajectories of the robots from initial positions (numbered circles).
Motions proper to the non-holonomic system are observed along the
trajectories, and the desired configuration is finally achieved with some
rotation and translation at the terminal positions (numbered squares)
in Fig. 9.7b.
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9.5 Notes and references

The results given in this chapter, formation selection, scaling reflection-
free formation, position assignment with local indices, and formation
control of non-holonomic robots, have been obtained in Sakurama et
al., 2015, Sakurama, 2021b, Sakurama and Ahn, 2020, and Sakurama,
2020, respectively. These results show that various complex coordination
problems can be treated in the same manner.

These problems have been individually addressed in the existing
papers. A part of the literature is listed as follows. Formation selection
has been considered in Yu and Barca, 2015. Scaling formation has
been investigated by Han et al., 2016; Sakurama et al., 2018, and is
realizable by bearing-based, angle-based formations (Zhao and Zelazo,
2016; Zhao and Zelazo, 2019; Chen et al., 2020), and affine formation
(Lin et al., 2016; Zhao, 2018). Position assignment is a sort of task
assignment (allocation), which has been investigated in decades (Kuhn,
1955), and is recently considered for multi-agent systems (Ji et al.,
2006; Michael et al., 2008; Smith and Bullo, 2009; Zavlanos et al., 2008;
Kanjanawanishkul and Zell, 2010; Kingston and Egerstedt, 2010; Liu
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(b) Trajectories

Figure 9.7: Simulation result of formation control of non-holonomic robots: (a)
desired configuration (numbered squares) and edges; (b) trajectories from initial
positions (numbered circles) and terminal positions (numbered squares).
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and Shell, 2011; Bürger et al., 2012; Mosteo et al., 2017). Note that the
methods developed in the existing papers usually rely on global indices.
Formation control of non-holonomic robot systems has been addressed
in several papers (Lin et al., 2005; Dimarogonas and Kyriakopoulos,
2008; Liu and Jiang, 2013; Montijano et al., 2016; Zhao, 2018).



10
Concluding Remarks

This monograph provided a systematic design theory for multi-robot co-
ordination problems, based on group, graph, and gradient-flow theories.
Especially, the generalized coordination problem has been formulated
with a desired configuration set D to describe various coordination tasks
in a unified way. Moreover, relative measurements are described by a
semidirect productM n B from the viewpoint of the transformation
of the global and local coordinate frames, which provide the unified
treatment of various types of measurement information. The network
topology of robots is modeled by a graph G. Then, a necessary and
sufficient condition of the triple (D, G,Mn B) has been derived under
which the generalized coordination is achievable by distributed control
with relative measurements. This condition reveals the following two
points. (i) The class of the achievable configuration sets D is given by
the (M n B)-orbits. (ii) The required network topology is the clique
rigidity of the set framework (D, G). Furthermore, a distributed con-
troller with relative measurements has been designed with the best
approximate indicator, which is decomposable into relatively invariant,
clique-based functions. Finally, through the application to “formation
selection”, “scaling reflection-free formation”, “position assignment with

133



134 Concluding Remarks

local indices”, and “formation control of non-holonomic robots”, it has
been shown that various complex coordination problems can be solved
through the approach of this monograph.



Acknowledgements

The authors are grateful to Professor Shun-ichi Azuma and Professor
Hyo-sung Ahn for collaboration on this research.

A part of this work was supported by JSPS KAKENHI Grant
Numbers 17H03281, 19K04439, and 21H01352.

135



Appendices



A
Examples of Frame Transformation Sets

In Subsection 2.3.1, various types of local coordinate frame Σi were
introduced according to frame transformation sets M× B, which is
reviewed as follows. Let p ∈ Rd be a global position of an object in the
global coordinate frame Σ, and let p[i] ∈ Rd be the corresponding local
position in Σi. Then, the following relation between the positions holds
for (Mi, bi) ∈M×B:

p = Mip
[i] + bi. (A.1)

Now, from the results in Sakurama, 2021b, we show how to derive trans-
formation setsM×B shown in Subsection 2.3.1 from the measurement
values of sensors in the case of d = 2-dimensional space.

Example A.1. Consider the situation that each robot is equipped
with a camera or laser-range-finder to measure the distance and
relative bearing of the object as shown in Fig. A.1. Let xi ∈ R2

be the position of robot i, which faces to the direction of an angle
θi ∈ [−π, π) from the X-axis of Σ. Assume that the distance dpi ≥ 0
and relative bearing φpi ∈ [−π, π) of the object from robot i are
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Figure A.1: Relation between the global and local coordinate frames, and their
coordinates for Mi ∈ SO(2) and bi = xi: (a) the global coordinate p; (b) the
corresponding local coordinate p[i].

measurable. From Fig. A.1a, the global position is expressed as

p = xi + dpi

[
cos(θi + φpi)
sin(θi + φpi)

]
. (A.2)

Assume that the X [i]-axis of Σi is set toward the face of robot i as
Fig. A.1b. Then, the local position is expressed as

p[i] = dpi

[
cosφpi
sinφpi

]
, (A.3)

which can be obtained from the measurable information. From
(A.2) and (A.3), the relation between global and local coordinates
(A.1) holds with Mi = Rot(θi) ∈ SO(2) and bi = xi ∈ R2. Hence,
M×B = SO(2)× R2 is obtained.

Example A.2. When each robot carries a compass in addition to
the equipment in Example A.1, the absolute bearing is available.
Then, the angle θi from the X-axis of Σ in Fig. A.1a is available.
By using θi in addition to dpi and φpi, the local position p[i] can be
defined as

p[i] = dpi

[
cos(θi + φpi)
sin(θi + φpi)

]
. (A.4)
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This means that the X [i]-axis of Σi and the X-axis of Σ are aligned.
According to (A.2) and (A.4), (A.1) is achieved with Mi = I2 and
bi = xi. Hence,M×B = {I2} × R2 is obtained.

Example A.3. Suppose that the measured distance from the object
includes an unknown scale in Example A.1. Let d̂pi ≥ 0 be the
measured value, which satisfies dpi = sid̂pi for a scale factor si > 0
according to the actual distance dpi ≥ 0. Then, the local coordinate
p[i] of the object is described as

p[i] = d̂pi

[
cosφpi
sinφpi

]
(A.5)

instead of (A.3). From (A.2) and (A.5), (A.1) holds with Mi =
siRot(θi) ∈ scaled(SO(2)) and bi = xi. Thus,M×B = scaled(SO(2))
×R2 is achieved. The resultant local coordinate frame is illustrated
in Fig. 2.10b.

Example A.4. Suppose that each robot detects a beacon on the
object by two receivers as shown in Fig. A.2a. Without loss of
generality, let e21 and −e21 be the local coordinates of the receivers,
where e21 = [1 0]>. The distances dpi1, dpi2 ≥ 0 of the beacon from
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Figure A.2: Relation between the global and local coordinate frames, and their
coordinates for Mi ∈ O(2) and bi = xi: (a) a global coordinate p; (b) the correspond-
ing local coordinate p[i] = p

[i]
A or p[i]

B .
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the receivers are measured. Then, the local coordinate p[i] of the
object satisfies

‖p[i] − e>21‖ = dpi1, ‖p[i] + e>21‖ = dpi2. (A.6)

Fig. A.2b indicates that from (A.6), p[i]
A , p

[i]
B ∈ R2 can be the two

possible coordinates for p[i], where

p
[i]
A = dpi

[
cos φ̂pi
sin φ̂pi

]
, p

[i]
B = dpi

[
cos φ̂pi
− sin φ̂pi

]
(A.7)

with

dpi =

√
d2
pi1 + d2

pi2
2 − 1, φ̂pi = cos−1 d

2
pi2 − d2

pi1
4dpi

∈ [0, π].

Note that the relative bearing φpi ∈ (−π, π] of the object is equal
to either φ̂pi or −φ̂pi, and from (A.7), we obtain

p[i] ∈ {p[i]
A , p

[i]
B } =

{
dpi

[
cosφpi
sinφpi

]
, dpiRefl(w)

[
cosφpi
sinφpi

]}
(A.8)

with the reflection matrix Refl(w) ∈ R2×2 for w = [0 1]>. From (A.2)
and (A.8), (A.1) is satisfied with Mi = Rot(θi) or Rot(θi)Refl(w),
and bi = xi. The duality of the possible positions is called a
flip ambiguity, which can be matched to either Mi = Rot(θi) or
Rot(θi)Refl(w) for all the neighbors by using a landmark beacon.
Then,

M = {Rot(θ) : θ ∈ [−π, π)} ∪ {Rot(θ)Refl(w) : θ ∈ [−π, π)}
= O(2)

is obtained with B = R2.



B
Real Analytic Functions

Properties of real analytic functions are used in Section 5.3 for proving
the asymptotic stability of the gradient-flow system. Hence, some basics
of real analytic functions are summarized here. The contents here are
based on Krantz and Parks, 2002.

For an open subset Ω ⊂ Rn, a function f : Ω→ R is said to be real
analytic at x̄ ∈ Ω if there exists a power series of x converging to f(x)
around x̄, that is, there exist sequences (c(k))k∈Z+ and (pi(k))k∈Z+ for
i ∈ {1, 2, . . . , n} of elements c(k) ∈ R and pi(k) ∈ Z+ in an open set
containing x̄ such that

f(x) =
∞∑
k=0

c(k)
n∏
i=1

(xi − x̄i)pi(k),

where x = (x1, x2, . . . , xn) and x̄ = (x̄1, x̄2, . . . , x̄n). A vector-valued
function f : Ω → Rm is said to be real analytic at x̄ ∈ Ω if each
component of f(x) is real analytic at x̄ ∈ Ω. A function f : Ω→ Rm is
said to be real analytic in a set Ω̄ ⊂ Ω if f(x) is real analytic at each
x̄ ∈ Ω̄.

A set D ⊂ Rm is called an n-dimensional real analytic submanifold
if for each y ∈ D, there exists an open set Ω ⊂ Rn and a real analytic
function f : Ω → Rm such that open subsets of Ω are mapped to
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relatively open subsets of D, y ∈ f(Ω), and

rank∂f
∂x

(x) = n ∀x ∈ Ω.

This definition means that a real analytic submanifold is locally param-
eterized through a real analytic function as the following example.

Example B.1. The (scaled(SO(d)) nRd)-orbit of x∗N ∈ (Rd)n, i.e.,
orbscaled(SO(d))nRd(x∗N ), is a real analytic submanifold. Actually, if
xN ∈ (Rd)n belongs to the orbit, xN = (M, b)•x∗N holds for (M, b) ∈
scaled(SO(d)) n Rd, where M ∈ scaled(SO(d)) is parametrized
as M = s exp(N) with s > 0 and N ∈ Skew(d). Here, Skew(d)
denotes the set of skew-symmetric matrices of dimension d, which
is parameterized by the upper (or lower) off-diagonal entries, and
exp(·) represents the exponential matrix.

The squared distance function from a real analytic submanifold D
is a real analytic function as follows.

Lemma B.1. [Theorem 6.5.23 in Krantz and Parks, 2002] Let D
be a closed subset of Rn. Then, the squared distance function
(dist(x,D))2 is a real analytic function of x ∈ Rn in an open set
containing x̄ ∈ D if and only if D is a real analytic submanifold in
an open set containing x̄.

The following lemma provides important properties of the real
analytic functions, called Łojasiewicz’s inequalities.

Lemma B.2. [Theorem 6.3.4 in Krantz and Parks, 2002, Kurdyka,
1998] Let f : Ω → R be a real analytic function in an open set
Ω ⊂ Rn. Assume that the zero set f−1(0) is non-empty in Ω. Then,
for a compact subset Ω1 of Ω, there exist β1(Ω1) > 0, θ1(Ω1) > 0
such that

|f(x)| ≥ β1(Ω1)(dist(x, f−1(0)))θ1(Ω1) ∀x ∈ Ω1. (B.1)

For a bounded open set Ω2 ⊂ Ω, there exist β2(Ω2) > 0, θ2(Ω2) > 0,
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ρ2(Ω2) > 0 such that

|f(x)| ≤ β2(Ω2)
∥∥∥∥∂f∂x (x)

∥∥∥∥θ2(Ω2)
∀x ∈ int(L−ρ2(Ω2)(|f |))∩Ω2. (B.2)

Here, L−ρ (|f |) = {x ∈ Rn : |f(x)| ≤ ρ} is the sublevel set of |f(x)| for
ρ ≥ 0 and int(·) represents the interior of a set.



C
Gradients of Squared Distance Functions

Consider the squared distance function

v(xN ) = 1
2(dist(xN ,D))2, (C.1)

where N = {1, 2, . . . , n} and the distance function of xN ∈ (Rd)n from
a set D ⊂ (Rd)n is defined as

dist(xN ,D) = inf
D∈D
‖xN −D‖. (C.2)

The gradient of the function (C.1) is used in Theorems 7.5 and 8.7,
which is derived as follows.

Lemma C.1. For a set D ⊂ (Rd)n, if v(xN ) in (C.1) is partially
differentiable with respect to xi at xN ∈ (Rd)n, the following holds:

∂v

∂xi
(xN ) = xi − coli(D̂(xN )), (C.3)

where D̂ : (Rd)n → cl(D) is the solution D to (C.2).

Here, coli(·) represents the ith element of a tuple and cl(·) is the closure
of a set.
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In order to prove Lemma C.1, the directional derivative of a function
F : (Rd)n → (Rd)n at xN ∈ (Rd)n in the direction of yN ∈ (Rd)n is
defined as

∇yNF (xN ) = lim
h→0

1
h

(F (xN + hyN )− F (xN )). (C.4)

Then, the following lemma is obtained.

Lemma C.2. For a set D ⊂ (Rd)n, let D̂ : (Rd)n → cl(D) be a
solution to (C.2). If ∇yN D̂(xN ) exists for xN , yN ∈ (Rd)n, the
following holds:

〈∇yN D̂(xN ), xN − D̂(xN )〉 = 0. (C.5)

Proof. From (C.2),

‖xN − D̂(xN )‖ ≤ ‖xN − D̃‖ ∀D̃ ∈ cl(D)

holds, and by applying D̃ = D̂(xN + hyN ), we obtain

〈D̂(xN + hyN )− D̂(xN ), xN − D̂(xN )〉
= 〈D̂(xN + hyN )− xN , xN − D̂(xN )〉+ ‖xN − D̂(xN )‖2

≤ 〈D̂(xN + hyN )− xN , xN − D̂(xN )〉

+ 1
2‖xN − D̂(xN )‖2 + 1

2‖xN − D̂(xN + hyN )‖2

= 1
2‖(xN − D̂(xN ))− (xN − D̂(xN + hyN ))‖2

= 1
2‖D̂(xN + hyN )− D̂(xN )‖2. (C.6)

From (C.6), for h > 0, we obtain
1
h
〈D̂(xN + hyN )− D̂(xN ), xN − D̂(xN )〉

≤ h

2

∥∥∥∥1
h

(D̂(xN + hyN )− D̂(xN ))
∥∥∥∥2
. (C.7)

From (C.4), as h→ 0+, the left hand side of (C.7) converges as

lim
h→0+

〈1
h

(D̂(xN + hyN )− D̂(xN )), xN − D̂(xN )〉

= 〈∇yN D̂(xN ), xN − D̂(xN )〉
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while the right hand side of (C.7) converges to 0. Hence,

〈∇yN D̂(xN ), xN − D̂(xN )〉 ≤ 0

holds. By considering h→ 0−, the converse inequality is obtained. Thus,
(C.5) is achieved.

Proof of Lemma C.1. (dist(xN ,D))2 = ‖xN − D̂(xN )‖2 holds because
D̂(xN ) is the solution to (C.2). Partially differentiate this equation with
respect to xji, jth component of xi, and we obtain

∂(dist(xN ,D))2

∂xji
= ∂

∂xji
〈xN − D̂(xN ), xN − D̂(xN )〉

= 2
〈
edje

>
ni −

∂D̂

∂xji
(xN ), xN − D̂(xN )

〉
= 2

〈
edje

>
ni−∇edje>niD̂(xN ), xN−D̂(xN )

〉
= 2〈edje>ni, xN − D̂(xN )〉 = 2tr(enie>dj(xN − D̂(xN )))
= 2e>dj(xN − D̂(xN ))eni = 2e>dj(xi − coli(D̂(xN )))

(C.8)

from (C.4) and Lemma C.2 for yN = edje
>
ni, where eni ∈ Rn is the

ith unit vector and n-tuples in (Rd)n are regarded as matrices in
Rd×n. By collecting (C.8) for all j ∈ {1, 2, . . . , d}, the equation (C.3) is
achieved.



D
Partial Difference

A mathematical operation, called partial difference, is introduced and
its properties will be summarized. This operation plays an essential role
in proving Theorem 7.1. Some contents here are based on Sakurama
et al., 2015.

D.1 Partial difference and high-order partial difference

Consider a function w : (Rd)n → Rm of xN , where N = {1, 2, . . . , n}.
The partial difference of w(xN ) with respect to xi for a vector a ∈ Rd

is defined with the operator 4xi
a as follows:

4xi
a w(xN ) := w(xN )− w(xN )|xi=a, (D.1)

where the notation ·|xi=a represents the replacement of xi by a, i.e.,
w(xN )|xi=a = w(x1, . . . , xi−1, a, xi+1, . . . , xn).

The partial difference is commutative as follows.

Lemma D.1. The following holds.

4xi
ai4

xj
ajw(xN ) = 4xj

aj4xi
aiw(xN ) ∀xN ∈ (Rd)n, ai, aj ∈ Rd (D.2)
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Proof. From (D.1), the following equations hold, and (D.2) is derived.

4xi
ai4

xj
ajw(xN )

= 4xi
ai(w(xN )− w(xN )|xj=aj )

= (w(xN )− w(xN )|xj=aj )− (w(xN )|xi=ai − w(xN )|xj=aj ,xi=ai)
= (w(xN )− w(xN )|xi=ai)− (w(xN )|xj=aj − w(xN )|xi=ai,xj=aj )
= 4xj

aj (w(xN )− w(xN )|xi=ai) = 4xj
aj4xi

aiw(xN )

From the commutativity, we can properly define the high-order
partial difference. For I = {i1, i2, . . . , i|I|} ⊂ N and aI ∈ (Rd)|I|, the
partial difference of w(xN ) with respect to xI is defined as

4xI
aIw(xN ) := 4xi1

ai1
4xi2
ai2
· · ·4

xi|I|
ai|I|

w(xN ). (D.3)

D.2 Verification of dependency of functions

The dependency of a function from a specific variable can be verified
through the partial difference with respect to the variable. A function
w : (Rd)n → Rm of xN is said to be independent from xi if there exists
a function ŵ : (Rd)n−1 → Rm such that

w(xN ) = ŵ(xN\{i}) ∀xN ∈ (Rd)n. (D.4)

The following lemma is obtained.

Lemma D.2. A function w : (Rd)n → Rm of xN satisfies

4xi
a w(xN ) = 0 ∀xN ∈ (Rd)n, a ∈ Rd (D.5)

if and only if it is independent from xi.

Proof. Assume that (D.5) holds. Then, w(xN ) = w(xN )|xi=a is obtained
from (D.1), and (D.4) holds with ŵ(xN\{i}) = w(xN )|xi=a for any
a ∈ Rd. Hence, w(xN ) is independent from xi.

Conversely, assume that w(xN ) is independent from xi. Then, from
(D.4),

w(xN )|xi=a = ŵ(xN\{i})|xi=a = ŵ(xN\{i}) (D.6)
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is obtained for any xN ∈ (Rd)n and a ∈ Rd. From (D.1), (D.4), and
(D.6),

4xi
a w(xN ) = w(xN )− w(xN )|xi=a = ŵ(xN\{i})− ŵ(xN\{i}) = 0

holds, and (D.5) is derived.

The high-order version of Lemma D.2 is given as follows.

Lemma D.3. For a sets I ⊂ N , a function w : (Rd)n → Rm of xN
satisfies

4xI
aIw(xN ) = 0 ∀xN ∈ (Rd)n, aI ∈ (Rd)|I| (D.7)

if it is independent from xi for some i ∈ I.

Proof. Under the assumption, from Lemma D.2, (D.2), and (D.3),

4xI
aIw(xN ) = 4xI\{i}

aI\{i}4
xi
aiw(xI) = 0

is obtained for any xN ∈ (Rd)n, aI ∈ (Rd)|I|, and (D.7) is derived.

Only a sufficient condition of (D.7) is provided by Lemma D.3. The
necessary and sufficient condition is given as follows.

Lemma D.4. For a set I = {i1, i2, . . . , i|I|} ⊂ N , a function w :
(Rd)n → Rm of xN satisfies (D.7) if and only if it can be of the
form

w(xN ) =
|I|∑
k=1

wk(xN\{ik}) (D.8)

with functions wk : (Rd)n−1 → Rm for k ∈ {1, 2, . . . , |I|}. If w(xN )
is scalar and non-negative, each wk(xN\{ik}) can be chosen as a
scalar, non-negative function. One of such wk(xN\{ik}) is given as

wk(xN\{ik}) = inf
xik∈R

d
w(xN ). (D.9)



150 Partial Difference

Proof. (Sufficiency) Assume that w(xN ) is of the form (D.8). Each
wk(xN\{ik}) in (D.8) is independent from xik for ik ∈ I, and from
Lemma D.3, 4xI

aIwk(xN\{ik}) = 0 holds. Thus, (D.7) holds.
(Necessity) We use the mathematical induction with respect to |I|.

The case of |I| = 1 follows from Lemma D.2. Next, assume that this
lemma holds for |I| = `−1, and we consider the case of |I| = `. Assume
that (D.7) is satisfied. From (D.2), (D.3), and (D.7),

4
xI\{i`}
aI\{i`}

4xi`
ai`
w(xN ) = 4xI

aIw(xN ) = 0 (D.10)

is obtained. Note that |I\{i`}| = `− 1, and under the assumption of
the mathematical induction, from (D.10),

4xi`
ai`
w(xN ) =

`−1∑
k=1

wk(xN\{ik}) (D.11)

holds with some functions wk : (Rd)n−1 → R for k ∈ {1, 2, . . . , ` − 1}.
Then, from (D.1) and (D.11),

w(xN ) = w(xN )|xi`=ai` +
`−1∑
k=1

wk(xN\{ik}) (D.12)

holds, and (D.8) is obtained for |I| = ` with

w`(xN\{i`}) = w(xN )|xi`=ai` . (D.13)

To show the latter part, we assume that w(xN ) is scalar and non-
negative. We continue the mathematical induction. First, we consider
the case that w(xN ) has a minimum point with respect to xi` , i.e.,
ai` ∈ argminxi`∈Rdw(xN ) exists, which is independent from xi` . Then,
w`(xN\{i`}) in (D.13) is reduced to (D.9) for k = `. Note that this
w`(xN\{i`}) is non-negative from the non-negativeness of w(xN ). More-
over,

4xi`
ai`
w(xN ) = w(xN )− w(xN )|xi`=ai` = w(xN )− min

xi`∈R
d
w(xN ) ≥ 0

holds. From the assumption of the mathematical induction, the non-
negative function 4xi`

ai`
w(xN ) can be of the form (D.11) with non-

negative functions wk(xN\{ik}) for any k ∈ {1, . . . , `− 1}.
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In the case that w(xN ) does not have a minimum point with respect
to xi` , the infimum exists because of the non-negativeness of w(xN ).
Then, there exists a sequence (aιi`)ι∈{1,2,...}, a

ι
i`
∈ Rd such that

inf
xi`∈R

d
w(xN ) = lim

ι→∞
w(xN )|xi`=aιi` .

The above discussion holds for aιi` , which yields the non-negativeness of
wk(xN\{ik}) in (D.9).

Some properties (the zero set and relative invariance) of w(xN ) are
inherited by wk(xN\{ik}) in (D.9) as follows.

Lemma D.5. For a scalar and non-negative function w : (Rd)n →
R+ of xN , let wk(xN\{ik}) be the function in (D.9). (a) If w−1(0)
is non-empty, wk(xN\{ik}) is an indicator of projN\{ik}(w

−1(0)).
(b) For a subgroupMn B of scaled(O(d)) nRd, if w(xN ) is rela-
tively (Mn B)-invariant of weight | det(M)|

d
2 for (M, b) ∈Mn B,

wk(xN\{ik}) is relatively (Mn B)-invariant of weight |det(M)|
d
2 .

Proof. (a) Assume that w−1(0) is non-empty. From the definition of
the projection, for x̂N\{ik} ∈ (Rd)n−1, there exists x̂ik ∈ Rd such that
w(x̂N ) = 0 if and only if x̂N\{ik} ∈ projN\{ik}(w

−1(0)). Hence, if
x̂N\{ik} ∈ projN\{ik}(w

−1(0)), from (D.9) and the non-negativeness of
w(xN ),

wk(x̂N\{ik}) = inf
xik∈R

d
w(xN )|xN\{ik}=x̂N\{ik} = w(x̂N ) = 0

holds. Otherwise, wk(x̂N\{ik}) > 0 holds. Therefore, wk(xN\{ik}) is an
indicator of projN\{ik}(w

−1(0)).
(b) Assume that w(xN ) is relatively (M n B)-invariant of weight

| det(M)|
d
2 for (M, b) ∈ M n B. From the assumption and the non-
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singularity of M , wk(xN\{ik}) in (D.9) satisfies

wk((M, b) • xN\{ik}) = inf
yik∈R

d
w(yN )|yN\{ik}=(M,b)•xN\{ik}

= inf
yik∈R

d
w((M, b) • xN )|xik=(M,b)−1•yik

= |det(M)|
2
d inf
yik∈R

d
w(xN )|xik=(M,b)−1•yik

= |det(M)|
2
d inf
ŷik∈R

d
w(xN )|xik=ŷik

= |det(M)|
2
dwk(xN\{ik}),

where ŷik = (M, b)−1 • yik .

D.3 Relations to integrals and partial derivatives

Consider a scalar, continuously differentiable function w(xN ). Its partial
difference in (D.1) can be described in the integral form as

4xi
a w(xN ) =

∫ xi

a

∂w

∂xi
(xN )dxi (D.14)

from the gradient theorem. Moreover, the partial derivative is described
by the partial difference in the following way:

[
∂w

∂xi
(xN )

]
p

= lim
h→0

4xi
xi−hedpw(xN )

h
, (D.15)

where [·]p represents the pth component of a vector and edp ∈ Rd is the
pth unit vector.

Partial derivative and partial difference are commutative as follows.

Lemma D.6. For a continuously differentiable function w : (Rd)n →
R of xN , the following holds:

4xj
a
∂w

∂xi
(xN ) = ∂

∂xi
4xj
a w(xN ) ∀xN ∈ (Rd)n, a ∈ Rd. (D.16)
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Proof. From (D.2) and (D.15), the pth component of the left-hand side
of (D.16) is calculated as[

4xj
a
∂w

∂xi
(xN )

]
p

= 4xj
a

[
∂w

∂xi
(xN )

]
p

= 4xj
a lim
h→0

4xi
xi−hedpw(xN )

h

= lim
h→0
4xj
a 4xi

xi−hedp
w(xN )
h

= lim
h→0
4xi
xi−hedp4

xj
a
w(xN )
h

= lim
h→0

4xi
xi−hedp(4

xj
a w)(xN )

h

=
[
∂(4xj

a w)
∂xi

(xN )
]
p

,

and the right-hand side of (D.16) is obtained.

D.4 Decomposition of functions

Lemma D.4 shows that any function can be decomposed as (D.8) as
long as it satisfies (D.7). Repeating this process, we can obtain a
decomposition form consisting of functions which do not satisfy (D.7).
This decomposition form is used to derive the form (7.12) of functions
belonging to Vdis(G) in Theorem 7.1.

The following lemma provides the decomposition form.

Lemma D.7. A function w : (Rd)n → Rm of xN can be of the form

w(xN ) =
h∑
k=1

wk(xIk) (D.17)

with some functions wk : (Rd)|Ik| → Rm and sets Ik ⊂ N for
k ∈ {1, 2, . . . , h} satisfying

4xIk
aIk

wk(xIk) 6= 0 ∃xIk , aIk ∈ (Rd)|Ik| (D.18)
Ik 6⊂ I` ∀k, ` ∈ {1, 2, . . . , h}, k 6= `. (D.19)
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(a) If w(xN ) is scalar, non-negative, and w−1(0) is non-empty, then
wk(xIk) can be chosen as an indicator of projIk(w

−1(0)). (b) For
a subgroupM n B of scaled(O(d)) n Rd, if w(xN ) is scalar, non-
negative, and relatively (M n B)-invariant of weight |det(M)|

d
2

for (M, b) ∈ M n B, then wk(xIk) can be chosen as a relatively
(Mn B)-invariant function of weight |det(M)|

d
2 .

Proof. Repeat the decomposition operation to each term in w(xN )
according to Lemma D.4, and we obtain the form

w(xN ) =
ĥ∑
k=1

ŵk(xIk) (D.20)

with some functions ŵk : (Rd)|Ik| → Rm and distinct sets Ik ⊂ N for
k ∈ {1, 2, . . . , ĥ} satisfying

4xIk
aIk

ŵk(xIk) 6= 0 ∃xIk , aIk ∈ (Rd)|Ik|. (D.21)

This form is necessarily achieved with finite operations from Lemma
D.4. Let h ≤ ĥ be the maximum number of the sets Ik which do not
contain each other. Then, without loss of generality, we can assume
that the sets I` for ` ∈ {1, 2, . . . , h} satisfy (D.19), and there exist
ϕ` ∈ {h+ 1, . . . , ĥ} such that ϕ1 = h+ 1, ϕh+1 = ĥ+ 1, ϕ` ≤ ϕ`+1, and

Iϕ` , Iϕ`+1, . . . , Iϕ`+1−1 ( I`. (D.22)

We define

w`(xI`) = ŵ`(xI`) +
ϕ`+1−1∑
k=ϕ`

ŵk(xIk), (D.23)

with which (D.20) is reduced to (D.17). Furthermore, (D.19) holds from
the choice of the sets I` for ` ∈ {1, 2, . . . , h}, and (D.18) holds as follows:

4xI`
aI`
w`(xI`) = 4xI`

aI`
ŵ`(xI`) +

ϕ`+1−1∑
k=ϕ`

4xI`
aI`
ŵk(xIk)

= 4xI`
aI`
ŵ`(xI`) 6= 0 ∃xI` , aI` ∈ (Rd)|I`|

from (D.23), Lemma D.3 and (D.22), and (D.21) in order.
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(a) Assume that w(xN ) is scalar, non-negative, and w−1(0) is non-
empty. Then, from Lemma D.4 and Lemma D.5 (a), each ŵk(xIk) in
(D.20) can be chosen as an indicator of projIk(w−1(0)). From (D.22),

{xN ∈ (Rd)n : xI` ∈ projI`(w
−1(0))}

⊂ {xN ∈ (Rd)n : xIk ∈ projIk(w−1(0))} (D.24)

holds for any k ∈ {ϕ`, ϕ` + 1, . . . , ϕ`+1− 1}. From the non-negativeness
of ŵk(xIk), (D.23), and (D.24),

{xN ∈ (Rd)n : xI` ∈ w
−1
` (0)}

= {xN ∈ (Rd)n : xI` ∈ ŵ
−1
` (0)}

∩
ϕ`+1−1⋂
k=ϕ`

{xN ∈ (Rd)n : xIk ∈ ŵ
−1
k (0)}

= {xN ∈ (Rd)n : xI` ∈ projI`(w
−1(0))}

∩
ϕ`+1−1⋂
k=ϕ`

{xN ∈ (Rd)n : xIk ∈ projIk(w−1(0))}

= {xN ∈ (Rd)n : xI` ∈ projI`(w
−1(0))}

holds, which shows that w`(xI`) is an indicator of projI`(w
−1(0)).

(b) For a subgroupMnB of scaled(O(d))nRd, assume that w(xN )
is scalar, non-negative, and relatively (M n B)-invariant of weight
| det(M)|

d
2 for (M, b) ∈ M n B. Then, from Lemma D.4 and Lemma

D.5 (b), each ŵk(xIk) in (D.20) can be chosen as a relatively invariant
function of weight | det(M)|

d
2 . Then, because w`(xI`) in (D.23) is the

sum of these functions, it is relatively (M n B)-invariant of weight
| det(M)|

d
2 .

We characterize the functions belonging to Vdis(G) by using partial
difference in the following two lemmas.

Lemma D.8. For a graph G = (N , E), a continuously differntiable
function v : (Rd)n → R belongs to Vdis(G) if and only if

4xi
ai4

xj
aj v(xN ) = 0 ∀xN ∈ (Rd)n, ai, aj ∈ Rd (D.25)
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holds for any i, j ∈ N such that {i, j} 6∈ E , i 6= j.

Proof. From (D.14) and (D.16), we obtain∫ xi

ai

4xj
aj
∂v

∂xi
(xN )dxi =

∫ xi

ai

∂

∂xi
4xj
aj v(xN )dxi

= 4xi
ai4

xj
aj v(xN ). (D.26)

(Necessity) Assume that v(xN ) ∈ Vdis(G). Consider a pair i, j ∈ N
such that {i, j} 6∈ E , i 6= j. Then, because j 6∈ Ni, from (7.8) and
Lemma D.2,

4xj
aj
∂v

∂xi
(xN ) = 4xj

aj c̃i(xNi) = 0 ∀xN ∈ (Rd)n, aj ∈ Rd (D.27)

is obtained. From (D.26) and (D.27), we obtain (D.25).
(Sufficiency) Assume that (D.25) holds for any i, j ∈ N such that

{i, j} 6∈ E , i 6= j. Then, from (D.26),

4xj
aj
∂v

∂xi
(xN ) = 0 ∀xN ∈ (Rd)n, aj ∈ Rd

holds, and thus from Lemma D.2, ∂v/∂xi(xN ) is independent from xj
for any j ∈ N\Ni. Hence, according to (D.4), there exists a function
c̃i(xN\(N\Ni)) = c̃i(xNi) satisfying

∂v

∂xi
(xN ) = c̃i(xNi) ∀xN ∈ (Rd)n.

Now, (7.8) is achieved, and v(xN ) ∈ Vdis(G) holds.

Theorem 7.1 follows from the following lemma.

Lemma D.9. Consider a continuously differentiable function v :
(Rd)n → R of xN and a graph G = (N , E). Let Ik ⊂ N for k ∈
{1, 2, . . . , h} be the sets given in Lemma D.7 for w(xN ) = v(xN ),
and let Cψ ⊂ N for ψ ∈ clq(G) be the maximal cliques in G. Then,
v(xN ) belongs to Vdis(G) if and only if there exists ψ(k) ∈ clq(G)
such that Ik ⊂ Cψ(k) holds for each k ∈ {1, 2, . . . , h}.
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Proof. The sufficiency part is the same as Theorem 7.1, which is proved
there. The necessity is shown. To show this lemma by contradiction,
we assume that a function v(xN ) ∈ Vdis(G), but there exists ` ∈
{1, 2, . . . , h} such that I` 6⊂ Cψ holds for any maximal cliques Cψ,
ψ ∈ clq(G). Then, there exist i, j ∈ I` such that {i, j} 6∈ E . From (D.25)
in Lemma D.8, (D.2), and (D.3),

4xI`
aI`
v(xN ) = 4

xI`\{i,j}
aI`\{i,j}

4xi
ai4

xj
aj v(xN )

= 0 ∀xN ∈ (Rd)n, aI` ∈ (Rd)|I`| (D.28)

is obtained. On the other hand, from (D.19), I`\Ik is non-empty for
any k 6= `. Hence, from Lemma D.3,

4xI`
aI`
wk(xIk) = 0 ∀xIk , aIk ∈ (Rd)|Ik|

holds. From this equation, (D.17), and (D.18),

4xI`
aI`
v(xN ) =

h∑
k=1
4xI`
aI`
wk(xIk) = 4xI`

aI`
w`(xI`)

6= 0 ∀xN ∈ (Rd)n, aI` ∈ (Rd)|I`| (D.29)

is derived. Consequently, (D.28) and (D.29) contradict.



E
Procrustes Problems

For a Cartesian productM×B of a subset of Rd×d × Rd and vectors
xi, x

∗
i ∈ Rd for i ∈ N = {1, 2, . . . , n}, consider the optimization problem

inf
(M,b)∈M×B

n∑
i=1
‖xi − (Mx∗i + b)‖2, (E.1)

which is called a Procrustes problem (Gower and Dijksterhuis, 2004).
This problem corresponds to (8.23) with a singleton X ∗ = {x∗N }, which
needs to be solved to use the controller designed in Theorem 8.7.

The Procrustes problem is associated with rotation fitting (Kanatani,
1994), which determines the orientation of a rigid body from feature
points in pictures, as illustrated in Fig. E.1. Let xi, x∗i ∈ Rd be feature
points in different pictures corresponding to each other in a rigid body,
and their relation is expressed as

xi = Mx∗i + b (E.2)

with some (M, b) ∈ M × B. If there is no scale difference between
the pictures, M×B = SO(d) × Rd is employed; otherwise M×B =
scaled(SO(d)) × Rd is employed. Note that the correspondence (E.2)
between xi and x∗i does not accurately hold in general due to noise. In
such a case, it is expected to find the element (M, b) ∈ M × B that

158
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Figure E.1: Rotation fitting of feature points in different pictures.

minimizes the errors in terms of (E.2) for any feature points i ∈ N .
This problem is reduced to the Procrustes problem (E.1).

For typicalM×B in Subsection 2.3.1, analytic solutions are obtained
as follows. Here, the n-tuples xN , x∗N ∈ (Rd)n are regarded as the
corresponding matrices in Rd×n, ave(xN ) :=

∑
i∈N xi/n is the average

of the elements of xN , and cen(xN ) := xN − (ave(xN ), . . . , ave(xN )) is
the center of xN .

Proposition E.1. For M× B = {Id} × Rd, the solution to the
Procrustes problem (E.1) with xN , x∗N ∈ (Rd)n is given as

(M, b) = (Id, ave(xN − x∗N )). (E.3)

Proof. For (Id, b) ∈ {Id} × Rd, the partial derivative of the function in
(E.1) with respect to b is calculated as

∂

∂b

n∑
i=1
‖xi − (x∗i + b)‖2 = 2

n∑
i=1

(x∗i + b− xi) = 2(nb−
n∑
i=1

(xi − x∗i )),

which is zero when b =
∑n
i=1(xi − x∗i )/n, and (E.3) is obtained.

Proposition E.2. ForM×B = scaled({Id})× {0}, the solution to
the Procrustes problem (E.1) with xN , x∗N ∈ (Rd)n is given as

(M, b) = (χ(xN , x∗N )Id, 0), (E.4)
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where the function χ : (Rd)n × (Rd)n → R+ is defined as

χ(xN , x∗N ) := max{〈xN , x
∗
N 〉

‖x∗N ‖2
, 0}. (E.5)

ForM×B = scaled({Id})× Rd, the solution is given as

(M, b) = (χ(cen(xN ), cen(x∗N ))Id, ave(xN −Mx∗N )). (E.6)

Proof. For (sId, 0) ∈ scaled({Id})×{0} with s > 0, the partial derivative
of the function in (E.1) with respect to s is reduced to

∂

∂s
‖xN − sx∗N ‖2 = 2〈x∗N , sx∗N − xN 〉 = 2(s‖x∗N ‖2 − 〈x∗N , xN 〉),

which is zero for s = 〈xN , x∗N 〉/‖x∗N ‖2 if this s is positive. Otherwise,
s = 0 is the solution. Hence, (E.4) is obtained with (E.5).

Consider (sId, b) ∈ scaled({Id}) × Rd. From Proposition E.1, the
solution is given as b = ave(xN − sx∗N ). Then, from the first part of
this proposition, (E.6) is derived.

Proposition E.3. (Kanatani, 1994) ForM×B = SO(d)× {0}, the
solution to the Procrustes problem (E.1) with xN , x∗N ∈ (Rd)n is
given as

(M, b) = (Φ(xN , x∗N ), 0). (E.7)

Here, the matrix-valued function Φ : (Rd)n × (Rd)n → SO(d) is
defined as

Φ(xN , x∗N ) := V DU>, (E.8)

where U, V ∈ O(d) are matrices satisfying

x∗Nx
>
N = UΣV > (E.9)

with a diagonal matrix Σ = diag(σ1, σ2, . . . , σd) whose entries
σ1, σ2, . . . , σd satisfy σ1 ≥ σ2 ≥ · · · ≥ σd ≥ 0, and

D = diag(1, 1, . . . , 1, det(U) det(V )) ∈ Rd×d. (E.10)
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ForM×B = SO(d)× Rd, the solution is given as

(M, b) = (Φ(cen(xN ), cen(x∗N )), ave(xN −Mx∗N )).

Note that the singular value decomposition (SVD) is performed in
(E.9) to compare the n-tuples (x1, . . . , xn) and (x∗1, . . . , x∗n).

As a preliminary to proving Proposition E.3, the following lemma is
given.

Lemma E.1. For xN , x∗N ∈ (Rd)n, let W ⊂ Rd×d be defined as

W = {M ∈ Rd×d : x∗Nx>NM is symmetry}. (E.11)

Then, M = Φ(xN , x∗N ) is a solution to

min
M∈W∩SO(d)

‖xN −Mx∗N ‖2, (E.12)

where Φ(xN , x∗N ) is given in (E.8).

Proof. Consider a matrix M ∈ W ∩ SO(d), and from (E.9) and (E.11),
we obtain

(x∗Nx>NM)2 = (x∗Nx>NM)(x∗Nx>NM)> = (x∗Nx>N )MM>(x∗Nx>N )>

= UΣV >(UΣV >)> = UΣ2U>. (E.13)

The square root of (E.13) is reduced to

x∗Nx
>
NM = UΣD̄U> (E.14)

for a diagonal matrix D̄ ∈ Rd×d with each entry 1 or −1. Take the
determinant of each side of (E.14), and from (E.9), we obtain

det(x∗Nx>NM) = det(UΣV >M) = det(U) det(Σ) det(V )
det(UΣD̄U>) = det(U)2 det(Σ) det(D̄) = det(Σ) det(D̄)

because det(M) = 1 and det(U) ∈ {1,−1} from M ∈ SO(d) and
U ∈ O(d). From (E.14), these determinants are equal, and

det(D̄) = det(U) det(V ) (E.15)
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is obtained. From (E.14), the function in (E.12) is reduced to

‖xN −Mx∗N ‖2 = ‖xN ‖2 + ‖x∗N ‖2 − 2〈xN ,Mx∗N 〉
= ‖xN ‖2 + ‖x∗N ‖2 − 2tr(x>NMx∗N ) = ‖xN ‖2 + ‖x∗N ‖2 − 2tr(x∗Nx>NM)
= ‖xN ‖2 + ‖x∗N ‖2 − 2tr(UΣD̄U>) = ‖xN ‖2 + ‖x∗N ‖2 − 2tr(ΣD̄).

(E.16)

The function (E.16) is minimized with respect to a diagonal matrix
D̄ ∈ Rd×d with each entry 1 or −1 satisfying (E.15), if D̄ = D for D in
(E.10) because Σ is the diagonal matrix with entries σ1, . . . , σd satisfying
σ1 ≥ · · · ≥ σd ≥ 0. Hence, if a matrix M ∈ W ∩ SO(d) satisfies (E.14)
for D̄ = D, it is a solution to (E.12). Actually, M = Φ(xN , x∗N ) ∈ SO(d)
is such a matrix because from (E.8) and (E.9),

x∗Nx
>
NM = UΣV >(V DU>) = UΣDU>

holds, which indicates that M ∈ W and that (E.14) is satisfied for
D̄ = D.

Proof of Proposition E.3. Let M ∈ SO(d). Then, M>M = Id and
det(M) = 1 hold. By considering the first equation as a constraint
of the optimization problem (E.1), the Lagrangian L(M,Λ) ∈ R is given
as

L(M,Λ) = ‖xN −Mx∗N ‖2 + 〈Λ,M>M − Id〉 (E.17)

for a symmetric matrix Λ ∈ Rd×d, the Lagrangian multiplier. Partially
differentiate (E.17) with respect to M and Λ, and we obtain

∂L

∂M
= ∂L

∂M
tr(x>NxN − 2x>NMx∗N + (x∗N )>M>Mx∗N + Λ(M>M − Id))

= ∂L

∂M
tr(x>NxN − 2x∗Nx>NM + x∗N (x∗N )>M>M + ΛM>M − Λ)

= 2(−xN (x∗N )> +Mx∗N (x∗N )> +MΛ) (E.18)
∂L

∂Λ = M>M − Id. (E.19)

If M ∈ SO(d) is a solution to the optimization problem, (E.18) and
(E.19) are equal to zero, that is,

xN (x∗N )> = M(x∗N (x∗N )> + Λ), M>M = Id



163

hold. From these equations,

x∗Nx
>
NM = (M(x∗N (x∗N )> + Λ))>M = x∗N (x∗N )> + Λ

is obtained. Hence, x∗Nx>NM is symmetry, and M ∈ W holds for W
defined in (E.11). From this fact, thisM is also a solution to (E.12), and
thus Lemma E.1 guarantees that M = Φ(xN , x∗N ) holds. Now, (E.7) is
achieved.

The case ofM×B = SO(d)× Rd can be solved from Proposition
E.1 in the same way as Proposition E.2.

Proposition E.4. ForM×B = scaled(SO(d))× {0}, the solution
to the Procrustes problem (E.1) is given as

(M, b) = (Ψ(xN , x∗N ), 0),

where the matrix-valued function Ψ : (Rd)n×(Rd)n → scaled(SO(d))
is defined as follows with Σ, D, U, V in Proposition E.3:

Ψ(xN , x∗N ) := 〈Σ, D〉
‖x∗N ‖2

V DU>. (E.20)

ForM×B = scaled(SO(d))× Rd, the solution is given as

(M, b) = (Ψ(cen(xN ), cen(x∗N )), ave(xN −Mx∗N )).

Proof. For the optimization problem (E.1) withM×B = scaled(SO(d))
×{0}, let sR ∈ scaled(SO(d)) be a solution for s > 0 and R ∈ SO(d).
According to Proposition E.3, R = Φ(xN , x∗N ) holds for Φ(·, ·) in (E.8)
because even if x∗N is multiplied by a non-negative scalar, only Σ is
multiplied by the scalar while U and V are unchanged in (E.9). From
Proposition E.2, s is derived by replacing x∗N with Rx∗N in (E.5), and

s = χ(xN , Rx∗N ) = max{〈xN , Rx
∗
N 〉

‖Rx∗N ‖2
, 0} = max{tr(x>NRx∗N )

‖x∗N ‖2
, 0}

= max{tr((x∗Nx>N )R)
‖x∗N ‖2

, 0} = max{tr((UΣV >)(V DU>))
‖x∗N ‖2

, 0}

= max{tr(ΣD)
‖x∗N ‖2

, 0} = 〈Σ, D〉
‖x∗N ‖2
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is obtained from (E.8) and (E.9), where the last equation holds because

tr(ΣD) = 〈Σ, D〉 = σ1 + σ2 + · · · ± σd ≥ 0

holds from σ1 ≥ σ2 ≥ · · · ≥ σd ≥ 0. The resultant sR is reduced to
(E.20).

The case ofM×B = scaled(SO(d))×Rd is shown from Proposition
E.1.
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