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ABSTRACT
A parameter-free bridge functional is presented using a weighted density approximation (WDA). The key point of this scheme is the utilization
of Baxter’s relation connecting the second-order direct correlation function (DCF) to the higher-order DCF with the density derivative. The
free energy density required for the WDA is determined in a self-consistent manner using Baxter’s relation and Percus’s test particle method.
This self-consistent scheme enables us to employ any type of potential model for simple liquids. The new functional is applied to calculate
density distribution functions for the inhomogeneous fluids interacting via the hard-sphere, Lennard-Jones, and hard-core Yukawa potentials
under an external field from a planar wall and a slit pore.
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I. INTRODUCTION

Density functional theory (DFT) is a versatile and powerful
approach to studying the thermodynamics of inhomogeneous clas-
sical fluids.1 For applications, the main challenge is to construct a
functional of the excess free energy that contains all the information
about the inter-particle correlation for the system of interest. Among
the variety of approximation methods developed so far, the well-
known nonperturbative approaches are based on the weighted den-
sity approximation (WDA) techniques.2–13 In a WDA approach, the
excess free energy is approximated by the spatial integration of the
excess free energy density at a smoothed average density, determined
from a suitably weighted average of the actual nonuniform density
distribution of the system. Other versions of the WDA mainly dif-
fer in the procedure for the calculation of the smoothed density by
(1) local averaging,2–8 (2) global averaging,9–11 or (3) a hybrid of
both local and global averaging.12,13 The fundamental measure the-
ory (FMT),14–20,48 which gives the most successful and most accurate
free energy functional for hard-sphere mixtures, is categorized into
the WDA based on local averaging. The WDA with a mean-field
approximation has been quite successful in Lennard-Jones fluids,21

ionic fluids,22,23 and dipolar fluids.24,25 The drawback of the WDA is
that it requires the analytic expression of the free energy density as
a function of density. Because the accurate equation of state is only
available for the hard-sphere fluids, the application of the WDA is
still limited to simple liquids.

The perturbative approach to constructing the excess free
energy functional has also been developed. The Taylor expansion
of the excess free energy around a uniform bulk density gives
the formally exact expression as an infinite series. If the devia-
tion in the density distribution is not so large from the uniform
bulk density, the truncation of the higher-order terms gives a
good approximation. In particular, the second-order truncation is
called the hypernetted-chain (HNC) approximation. The weakness
of the HNC approximation has been reported by many authors.27–32

Owing to the quadratic expansion, the free energy as a func-
tion of density has a single well instead of a double well. It can-
not account for the liquid–gas transition; consequently, it largely
overestimates the energy penalty for the depletion of the solvent
around a solvophobic surface. This needs to be corrected by includ-
ing the functional beyond second-order, the so-called bridge func-
tional. Barrat et al. took into account the third-order term by
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introducing the factorization ansatz for the triplet DCF.34 However,
owing to the infeasible numerical integration of the higher-order
terms, the direct implementation of the bridge functional has been
limited to less than the fourth-order term. Another attempt is that
the bridge functional is approximated as that for the hard-sphere
system obtained from the WDA.29–32 In this method, the diameter
of the hard-sphere is adjusted to reproduce the property of the sys-
tem of interest. Recently, Borgis et al. proposed the ansatz for the
bridge part of the free energy density, which is parameterized with
thermodynamic properties of the bulk solvent.33 The WDA for the
bridge functional with this free energy density gives accurate hydra-
tion energies for organic molecules as compared with those from
simulation and experiment.

The purpose of this work is to construct a parameter-free bridge
functional in a systematic manner. The key point of this method is
the utilization of Baxter’s relation that connects the second-order
DCF to higher-order DCFs with the density derivative.36 Although
the full information about the higher-order DCF is inaccessible, its
Fourier component at the zero-wave vector is available from Baxter’s
relation and the density derivative of the Ornstine–Zernike equa-
tion. Using the zero-wave vector component of the DCFs, we can
construct the free energy density as a finite power series of den-
sity. We implement the WDA for the bridge functional with this
free energy density. The second-order DCF and its density deriva-
tives are determined in a self-consistent manner by using Percus’s
test particle method. Because we do not need to preliminarily pre-
pare the free energy density, this scheme is applicable to any type
of fluid models. The new functional is applied to calculate density
distribution functions for the inhomogeneous fluids interacting via
the hard-sphere, Lennard-Jones, and hard-core Yukawa potentials
under external fields such as confinement in several geometries.

II. CONSTRUCTION OF BRIDGE FUNCTIONAL
A. Weighted density approximation

In this study, we consider a one-component simple liquid. The
generalization of the following to mixture systems is straightfor-
ward. We perform the Taylor expansion of the excess Helmholtz free
energy around the bulk density,

F ex
[ρ] =F ex

[ρ0] + μex
(ρ0)∫ dr1Δρ(r1) −

1
2β ∫

dr1 ∫ dr2C(2)

× (∣r1 − r2∣; ρ0)Δρ(r1)Δρ(r2) + F ex
B [ρ], (1)

F ex
B [ρ] ≡

∞

∑
n=3

1
n! ∫

dr1⋯∫ drnC(n)(r1, . . . , rn; ρ0)

× Δρ(r1)⋯Δρ(rn), (2)

where C(n) represents the nth order direct correlation function
(DCF),

C(n)(r1, . . . , rn; ρ0) ≡ −β
δnF ex

[ρ]
δρ(r1)⋯δρ(rn)

∣

ρ=ρ0

. (3)

The bridge functional, F ex
B , contains a higher-order correlation

beyond the quadratic approximation. The full information of
higher-order DCFs is inaccessible, and even if it is accessible, the

numerical integration of the multi-dimensional space is infeasible.
Neglecting the bridge functional reduces Eq. (1) to the hypernetted-
chain (HNC) approximation. To obtain the bridge functional as a
tractable form, in this scheme, the excess free energy functional F ex

is assumed to be of the form

F ex
B [ρ] ≈

1
β ∫

dr f ex
B (ρ̄[ρ](r)), (4)

where f ex
B (ρ) denotes the bridge part of the excess free energy den-

sity of a uniform liquid of bulk density ρ. The construction of f ex
B is

shown in Sec. II B. We perform the first order Taylor expansion of
the effective density around the bulk density,

ρ̄[ρ](r) ≈ ρ0 + ∫ drW(∣r − r∣)Δρ(r), (5)

where we define the weight function

W(∣r1 − r2∣) ≡
δρ̄[ρ](r2)

δρ(r1)
∣

ρ=ρ0

. (6)

The self-consistent determination of W is shown in Sec. II C.

B. Free energy density
Unfortunately, an accurate expression for the free energy den-

sity is available only for hard-sphere systems; a general framework
for the system of interest is necessary. From the density expansion
of the excess free energy [Eq. (1)], its density is given as

f ex
(ρ) = βF ex

(ρ)/V

= f ex
(ρ0) + μex

(ρ0)Δρ −
1
2
C̃(2)(0; ρ0)Δρ2 + f ex

B (ρ), (7)

where C̃ represents the Fourier transform C̃(k) ≡ ∫ dreir⋅kC(r). The
bridge part of the free energy density is written as

f ex
B (ρ) = −

∞

∑
n=3

1
n!
C̃n
(0, . . . , 0; ρ0)Δρn. (8)

In contrast to the virial expansion whose reference density is set to
zero, the reference density of this method can be set to an arbitrary
value. From Baxter’s relation,36 the higher-order DCFs are given as
the bulk density derivative of the second-order DCF,

∂n
ρ0 C̃
(2)
(k; ρ0) = C̃(n+2)

(k, 0, . . . , 0; ρ0). (9)

The bridge part of the excess free energy density is given by the
second-order DCF and its density derivatives,

f ex
B (ρ) = −

∞

∑
n=3

Δρn

n!
∂n−2
ρ0 C̃(2)(0; ρ0). (10)

As shown in Sec. II D, the density derivatives of the DCF are
determined by using a self-consistent scheme.

C. Weight function
From the definition of the DCF [Eq. (3)], the third-order DCF

is written by the convolution of the weight function,

C(3)(r2 − r1, r3 − r1; ρ0) = C̃(3)(0, 0; ρ0)∫ drW(∣r1 − r∣)

× W(∣r2 − r∣)W(∣r3 − r∣). (11)
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The Fourier transform of Eq. (11) gives

C̃(3)(k1, k2; ρ0) = C̃(3)(0, 0; ρ0)W̃(∣k1∣)W̃(∣k2∣)W̃(∣k1 + k2∣), (12)

where we use the convolution theorem. When k1 = 0 and k2 = 0,
Eq. (12) gives

{W̃(0)}3
= 1 → W̃(0) = 1. (13)

Thus, the weight function is normalized. When k1 = k and k2 = 0,
Eq. (12) gives

C̃(3)(k, 0; ρ0) = C̃(3)(0, 0; ρ0){W(k)}2. (14)

Taking the square root of Eq. (14), we obtain the weight function as

W̃(k) =

¿
Á
ÁÀ C̃(3)(k, 0; ρ0)

C̃(3)(0, 0; ρ0)
. (15)

This expression is problematic. Inside the square root, Eq. (15) has
a minus sign at some wave vectors, contradicting the requirement
that the weighted density has to be real. To avoid this, we modify the
weight function as

W̃(k) =

¿
Á
ÁÀ∣

C̃(3)(k, 0; ρ0)

C̃(3)(0, 0; ρ0)
∣. (16)

From Bochner’s theorem,37 the non-negativity of the Fourier trans-
form [Eq. (16)] makes the weight function in real space positive-
definite. The positive-definiteness ensures that the spatial average of
the weighted density is non-negative. As seen in the expression of
Eq. (16), the feature of the weight function is similar to that of the
DCF, which almost decays within the core region.

D. Self-consistent determination of bridge functional
The density distribution of the inhomogeneous fluid under the

external field v(r) is given as the Boltzmann factor of the effective
potential,1

ρ(r) = ρ0 exp[−βveff
(r)], (17)

βveff
(r) = βv(r) − ∫ drc(r − r)Δρ(r) + B(r), (18)

where the second-order DCF, C(2)(r), is abbreviated as c(r). We
define the bridge function as

B(r) ≡ β
δF B
[ρ]

δρ(r)
= ∫ dr f ex′

B (ρ
eff
(r))W(∣r − r∣), (19)

where f ex′
B (ρ) is the derivative coefficient of f ex

B (ρ). Percus’s relation
identifies the pair correlation function (PCF) for the homogeneous
bulk system with the density distribution function under the fixed
test particle, which is identical to the solvent particle.35 This rela-
tion and Ornstein–Zernike equation give self-consistent equations
for the PCF and the DCF,

h(r) = exp[−ueff
(r)] − 1, (20)

βueff
(r) = βu(r) − h(r) + c(r) + b(r), (21)

b(∣r1 − r2∣) ≡ ∫ dr f ex′
B (ρ0ḡ(∣r1 − r∣))W(∣r − r2∣), (22)

ḡ(∣r1 − r2∣) ≡ ∫ drW(∣r1 − r∣)h(∣r − r2∣) + 1, (23)

where u(r) is the pair potential. The Ornstein–Zernike equation in
the Fourier space is written as

h̃(k) = c̃(k) + ρ0c̃(k)h̃(k). (24)

Because the expression for the bridge function, b(r), includes the
density derivatives of the DCF, these equations are not closed. The
ith density derivatives of Eqs. (20), (21), and (23) give

∂i
ρ0h(r) = ∂

i
ρ0 exp[−ueff

(r)], (25)

∂i
ρ0u

eff
(r) = ∂i

ρ0[−h(r) + c(r) + b(r)], (26)

∂i
ρ0 h̃(k) = ∂

i
ρ0[c̃(k) + ρ0c̃(k)h̃(k)]. (27)

To close these equations, we have to truncate the higher-order terms
of the free energy density [Eq. (10)]. If we truncate the higher-order
terms beyond the nth order term, as schematically shown in Fig. 1,
Eqs. (20)–(27) give the self-consistent iteration loop to determine the
DCF and its density derivatives. First, we set the values of correlation
functions as zero. Then, we start the calculation of the self-consistent
loop for the PCF, the DCF, and the effective potential. If the itera-
tion is converged, next, we start the calculation of the self-consistent
loop for the first derivatives. In the same way, we calculate the ith
derivatives (i = 1, . . ., n) in order. After the calculation of the nth
derivatives, we return to the first. This procedure is repeated until
these become consistent with those obtained in the previous loop.

FIG. 1. The self-consistent loops for (a) the correlation functions of homogeneous
systems and (b) the density distribution of the inhomogeneous system.
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The converged DCF and its density derivative give the excess free
energy functional. Then, we can obtain the bridge functional and
implement the iteration loop to determine the inhomogeneous den-
sity distribution. We refer to this functional as the weighted density
bridge functional (WDBF).

III. APPLICATION TO HOMOGENEOUS
AND INHOMOGENEOUS LIQUID STRUCTURES
A. Computational details

We applied the new method to a hard-sphere (HS) fluid with
diameter σ, the Lennard-Jones (LJ) fluid interacting via

u(r) = 4ε[(
σ
r
)

12
− (

σ
r
)

6
], (28)

and the hard-core Yukawa fluid interacting via

u(r) = {
∞, r < σ
−ε σr exp[−λ( σr − 1)], r > σ,

(29)

where ε, σ, and λ are the depth of the potential well, the diame-
ter of the particle, and the screening length for the Yukawa tail,
respectively. In this study, the screening length λ = 1.8 is used.
The reduced temperature, T∗ = kBT/ε, and the reduced den-
sity, ρ∗ = ρσ3, uniquely specify the thermodynamic state of these
fluids.

The self-consistent equations for the homogeneous fluids
[Eqs. (20)–(27)] are solved using the fast Fourier transform with
16 384 linear radial grids. To ensure the numerical stability of the
iteration loop, we neglect the bulk density dependence of the bridge
function included in Eq. (26). The maximum value of the radial dis-
tance is set to 50.0σ for the HS and LJ fluids. The obtained solutions
for the DFCs are used for the excess Helmholtz free energy [Eq. (1)]
and the weight function [Eq. (16)]. The self-consistent equations
for the inhomogeneous fluids [Eqs. (17)–(19)] are solved using the
fast Fourier transform with 16 384 linear grids. A Picard iteration
scheme is employed to solve the equations for both homogeneous
and inhomogeneous fluids. The bridge functional truncated to the
nth order term is denoted by WDBF(n). We show the result from
WDBF(4) and WDBF(5).

B. Results
1. Homogeneous HS, LJ, and Yukawa fluids

In Fig. 2(a), the DCFs for the hard-sphere fluid are presented
for the densities of ρ∗ = 0.6, 0.8, and 0.9. At the density of ρ∗ = 0.6,
HNC+WDBF(4,5) is quantitatively consistent with the MC result,
while the HNC theory slightly overestimates in comparison with
the MC result. At densities higher than ρ∗ = 0.6, the HNC the-
ory largely overestimates. On the other hand, the HNC+WDBF(4)
results show a better agreement with these MC results for the densi-
ties ρ∗ = 0.8 and 0.9. However, the iteration loop for the solution of
HNC+WDBF(5) was not converged.

The DCFs for the LJ fluid at T∗ = 0.75 and ρ∗ = 0.84 are dis-
played in Fig. 2(b). The thermodynamic state is near the triple point.
The agreement of the HNC result with the simulation is somewhat

FIG. 2. The direct correlation functions of homogeneous systems. (a) Hard-sphere
fluids. The Monte Carlo (MC) simulation data are taken from Ref. 38. (b) Lennard-
Jones fluids. The molecular dynamics (MD) simulation data are taken from Ref. 39.

poor. HNC+WDBF(4,5) shows a better agreement with the sim-
ulation result. Although slight overestimation is still observed in
HNC+WDBF(4), the result of HNC+WDBF(5) shows a quantitative
agreement with the simulation data in the entire range of r.

We calculated the isothermal pressure as a function of density
via the virial route. The virial pressure is given by26

p(ρ) = kBTρ −
2
3
πρ2
∫

∞

0
drr3
[h(r) + 1]

du(r)
dr

. (30)

The extent of the agreement with the simulation data indicates the
accuracy of the pair correlation functions h(r) within the range of
u(r). In Fig. 3(a), we present the results of p(ρ) for temperatures
T∗ = 0.9 and 1.3. For both high and low temperatures, the HNC
largely overestimates the pressure in comparison with the simulation
data. For a high temperature, the result of HNC+WDBF(4,5) agrees
well with the simulation data. However, for a low temperature, the
large overestimation is observed in HNC+WDBF(4) at high density.
The result of HNC+WDBF(5) shows a better agreement with simu-
lation data. The iteration loop for the solution of HNC+WDBF(5) at
over ρ∗ = 0.85 was not converged.

We calculated the isothermal excess chemical potential as a
function of density. Using the test particle insertion method, the
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excess chemical potential is given as29

βμex
= ρ0 ∫ dr[

1
2
h(r){h(r) − c(r)} − c(r)]

− ρ0 ∫ drḡ(r)b(r) + βF ex
B [ρ = ρ0g]. (31)

In Fig. 3(b), we show the excess chemical potential μex(ρ) for temper-
atures T∗ = 0.75, 1.0, and 1.35. As well as the pressure, for all ther-
modynamic conditions, the HNC largely overestimates the chemical
potential in comparison with the simulation data. HNC+WDBF(4,5)
shows a better agreement. More precisely, the results of WDBF(5)
are closer to the simulation than those of HNC+WDBF(4), indi-
cating that for the thermodynamic property of the LJ fluid,
the WDBF approach provides a great improvement in high-
temperature conditions, while the improvement is moderate at low
temperatures.

In Fig. 4, we display the structure factors, S(k) = 1 + ρ0h̃(k), of
the Yukawa fluids for (a) ρ∗ = 0.30, T∗ = 1.50 and (b) ρ∗ = 0.60,
T∗ = 1.50. For both conditions, in comparison with the simula-
tion results, the long-wavelength components, S(k → 0), are over-
estimated by the HNC approximation. HNC+WDBF(4,5) improves

FIG. 3. Thermodynamic quantities of homogeneous Lennard-Jones fluids. (a)
Isothermal pressure. The Monte Carlo (MC) simulation data are taken from Ref. 40.
(b) Isothermal excess chemical potential. The Monte Carlo (MC) simulation data
are taken from Ref. 41.

FIG. 4. The structure factors of the Yukawa fluids: (a) ρ∗ = 0.30, T∗ = 1.50 and
(b) ρ∗ = 0.60, T∗ = 1.50. The Monte Carlo (MC) simulation data are taken from
Ref. 42.

the deficiency and provides the quantitative agreement with the
simulation results in the entire range of k.

2. HS, LJ, and Yukawa fluids near a planar wall
In Fig. 5, the density profiles of the hard-sphere fluid at a pla-

nar hard wall are displayed for the densities (a) ρ∗ = 0.5745 and (b)
ρ∗ = 0.8130. The surface of the hard wall is located at z = 0. While,
at both densities, the HNC and HNC+WDBF(4,5) results agree well
with the MC result except at the value of z very close to the wall,
these overestimate the contact value of the density distribution. The
contact value obtained from HNC+WDBF(4,5) is smaller than that
from the HNC, and the density value of HNC+WDBF(4,5) at the
vicinity of the wall is closer to the simulation data. HNC+WDBF(5)
improves the agreement compared with HNC+WDBF(4).

To get a more comprehensive evaluation of the WDBF, we cal-
culated the excess adsorption of HS fluids near the hard wall. The
excess adsorption, defined by

Γ(ρ0) = ∫

∞

0
dz[ρ(z) − ρ0], (32)

provides a systematic check of the overall behavior of density pro-
files. In Fig. 6, we show the excess adsorption as a function of the
reduced density. At low values of ρ∗, the DFT results are almost
indistinguishable from each other and agree very well with the
MD data.44 In the HNC result, the deviation from the simulation
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FIG. 5. The density profile of the hard-sphere fluids near the hard wall at (a)
ρ∗ = 0.5745 and (b) ρ∗ = 0.8130. The Monte Carlo (MC) simulation data are
taken from Ref. 43.

data gradually increases for ρ∗ > 0.30. While the excess adsorption
increases toward less negative values for ρ∗ < 0.60 in the simulation
results, the HNC+WDBF(4,5) results display a local minimum and
then decrease further for ρ∗ → 0.6. The discrepancy at high densities
ρ∗ > 0.7 is also observed in the FMT.19

FIG. 6. The excess adsorption of the hard-sphere fluids near the hard wall. The
molecular dynamics (MD) simulation data are taken from Ref. 44.

Figure 7 shows the density distributions of the LJ fluids near a
hard wall at the bulk densities ρ∗ = 0.50 and 0.65 and temperature
T∗ = 1.30. As shown in Fig. 7(a), the LJ particles are depleted around
the solid–fluid interface, and the density rises monotonously with
the separation from the wall until it reaches the bulk density. The
depletion is attributed to the attraction from the bulk liquid, which
balances the adhesion of particles due to the short-range repulsive
interactions. Clearly, all these features are qualitatively captured by
WDBF(5). The performance of WDBF(5) is moderately better than
that of the HNC theory, which largely overestimates the densities
around the hard wall. Figure 6(b) shows the density profile at a
higher bulk density. In this case, the density distribution recovers
the bulk value in an oscillatory manner, indicating that the repulsion
takes more control. As in Fig. 7 (b), HNC+WDBF largely overesti-
mates the densities around the wall. Thus, it suggests that the WDBF
is still inappropriate to quantitatively describe LJ fluids near a hard
wall. It may be of interest to mention that our WDBF results are
very close to those from the modified FMT with the mean-field
approximation by Tang and Wu.21

Figure 8 displays the density profiles of the Yukawa fluids
(ρ∗ = 0.70, T∗ = 1.10) near a planar wall. The interaction potential

FIG. 7. The density profile of the Lennard-Jones fluids near the hard wall at (a)
ρ∗ = 0.50, T∗ = 1.30 and (b) ρ∗ = 0.65, T∗ = 1.30. The Monte Carlo (MC)
simulation data are taken from Ref. 45.
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FIG. 8. The density profile of the Yukawa fluids (ρ∗ = 0.70, T∗ = 1.10, and
λ = 1.80) near (a) the hard wall (εw/ε = 0.0) and (b) the attractive wall (εw/ε
= 2.5). The Monte Carlo (MC) simulation data are taken from Ref. 46.

between the Yukawa particles and the wall is expressed as

v(z) = {
∞ (z < σ

2 )

−εw exp[−λ( zσ − 1)] (z > σ
2 ).

(33)

Two potential depths εw/ε = 0.0 and 2.5 are considered. These
parameters correspond to the hard wall and the attractive-wall mod-
els, respectively. As shown in Fig. 7(a), similar to the LJ fluids,
the Yukawa particles are depleted around the hard wall. On the
other hand, the depletion does not occur for the attractive wall
[Fig. 7(b)]. For both cases, the HNC and WDBF(4,5) largely overes-
timate the contact densities. Although the contact density obtained
from WDBF(4,5) is closer to that from the simulation result, the
deviation is still large. As in the case of the LJ fluids, the WDBF
underestimates the attraction from the bulk fluid, which competes
with the fluid–wall interaction.

3. LJ fluids in a slit pore
In Fig. 9, we show the density profiles of the LJ fluid at

T∗ = 1.2 and ρ∗ = 0.5925 in the slit pore with (a) H/σ = 3.0 and (b)
H/σ = 4.0. The interaction potential between the LJ particles and the

FIG. 9. The density profiles of Lennard-Jones fluids at ρ∗ = 0.5925 and T∗ = 1.20
in the slit pore with (a) H = 3.0σ and (b) H = 4.0σ. The Monte Carlo (MC) simulation
data are taken from Ref. 47.

planar wall is modeled by Steele’s 10-4-3 potential,47

vw(z) = εw[
2
5
(
σw
z
)

10
− (

σw
z
)

4
−

σ4
w

3Δ(z + 0.61Δ)3 ], (34)

where the parameters are given by σw = σ, εw = 6.283ε, and
Δ = 0.7071σ. In the slit with width H, the external field is given by

v(z) = vw(z −H/2) + vw(H/2 − z). (35)

For both cases (H/σ = 3.0 and 4.0), while the HNC overestimates
the absorption density, HNC+WDBF(4,5) underestimates it. The
agreement with the simulation result is not much improved by
HNC+WDBF(4,5). The accuracy of the HNC+WDBF prediction is
less than that of the FMT with the mean-field theory.48

IV. CONCLUSION
In this study, we developed a parameter-free bridge functional

based on the weighted density approximation. With these develop-
ments, we provided the self-consistent integral equations to con-
struct the bridge functional. Unlike the conventional WDA, a benefit
of this approach is that we do not need to preliminarily prepare the
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free energy density. Thus, this scheme is applicable to any type of
models for simple liquids.

As an application, we considered the homogeneous and inho-
mogeneous HS fluids and LJ fluids. In comparison with the sim-
ulation results, the self-consistent WDA for the bridge functional
provided a good agreement for the equation of state, h(r) and c(r), in
the homogeneous fluids and for density profiles of the hard-sphere
fluids near the hard wall. However, the attracting fluids such as LJ
and Yukawa fluids near the wall are not completely described by
the present functional. The deficiency is partly attributed to the slow
convergence of the Taylor series expansion of the excess free energy
around the reference density. The modification of the reference sys-
tem29,30,32 yields more rapid convergence and may further improve
the accuracy of the functional.
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