
The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Self-consistent construction of grand potential
functional with hierarchical integral equations
and its application to solvation thermodynamics

Cite as: J. Chem. Phys. 156, 054116 (2022); doi: 10.1063/5.0079806
Submitted: 24 November 2021 • Accepted: 18 January 2022 •
Published Online: 7 February 2022

Tomoaki Yagi1,a) and Hirofumi Sato1 ,2 ,3,b)

AFFILIATIONS
1 Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
2 Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan
3Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan

a)Author to whom correspondence should be addressed: yagi@riron.moleng.kyoto-u.ac.jp
b)Electronic mail: hirofumi@moleng.kyoto-u.ac.jp

ABSTRACT
The construction of the density functional for grand potential is fundamental in understanding a broad range of interesting physical phe-
nomena, such as phase equilibrium, interfacial thermodynamics, and solvation. However, the knowledge of a general functional accurately
describing the many-body correlation of molecules is far from complete. Here, we propose a self-consistent construction of the grand potential
functional based on the weighted density approximation (WDA) utilizing hierarchical integral equations. Different from our previous study
[T. Yagi and H. Sato, J. Chem. Phys. 154, 124113, (2021)], we apply the WDA to the excess Helmholtz free energy functional rather than the
bridge functional. To assess the performance of the present functional, we apply it to the solvation thermodynamics of Lennard-Jones fluids.
Compared to the modified Benedict–Webb–Rubin equation of state, the present functional qualitatively predicts the liquid–vapor equilib-
rium. The solvation free energy obtained from the present functional provides a much better agreement with the Monte Carlo simulation
result than the hypernetted chain functionals. It constitutes a general starting point for a systematic improvement in the accuracy of the grand
potential functional.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0079806

I. INTRODUCTION

Grand potential is a fundamental thermodynamic quantity for
open systems. It is the heart of a broad range of interesting physical
phenomena, such as phase equilibrium, interfacial thermodynamics,
and solvation.

The density functional theory (DFT) provides the rigorous
foundation that proves the existence of a density functional of the
grand potential and shows that it is minimal for the equilibrium
density profiles.1,2 For applications, the main problem is to con-
struct a functional of the excess free energy, which contains all the
information about the inter-particle correlation, for the system of
interest.

One option for constructing the grand potential functional
is the density expansion of the excess free energy functional. The
Taylor expansion of the excess free energy around a uniform bulk

density gives the grand potential functional as an infinite series
of multi-body integrals. In the DFT language, the hypernetted-
chain (HNC) approximation can be understood as the second-order
truncation of the density expansion.3 The weakness of the HNC
approximation has been reported by various authors.4–11 Owing to
the quadratic expansion, the HNC is unable to describe a grand
potential energy density with two minima necessary to account
for the liquid–vapor equilibrium. Consequently, it largely overes-
timates the energy cost for the creation of a cavity (a gas bubble).
Although this has to be corrected by including the excess functional
for higher-order correlations, the so-called bridge functional,3 it is
practically infeasible to perform the numerical calculation of the
n-body integral (n ≥ 3) without any approximation.

Ideally, one would like to treat the higher-order correlation
as an integral over an effective one-body function instead of a
multi-body integral. The weighted-density approximation (WDA)
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provides the one-body integral that would be a good approximation
for the excess free energy functional.12–24 In the WDA approach, the
excess free energy is approximated as the one-body integral of the
excess free energy density at a smoothed average density, determined
from a suitably weighted average of the actual nonuniform density
distribution. Different versions of the WDA mainly differ in the
procedure for the calculation of the smoothed density calculated by
(1) local averaging,12–19 (2) global averaging,20–22 or (3) a hybrid of
both local and global averaging.23,24 The fundamental measure the-
ory (FMT),25–33 which gives the most successful and most accurate
free energy functional for hard-sphere mixtures, is also categorized
into the WDA approach. However, because the WDA requires the
analytical expression of the free energy as a function of density, the
application is limited to the system whose equation of state is already
known.

The combination of the density expansion method and the
WDA has also been developed. One attempt is the hard-sphere
reference functional method (HSRF) that employs the hard-sphere
functional obtained from the WDA as a reference functional for the
density expansion.5,6,9 In this method, the diameter of the hard-
sphere is empirically adjusted to reproduce the property of the
system of interest. Recently, Borgis et al. proposed the ansatz for
the bridge part of the free energy density, which is parameterized
with empirical thermodynamic properties of the bulk solvent.10,11

The WDA for the bridge functional with this free energy density
gives accurate hydration energies for organic molecules compared
with molecular simulation and experiment.

Summarizing the aim of this work, the question we set out
to answer is how to construct the quantitatively accurate grand
potential functional only from the pair potential. The reason is that
empirical density functionals lack the versatility to support appli-
cations on a wide variety of systems. Very recently, we presented
a novel scheme to self-consistently construct the bridge functional
based on the WDA.34 The bridge functional gives the improve-
ments on the HNC approximation. In this study, we apply the
WDA to the excess Helmholtz free energy functional rather than the
bridge functional to refine the definition of the weight function. The
resulting functional is self-consistently obtained from hierarchical
integral equations. We test the functional with the application to the
solvation thermodynamics of Lennard-Jones fluids.

The outline of this paper is as follows: In Sec. II, through the
density expansion of the excess Helmholtz free energy functional,
we derive the grand potential functional in terms of the direct cor-
relation functions (DCFs) that are obtained from self-consistent
hierarchical integral equations. In Sec. III, as an illustration, the
present functional is applied to the liquid–vapor equilibrium and the
solvation thermodynamics of Lennard-Jones fluids. Conclusions are
given in Sec. IV.

II. THEORY
A. Grand potential functional and weighted density
approximation

We consider a grand canonical ensemble of one component
system under an external field whose grand potential is given as a
density functional,

Ω[n; μ − v] = ℱ [n] − ∫ drn(r){μ − v(r)}, (1)

where n is the number density distribution, μ is the chemical poten-
tial, and v is the external field. ℱ is the Helmholtz free energy, which
can be decomposed into the ideal part and the excess part,

ℱ [n]= ℱ id
[n]+ℱ ex

[n], (2)

ℱ id
[n] = kBT ∫ drn(r)[ln(n(r)Λ3

) + 1], (3)

where T is the temperature, kB is the Boltzmann constant, and Λ is
the thermal de Broglie wavelength. While the ideal part is given as
the analytical expression, the general functional form of the excess
part is unknown.

We consider the density functional of the grand potential
relative to the equilibrium uniform system, n = n0, as follows:

ΔΩ[n; μ(n0) − v] ≡ Ω[n; μ(n0) − v] −Ω[n0; μ(n0)], (4)

= kBT[∫ drn(r) ln(
n(r)

n0
) − ∫ drΔn(r)]

+ Δℱ ex
[n, n0] − μex

(n0)∫ drΔn(r) + ∫ drn(r)v(r), (5)

where Δn(r) = n(r) − n0 and Δℱ ex
[n, n0]= ℱ ex

[n]−ℱ ex
[n0]. We

perform the Taylor expansion of the excess Helmholtz free energy
around the uniform density n0 as follows:

Δℱ ex
[n, n0] = ∫ dr1ϕex

[n, n0](r1)Δn(r1), (6)

ϕex
[n, n0](r1) ≡ μex

(n0)

−
∞
∑
m=2

1
m! ∫

dr2 . . .∫ drmc(m)(r21, . . . , rm1; n0)

× Δn(r2) . . .Δn(rm), (7)

where c(m) represents the mth-order direct correlation function
(DCF),

c(m)(r21, . . . , rm1; n0) ≡ −
1

kBT
δmℱ ex

[n]
δn(r1) . . . δn(rm)

∣

n=n0

. (8)

ϕex is the local excess Helmholtz free energy per excess particle num-
ber. For uniform density, n(r) = n, ϕex is given as a function of
density,

ϕex
[n, n0] = ϕex

0 (n, n0) = μex
(n0) −

∞
∑
m=2

kBT
m!

C(m)(n0)Δnm−1, (9)

where C(m)
(n0) is the Fourier transform of DCF at zero wave vector,

C(m)(n0) ≡ ĉ(m)(0, . . . , 0; n0), (10)

ĉ(m)(k2, . . . , km; n0) =∫ dr2 . . .∫ drme−i(r2 ⋅k2+⋅⋅⋅+rm ⋅km)

× c(m)(r21, . . . , rm1; n0). (11)

The hat indicates the Fourier transform in the following.
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Owing to the difficulty of numerical calculation of the n-body
integral (n ≥ 3), the density expansion is practically unusable. Here,
we introduce the effective density to obtain the excess Helmholtz
free energy functional as a tractable form. The effective density, neff,
is defined to satisfy the following equation:

ϕex
[n, n0](r) ≡ ϕex

0 (n
eff
[n](r), n0). (12)

We perform the linear approximation around the uniform density,
n0, for the effective density as

neff
[n](r) ≈ n0 + ∫ dr1w(∣r − r1∣; n0)Δn(r1), (13)

w(∣r1 − r2∣; n0) ≡
δneff
[n](r1)

δn(r2)
∣

n=n0

. (14)

Inserting Eqs. (6), (12), and (14) into the definition of the second-
order DCF [Eq. (8)], we obtain the weight function w as the
normalized second-order DCF,

w(∣r1 − r2∣; n0) =
c(2)(∣r1 − r2∣; n0)

C(2)(n0)
. (15)

In general, although the structure factor S−1
(r) = δ(r)/n0 − c(2)

(r)
is positive definite, the DCF −c(2)

(r) is not positive definite. Thus,
the weight function w is also not positive definite. However, since w
is normalized as ŵ(0) = 1, the weight function holds the conserva-
tion of mass for the effective density. Inserting Eqs. (6), (9), and (12)
into Eq. (5), we approximately obtain the grand potential as

ΔΩ[n; μ(n0) − v]

= kBT[∫ drn(r) ln(
n(r)

n0
) − ∫ drΔn(r)]

+ ∫ drn(r)v(r)

−
kBT

2 ∫ dr1 ∫ dr2c(2)(∣r1 − r2∣)Δn(r1)Δn(r2)

−
∞
∑
m=3

kBT
m!

C(m)(n0)∫ dr1(Δneff
(r1))

m−1
Δn(r1). (16)

The n-body integrals (n ≥ 3) in Eq. (7) are replaced by one-body
integrals. The truncation of the last line equals the HNC approxima-
tion. To obtain the grand potential functional, we need to calculate
the second-order DCF, c(2)

(r; n0), and the Fourier transform of
DCF at zero wave vector, C(i)

(n0) (i = 3, . . . , m).

B. Self-consistent hierarchical integral equations
for DCFs

From the variational principle for the grand potential, the equi-
librium density distribution under the external potential v(r) is
given by the Boltzmann factor of the effective potential veff,

neq[μ(n0) − v](r) = n0 exp(−βveff
[neq](r)), (17)

veff
[n](r) = v(r) + Δμex

[n](r), (18)

where β = 1/kBT is the inverse temperature. We define the local
excess chemical potential relative to bulk phase,

βΔμex
[n](r) ≡

δβΔℱ ex
[n; n0]

δn(r)
− βμex

(n0) (19)

= − ∫ drc(2)(∣r − r ∣)Δn(r)

−
∞
∑
m=3

1
m!

C(m)(n0)(Δneff
(r))

m−1

−
∞
∑
m=3

m − 1
m!

C(m)(n0)∫ drw(∣r − r ∣)

× (Δneff
(r))

m−2
Δn(r). (20)

Equations (17)–(20) are non-linear and can be solved iteratively.
To obtain the second-order DCF, we have to solve the

Ornstein–Zernike equation,

ĥ(k) = ĉ(2)(k) + n0ĥ(k)ĉ(2)(k), (21)

where h is the pair correlation function. From the Percus relation,35

the pair correlation function is written as the conditional density
distribution, given the external potential from the fixed identical
particle,

h(r) = neq[μ(n0) − u](r)/n0 − 1, (22)

where u is the pair potential between particles. Using this relation
and Eqs. (17)–(21), we obtain the pair correlation function as

h(r) = exp(−βueff
[h, c](r)) − 1, (23)

βueff
[h, c](r) = βu(r) + c(2)(r) − h(r) + b[h, c](r), (24)

b[h, c](∣r1 − r2∣) = −
∞
∑
m=3

C(m)(n0)

m!
(n0heff

(∣r1 − r2∣))
m−1

−
∞
∑
m=3

m − 1
m!

C(m)(n0)∫ drw(∣r1 − r ∣)

× (n0heff
(∣r − r2∣))

m−2
n0h(∣r − r2∣), (25)

heff
(∣r1 − r2∣) ≡∫ drw(∣r1 − r ∣)h(∣r − r2∣), (26)

where ueff is the effective pair potential and b is the bridge func-
tion. To enclose the equations, we need additional equations for
higher-order DCFs. From Baxter’s relation,36 the higher-order DCFs
at zero-wave vectors ˆ̄c(m)(k; n0) are given as the density derivative of
the second-order DCF,

ˆ̄c(m)(k; n0) ≡ ĉ(m)(k, 0, . . . , 0; n0) =
∂m−2

∂nm−2
0

ĉ(2)(k; n0). (27)

Using this relation, the density derivatives of Eqs. (21) and (23) give
equations for higher-order DCFs,

∂i

∂ni
0

ĥ(k) =
∂i

∂ni
0
(ĉ(2)(k) + n0ĥ(k)ĉ(2)(k)), (28)
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∂i

∂ni
0

h(r) =
∂i

∂ni
0

exp(−βueff
[h, c](r)). (29)

Consequently, if we truncate the higher-order terms beyond the
mth-order term, Eqs. (23)–(29) complete the self-consistent itera-
tion to determine the second-order DCF, c(2)

(r; n0), and the Fourier
transforms of DCFs at zero wave vector, C(i)

(n0) (i = 3, . . . , m).
We hereinafter refer to these equations as hierarchal integral equa-
tions. The scheme for the solution of the equations is same as that
described in our previous study.34 First, we set the values of cor-
relation functions as zero. Then, we start the calculation of the
self-consistent loop for the pair correlation function, the DCF, and
the effective potential. If the iteration is converged, next, we start the
calculation of the self-consistent loop for the first derivatives. In the
same way, we calculate the ith derivatives (i = 1, . . . , m) in order.
After the calculation of the mth derivatives, we return to the first.
This procedure is repeated until these become consistent with those
obtained in the previous loop. Finally, the converged DCFs give the
grand potential functional.

C. Truncation of long tail of weight function
In the long-range limit, the second-order DCFs behave asymp-

totically as c(2)
(r) → −βu(r) so that it cancels out the pair potential

in the effective pair potential.3 This long range behavior of DCFs
represents the shielding effect to the long tail of the pair potential.
The weight function that is defined as the normalized second-order
DCF also has the same long-range behavior. The long tail of the
weight function causes the unphysical slow decay of the bridge func-
tion. This behavior violates the shielding of pair potential and makes
the solution of the hierarchical integral equations diverge. From the
asymptotic form of c(2)

(r), we can presume that the density depen-
dence of the long-range part of the second-order DCF is relatively
weak compared with the core part. Because the bridge functional
consists of density derivatives of the second-order DCF, we should
neglect the long-range part of the weight function for constructing
the bridge functional. To account for the short-range nature of the
bridge functional, we truncate the long tail of the weight function
and redefine the weight function in the core region. Following the
Weeks–Chandler–Andersen (WCA) theory,38 we truncate the DCF
at the location of the minimum point of the pair potential, rmin, and
define the weight function as

wtr(r) =
t(∣r1 − r2∣)

t̂(0)
, (30)

t(r) =
⎧⎪⎪
⎨
⎪⎪⎩

c(2)(r) (r < rmin),

0 (r ≥ rmin).
(31)

We can use other truncation protocols for determination of the
cut-off distance such as the Barker–Henderson (BH) theory.37 We
have numerically compared the solutions of the hierarchical integral
equations obtained from the WCA and the BH protocol to check
the sensitivity to the cut-off distance and confirmed that the two
results were almost indistinguishable from each other. In the follow-
ing calculation, we use the truncated weight function with the WCA
protocol instead of Eq. (15).

III. APPLICATION TO LENNARD-JONES FLUID
A. Computational details

We applied the new method to Lennard-Jones (LJ) fluids whose
particles interact via the pair potential,

uLJ(r) = 4εv[(
σv

r
)

12
− (

σv

r
)

6
], (32)

where εv and σv are the depth of the potential well and the diam-
eter of the particle, respectively. The reduced temperature is T∗

= kBT/εv, and the reduced density is n∗ = nσ3
v . We fix the density

at n∗0 = 0.70, which corresponds to a liquid state, and focus on the
four temperatures T∗ = 0.90, 1.00, 1.20, and 2.40. These states cor-
respond to the meta-stable state, the liquid–vapor equilibrium state,
subcritical state, and supercritical state, respectively.

The hierarchical integral equations [Eqs. (23)–(29)] truncated
to the fourth-order were solved using the fast Fourier transform.
The number of grid points was set as 10 000 to obtain the smooth
solutions. The maximum value of the radial distance was set to
30.0σv. The obtained DCFs were used for the grand potential func-
tional in the inhomogeneous system calculation. The self-consistent
equations for the inhomogeneous fluids [Eqs. (17)–(20)] were
solved using the fast Fourier transform with 10 000 linear grids.
The method of modified direct inversion in the iterative subspace
(MDIIS)39 was employed to solve the equations for both the homo-
geneous and inhomogeneous fluids. It ensured great acceleration
and stability of convergence.

B. Grand potential density for uniform system
We define the grand potential density relative to equilibrium

uniform state as a function of uniform density n,

βΔω(n; μ(n0)) ≡ βΔΩ(n; μ(n0))/V , (33)

= n ln
n
n0
− Δn −

∞
∑
m=2

C(m)(n0)

m!
(Δn)m, (34)

where Δn = n − n0. If the uniform phase at density n is equilibrium
with that at density n0, the grand potential density satisfies

Δω(n; μ(n0)) =
∂

∂n
Δω(n; μ(n0)) = 0. (35)

In Fig. 1, we estimated the value of Δω(n; μ(n0)) from the
modified Benedict–Webb–Rubin equation of state (EOS), which
gives the polynomial function for the Helmholtz free energy density
of the LJ fluid.40 This equation accurately predicts the liquid–vapor
coexisting curve. At the supercritical condition, T∗ = 2.4, the curve
of the grand potential is almost parabolic. As the temperature
decreases, the grand potential decreases in the low-density region
that corresponds to the vapor state. At the liquid–vapor equilibrium
condition, T∗ = 1.0, the grand potential curve shows the local min-
imum at n∗ = 0.028. At this point, the value of the grand potential
is equivalent to that at the reference density n∗ = n∗0 = 0.7 and the
phase equilibrium condition is satisfied. The further decrease in the
temperature lowers the grand potential at the low-density region and
reverses the relative stability between the liquid and vapor phase.

We show the result from the fourth-order expansion obtained
from the hierarchical integral equations. For all the conditions,
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FIG. 1. The grand potential density of the uniform system as a function of reduced density n∗ for (a) T∗ = 2.40, (b) 1.20, (c) 1.00, and (d) 0.90. We also present the two
dimensional plots of the grand potential density as a function of n∗ and T∗, which is obtained from (e) the present functional and (f) the modified Benedict–Webb–Rubin
equation of state. In each plot, we set the chemical potential as μ(n∗0 = 0.70).

the truncation beyond the second-order term corresponding to the
HNC approximation gives the almost quadratic function centered at
n∗ = n∗0 . The HNC largely overestimated the value in the low-density
region. Conversely, the value in the high-density region is underes-
timated. On the other hand, the prediction of the present functional,
which includes third- and fourth-order terms, gives good agreement
with the EOS results, except in the low-density and low-temperature
regions. The 3D-plots clearly display this feature. Owing to the
overestimation in the low-density and low-temperature regions,
the present functional fails to predict the liquid–vapor equilibrium
at T∗ = 1.0. At the lower temperature T∗ = 0.9, it gives the two
local minima that are very close to the liquid–vapor equilibrium.
Although the present functional underestimates the equilibrium
temperature, it qualitatively predicts the liquid–vapor equilibrium.

C. Solvation around hard sphere solute
We discuss the solvation around a hard-sphere (HS) with

varying sizes. The external potential produced by the HS solute is

v(r) =
⎧⎪⎪
⎨
⎪⎪⎩

∞ r ≤ D,

0 r > D,
(36)

where D is the diameter of the spherical cavity that is produced
by the hard-core potential. The reduced diameter is defined as
D∗ = D/σv.

In Fig. 2(a), we plot the contact values of the reduced density
distribution, n(D)/n0. The contact values provide a systematic check
of the drying behavior near the solute surface. The values calculated
by the HNC approximation are insensitive to the temperature and
almost reach large plateau values at D∗ = 2.0. On the other hand, for
the results from the present functional, the contact values decrease

as the temperature decreases and the diameter increases. Clearly, the
features of drying are predicted by the present functional.

The solvation free energy (SFE) is given by the grand poten-
tial relative to the equilibrium homogeneous state at equilibrium
density,

ΔsolvΩ ≡ ΔΩ[neq; μ(n0) − v], (37)

= − kBT ∫ drΔn(r) − ∫ drn(r)Δμex
(r)

−
1
2 ∫

dr1 ∫ dr2c(2)(∣r1 − r2∣)Δn(r1)Δn(r2)

−
∞
∑
m=3

1
m!

C(m)(n0)∫ dr1(Δneff
(r1))

m−1
Δn(r1). (38)

In Fig. 2(b), we plot the solute size dependence of the SFE per sur-
face area of the cavity, which is scaled by the inverse temperature,
βΔsolvΩ/πD∗2. Similar to the contact values, the SFE calculated by
the HNC approximation is insensitive to the temperature. For the
present functional, the decrease in the temperature lowers the slope
of the SFE curve. For T∗ = 0.90, the SFE is very close to the plateau
curve.

For the comparison with Monte Carlo (MC) simulation results
by Ashbaugh (MC-A)42 and Huang and Chandler (MC-HC),41 we
performed calculations for the LJ fluids with the potential truncated
and shifted at 2.5σv,

ũLJ(r) =
⎧⎪⎪
⎨
⎪⎪⎩

uLJ(r) − uLJ(2.5σv) (r ≤ 2.5σv),

0 (r > 2.5σv).
(39)
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FIG. 2. (a) The contact value of reduced density and (b) the solvation free
energy of Lennard-Jones fluids around a hard sphere (HS) as a function of HS
diameter D∗.

The thermodynamic conditions are set as T∗ = 0.85 and n∗0 = 0.70,
which is close to the liquid–vapor coexistence. In Fig. 3(a), we plot
the grand potential for the uniform system. The grand potential
curve obtained from the EOS shows the local minimum at n∗ = 0.02.

As in the case of the normal LJ system, the present functional slightly
overestimates the grand potential in the low-density region and
misses the quantitative prediction of the liquid–vapor equilibrium.

In Fig. 3(b), we plot the contact value of the reduced density dis-
tribution n(D)/n0. The MC results show the maximum around D∗

= 1.0 and then decrease with the solute diameter D. For the small size
of the solute, D∗ = 0.5, the results of the HNC and present functional
are almost indistinguishable from each other and agree well with
simulation data. The present functional qualitatively reproduces the
feature of the depletion for the large D limit. In the HNC results,
large positive deviations from the simulation data are observed for
D∗ > 0.5 and these values are greatly larger than unity.

Figure 3(c) shows the cavity solvation free energy predicted
by DFT and MC simulations. The SFE of the MC result reaches a
plateau for large D values, giving a value for surface free energy γ. In
the macroscopic limit, the SFE is written as the sum of the volumetric
term and the surface term, ΔsolvΩ = PπD3

/6 + γπD2. The volumet-
ric term is represented by the grand potential for uniform systems,
Δω(0; μ(n0))πD3

/6. As shown in Fig. 3(a), this term is negligible
at the condition close to the liquid–vapor equilibrium. The present
functional largely improves the agreement with the MC result. How-
ever, the overestimation of the grand potential for uniform systems
in the low-density region results in the finite slope of the SFE at
large D. For the previous DFT study, the HSRF method by Wu,43

the SFE values also do not reach a plateau in the limit of large D.

D. Solvation around Lennard-Jones solute
We also apply the obtained functional to the solvation around

the LJ solute. The external potential is given by

v(r) = 4
√

εvεu[(
σv + σu

2r
)

12
− (

σv + σu

2r
)

6
], (40)

where εu and σu are the LJ parameters for the solute. The well-depth
parameter εu is taken identical to εv. The reduced diameter is defined
as σ∗u = σu/σu

We calculated the radial distribution function g(r) of LJ fluids
(n∗0 = 0.70 and T∗ = 1.20) around the LJ solute (σ∗u = 1.0 and 3.0). In
Fig. 4, we show g(r) obtained from the DFT methods and molecular
dynamics (MD) simulation result by Miyata and Thapa,44 focusing
on the first peak. For the HNC approximation, we observe a shift of

FIG. 3. The comparison with the equation of state and Monte Carlo simulation data. (a) The grand potential density for the homogeneous system. (b) The contact value of
the reduced density. (c) The solvation free energy. The black dashed line shows a plateau suggested by MC.
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FIG. 4. Comparison of the radial distribution functions for the LJ fluids around the
LJ solute.

the first peak position toward a shorter distance than the MD result.
The shift in the result for σ∗u = 3.0 is larger than that for σu = 1.0.
The present method shows good agreement in the position and the
height of the first peak. However, the shoulder of the first peak is
slightly deviated from the MD result. The similar deviation in the
shoulder was observed in the HSRF method.9

Figure 5 shows the solute size dependence of the SFE for the
LJ solute at T∗ = 0.9, 1.0, 1.2, and 2.4. To compare with the simula-
tion data, we plot the molecular dynamics (MD) simulation result
of Miyata et al.44,45 at T∗ = 1.2 and 2.4. The SFE value when σu is
identical to σv corresponds to the excess chemical potential for the
pure LJ fluid. In this case, the HNC gives a SFE value relatively close
to that obtained from the MD simulation. As the size of the solute
increases, the SFE value calculated by the MD simulation monoton-
ically increases for T∗ = 2.4 and decreases for T∗ = 1.2. In contrast
to the results obtained by the MD simulation, for both the condi-
tions, the SFE value determined by HNC increases as the size of the
solute increases. As a result, HNC produces a large value of the SFE
for large solutes. As in the case of solvation around the HS solute,
the overestimation of the volumetric term leads to a large value of
the SFE. On the other hand, the present functional greatly improves
the overestimation of the SFE, thus yielding good agreement with
the results obtained by the MD simulation.

FIG. 5. The solvation free energy of Lennard-Jones fluids around a Lennard-Jones
solute as a function of diameter σ∗u .

IV. CONCLUSION
This paper presented the method for self-consistently con-

structing the grand potential density functional utilizing the hier-
archical integral equations. We started by deriving the density
expansion of the excess free energy functional. The central tool in
this derivation is a weighted density approximation. The expansion
coefficients are given in the Ornstein–Zernike integral equations
with Baxter’s relation. Using the test particle scheme of Percus,
we provided the hierarchical integral equations for self-consistently
constructing the grand potential functional.

The present functional was tested by application to the sol-
vation thermodynamics of Lennard-Jones fluids. Compared to the
modified Benedict–Webb–Rubin equation of state, the present func-
tional qualitatively predicts the liquid–vapor equilibrium. The sol-
vation free energy obtained from the present functional provides a
much better agreement with the Monte Carlo simulation results than
the HNC functional. The present method constitutes a general start-
ing point for a systematic improvement in the accuracy of the grand
potential functional and makes it possible to study a wide variety of
physical phenomena.
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