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On the trade-off between sensitivity and specificity in bus bunching prediction 
 

Abstract 

 

Bus bunching resulting from initially small headway irregularities is a widely-known and studied 

problem. A variety of headway-prediction approaches, as well as corrective strategies, have been 

developed to identify and correct headway irregularity in real time. Instead of predicting an exact value 

for future headways, this study explores a probabilistic predictive methodology to forecast whether or 

not a bus will be bunched during its dwelling at a downstream stop, using a logistic regression model 

based on GPS records of buses at least k stops upstream to allow for sufficient time to implement 

control strategies. A case study is conducted on a circular bus route in Kyoto City. Compared to two 

headway-based prediction approaches using linear regression and support vector machine, the superior 

performance of the proposed tool in detecting bunching is illustrated by Receiver Operator 

Characteristic (ROC) analysis. The high reliability in long-term prediction gives adequate time for 

operators to employ countermeasures. Besides, the proposed method provides operators with trade-

off options. We find that a bunching-averse operator can obtain 95% “sensitivity”, that is the ratio of 

correctly identified bunching events, at the cost of decreasing “specificity”, which is the ratio of correct 

non-bunching predictions over all events. This is true even if the prediction horizon is more than 10 

stops.  

 

Keywords: bus bunching prediction; logistic regression; sensitivity and specificity; bus GPS data; 

multiple-stop-ahead prediction 

 

  



1. Introduction 

Bus bunching is a frequently occurring undesired event. Generally it can be defined as the phenomenon 

of two successive bus runs of a single line arriving at a stop within significantly shorter headways than 

the designed one. Bunching involving more than two buses is also regularly observed. Bus bunching 

may be initiated by the arrival of one bus run being delayed at an upstream stop. More passengers are 

likely to accumulate for the delayed bus at that stop and the bus is thus further delayed. Conversely, 

the subsequent run has fewer passengers to pick up and departs earlier than scheduled. Accumulated 

delay to the first vehicle and increasingly earlier arrival of the second one result in obvious inequality 

in dwell times and on-board passenger numbers. As the inequality aggravates over a sequence of stops, 

the scheduled headway is significantly shortened or eventually offset and the leading bus among 

bunched bus is often overcrowded. 

Accurate prediction on headway or bunching itself can help to spotlight the coming bunching and 

further assist the operator to eliminate bunching in real time. A useful prediction tool is expected to a) 

have a long enough prediction horizon to allow the operator’s implementation of countermeasures and 

b) provide information on the reliability of the prediction. The latter point is important in order to 

account for different preferences among operators. A bunching-averse operator is willing to frequently 

control the service to avoid any possible bunching, whereas some other operators may hesitate to take 

control action that will negatively impact some passengers, they thus only correct the predicted 

bunching of high confidence level. Therefore, this paper suggests a probabilistic binary prediction 

method. 

This study aims to extend the existing literature in two aspects. Firstly, this study builds a logistic 

regression (LOGR) model to predict the likelihood of bunching to occur using bus GPS data, and tests 

the prediction performance under a wide range of prediction horizons varying from 1-stop-ahead to 

15-stop-ahead, with an emphasis on multi-stop-ahead prediction and understanding the regularity 

deterioration pattern. Secondly, this study tries to enhance the robustness and flexibility of existing 

prediction tools. To achieve this Receiver Operator Characteristic (ROC) curves are utilized. This 

method is widely used in evaluating the performance of binary classification models and in this study 

it is interpreted as the optimal front of the proposed LOGR. This study explains how to conduct the 

trade-off between “sensitivity” and “specificity” from an operator’s perspective. 

The paper is organized as follows. After this introduction, Section 2 conducts a literature review on 

the corrective and predictive models addressing the bus bunching problem. The predictive 

methodology using LOGR is elaborated in Section 3. We point out that LOGR might be biased when 

used for “rare events data” as is the case in our example and provide a correction method. Then two 

headway-predicting algorithms: linear regression (LR) and support vector machine (SVM) are taken 

as the two benchmark approaches in this study and are also briefly introduced in this section. In Section 

4, the characteristics of the collected data are described, including data collection period, average stop-



to-stop travel time, average scheduled headway, fluctuation patterns for headway, etc. Based on this, 

a proper prediction horizon and bunching threshold are determined. The case study is described in 

Sections 5-7. In Section 5, the prediction performance of the two headway-predicting algorithms is 

discussed. The prediction performance of the proposed LOGR is evaluated and compared with 

headway-based methods in Section 6. The trade-off functionality of LOGR is discussed in Section 7. 

Conclusions and further work can be found in Section 8. 

 

2. Literature review 

Most of the relevant existing literature can be cast into two categories according to their objective: 

bunching prediction and corrective strategies. A large body of literature discussed how to eliminate 

bus bunching using analytical or simulation methods following the seminal work by Newell and Potts 

(1964). Osuna and Newell (1972) and Newell (1974) tried to maintain the bus schedule by a single 

control point. On the other hand, advanced control methods such as dynamic holding control proposed 

by Eberlein, Wilson, and Bernstein (2001), Daganzo (2009), Xuan, Argote, and Daganzo (2011), 

Bartholdi and Eisenstein (2012), Zhang and Lo (2018) and velocity control developed by Daganzo 

and Pilachowski (2011) as well as stop skipping discussed by Sun and Hickman (2005) assume 

frequent and efficient communication between bus drivers and the control center. Berrebi et al. (2018) 

tested the control strategies proposed by Dagazo (2009), Xuan et al. (2011), Bartholdi and Eisenstein 

(2012), Daganzon and Pilachowski (2011), Berrebi, Watkins, and Laval (2015) on a bus route in 

Portland, Oregon. The experiment was based on bus automatic vehicle location (AVL) data, automatic 

passenger counter (APC) data and traffic signal data. The effectiveness of each strategy to stabilize 

bus headways was confirmed. Further, the effect of incorrect future headway prediction on each 

strategy was discussed. The variance of controlled headway was found rising significantly as the 

prediction errors increased. Instead of actively adjusting the headway, Schmöcker, Sun, Fonzone, and 

Liu (2016), Wu, Liu, and Jin (2017), Sun and Schmöcker (2018) discussed passive strategies such as 

passenger re-distribution and overtaking which are activated when bunching occurs. These strategies 

aim to equalize passenger boarding numbers for bunched buses through queue management. 

Substantial development in data collection technology recently gives scholars access to massive bus 

operation data including AVL, APC and automatic fare collection (AFC) data, and has led to a large 

number of studies concerning real-time prediction of bus operational aspects. Rather than predicting 

bus bunching events, most existing literature focuses on bus arrival time and headway. Though closely 

related, this literature can again be grouped into three subcategories: bus trajectory, bus arrival time 

and headway prediction. Complete bus trajectory prediction is most challenging but also most 

informative. It provides predicted stop arrival and departure time, stop-to-stop travel time, as well as 

the headway between consecutive buses for bus operators and users. Hans, Chiabaut, Leclercq, and 

Bertini (2015) developed a sequential mesoscopic simulation that elaborately considered the 



stochastics generated during bus dwell time and link travel time. A bundle of possible future 

trajectories is simulated based on the distribution assumed for the time components in a bus trip and 

the associated parameters are calibrated with AVL, APC and traffic signal data. This method delivering 

robust prediction results to the operator. Distribution or range for future arrival time and headway can 

also be easily obtained. A shortcoming of this method is that the predicted range of arrival time or 

headway might be too wide to be conclusive for operators’ decision making. Recent research by Dai, 

Ma, and Chen (2019) also modeled bus dwell time and link travel time in detail to reproduce the trip 

travel time variability for a bus line. They specifically considered the bus waiting time due to the 

interaction between buses at the stop intersected by multiple bus lines, which is also defined as 

common-line bunching in Schmöcker et al. (2016). They inferred the probabilities of the bus from a 

specific line queueing (bunching) after the other common lines at the stop from bus GPS data. Yu, 

Chen, Wu, Ma, and Wang (2016) conducted a solid literature review on the methods addressing bus 

arrival time prediction. They reviewed the implemented data source and algorithm of each relevant 

literature. SVM, Kalman filter (KF), k-nearest neighbor (KNN), artificial neural network (ANN) and 

regression-based methods are frequently used. Yu, Yang, and Yao (2006) made a successful attempt at 

predicting bus arrival time based on SVM method and AVL data. Yu, Lam, and Tam (2011) used SVM, 

ANN, KNN and LR to predict arrival time for a 0.7km common line section where more than 10 bus 

routes overlapped in Hong Kong. Kumar, Vanajakshi, and Subramanian (2018) combined KF and 

KNN to tackle the prediction of bus travel time and arrival time. In this hybrid model, KNN classifier 

is used to refine the model input of KF model. 

Future headway is the difference between the predicted arrival times of two consecutive buses and 

can be obtained by the arrival time prediction model. There are also some studies directly focusing on 

the prediction of headway itself. Yu, Wu, Chen, and Ma (2017) proposed a probabilistic prediction 

approach using RVM (Relevance Vector Machine) to attach a confidence interval for each predicted 

headway for 2- and 3-stop-ahead. Outperformance with respect to robustness was concluded by 

comparing the results with the deterministic single values derived by SVM, KF, KNN and ANN 

algorithms. Andres and Nair (2017) integrated headway prediction and bus holding control strategies. 

Regression, ANN and autoregressive models are used in their work to predict future headways with 

5min and 10min prediction horizons. The prediction results are applied as input to an analytical model 

extending Daganzo (2009). 

Although headway prediction methods have made great advancement, it remains a challenging work 

to precisely identify coming bunching events in multiple-stop-ahead prediction. The accuracy of 

bunching prediction is heavily dependent on the reliability of headway prediction whose results 

deteriorate gradually as the prediction horizon extends. Yu, Chen, Wu, Ma, and Wang (2016) used 

several well-developed algorithms to predict headway first then convert the result to binary bunching 

occurrence. 2min RMSE is obtained for headway and 99% sensitivity is realized for bunching in 2-



stop-ahead prediction, but the performance deteriorates to 6min RMSE and 73% sensitivity for 5-stop-

ahead prediction. Moreira-Matias, Cats, Gama, Mendes-Moreira, and De Sousa (2016) built a 

regression-based model to predict the headway for a downstream stop and calculate the likelihood of 

bus bunching to occur for all the further downstream stops. The focus of their study was to propose a 

proactive control framework in which every suspicious event triggers a bunching alarm. The effect of 

bunching likelihood thresholds was not investigated. It should be noted that Moreira-Matias et al. 

(2016), Andres and Nair (2017), Berrebi et al. (2018) combined predictive and corrective models, and 

tested the feasibility and benefit of putting control strategies into practice. Instead of bunching 

prediction, Arriagada et al (2019) used bus GPS data and smartcard data to investigate the causes of 

bus bunching, with an emphasis on the planning side. Scheduled frequency, stop location and 

configuration (number of the berths), traffic signal and bus lane design are found influential. This 

research provides insight into bunching prevention in the planning stage. 

 

3. Methodology 

3.1 The identification of bus bunching event 

As a bunching event involves two buses we refer to these as front bus and back bus respectively. Let 

a binary variable 𝑏𝑏𝑚𝑚𝑛𝑛  denote whether bus run m is caught in bunching as the back bus during its 

dwelling at stop n. 𝑎𝑎𝑚𝑚𝑛𝑛   and 𝑑𝑑𝑚𝑚𝑛𝑛   denote the arrival and departure time of bus run m at stop n 

respectively. At stop n, for each bus run 𝑚𝑚 (m≥2) we can obtain ∆𝑚𝑚−1,𝑚𝑚
𝑛𝑛  which is the time interval 

between the arrival time of bus m and the departure time of bus m-1 in Eq. (1). Bus run m is considered 

bunched with bus run m-1 at the stop when ∆𝑚𝑚−1,𝑚𝑚
𝑛𝑛  is below a threshold ∆0. The threshold can be 

determined by the operator. Yu et al. (2016) and Moreira-Matias et al. (2016) used 1/4 of the scheduled 

headway. ∆𝑚𝑚−1,𝑚𝑚
𝑛𝑛  is defined as the departure-to-arrival headway in this study. Different from arrival-

to-arrival or departure-to-departure headway, ∆𝑚𝑚−1,𝑚𝑚
𝑛𝑛  is negative when two buses overlap at the stop. 

As overtaking is not allowed, for each stop n, bus m-1 always arrives and departs earlier than bus m, 

and accordingly time interval ∆𝑚𝑚−1,𝑚𝑚
𝑛𝑛  can always be obtained before the departure of bus m. 

 

 ∆𝑚𝑚−1,𝑚𝑚
𝑛𝑛 = 𝑎𝑎𝑚𝑚𝑛𝑛 − 𝑑𝑑𝑚𝑚−1

𝑛𝑛  (1) 

 

For each bus m (m≥2), the binary bunching status 𝑏𝑏𝑚𝑚𝑛𝑛  can be derived by Eq. (2) 

 

 
𝑏𝑏𝑚𝑚𝑛𝑛 = �

1,∆𝑚𝑚−1,𝑚𝑚
𝑛𝑛 ≤ ∆0

0,∆𝑚𝑚−1,𝑚𝑚
𝑛𝑛 > ∆0

 (2) 

 

3.2 Variable selection 

Following afore reviewed literature, the continuous ∆𝑚𝑚−1,𝑚𝑚
𝑛𝑛  can be used as the dependent variable 



for headway-prediction approaches. For bunching prediction then an additional step is required 

judging whether the predicted headway is below a prior defined bunching threshold or not. Instead, in 

this study, 𝑏𝑏𝑚𝑚𝑛𝑛  is used as the dependent variable of the logistic regression to directly predict the binary 

bunching status and bunching probabilities.  

Gradually accumulated or suddenly significant inequality in dwell time and travel time might lead 

two successive buses to be bunched. The back bus in a bunching event tends to have a shorter forward-

looking headway, negative deviation from timetable (ahead of schedule), less on-board passengers and 

shorter dwell time than those of front buses in a bunching event or of non-bunched buses (Degeler 

Heydenrijk-Ottens, Luo, Oort, & Lint, 2018). Yu et al. (2016) used boarding and alighting numbers of 

two successive buses, link travel time and headway at an upstream stop as the input to their headway-

based prediction approach. As only bus GPS data is used in this study, information regarding boarding, 

alighting as well as on-board passengers are not available. Instead dwell time is included in the variable 

in addition to headway. Deviation from the timetable is excluded here, as bus dispatching is not based 

on the timetable in some cities and the data for this variable might not be available. To conclude, dwell 

time of two successive buses and their headway at an upstream stop n-k are used as the main leading 

indicators of a coming bunching event in the k-step-ahead prediction. The detailed notation is as 

follows: 

 

k 
prediction horizon in terms of number of stops, k = 1,2,3,…N-1 and N 

denote the last stop of the bus route 

𝑡𝑡𝑚𝑚𝑛𝑛−𝑘𝑘 dwell time of bus run m at stop n-k 

𝑡𝑡𝑚𝑚−1
𝑛𝑛−𝑘𝑘  dwell time of bus run m-1 at stop n-k 

∆𝑚𝑚−1,𝑚𝑚
𝑛𝑛−𝑘𝑘  

time interval between the arrival time of bus m and the departure time of 

bus m-1 at stop n-k 

 

We always have n>k, so that the k-stop-ahead prediction cannot be carried out until bus run m passes 

the initial k bus stops, e.g. the prediction starts from stop 6 in the 5-stop-ahead prediction by using the 

data at stop 1. Also note that m≥2 and that the first bus has zero probability to be bunched as the back 

bus. 

 

3.3 Logistic regression 

Logistic regression (LOGR) modeling is widely used in classification problems. In binary 

classification, it not only helps to categorize observations into positive or negative class but also 

interprets the causality by producing the significance of each independent variable. Moreover, it 



computes the probability of each observation to be in the positive or negative class. The binary 

bunching status from the perspective of the back bus 𝑏𝑏𝑚𝑚𝑛𝑛  (m≥2) is taken as the dependent variable. 

𝑡𝑡𝑚𝑚𝑛𝑛−𝑘𝑘, 𝑡𝑡𝑚𝑚−1
𝑛𝑛−𝑘𝑘 , and ∆𝑚𝑚−1,𝑚𝑚

𝑛𝑛−𝑘𝑘  are the independent variables. Let 𝑿𝑿𝑚𝑚𝑛𝑛 = [𝑡𝑡𝑚𝑚𝑛𝑛−𝑘𝑘, 𝑡𝑡𝑚𝑚−1
𝑛𝑛−𝑘𝑘 , ∆𝑚𝑚−1,𝑚𝑚

𝑛𝑛−𝑘𝑘 ], then the 

probability of bus run m being bunched at stop n as a back bus can be derived as  

 

 
𝑃𝑃𝑟𝑟(𝑏𝑏𝑚𝑚𝑛𝑛 = 1|𝑋𝑋𝑚𝑚𝑛𝑛 ) =

1
1 + 𝑒𝑒−𝜷𝜷𝑿𝑿𝑚𝑚𝑛𝑛    (3) 

 

With parameters 𝜷𝜷 = [𝛽𝛽0,𝛽𝛽1,𝛽𝛽2,𝛽𝛽3] estimated by fitting the model with real data, 𝑃𝑃𝑟𝑟(𝑏𝑏𝑚𝑚𝑛𝑛 = 1|𝑿𝑿𝑚𝑚𝑛𝑛 ) 

for each bus run m (m≥2) at any stop n (n>k) can be computed k-stop ahead in the prediction stage. 

𝑏𝑏𝑚𝑚𝑛𝑛  is predicted to be positive (one-event) if 𝑃𝑃𝑟𝑟(𝑏𝑏𝑚𝑚𝑛𝑛 = 1|𝑿𝑿𝑚𝑚𝑛𝑛 ) exceeds a probability threshold 𝑃𝑃𝑟𝑟𝑥𝑥 

which is also known as the cut-off point, otherwise, negative (zero-event), as in Eq. (4). 

 

 
𝑏𝑏𝑚𝑚𝑛𝑛 = �1,𝑃𝑃𝑟𝑟(𝑏𝑏𝑚𝑚𝑛𝑛 = 1|𝑿𝑿𝑚𝑚𝑛𝑛 ) > 𝑃𝑃𝑟𝑟𝑥𝑥 

0,𝑃𝑃𝑟𝑟(𝑏𝑏𝑚𝑚𝑛𝑛 = 1|𝑿𝑿𝑚𝑚𝑛𝑛 ) ≤ 𝑃𝑃𝑟𝑟𝑥𝑥
 (4) 

 

3.4 Rare events bias 

Irregular arrivals are common in bus transit operation, however few of them turn into severe bunching. 

The prior bunching probability which is the ratio of bunching occurrence to the total number of 

dwelling in Yu et al. (2016) varies from 3% to 17%, from 0.15% to 7.17% in Moreira-Matias et al. 

(2016), and from 3% to 9% in our 5-day testing data. Bunching is hence a “rare” event in the dataset. 

“Rare events data” refer to large datasets in which it is significantly less likely that the binary 

dependent variables take one than zero. King and Zeng (2001) considered events such as wars, natural 

disasters or epidemiological infections within long term time series data. They found logistic 

regression underestimates the probability of rare events because they tend to be biased towards the 

majority class, which is the less important class in most cases. This can be explained as follows: 

 

The dependent variable 𝑌𝑌𝑖𝑖 follows a Bernoulli probability distribution that can take the values of 

one and zero with probabilities 𝜋𝜋𝑖𝑖 and 1 − 𝜋𝜋𝑖𝑖 respectively. The probability function can be written 

as 

 

 𝑃𝑃𝑟𝑟(𝑌𝑌𝑖𝑖|𝜋𝜋𝑖𝑖) = 𝜋𝜋𝑖𝑖𝑌𝑌𝑖𝑖(1− 𝜋𝜋𝑖𝑖)1−𝑌𝑌𝑖𝑖 (5) 

 

It is easy to derive the expectation and variance of 𝑌𝑌𝑖𝑖 as 

 

 𝐸𝐸(𝑌𝑌𝑖𝑖) = 𝜋𝜋𝑖𝑖 (6) 



 

 𝑉𝑉(𝑌𝑌𝑖𝑖) = 𝜋𝜋𝑖𝑖(1− 𝜋𝜋𝑖𝑖) (7) 

 

If the regression model has some explanatory power, the variance in the dependent variable has to 

be large enough. The variance becomes larger as 𝜋𝜋𝑖𝑖 increases and reaches its maximum if 𝜋𝜋𝑖𝑖 = 0.5, 

which indicates that it is favorable to involve an equal number of ones and zeros in the dataset. Cosslett 

(1981) and Imbens (1992) also showed that equally sampling the two classes is optimal. 

 

King and Zeng (2001) further discuss that selective data collection strategies instead of sampling 

all available events could save data collection costs and correct the bias. Maalouf and Trafalis (2011) 

implemented kernel logistic regression to rare events data, making use of a fast and robust adaptation 

of kernel logistic regression and taking the weight of rare events into account. In this paper, selective 

sampling and corresponding prior correction are used to reduce bias induced by rare events. 

 

3.4.1 Sampling 

Since bus GPS records are plentiful and easy to filter, efficient sampling thus can be achieved by 

creating a balanced dataset in which all bunching events are included and part of the non-bunching 

events are excluded. A balanced selection to include ones (bunching) and an equal number of zeros 

(non-bunching) is applied. 

 

3.4.2 Prior correction 

Following King and Zeng (2001), prior correction is to correct the estimates according to the fraction 

of ones in the population, denoted by τ, and the observed fraction of ones in the sample, denoted by 

𝑦𝑦�, since the probability of events to be predicted as ones is overestimated in the sample. The correction 

is applied to the intercept 𝛽𝛽0 as  

 

 
𝛽𝛽0� = 𝛽𝛽0 − ln ��

1 − 𝜏𝜏
𝜏𝜏

� �
𝑦𝑦�

1 − 𝑦𝑦�
�� (8) 

 

3.5 LR and SVM as benchmark solutions 

We now turn to two headway prediction methods that we consider as benchmarks compared to the 

afore introduced direct bunching prediction method.  Firstly, we consider linear regression (LR) 

which is a basic tool in addressing prediction problems. To make LR comparable with LOGR, the 

same set of independent variables 𝑿𝑿𝑚𝑚𝑛𝑛 = [𝑡𝑡𝑚𝑚𝑛𝑛−𝑘𝑘 , 𝑡𝑡𝑚𝑚−1
𝑛𝑛−𝑘𝑘 , ∆𝑚𝑚−1,𝑚𝑚

𝑛𝑛−𝑘𝑘 ]  is applied. With 𝜷𝜷′ =

[𝛽𝛽0′ ,𝛽𝛽1′ ,𝛽𝛽2′ ,𝛽𝛽3′] the relationship between the headway at stop n and the set of the independent variables 

containing information k-stop-ahead is modeled as  



 

 ∆𝑚𝑚−1,𝑚𝑚
𝑛𝑛 = 𝜷𝜷′𝑿𝑿𝑚𝑚𝑛𝑛  (9) 

 

Secondly, support vector machine (SVM) can map a non-linear relationship for model input and 

output, and is tested by a number of studies in predicting bus headway or arrival time (B., Yu et al., 

2006; 2011; H., Yu et al., 2016). The same independent variables and dependent variable are applied 

to the SVM regression, and a RBF (Radial Basis Function) kernel is selected because it is found both 

efficient for bus arrival time prediction (Yu et al., 2011) and for bus headway prediction (Yu et al., 

2016). 

 

4. Data description and case study settings 

Buses are the main mode of public transport in Kyoto, Japan with more than 100 lines being served 

by several operators. Bus GPS data of two primary bus operators has been obtained for a period of six 

months in 2016. The data is collected every 8 seconds and provides the geographic coordinates of bus 

location in real-time as well as associated bus line and vehicle number. Due to the lack of stop-based 

information, it is essential to identify arrival and departure times for each bus run at each stop. Using 

bus stop coordinates the distances of a bus from previous and next stops can be computed for every 

GPS record. Considering that bunching and traffic congestion might make it difficult for the bus driver 

to stop the bus at the exact bus stop coordinates as well as inaccuracy of GPS records, the bus is 

regarded arriving at the stop once it approaches the bus stop within 30m. In the same way the departure 

time is obtained when the GPS records indicate that the bus has moved 30m from the bus stop. 

The data collection period includes the months of April and November. During these months, Kyoto 

City experiences vast numbers of domestic and foreign visitors who come to enjoy the cherry blossoms 

(April) and red leaves (November) in various sites around the city. The bus operators thus encounter 

a huge challenge during these seasons to deliver a reliable service.  

A circular bus line, Kyoto City Bus No. 205, which connects the city center, railway station and 

several famous tourist attractions (Figure 1(middle)) is selected for the case study. There are 53 stops 

on this bus line in total. To exclude the effect of dispatching at the terminal and factors for which we 

do not have data (e.g. crew shedule, departure time adjustments), the 2nd stop of the line is taken as 

the initial stop and the 52nd stop as the last one so that each bus run passes 51 bus stops. Data of five 

weekdays in April 2016 are used as the training dataset and data of another five weekdays in the same 

month are used for testing the model. 

The scheduled headway varies from hour to hour, and the mean scheduled headway at the initial 

stop is 6.97min from 6 am to 8 pm. The shortest scheduled headway is 3min at 7 am. Based on this, 

1min is used for the bunching threshold as larger threshold can include headway variance that does 

not lead to bunching.  



Adequate time is required to project a successful correction, in particular, if the control strategy is 

based on manual communication between the dispatcher and the bus drivers. In this study, the 

proposed approach is tested under a long prediction horizon of 10 stops or more which gives the 

operator more than 15min to react since the mean stop-to-stop travel time is 1.77min. 

Figure 2 illustrates the bus runs departing from the initial stop between 8 am and 10 am. Bunching 

occurs frequently along the bus line. Bus runs that are involved in bunching as the back bus of two or 

more buses at least once are denoted in red, and the front buses of a bunching sequence are denoted in 

blue. Buses in green are not involved in any bunching. The headway fluctuation patterns of seven red 

trajectories are demonstrated in Figure 3. Because of the bunching effect, the forward-looking 

headway of back buses fluctuate within a small range, but always below one minute, once bunching 

has been occurring giving further support to our threshold choice of one minute. 

 

 
Figure 1. Data collected (left), data of Kyoto City Bus No. 205 (middle) and its configuration on 

real map (right). 

 

 
Figure 2. Trajectories of Kyoto City Bus No. 205 in one day of April 2016 
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Figure 3. Headway fluctuation along the line for bunched buses 

 

5 Headway prediction 

In the following case study, the headway prediction results derived by LR and SVM are discussed at 

first including a comparison of these results. In Section 6 then the focus is on the bunching prediction 

using these two methods as well as the newly proposed LOGR model. In the third part of our case 

study we compare the measures using ROC curves. 

 

5.1 Linear regression 

Table 1 shows the estimation results of the fitted LR model. For all the prediction horizons, the 

headway between the target bus and its front bus ∆𝑚𝑚−1,𝑚𝑚
𝑛𝑛−𝑘𝑘  and the dwell time of the target bus 𝑡𝑡𝑚𝑚𝑛𝑛−𝑘𝑘 

are always significant at 0.1% level and have positive signs. For short-term prediction the coefficient 

of ∆𝑚𝑚−1,𝑚𝑚
𝑛𝑛−𝑘𝑘  is close to 1 and it begins to deviate from 1 as the prediction horizon increases. Meanwhile 

the coefficient of 𝑡𝑡𝑚𝑚𝑛𝑛−𝑘𝑘 increases gradually as the prediction horizon extends. 𝑡𝑡𝑚𝑚−1
𝑛𝑛−𝑘𝑘  is insignificant 

in some cases, but it is still considered an important variable indicating at-stop activities and passenger 

loads. Long 𝑡𝑡𝑚𝑚−1
𝑛𝑛−𝑘𝑘  may shorten the headway, but it sometimes results from in-vehicle crowding as 

well as high boarding demand which may cause boarding failures that lead the following bus to dwell 

longer and increase the headway, thus the sign of 𝑡𝑡𝑚𝑚−1
𝑛𝑛−𝑘𝑘  is inconclusive but mostly negative. 
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Table 1. Coefficients of the independent variables in the LR model 

Prediction horizon Intercept ∆𝑚𝑚−1,𝑚𝑚
𝑛𝑛−𝑘𝑘  𝑡𝑡𝑚𝑚𝑛𝑛−𝑘𝑘 𝑡𝑡𝑚𝑚−1

𝑛𝑛−𝑘𝑘  Adjusted R2 

1-stop-ahead -0.3604*** 1.0009*** 0.7084*** 0.1247*** 0.9681 

2 -0.3689*** 1.0026*** 0.7735*** 0.0381* 0.9431 

3 -0.4890*** 1.0037*** 0.9786*** 0.0845*** 0.9173 

4 -0.4664*** 1.0051*** 0.9611*** 0.0203 0.8922 

5 -0.5081*** 1.0065*** 1.0315*** 0.0115 0.8673 

6 -0.4676*** 1.0075*** 0.9974*** -0.0751* 0.8424 

7 -0.5320*** 1.0092*** 1.0664*** -0.0247 0.8183 

8 -0.5070*** 1.0108*** 1.0177*** -0.0738* 0.7942 

9 -0.5458*** 1.0111*** 1.1231*** -0.0931* 0.7710 

10 -0.5613*** 1.0123*** 1.1489*** -0.1072** 0.7474 

11 -0.5937*** 1.0136*** 1.1834*** -0.0932* 0.7245 

12 -0.6405*** 1.0160*** 1.2057*** -0.0459 0.7012 

13 -0.6283*** 1.0186*** 1.1944*** -0.0935 0.6790 

14 -0.6675*** 1.0212*** 1.2323*** -0.0886 0.6564 

15 -0.6325*** 1.0235*** 1.2236*** -0.1681*** 0.6349 

*** <= 0.001, ** <= 0.01, * <= 0.05 

 

5.2 Support vector machine 

The RBF function has two tuning parameters (C, γ) to enhance the predicting power of the SVM model. 

C is the cost parameter to penalize the misclassifying of a sample. C thus controls the complexity of 

the classifier; a high C may greatly bend the “prediction hyperplane” to avoid any misclassifying 

(Cherkassky and Ma, 2004). γ is the inverse of the radius of influence by the samples selected as the 

support vectors of the model. γ  determines the influence of a single sample, a high γ  thus may 

reduce the radius and limit the generalization performance of the model. According to the findings on 

bus arrival time prediction in Yu et al. (2011), 𝐶𝐶 ϵ [2-5, 25], γ ϵ [0.1, 0.3] are recommended for the 

two parameters. In this paper, (22, 1) is set for the two parameters after a grid search in which γ = 1 

performs better in our dataset. 

 

5.3 Performance evaluation index 

MAPE (Mean Absolute Percentage Errors) and RMSE (Root Mean Square Errors) are commonly used 

to evaluate the prediction performance regarding exact value arrival time or headway prediction. Let 

M and N denote the total number of bus runs and stops for a bus line, ∆𝑚𝑚−1,𝑚𝑚
𝑛𝑛−𝑘𝑘  and ∆�𝑚𝑚−1,𝑚𝑚

𝑛𝑛−𝑘𝑘  denote 

the actual value and predicted value for headway, MAPE and RMSE are obtained respectively in Eq. 



(10) and Eq. (11). In order to prevent the denominator being close to zero, we follow the method of 

Yu et al. (2016) to calculate MAPE and use the mean of actual headways ∆� instead of ∆𝑚𝑚−1,𝑚𝑚
𝑛𝑛−𝑘𝑘  

 

 
𝑀𝑀𝑀𝑀𝑃𝑃𝐸𝐸 =

1
(𝑀𝑀− 1)(𝑁𝑁 − 𝑘𝑘)
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∆�
�
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𝑛𝑛=𝑘𝑘+1

× 100% (10) 

 

 

𝑅𝑅𝑀𝑀𝑅𝑅𝐸𝐸 = �
1
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𝑀𝑀

𝑚𝑚=2

𝑁𝑁

𝑛𝑛=𝑘𝑘+1

 (11) 

 

 

5.4 Performance comparison 

Headway prediction results at Stop 23 “Kinkaku Temple”, one of the most frequented sightseeing 

spots in Kyoto, is used to illustrate the performance of the aforementioned two methods. The results 

of 1-stop-ahead and 10-stop-ahead predictions are illustrated in Figure 4 and evaluated in Figure 5.  

Reliable prediction results (MAPE = 7.42% and RMSE = 0.71min by LR, MAPE = 7.45% and 

RMSE = 0.71min by SVM) are produced for 1-stop-ahead prediction. For 10-stop-ahead prediction, 

the results obviously deteriorate (MAPE = 21.64% and RMSE = 1.93min by LR, MAPE = 21.51% 

and RMSE = 1.92min by SVM). We suggest they can still provide insights into expected fluctuation 

patterns downstream, but the exact value is not reliable. Furthermore, neither in 1- nor 10-stop-ahead 

prediction can these two methods perform favorably under the circumstance that the actual headway 

becomes extremely short and bunching is going to happen, as is highlighted by the blue box in Figure 

4. Furthermore, Figure 5 illustrates that in terms of MAPE and RMSE, both methods produce close 

prediction accuracy and deteriorate similarly. Instead of significant increases in prediction errors, 

evaluation metrics deteriorate gradually as the prediction horizon extends. 

 



 
(a) 1-stop-ahead headway prediction 

 
(b) 10-stop-ahead headway prediction 

Figure 4. Performance comparison in terms of exact headway value 
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(a) Deterioration in MAPE as the prediction horizon extends 

 

(b) Deterioration in RMSE as the prediction horizon extends 

Figure 5. Performance comparison in terms of RMSE and MAPE under various prediction horizons 

 

6 Bunching prediction 

6.1 Logistic regression 

We now focus on bunching prediction, firstly with logistic regression. Estimation results with and 

without rare events bias correction are shown in Table 2. Adjusted McFadden’s R2 obtained by Eq. 

(12) is selected to measure the overall goodness of fit for the logistic regression model.  

 

 
𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀2 = 1 −

𝑙𝑙𝑙𝑙𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  −  𝐾𝐾
𝑙𝑙𝑙𝑙𝐿𝐿𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓

 (12) 
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where 𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is the likelihood derived by the fitted model, and 𝐿𝐿𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓 is the likelihood of a null model 

with intercept as the only predictor. K is the number of independent variables in the proposed model. 

Due to the randomness generated by drawing non-bunching observations from the 5-day dataset to 

correct the rare event bias, we run the model for 100 times and report the mean values for the 

coefficients and adjusted McFadden’s R2. The significance is not based on any specific run but on all 

the 100 runs, and for each variable the p-value is obtained by one sample t-test on the 100 estimated 

coefficients. Bunching probability is negatively correlated with the value of headway, thus the 

coefficients of the variables in the fitted LOGR have a reversed sign compared to those in the LR 

model. The correction is proven effective as the adjusted 𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀2  is increased by at least 0.05 for each 

prediction horizon. 

 

  



Table 2. Coefficients of the independent variables in the LOGR model 

Prediction horizon Intercept ∆𝑚𝑚−1,𝑚𝑚
𝑛𝑛−𝑘𝑘  𝑡𝑡𝑚𝑚𝑛𝑛−𝑘𝑘 𝑡𝑡𝑚𝑚−1

𝑛𝑛−𝑘𝑘  Adjusted 𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀2  

Without correction 

1-stop-ahead 3.0842*** -2.2341*** -1.4015*** -0.3552*** 0.7508 

2 2.3653*** -1.7302*** -1.0123*** -0.1913* 0.6899 

3 2.0826*** -1.4265*** -1.1577*** -0.1057 0.6357 

4 1.8370*** -1.2634*** -1.0737*** 0.0149 0.6016 

5 1.6296*** -1.1234*** -0.9013*** -0.0036 0.5651 

6 1.5044*** -1.0363*** -0.9266*** 0.1282 0.5385 

7 1.4301*** -0.9596*** -0.8913*** 0.1007 0.5097 

8 1.2780*** -0.8957*** -0.7406*** 0.1680* 0.4838 

9 1.2385*** -0.8352*** -0.8607*** 0.1960** 0.4558 

10 1.1162*** -0.7811*** -0.8076*** 0.2664*** 0.4289 

11 1.1189*** -0.7361*** -0.7486*** 0.0807 0.4028 

12 1.0504*** -0.7003*** -0.7425*** 0.1446* 0.3819 

13 0.9763*** -0.6679*** -0.6612*** 0.1593* 0.3615 

14 0.9184*** -0.6403*** -0.5862*** 0.1666** 0.3431 

15 0.8498*** -0.6137*** -0.5155*** 0.1807** 0.3246 

      

With correction (mean values of 100 runs reported with significance also based on all runs) 

1-stop-ahead 2.3647*** -2.0343*** -1.1165*** 0.0619*** 0.8214 

2 1.8730*** -1.5919*** -0.8407*** 0.0385* 0.7732 

3 1.7571*** -1.3429*** -1.1465*** 0.0985*** 0.7267 

4 1.6035*** -1.2226*** -0.9988*** 0.1627*** 0.6971 

5 1.4231*** -1.0874*** -0.9060*** 0.1598*** 0.6568 

6 1.2997*** -1.0042*** -0.8988*** 0.2585*** 0.6248 

7 1.2399*** -0.9326*** -0.7756*** 0.1574*** 0.5938 

8 1.1046*** -0.8738*** -0.7128*** 0.2740*** 0.5641 

9 1.1111*** -0.8146*** -0.8855*** 0.2514*** 0.5311 

10 1.0183*** -0.7663*** -0.8584*** 0.3289*** 0.5023 

11 0.9848*** -0.7188*** -0.7544*** 0.1642*** 0.4709 

12 0.9108*** -0.6817*** -0.7792*** 0.2616*** 0.4461 

13 0.8268*** -0.6467*** -0.7202*** 0.2776*** 0.4195 

14 0.8020*** -0.6183*** -0.6655*** 0.2246*** 0.3970 

15 0.6966*** -0.5887*** -0.5887*** 0.2788*** 0.3739 

*** <= 0.001, ** <= 0.01, * <= 0.05 



 

6.2 Performance evaluation index 

We define an actual bunching as “observed positive” and a predicted bunching as “predicted positive”. 

Similarly, for non-bunching we define “observed negative” and “predicted negative”. All the 

prediction results can be cast into four categories as is shown in Table 3, e.g. it is a true positive if an 

observed bunching is correctly labeled one in the prediction outcomes. Four indexes can be obtained 

from Eqs. (13) to (16). A binary classifier with high true positive rate and high true negative rate is 

desired. The former is commonly referred to as “sensitivity” and the latter as “specificity”. Sensitivity, 

specificity and accuracy which is an index computed with Eq. (17) to indicate overall prediction 

performance, are applied to evaluate the binary classification performance of the three algorithms.  

 

Table 3. Four categories for binary classification results 

 Observed positive (OP) Observed negative (ON) 

Predicted positive (PP) True positive (TP) False positive (FP) 

Predicted negative (PN) False negative (FN) True negative (TN) 

 

 

 
True positive rate (TPR, sensitivity, SES) = 

∑TP 
∑OP

 (13) 

 

 
False positive rate (FPR) = 

∑FP 
∑ON

 (14) 

 

 
True negative rate (TNR, specificity, SPC) = 

∑TN 
∑ON

 (15) 

 

 
False negative rate (FNR) = ∑FN 

∑OP
 (16) 

 

 
Accuracy (ACC) = 

∑TP +∑TN 
∑OP+∑ON

 (17) 

 

For headway-based methods, only one combination of sensitivity and specificity is derived, as 

headway prediction produces an exact value for each headway, resulting in deterministic true positive 

and negative outcomes. Instead, by using logistic regression different combinations are obtained 

depending on the cut-off point applied to the predicted probability. The cut-off point is the threshold 



to determine the predicted positive. The event is judged as positive if its predicted probability exceeds 

the cut-off point. A high cut-off point tends to only identify events presenting convincingly high 

probability as positives, and consequently, it thus might misclassify observed positives as negative. 

Vice versa, a low cut-off point will lead to more false positives. Therefore the cut-off point choice 

should depend on the operator’s attitude towards bunching. Two scenarios are assumed here to 

represent operators with different weights to false negative errors (missing actual bunching). Moreira-

Matias et al (2016) employed a large weight of 10:1 for false negative compared to false positive for 

aggressive control purposes. We consider more moderate weights of 1:1 and 3:1. 

 

Scenario 1 (LOGR-N): the operator is bunching-neutral, and gives equal weight to false 

positive and false negative. 

Scenario 2 (LOGR-A): the operator is bunching-averse, and gives a 3:1 weight to false 

negative over false positive predictions. 

 

The cost function in Eq. (18) computes the total weighted errors given a cut-off point. For LOGR-

N, 𝑤𝑤𝑀𝑀𝐹𝐹 = 𝑤𝑤𝑀𝑀𝑁𝑁 = 1, and for LOGR-A, 𝑤𝑤𝑀𝑀𝐹𝐹 = 1, 𝑤𝑤𝑀𝑀𝑁𝑁 = 3. The cut-off point generating the lowest 

cost is taken as the optimal one. Based on the scenario-specific predicted positives and negatives, the 

combination of sensitivity and specificity is determined. 

 

 
𝑐𝑐 = 𝑤𝑤𝑀𝑀𝐹𝐹�FP +𝑤𝑤𝑀𝑀𝑁𝑁� FN (18) 

 

6.3 Performance comparison 

Considering that the results derived by LR and SVM are similar, the comparison here is among SVM 

and two distinguished scenarios based on LOGR. As is presented in Figure 6(a), most bunching events 

can be detected 1-stop in advance by all three methods, and LOGR-A produces several false positives 

because it applies a more aggressive strategy to potential bunching events. However, LOGR-A 

significantly outperforms in 10-stop-ahead prediction, as is illustrated in Figure 6(b). LOGR-A 

captures a number of observed positives that are misclassified by SVM and LOGR-N although it 

generates a few more false positives. 

A further comparison among two headway-based approaches and two scenarios of logistic 

regression is demonstrated in Figure 7. Sensitivity, specificity and accuracy for the four methods under 

various prediction horizons are presented. LOGR-A shows remarkable robustness in terms of 

sensitivity. On the contrary to the obvious deterioration of the other three methods, the sensitivity of 

LOGR-A keeps above 65% under all the prediction horizons. Besides, it only slightly underperforms 

the other three methods in terms of specificity, indicating an acceptable trade-off cost. Non-bunching 



events overwhelm bunching events in the daily operation, and a slight underperformance in specificity 

might introduce a large number of false positive. The exact numbers of true positives, false positives, 

true negatives, false negatives derived in the 5-day testing data are listed in Table 4. LOGR-N always 

generates the least total errors (highest accuracy). LOGR-A always correctly detects most bunching 

events (highest sensitivity) at the cost of most total errors (lowest accuracy). The notable advantage of 

LOGR over the other two methods is its trade-off functionality. It can achieve highest overall accuracy 

and can outperform the other methods in terms of sensitivity, although it cannot realize both objectives 

simultaneously. 

 

 
(a) 1-stop-ahead bunching prediction 

 
(b) 10-stop-ahead bunching prediction 

Figure 6. Performance comparison in terms of binary bunching identification 
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(a) Deterioration in SES as the prediction horizon extends 

 
(b) Deterioration in SPC as the prediction horizon extends 

 
(c) Deterioration in ACC as the prediction horizon extends 

Figure 7. Performance comparison in terms of SES, SPC and ACC under various prediction 

horizons 
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Table 4. Performance comparison for 10-stop-ahead bunching prediction 

 Size OP 
PP PN SES 

(%) 

SPC 

(%) 

ACC 

(%) TP FP TN FN 

 Day 1 

LR 4223 344 161 77 3802 183 46.80 98.01 93.84 

SVM 4223 344 171 89 3790 173 49.71 97.71 93.80 

LOGR-N 4223 344 208 118 3761 136 60.47 96.96 93.99 

LOGR-A 4223 344 262 200 3679 82 76.16 94.84 93.32 
          
 Day 2 

LR 4182 384 158 118 3680 226 41.15 96.89 91.77 

SVM 4182 384 166 138 3660 218 43.23 96.37 91.49 

LOGR-N 4182 384 143 94 3704 241 37.24 97.53 91.99 

LOGR-A 4182 384 266 345 3453 118 69.27 90.92 88.93 
          
 Day 3 

LR 4264 355 175 62 3847 180 49.30 98.41 94.32 

SVM 4264 355 187 73 3836 168 52.68 98.13 94.35 

LOGR-N 4264 355 201 82 3827 154 56.62 97.90 94.47 

LOGR-A 4264 355 263 202 3707 92 74.08 94.83 93.11 
          
 Day 4 

LR 4182 146 51 42 3994 95 34.93 98.96 96.72 

SVM 4182 146 57 51 3985 89 39.04 98.74 96.65 

LOGR-N 4182 146 50 37 3999 96 34.25 99.08 96.82 

LOGR-A 4182 146 100 112 3924 46 68.49 97.22 96.22 
          
 Day 5 

LR 4182 254 123 67 3861 131 48.43 98.29 95.27 

SVM 4182 254 121 79 3849 133 47.64 97.99 94.93 

LOGR-N 4182 254 176 115 3813 78 69.29 97.07 95.38 

LOGR-A 4182 254 204 164 3764 50 80.31 95.82 94.88 

 

  



7 Discussion on the trade-off between sensitivity and specificity 

ROC curves created by plotting (1-SPC, SES) for given cut-off points are commonly used to evaluate 

the classification performance. AUC (Area Under the Curve) being close to one indicates good 

classification power. ROC curves under various prediction horizons are presented in Figure 8. 

Furthermore, the four combinations of sensitivity and specificity derived by the four methods 

discussed in the previous section are indicated on each curve. 

For each horizon, the corresponding curve can be considered the optimal front derived by LOGR. 

If an algorithm outperforms LOGR, the point it represents should appear above the curve with a higher 

SES and lower 1-SPC. It can be observed that the two headway-based methods (LR and SVM) 

generally fall below and sometimes on the LOGR curve, although the downward deviation from the 

curve is not significant. 

It is easy to conduct the trade-off between sensitivity and specificity on the LOGR curve. The LOGR 

curve contains all combinations of prediction performance given continuous cut-off points where each 

cut-off point can be considered as optimal. A bunching-averse operator who is aggressive to eliminate 

bunching might desire to detect 99% of the positives regardless of the cost to increase false positive 

rate. This trade-off functionality significantly enhances the flexibility and robustness of existing 

bunching prediction approaches, especially for putting the predictive methodology into real practice. 

The curves provide a robust benchmark and insights for future algorithms that address bunching 

prediction problem. Deterministic methods can only produce one combination of prediction 

performance which greatly limits its contribution to the real application unless its sensitivity and 

specificity simultaneously achieve a highly reliable level. Other probabilistic methods generating a 

curve having higher AUC than LOGR or deterministic methods producing points of substantial 

upward deviation from the curve under various prediction horizons should be further promising 

extensions. 

 

  



 

 
 

 
Figure 8. ROC curves under various prediction horizons (1-stop, 5-stop, 10-stop and 15-stop ahead) 

 

Table 5. Supplementary information for ROC curves shown in Figure 8 

Prediction horizon 
AUC (area under the 

curve) 

Cut-off point of 

LOGR-N (%) 

Cut-off point of 

LOGR-A (%) 

1-stop-ahead 0.9922 90.31 73.50 

5 0.9763 87.19 77.53 

10 0.9546 87.56 79.74 

15 0.9279 81.60 71.50 
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8. Conclusion and further work 

In this study, the potential of logistic regression to predict bus bunching is discussed. We consider the 

“rare event” nature of our problem which leads logistic regression to lose prediction power due to 

being biased to the majority in the dataset where positive events are by far outnumbered by negative 

events. Thus a selective sampling method and intercept correction is applied. We then compare this 

method with existing approaches that predict headways and then utilize the headway prediction for 

bunching prediction. Clearly headway prediction can be used for a larger range of purposes and deeper 

understanding of the service regularity developments as well as control strategies. However, bunching 

prediction in itself is important as it can be considered a distinctive state. This paper and other literature 

illustrate that headways fluctuate, but that, once bunching is reached, this state mostly continues along 

the line with far less headway fluctuation. We illustrate that when it comes to predicting bunching 

itself the newly proposed method has the potential to outperform headway-based methods such as LR 

and SVM in several aspects.  

Firstly, LOGR provides superior prediction results under a long prediction horizon. It outperforms 

LR and SVM by 28% in sensitivity and maintains the same level of specificity in 10-stop-ahead 

prediction. It also shows improved resistance against deterioration in prediction performance as the 

prediction horizon extends. 

Secondly, robustness and flexibility are significantly enhanced. LOGR provides robust prediction 

results that contain various sets of bunching outcomes under different cut-off points. This enables the 

operator to apply weights that are in accordance with their attitude towards bunching and operation 

budget. Some operators with limited possibility or willingness to apply corrective measures can use 

SVM or LOGR with neutral cut-off point setting. On the contrary, operators who desire to eliminate 

any possible bunching might be unwilling to choose headway-based methods which omit a 

considerable number of bunching in the long-term prediction cases. In this case LOGR-A becomes a 

much-preferred option. To conclude, LOGR provides operators with a wide range of options that can 

be tailored by their attitudes towards unexpected system disturbances. 

 

We find that the headway-predicting approaches deviate slightly downward from the optimal front 

and we discuss that their shortcomings are inadequate robustness and flexibility from the operator’s 

perspective. We note that it is also feasible to form a curve in terms of sensitivity and specificity for 

probabilistic headway prediction methods with confidence intervals to realize the trade-off on the 

curve discussed in this paper. Hans et al. (2015) developed a simulation-based prediction tool, Yu et 

al. (2017) tested RVM algorithm on headway prediction problem. Both methods could be extended to 

compute the probability of a headway falling below 1min and then to construct the ROC curves. By 

doing so and comparing the different ROC curves more insights might be obtained.  

 



Finally, other extensions that potentially strengthen the predictive power of the models presented in 

this study should be noted. The model itself has space for improvement by including variables such as 

weather, traffic signals and passenger demand that are not incorporated due to missing data. 

Furthermore, the study could be extended to simultaneously predict bunching for several lines, in 

which case common line effects such as the interaction between buses of different lines at a common 

stop need to be considered. 
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