
Elucidation of Chaotic Market Hypothesis Based
on Ergodic Theory

Ken Umeno

Abstract We develop a method of directly testifying the efficient market hypothesis
(EMH) proposed by Fama by using the ergodic theory to connect microscopic price
fluctuations with macroscopic behavior. After testing the validity of the method by
using exactly solvable chaos, we found a novel periodic structure in the 5-minute
chart data of the Nikkei averages in 2019 with our developed new correlation func-
tion based on the characteristic function. This directly denies the EMH. Statistical
data of the empirical studies have shown that a stable law well describes the price
fluctuations of financial markets as predicted by the most generalized version of the
central limit theorem called the universal super generalized central limit theorem
(USGCLT) we discovered recently. The concept and proof of the extension of the
super generalized central limit theorem (SGCLT) is also given to illustrate the mech-
anism of universality such that a sum of random numbers with nonidentical power
law distributions converges to a stable law in distribution. With these theoretical
facts together with the empirical fact of the data denying the EMH, we propose
the chaotic market hypothesis (CMH) based on the ergodic theory to capture the
essential characteristics of the financial markets.

1 Introduction

Ergodicity is the fundamental concept that connects macroscopic behavior with
the microscopic behavior for complex systems such as the financial market. To
characterize the financial market, Fama (1970) propose a clear vision that the the
financial market is essentially characterized by the random walk by posing basic
assumptions of efficiency that the equality of opportunities exist for every participants
under the fair condition that there is no insider trading with privileged information.
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This assumption has been supported by many empirical studies such that financial
time series data such as logarithmic returns of price fluctuations have no correlation
as firstly observed by Fama (1970). Since then, the efficient market hypothesis (EMH)
has prevailed with this view by stating that the financial market is just a random
walk and no one can predict a future price from information up to the present.
Actual financial time series are, however, known to have a short-term memory
effect showing correlation by practitioners participating in markets. Thus, there is a
non-negligible gap between EMH and actual financial markets. The purpose of the
present study is to clearly characterize the gap by giving the reason on the tail risk
behavior characterized by a certain generalized version of the central limit theorem
and introducing a new hypothesis called the chaotic market hypothesis (CMH). In
the CMH, a small amount of correlation is acceptable for financial time series such
as a mixing behavior representing chaos, together with the fundamental concepts:
super generalized central limit theorem showing a universality of fat tail behavior.
In Section 2, we review the super generalized central limit theorem (SGCLT) as the
basic ingredients of its further generalized central limit theorem showing a universal
tail behavior of financial markets, which will be presented in Section 3. In Section 4,
a novel correlation function based on a characteristic function is introduce to test the
EMH by using the empirical data of the 5-minute chart data of logarithmic returns of
the Nikkei average in 2019. In Section 5, CMH is proposed to capture the essential
characteristics of the financial market behavior as described above. Discussion about
the difference between the CMH and the fractal market hypothesis is presented in
Section 6. Section 7 summarizes and concludes the chapter.

2 Super Generalized Central Limit Theorem and its
Generalization

As the central limit theorem is the fundamental law to characterize a limiting dis-
tribution for sums of random numbers with finite variance, the generalized central
limit theorem (Gnedenko and Kolmogorov 1954) has a key role in characterizing a
limiting power law distributions for sums of random numbers obeying the power law
with infinite variance such as Cauchy law. Such a limiting power law can be charac-
terized as the stable law in a universal manner, which is the crux of the ubiquitous
nature of macroscopic distributions due to the generalized central limit theorem.

Stable Law 𝑆(𝑥;𝛼, 𝛽, 𝛾, 𝜇) is given by the Fourier transform of the characteristic
function 𝜙(𝑡)

𝑆(𝑥;𝛼, 𝛽, 𝛾, 𝜇) = 1
2𝜋

∫ ∞

−∞
𝜙(𝑡)𝑒−I𝑥𝑡𝑑𝑥

where characteristic function 𝜙(𝑡) with the four parameters: 𝛼, 𝛽, 𝛾 and 𝜇 has the
form:

𝜙(𝑡) = exp{I𝜇𝑡 − 𝛾𝛼 |𝑡 |𝛼 (1 − I𝛽sgn(𝑡)𝑤(𝛼, 𝑡)} (1)

with
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𝑤(𝛼, 𝑡) =
{

tan(𝜋𝛼/2) if 𝛼 ≠ 1
−2/𝜋 ln |𝑡 | if 𝛼 = 1.

Here the parameters 𝛼, 𝛽, 𝛾 and 𝜇 are the scaling exponent parameter 𝛼 ∈ (0, 2]
representing the fatness of the tail, the skewness parameter 𝛽 ∈ [−1, 1], the scaling
parameter 𝛾 > 0, and the location parameter 𝜇 ∈ R , respectively. When 𝛼 = 2, it
corresponds to the Gauss law with 𝛽 = 0 and when 𝛼 = 1, 𝛽 = 0, it corresponds to
the Cauchy law.
Here, we introduce the the condition for the super generalized central limit
theorem according to Shintani and Umeno (2018) :

1. The random variables 𝐶+ > 0 and 𝐶− > 0 obey respectively the distributions
P𝑐+ (𝑐) and P𝑐− (𝑐), and satisfy

E[𝐶+] < ∞, and E[𝐶−] < ∞.

2. The probability distribution function 𝑓𝑖 (𝑥) of the random variables 𝑋𝑖 has a
following limiting form when 0 < 𝛼 < 2:

𝑓𝑖 (𝑥) ≃
{
𝑐+𝑖𝑥−(𝛼+1) for 𝑥 → ∞
𝑐−𝑖 |𝑥 |−(𝛼+1) for 𝑥 → −∞,

(2)

where 𝑐+𝑖 and 𝑐−𝑖 are samples obtained by 𝐶+ and 𝐶−, respectively.

The following theorem holds (Shintani and Umeno 2018).

Theorem 1 (Super Generalized Central Limit Theorem )
Suppose that Condition 1 and Condition 2 are satisfied. Then the following su-
perposition 𝑆𝑛 of independent and nonidentical random variables with power laws
converges in density to a unique stable distribution 𝑆(𝑥;𝛼, 𝛽∗, 𝛾∗, 0) for 𝑛 → ∞,
where

𝑆𝑛 =

∑𝑛
𝑖=1 𝑋𝑖 − 𝐴𝑛

𝑛
1
𝛼

𝑑→ 𝑆(𝑥;𝛼, 𝛽∗, 𝛾∗, 0) for 𝑛 → ∞,

𝐴𝑛 =


0 if 0 < 𝛼 < 1
𝑛
∑𝑛

𝑖=1 ℑ ln(𝜑𝑖 (1/𝑛)) if 𝛼 = 1∑𝑛
𝑖=1 E[𝑋𝑖] if 1 < 𝛼 < 2

with 𝜑𝑖 (𝑡) being a characteristic function of 𝑋𝑖 as the expected value of exp(I𝑡𝑋𝑖)
and parameters 𝛽∗, 𝛾∗, 𝛽𝑖 , 𝛾𝑖 are expressed as:

𝛽∗ =
E𝐶+ ,𝐶− [𝛽𝑖𝛾𝛼

𝑖 ]
E𝐶+ ,𝐶− [𝛾𝛼

𝑖 ]
, 𝛾∗ = {E𝐶+ ,𝐶− [𝛾𝛼

𝑖 ]}
1
𝛼 , (3)

𝛽𝑖 =
𝑐+𝑖 − 𝑐−𝑖
𝑐+𝑖 + 𝑐−𝑖

, 𝛾𝑖 =

{
𝜋(𝑐+𝑖 + 𝑐−𝑖)

2𝛼 sin(𝜋𝛼/2)Γ(𝛼)

} 1
𝛼

,

where E𝐶+ ,𝐶− [𝑋] denotes the expectation value of 𝑋 with respect to the random
parameter distributions P𝑐+ (𝑐) and P𝑐− (𝑐). Here, ℑ is an imaginary part of the
argument.
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Consider a further generalization of the super generalized central limit theorem.
Here, a generalization means that we extend the super generalized central limit
theorem with a unique power index 𝛼 to a further generalization of the generalized
central limit theorem for superposition of random variables with different power
indices 𝛼𝑚 where

0 < 𝛼1 < 𝛼2 < · · · < 𝛼𝑚 < 2

for a sum of independent random numbers 𝑋𝑖 obeying the probability distribution
function 𝑓𝑖 such that

𝑓𝑖 (𝑥;𝛼𝑘 ) ≃
{
𝑐+𝑖𝑥−(𝛼𝑘+1) for 𝑥 → ∞
𝑐−𝑖 |𝑥 |−(𝛼𝑘+1) for 𝑥 → −∞ (4)

When 𝑚 = 1, it corresponds to the SGCLT with a unique 𝛼. Thus, we consider the
case 𝑚 ≥ 2.
The following conditions are essential:
Condition for the Universal Super Generalized Central Limit Theorem (USG-
CLT)
1. Each random number 𝑋𝑖 satisfies the conditions of the super generalized central

limit theorem (SGCLT).
2. The power indices of the probability distribution are in the order that 0 <

𝛼1 < 𝛼2 < · · · < 𝛼𝑚 < 2 and the equality
∑𝑚

𝑘=1 𝑞𝛼𝑘 = 1 is satisfied where
𝑞𝛼𝑘 (0 < 𝑞𝛼𝑘 < 1) is a probability that the power index 𝛼𝑘 (1 ≤ 𝑘 ≤ 𝑚) is
randomly selected from the 𝑚 power indices (𝛼1, 𝛼2, · · · , 𝛼𝑚). Furthermore, the
probabilities 𝑞𝛼𝑘 are assumed to be positive constants.

We have the following theorem:
Theorem 2 (Universal Super Generalized Central Limit Theorem (USGCLT) )
If independent random variables 𝑋1, 𝑋2, . . . satisfy the
condition for the universal super generalized central limit theorem (USGCLT),
then a superposition

𝑆𝑛 ≡
∑𝑛

𝑖=1 𝑋𝑖 − 𝐴𝑛

𝑛
1
𝛼1

converges in density to a stable law as

𝑆𝑛
𝑑→ 𝑆(𝑥;𝛼1, 𝛽

∗ [𝛼1], 𝛾∗ [𝛼1]{𝑞𝛼1 }
1
𝛼1 , 0),

where

𝐴𝑛 =
𝑚∑
𝑘=1

𝐴𝑛𝑞𝛼𝑘
[𝛼𝑘 ] (5)

with 𝐴𝑛𝑞𝛼𝑘
[𝛼𝑘 ] ’s sum 𝐴𝑛 being a sample mean when 𝛼𝑘 is selected and the

parameters 𝛽∗ [𝛼1] and 𝛾∗ [𝛼1] are a skewness parameter and a scaling parameter,
respectively which corresponds to the parameters of a limiting stable distribution
with the minimum characteristic exponent 𝛼1 via the Super Generalized Central
Limit Theorem when 𝑛𝑞𝛼1 → ∞.
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Proof We first note that the following decomposition always holds for
∑𝑛

𝑖=1 𝑋𝑖:

E

[
Exp

(
I

(
𝑛∑
𝑖=1

𝑋𝑖

))]
=

𝑚∏
𝑘=1

E
Exp ©«I ©«

𝑛(𝑘)∑
𝑗=1

𝑋 𝑗 [𝛼𝑘 ]
ª®¬ª®¬


where lim𝑛→∞

𝑛(𝑘)
𝑛

= 𝑞𝛼𝑘 is satisfied according to the condition for the USGLT.
Since each stable law is an infinitely divisible distribution and its characteristic
function 𝜙𝛼,𝛽 (𝑡) always satisfies

|𝜙𝛼,𝛽 (𝑡) | ≤ 1,

then the decomposition is interchangeable even for 𝑛 → ∞ as:

E

[
Exp

(
I

(
𝑛∑
𝑖=1

𝑋𝑖

))]
=

𝑚∏
𝑘=1

E
Exp ©«I ©«

𝑛(𝑘)∑
𝑗=1

𝑋 𝑗 [𝛼𝑘 ]
ª®¬ª®¬

 →
𝑚∏
𝑘=1

E
Exp ©«I ©«

𝑛𝑞𝑘∑
𝑗=1

𝑋 𝑗 [𝛼𝑘 ]
ª®¬ª®¬


(6)

as 𝑛 → ∞. Here we can thus apply the super generalized central limit theorem to a
superposition

∑𝑛𝑞𝑘
𝑗=1 𝑋 𝑗 [𝛼𝑘 ] with the power index 𝛼𝑘 , then for each 𝛼𝑘 (1 ≤ 𝑘 ≤ 𝑚),

the relation ∑𝑛𝑞𝛼𝑘

𝑗=1 𝑋 𝑗 [𝛼𝑘 ] − 𝐴𝑛𝑞𝛼𝑘

{𝑛𝑞𝛼𝑘 }
1
𝛼𝑘

𝑑→ 𝑆(𝑥;𝛼𝑘 , 𝛽
∗ [𝛼𝑘 ], 𝛾∗ [𝛼𝑘 ], 0) (7)

as 𝑛 → ∞ holds. In particular, for the case when 𝑘 = 1, the relation∑𝑛𝑞𝛼1
𝑗=1 𝑋 𝑗 [𝛼1] − 𝐴𝑛𝑞𝛼1

{𝑛𝑞𝛼1 }
1
𝛼1

𝑑→ 𝑆(𝑥;𝛼1, 𝛽
∗ [𝛼1], 𝛾∗ [𝛼1], 0) (8)

as 𝑛 → ∞ holds. By seeing the obvious relation 𝛼2 (> 𝛼1) for example, we have the
relations: ∑𝑛𝑞𝛼2

𝑗=1 𝑋 𝑗 [𝛼2] − 𝐴𝑛𝑞𝛼2

{𝑛𝑞𝛼1 }
1
𝛼1

=

∑𝑛𝑞𝛼2
𝑗=1 𝑋 𝑗 [𝛼2] − 𝐴𝑛𝑞𝛼2

{𝑛𝑞𝛼2 }
1
𝛼2

{𝑛𝑞𝛼2 }
1
𝛼2

{𝑛𝑞𝛼1 }
1
𝛼1

=

∑𝑛𝑞𝛼2
𝑗=1 𝑋 𝑗 [𝛼2] − 𝐴𝑛𝑞𝛼2

{𝑛𝑞𝛼2 }
1
𝛼2

· 1

𝑛
1
𝛼1

− 1
𝛼2

·
𝑞

1
𝛼2
𝛼2

𝑞
1
𝛼1
𝛼1

𝑑→ 𝛿(𝑥)

as 𝑛 → ∞. Here, we use the SGCLT for 𝛼2 and the obvious fact that
1
𝛼1

− 1
𝛼2

> 0
and then as 𝑛 → ∞

1

𝑛
1
𝛼1

− 1
𝛼2

→ 0.
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This means that the density function of the random variable

∑𝑛𝑞𝛼2
𝑗=1 𝑋 𝑗 [𝛼2] − 𝐴𝑛𝑞𝛼2

{𝑛𝑞𝛼1 }
1
𝛼1

approaches to Dirac’s delta function 𝛿(𝑥) as 𝑛 → ∞ whose characteristic function
is just unity.

In the same way, for more general 𝛼𝑘 (𝑘 ≥ 2) by using the obvious relation
1
𝛼1

− 1
𝛼𝑘

> 0, the relation∑𝑛𝑞𝛼𝑘

𝑗=1 𝑋 𝑗 [𝛼𝑘 ] − 𝐴𝑛𝑞𝛼𝑘

{𝑛𝑞𝛼1 }
1
𝛼1

𝑑→ 𝛿(𝑥) for 𝑛 → ∞

holds. Thus, in the limit 𝑛 → ∞∑𝑛
𝑖=1 𝑋𝑖 − 𝐴𝑛

{𝑛𝑞𝛼1 }
1
𝛼1

𝑑→ 𝑆(𝑥;𝛼1, 𝛽
∗ [𝛼1], 𝛾∗ [𝛼1], 0).

Therefore, we conclude:∑𝑛
𝑖=1 𝑋𝑖 − 𝐴𝑛

𝑛
1
𝛼1

𝑑→ 𝑆(𝑥;𝛼1, 𝛽
∗ [𝛼1], 𝛾∗ [𝛼1]{𝑞𝛼1 }

1
𝛼1 , 0).

This universal super generalized central limit theorem (USGCLT) proposed and
proven here says that the minimum power index 𝛼1 corresponding to the biggest
tail-risk component is dominant factor to characterize a limit theorem for a mixed
superposition of power laws. In other words, we can say that the biggest risk rep-
resented by the minimum tail power index 𝛼1 is dominant in a limiting behavior of
macroscopic risk, which is conceptually similar to Gresham’s Law that states "bad
money drives out good" because "goodness" of money can be measured by tail risk
indicator 𝛼. In addition to this feature, this USGCLT gives a theoretical explanation
about the reason why stable laws appear universally in empirical distributions of
price fluctuations.

3 Exactly Solvable Chaos and Stable Law to Test Universal
Super Generalized Central Limit Theorem

In this section, we introduce the connection between a certain ideal class of chaotic
mappings and stable laws by ergodic theory. Umeno (1998) showed that the following
chaotic mapping

𝑌 =
1
2

(
𝑋 − 1

𝑋

)
(9)

has the Cauchy distribution with 𝛼 = 1 as an ergodic invariant measure while more
generalized map
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𝑌 =
1
2

����|𝑋 |𝛼 − 1
|𝑋 |𝛼

���� 1
𝛼

· SGN
[
𝑋 − 1

𝑋

]
, (𝛼 > 0) (10)

has the power law with the power index 𝛼 whose superposition converges to a stable
law by the generalized central limit theorem (GCLT) for 0 < 𝛼 < 2. All the chaotic
mappings can be categorized as exactly solvable chaos which has an exact solution
and the explicit ergodic invariant measure (Umeno 1997). Figure 1 shows the return
maps of the above exactly solvable chaos. Empirical density obtained by 100, 000
iterations of the chaotic mapping (9) is shown in Fig 2 and it remarkably matches the
exact Cauchy probability density. According to Fig. 3, empirical density obtained by
100, 000 iterations of the chaotic mapping (10) at 𝛼 = 3/2 also matches an analytical
density

𝜌(𝑥;𝛼) = 𝛼 |𝑥 |𝛼−1

𝜋(1 + |𝑥 |2𝛼)
(11)

at 𝛼 = 3/2 very well (Umeno 1998). Thus, we can say that ergodic theory works
well for characterizing a logical connection between statistics and deterministic
chaos, especially for the case of exactly solvable chaos. Note that there are other
more chaotic mappings with ergodic Cauchy distribution such as the generalized
Boole transformation in Eq. (12) with an analytical Lyapunov exponent 𝜆 in Eq.
(13) (Umeno and Okubo 2016) and the super generalized Boole transformations
(Okubo and Umeno 2018, 2021) that have Cauchy distribution as an ergodic invariant
measure.

𝑌 = 𝑎𝑋 − 𝑏

𝑋
, (0 < 𝑎 < 1, 𝑏 > 0) (12)

𝜆 = log
(
1 + 2

√
𝑎(1 − 𝑎)

)
, (0 ≤ 𝑎 ≤ 1). (13)

Next, we use these exactly solvable chaotic mappings to generate a mixed type of
superposition to test the universal super generalized central limit theorem (USGCLT).
Let us consider a simple mixed type of superposition composed of chaotic dynamics
with Cauchy distribution (𝛼 = 1) and chaotic dynamics with the power law (𝛼 = 3/2).
Thus, this example corresponds to the case that 𝛼1 = 1 and 𝛼2 = 3/2. In Fig. 4, a
mixed superposition of Cauchy chaos mapping in Eq. (9) with 𝛼1 = 1 and chaos
mapping in Eq. (10) with 𝛼2 = 3/2 where 𝑞𝛼1 = 𝑞𝛼2 = 1/2 is shown to converge
to the Cauchy distribution which is a confirmation of the validity of the USGCLT.
Here, Cauchy chaos at 𝛼 = 1 is dominant as predicted by the USGCLT.

4 Testing Efficient Market Hypothesis and Discovery of Novel
Periodic Structure

Now we consider the test of the efficient market hypothesis (EMH) by empirical
data. If EMH holds, then there must be no correlation in price fluctuations. Thus we
investigate a correlation structure of empirical fluctuations of financial markets. We
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use the 5-minute (high-frequency) chart of logarithmic returns of the Nikkei Averages
in 2019 to test the EMH. Many empirical studies have shown that such high-frequency
charts of logarithmic returns show no correlation or random fluctuations as predicted
by EMH. Is it true? We solve the very question on EMH. In Figs. 5 and 6, a normalized
standard correlation 𝐶 (𝑙) = Const.

∑𝑁
𝑖=1 𝑋𝑖𝑋𝑖+𝑙 of the 5-minute chart of logarithmic

returns of the Nikkei averages in 2019 is depicted, which shows that no nontrivial
correlation exists and EMH seems to hold. The reason why the correlation looks
likely to be zero can be explained by the fact that the variance of price fluctuations
corresponding to the normalized constant of the correlation is generally quite large
due to the fat tail distribution and then the normalized correlation 𝐶 (𝑙) computed
by the division of the variance becomes near zero even if there exist a non-trivial
correlation in data. Thus, with this normal correlation, we cannot conclude that EMH
holds for the 5-minute chart of logarithmic returns of the Nikkei averages in 2019
at this stage because there might be a non-trivial correlation structure in data. To
investigate a new possibility, we consider an essence of the financial time series data
by ergodic theory.

Consider a sequence of data 𝑋1, 𝑋2, . . . ∈ 𝑀 satisfying ergodicity (Arnold and
Avez 1968) in a sense that

lim
𝑁→∞

1
𝑁

𝑁∑
𝑗=1

𝑓 (𝑋 𝑗 ) =
∫
𝑀

𝑓 (𝑥)𝜇(𝑑𝑥) a.e. (14)

-2 -1 1 2
X

-3

-2

-1

1

2

3

Y

ReturnMap

Fig. 1 Chaotic maps generating Cauchy distribution 𝛼 = 1 (blue) and Levy’s stable law with
𝛼 = 3/2 (orange).
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By ergodicity, the characteristic function of the probability measure 𝜇(𝑑𝑥) = 𝜌(𝑥)𝑑𝑥
can thus be computed by

𝜙(𝑘) =
∫ ∞

−∞
exp(I𝑘𝑥)𝜌(𝑥)𝑑𝑥 = lim

𝑁→∞

1
𝑁

𝑁∑
𝑛=1

exp(I𝑘𝑋𝑛) a.e.

In this case, an empirical characteristic function 𝜙(𝑘; 𝑁) = 1
𝑁

𝑁∑
𝑛=1

exp(I𝑋𝑛𝑘) com-

puted by finite𝑁 points converges to the characteristic function. That is the theoretical
foundation of analysis called Chaos Fourier Transform (Umeno 2016). Furthermore,
we can compute the mean square deviation of the characteristic function by 𝑉𝑘 (𝑁)
as

𝑉𝑘 (𝑁) ≡ 𝐸 [|𝜙(𝑘; 𝑁) − 𝜙(𝑘)2] = 𝐷𝑘

𝑁
+ 𝐸𝑘

𝑁2

where 𝐷𝑘 and 𝐸𝑘 are:

𝐷𝑘 = 1 − 𝜙(𝑘)2 + 2
𝑁∑
𝑙=1

{⟨𝑒I𝑘 (𝑋0−𝑋𝑙)⟩ − |𝜙(𝑘) |2}

𝐸𝑘 = −2
𝑁∑
𝑙=1

𝑙{⟨𝑒I𝑘 (𝑋0−𝑋𝑙)⟩ − |𝜙(𝑘) |2}.

-6 -4 -2 0 2 4 6
x

0.05

0.10

0.15

0.20

0.25

0.30

Density
Empirical Density and Exact CauchyDensity

Fig. 2 Empirical Density 𝑁 = 100, 000 and Cauchy Probability Density
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In this representation, a term 2
∑𝑁

𝑙=1{⟨𝑒I𝑘 (𝑋0−𝑋𝑙)⟩ − |𝜙(𝑘) |2} corresponds to a cor-
relation term that plays a key role in estimating fluctuations of deviations for the
ergodic sum (Umeno 2000). Because an investigation of characteristic function is
more essential to capture a feature of fat-tail distributions such as stable law rather
than an investigation of simple distribution function [see Fukunaga and Umeno
(2017) and Kakinaka and Umeno (2020a, 2020b) for detailed explanation on this
matter], we are now motivated to define a new correlation function 𝐶𝑘 (𝑙) as

𝐶𝑘 (𝑙) ≡ ⟨𝑒I𝑘 (𝑋0−𝑋𝑙)⟩ − |𝜙(𝑘) |2. (15)

This correlation function can be computed by the following formulae:

𝐶𝑘 (𝑙; 𝑁) ≡
1
𝑁

𝑁∑
𝑛=1

𝑒I𝑘 (𝑋𝑛−𝑋𝑛+𝑙) −
����� 1
𝑁

𝑁∑
𝑛=1

𝑒I𝑘𝑋𝑛

�����2
lim
𝑁→∞

𝐶𝑘 (𝑙; 𝑁) = 𝐶𝑘 (𝑙) a.e.

Thus, we call this novel correlation function 𝐶𝑘 (𝑙) characteristic function-based
correlation function or CF-based correlation function.
Efficient Market Hypothesis
Now we test the EMH (Fama 1970) by investigating whether there exist a nontrivial
correlation structure. If the efficient market hypothesis holds, then
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2

Fig. 3 Empirical Density 𝑁 = 100, 000 and Exact Probability Density at 𝛼 = 3
2
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𝐶𝑘 (𝑙) = 0 for any 𝑙 (≠ 0).

Thus, to deny the EMH, it is sufficient to detect some correlation such that

𝐶𝑘 (𝑙) ≠ 0 for some 𝑙 (≠ 0) and 𝑘 (≠ 0).

Note that 𝐶0 (𝑙) = 0 for any 𝑙. In Fig. 7 the absolute value of characteristic function-
based correlation at 𝑘 = 10 defined by Eq. (15) is depicted for the 5-minute chart
of logarithmic returns of Nikkei averages in 2019, which shows no clear correla-
tion supporting EMH. However, in Fig. 8, a nontrivial periodic structure (small
correlation) is shown to exist for the absolute value of characteristic function-based
correlation at 𝑘 = 3 with the 5-minute chart of logarithmic returns of Nikkei averages
in 2019, which clearly deny the EMH in a direct manner. A clear periodic structure
with 5-hour periodicity is shown in Fig. 9, which is an enlarged version of Fig. 8.
This 5-hour periodicity is exactly the same as the trading duration per day in the
Nikkei stock market in 2019 (the daily trading time is: 9:00−11:30 and 12:30−15:00
in Japan standard time). In Fig. 10, the real part of the characteristic function-based
correlation at 𝑘 = 3 with the 5-minute chart of logarithmic returns of Nikkei aver-
ages in 2019 is depicted, which shows clear periodic structure in correlation with the
5-hour periodicity which corresponds to a 60-lag periodicity satisfying the simple
relation
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Fig. 4 Mixed superposition of Cauchy Chaos (𝛼 = 1, 𝑁 = 10, 000) and Chaos (𝛼 = 3/2, 𝑁 =
10, 000) for 𝑀 = 10, 000.
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Period = 60 (lags) × 5 minutes = 5 hours (trading time duration). (16)

On the contrary, no correlation structure is detected in the imaginary part of
the characteristic function-based correlation at 𝑘 = 3 as depicted in Fig. 11. This
novel periodicity according to the trading time duration also appears in the absolute
value of characteristic function-based correlation at 𝑘 = 1 for the 5-minute chart
of logarithmic returns of Nikkei averages in 2019 as depicted in Fig. 12. Thus,
this periodicity detected with CF-based correlation is NOT a peculiar feature at
special 𝑘 (≠ 0) but rather a universal phenomenon capturing the market periodicity
corresponding to the daily periodicity with the market. Such an exploration of
novel periodic structure of financial markets such as the commodity market is now
extensively investigated in our group (Shiihashi 2020).

5 Elucidation of Chaotic Market Hypothesis

We are now approaching the construction of new model of financial markets based on
our findings about the universal super generalized central limit theorem (USGCLT)
and nontrivial periodic structure in CF-based correlation functions as discussed in
the previous sections. While the efficient market hypothesis (EMH) well captures
the random structure of financial markets, we are now focused on the detailed dis-
tribution structure and its mechanism to show the universality of stable law and
nontrivial correlation structure, both of which cannot be captured by EMH. In Fig.
13, the whole time series of the rescaled logarithmic returns fo the Nikkei Averages
in 2019 is depicted, which clearly shows randomness. Thus, a new model should also
possess a capability of explaining randomness of the financial markets in addition to
the capabilities of explaining the universality of stable law and nontrivial correlation
structure. In Fig. 14, an empirical probability density of rescaled logarithmic returns
of the Nikkei Averages in 2019 is compared to the stable law with 𝛼 = 1.4, which
shows that the USGCLT seems to hold such that stable law at 𝛼 = 1.4 matches
the empirical probability density for the Nikkei Averages in 2019. After seeing the
evidence to support USGCLT and nonrandom time correlation structure in random-
ness look-like time series of price fluctuaions, we are now motivated to propose the
following chaotic market hypothesis capturing these properties as follows.
Chaotic Market Hypothesis:
For financial market we say that chaotic market hypothesis (CMH) holds (1) if stable
law can universally capture the averaged data (index data) of price fluctuations by
the universal super generalized central limit theorem (USGCLT) -random fat-tailed
behavior- and (2) if the characteristic function based correlation functions show
non-zero (sometimes periodic) correlation structure as

𝐶𝑘 (𝑙) = ⟨𝑒I𝑘 (𝑋0−𝑋𝑙)⟩ − |𝜙(𝑘) |2 ≠ 0 for 𝑙 (≠ 0) and 𝑘 (≠ 0)
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-nonrandom (sometimes periodic) time structure-.
Here we use the term "chaotic" in the chaotic market hypothesis coined here
because (1) random universal fat-tailed behavior via USGCLT and (2) nonrandom
(sometimes periodic) time correlation structure are compatible in chaos such as the
model of exactly solvable chaos in Eqs. (9) and (10). Empirical data in Fig. 14
and the discovered periodic (nonrandom) correlation structure supports this chaotic
market hypothesis (CMH) while the periodic (nonrandom) correlation structure
does not support the efficient market hypothesis (EMH). On the contrary, we now
see how artificial market price fluctuations generated by superposition of chaotic
dynamics mimic the empirical market fluctuations and can support that CMH holds.
In Fig. 15, Levy walk (deterministic diffusion process) generated by superposition
of 1000 deterministic chaos mappings in Eq. (10) at 𝛼 = 3

2 is depicted, which clearly
shows that this artificial randomness (Levy walk) matches the empirical randomness
generated by an accumulation of logarithmic rate of returns of the Nikkei Average
in 2019 (Fig. 16). Thus, this constructive approach of the chaotic market hypothesis
(CMH) via the use of chaotic mapping can serve us a "good model" to simulate fat-
tailed randomness of price fluctuations to compute tail-risk in the financial market.
Because chaotic dynamics generally has a mixing property such that correlation has
an exponential decay structure whose decay rate is characterized by the Lyapunov
exponent 𝜆 > 0, it is highly expected that such an artificial market constructed
by superposition of chaotic dynamics also has an exponential decay correlation. In
Fig. 17, the real part of characteristic function-based correlation for the CMH-based
artificial market by the superposition of 10,000 chaotic dynamics in Eq. (10) at
𝛼 = 3

2 is depicted, and clearly shows exponential decay structure in correlation
as expected. The enlarged figure of Fig. 17 is depicted in Fig. 18, which shows
short-term memory effect represented by exponential decay in correlation where the
short-term memory effect is a universal characteristic of financial markets. Thus,
CMH not only characterizes the price fluctuation of financial markets but can also
work as an effective method of simulating tail-risk in financial markets, which is an
important topic in finance. Thus, CMH can well match the real market and conversely
the real market can be well simulated by the model based on CMH. For those reasons,
we see CMH as a valid working hypothesis for financial markets.

6 Discussions

The proposed chaotic market hypothesis (CMH) seems similar to the fractal market
hypothesis (FMH) proposed by Peter (1991) which is also based on chaos theory.
It is known that FMH can also capture the market behavior, in particular persistent
behavior with long memory ("trends"") better than the efficient market hypothesis
(EMH). What is the difference between the CMH and FMH? While the FMH as-
sumes self-similarity (fractal property) of a price time-series quantified by the Hurst
exponent or the fractal dimension, CMH does NOT assume self-similar structure in
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the time-series but assume a power-law with an index 𝛼 in a distribution of price
fluctuations, which is theoretically founded by the universal super generalized central
limit theorem (USGCLT). Although the power index 𝛼 in the CMH is related to the
Hurst exponent in the FMH, the 𝛼 is but one of four parameters 𝛼, 𝛽, 𝛾, and 𝜇 to char-
acterize a stable law in CMH via the USGCLT. Furthermore, a skewness parameter
𝛽 can also be important in characterizing the financial market (Fukunaga and Umeno
2017) as in CMH while there is no similar counterpart parameter such as a skewness
parameter in the FMH. Furthermore, a discovered periodic structure in CF-based
correlation in Section 4 cannot be explained by the FMH where a corresponding
correlation structure must also have self-similar structure in FMH and CF-based
correlation function is not provided in the theoretical framework of FMH. Thus,
the self-similarity assumption in FMH does not match the observed periodicity in
CF-based correlation in the empirical study. Because the self-similarity assumption
is the crux of FMH, we can argue that the crux of FMH can miss important trading
characteristics of financial markets such as daily trading time duration.

7 Conclusions

A generalization of the super generalized central limit theorem (SGCLT) is proposed
to show a universality of stable laws in the price fluctuations in financial markets. The
validity of the USGCLT is confirmed by numerical simulations using superposition
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Fig. 5 Normal correlation for the 5-minute chart of log-returns of the Nikkei averages in 2019.
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of different kinds of exactly solvable chaotic mappings with power laws with different
power indices. Then by using ergodic theory, we propose CF-based correlation to
test the efficient market hypothesis (EMH) and directly deny EMH by finding a
novel periodic (non-random) structure in CF-based correlation whose periodicity
estimated 5 hours is exactly the same as the trading time duration in the 5-minute
chart Nikkei averages in 2019, while the normal correlation function cannot capture
such kind of periodic structure because of the general fat tail distribution of the price
fluctuations making the variance (a normalized constant) divergent to output no
correlation. Thus, we conclude that the very CF-based correlation function method
based on ergodic theory correctly captures a fine time structure in financial markets.
Based on these findings and USGCLT, we propose chaotic market hypothesis (CMH)
to capture the essential characteristics of financial market that EMH and other models
like the fractal market hypothesis fail to capture. Furthermore, this CMH can be a
good model or good simulation method to measure a tailed risk in finance because a
constructive approach to modeling of financial markets is easy by direct applications
of USGCLT. To conclude, the CMH is based on ergodic theory and is a valid working
hypothesis for modeling, featuring and simulating financial markets with theoretical
foundation of the universal super generalized central limit theorem (USGCLT).
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Fig. 6 Enlarged figure of normal correlation for the 5-minute chart of log-returns of the Nikkei
averages in 2019.
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chart of log-returns of the Nikkei averages in 2019.
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Fig. 8 The absolute value of characteristic function-based correlation (𝑘 = 3) for the 5-minute
chart of log-returns of the Nikkei averages in 2019.
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Fig. 9 Enlarged figure of the absolute value of characteristic function-based correlation (𝑘 = 3)
for the 5-minute chart of log-returns of the Nikkei averages in 2019.
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Fig. 10 Real part of characteristic function-based correlation (𝑘 = 3) for the 5-minute chart of
log-returns of the Nikkei averages in 2019.
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Fig. 11 Imaginary part of characteristic function-based correlation (𝑘 = 3) for the 5-minute chart
of log-returns of the Nikkei averages in 2019.
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Fig. 12 The absolute value of characteristic function-based correlation (𝑘 = 1) for the 5-minute
chart of log-returns of the Nikkei averages in 2019.
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Fig. 13 The whole time series of the rescaled logarithmic returns of the Nikkei averages in 2019.
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Fig. 14 Empirical probability fensity of rescaled logarithmic returns of the Nikkei averages in 2019
versus Levy’s stable law with 𝛼 = 1.4
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Fig. 15 Levy walk generated by superposition of chaos 𝛼 = 3/2, 𝑁 = 1000.
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Fig. 16 Accumulated logarithmic rate of returns of the Nikkei averages in 2019.
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Fig. 17 Real part of characteristic function-based correlation for the superposition (𝑁 = 10, 000)
of chaos at 𝛼 = 3/2. Exponential decay of the correlation function can be observed.
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Fig. 18 Enlarged figure of the real part of characteristic function-based correlation for the super-
position (𝑁 = 10, 000) of chaos at 𝛼 = 3/2. Exponential decay of the correlation function can
be observed, which shows the essential characteristic of chaotic nature. The horizontal axis corre-
sponds to a lag while the vertical axis corresponds to the real part of characteristic function-based
correlation.


