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Abstract

This paper considers precautionary saving against the correlation between

two risky attributes (wealth and health) and investigates how the correlation af-

fects optimal savings under multivariate preferences. The signs of higher-order

cross derivatives play a key role in determining the direction of precautionary

saving against such correlation. Mixed correlation averse (seeking) individuals

increase (decrease) savings in response to increases in correlation. Furthermore,

we introduce ambiguity to the correlation and investigate how ambiguity affects

the amount of optimal savings. The analyses enable us to deepen our under-

standing of saving behavior under multivariate preferences in the presence of

correlation.
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1 Introduction

How much to save and consume are essential household financial decisions. Un-

certainty is one reason why households save, and this is commonly referred to as

the precautionary saving motive.1 In the literature on precautionary saving, one-

dimensional risk has mainly been investigated. However, saving decisions often face

multidimensional risks. For example, both the riskiness of the wealth levels and

health conditions of individuals affect saving decisions because both are important

in our daily lives.

The analyses of multivariate preferences provide clues for understanding our sav-

ing behaviors in the presence of multidimensional risks. Moreover, it is plausible to

assume that the level of wealth and the condition of health are closely related. This

implies that the role of correlation between the wealth level and the health condition

should be incorporated into analyses of precautionary saving decisions. Motivated

by the above recognition, the purpose of this paper is to analyze precautionary

saving against the correlation between two risky attributes.

In most cases, it is more difficult to quantify the correlation between two risky

attributes than the risk of an individual attribute due to the lack of experience and

insufficient observations. We acknowledge this difficulty by introducing ambiguity

about the correlation between two risky attributes. One of the purposes of this

paper is to extend the analyses of precautionary saving to include correlation with

ambiguity and to investigate how correlation with ambiguity affects the amount of

savings.

Since the seminal paper by Ellsberg (1961), the importance of ambiguity has

been recognized in the literature. The developments of Choquet expected utility

and maxmin expected utility have enabled us to investigate behaviors and deci-

sions under ambiguity (see Gilboa and Schmeidler (1989) and Schmeidler (1989)

for axiomatizations). This paper adopts the smooth ambiguity model in Klibanoff

1Uncertainty is used as an umbrella term that includes both risk and ambiguity. Risk is the
situation where uncertainty can be measured by a unique probability and ambiguity is the situation
where it cannot.
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et al. (2005, 2009). The model can differentiate the decision makers’ attitudes

toward ambiguity from their perception of ambiguity.2 Furthermore, the model is

more tractable than most of the models analyzing ambiguity. The usefulness of the

smooth ambiguity model has been widely recognized, for example, an application to

the portfolio problem by Gollier (2011).

Precautionary saving has been investigated extensively in the literature. It dates

back to Leland (1968) that compares future labor income under risk with that under

certainty. Since Leland (1968), numerous studies have used theoretical and empirical

approaches.3 Kimball (1990) is a milestone in research on precautionary saving and

characterizes the notion of prudence that is related to the convexity of marginal

utility. Most studies on precautionary saving have focused on investigating situations

where households face only risky future incomes. This paper advances this research

field by examining the effects of correlation between two risky attributes on optimal

savings in a framework of multivariate preferences. In addition, we analyze the

situation in which there are multiple possible realizations of correlation by applying

the notion of ambiguity.

This paper makes the following three contributions to the literature on precau-

tionary saving and multivariate preferences. First, we provide a framework for ana-

lyzing the effects of correlation between two risky attributes on precautionary saving

under multivariate preferences. Second, we demonstrate how the signs of successive

cross derivatives of a utility function affect precautionary saving toward correlation.

The condition is called mixed correlation aversion (seekingness) which is a bivariate

extension of mixed risk aversion (seekingness) by Caballé and Pomansky (1996) in

a univariate framework. Mixed correlation aversion (seekingness) generalizes cor-

relation aversion (seekingness) with a positive (negative) sign of a cross derivative.

Mixed correlation averse (seeking) individuals increase (decrease) their precaution-

2Many decision models designed to capture ambiguity aversion are proposed with axiomatic
foundations and are applied to various problems that appear in economics and finance. Machina
and Siniscalchi (2014) provide a review of canonical models.

3See Baidrdi et al. (2020) for a review of the theoretical studies and Liguilde et al. (2019) for
the empirical studies.
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ary savings in response to an increase in correlation. Third, we consider a situation

where there are many possible correlations because of the difficulty of quantifying

the relationship between multiple attributes compared with one-dimensional uncer-

tainty itself. This situation is captured by the notion of ambiguity. We determine

the conditions under which ambiguous correlations make decision makers increase

their precautionary savings by more than risky correlations. These conditions are

determined by the combination of risk and ambiguity attitudes.

The organization of this paper is as follows. Section 2 presents the literature

review. Section 3 presents a basic framework for analyzing the effects of correlation

between two risky attributes on optimal savings under risk. Section 4 introduces the

notion of stochastic dominance. Section 5 analyzes how correlation affects optimal

savings under risk. Section 6 discusses the notion of being mixed correlation averse

(seeking). Section 7 introduces ambiguity into the correlation between two risky

attributes and shows that whether optimal savings increase or not depends on atti-

tudes toward both risk and ambiguity. Section 8 relates the experimental results and

empirical observations in the existing literature to our theoretical results. Section 9

concludes the paper.

2 Literature review

This paper lies at the intersection of the literature on multivariate preferences and

precautionary saving. As in Eeckhoudt et al. (2007), we restrict our analyses to

bivariate preferences by fixing all but two of the attributes. The first attribute is

the level of wealth, and the second attribute is the condition of health. Even though

we could use other variables as the second attribute, for example, other’s level of

wealth or the condition of the environment, we adopt the condition of health because

of its importance in household financial decisions and its use in many studies.

It is difficult to interpret the signs of higher-order cross derivatives. Eeckhoudt

et al. (2007) provide their systematic characterization by applying a combination of
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two bads, sure reduction and zero-mean risk.4 They relate preferences for specific

combinations of the two bads to the signs of successive higher-order cross deriva-

tives of a utility function.5 Jokung (2011) applies stochastic dominance relations

to express a preference for the good attribute and the bad one, and shows that the

signs of cross derivatives of a utility function can be related to the preference for the

combination of good and bad. The signs also play a significant role in our analyses.

Most studies on precautionary saving have focused on settings in which indi-

viduals face risky future incomes in a one-dimensional situation. This suggests two

directions for advancing research on precautionary saving. One direction is to com-

pare one risky situation with another risky situation. Another direction is to shed

light on precautionary saving motives in multidimensional settings. Eeckhoudt and

Schlesinger (2008) are a seminal paper on the first direction and demonstrate how

risky shifts in future income affect optimal savings based on the notion of changes

in higher-order stochastic dominance. We compare two different risky situations as

in Eeckhoudt and Schlesinger (2008), but the difference between their paper and

ours is our inclusion of correlation between two risky attributes and multivariate

preferences.

Courbage and Rey (2007) analyze precautionary saving in a multidimensional

setting and investigate conditions under which individuals increase their savings

by more when there is risk in the second attribute. Whereas Courbage and Rey

(2007) compare two different situations in which health conditions are either certain

or risky, we compare two different situations in which health conditions are both

risky but differ in correlation against income risks. Even though Courbage and Rey

(2007) consider a situation in which future income and health risks are correlated,

4This characterization is an extension of Eeckhdout and Schlesinger (2006) in one dimension.
Even though the arguments are closely related between univariate and multivariate preferences, we
only provide a review by Eeckhoudt and Schlesinger (2014) instead of referring to individual studies
of univariate preferences.

5Eeckhoudt et al. (2007) show that (i) an individual is correlation averse if and only if
u(1,1)(x, y) ≤ 0 for all x, y, (ii) an individual is cross-prudent in health if and only if u(2,1)(x, y) ≥ 0
for all x, y, (iii) an individual is cross-prudent in wealth if and only if u(1,2)(x, y) ≥ 0 for all x, y,
and (iv) an individual is cross-temperate if and only if u(2,2)(x, y) ≤ 0 for all x, y, where u(x, y) is
a bivariate utility function of wealth x and health y, where u(i,j)(x, y) stands for ∂

i+ju/∂xi∂yj .
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this paper adopts a simpler representation of the correlation based on Doherty and

Schlesinger (1990). This representation enables us to examine precautionary saving

against the correlation. In addition, we analyze the situation in which there are

multiple possible realizations of correlation by applying the notion of ambiguity.

Some studies investigate how ambiguity in future income affects saving decisions

in a univariate framework. Gierlinger and Gollier (2017) and Osaki and Schlesinger

(2014) determine conditions under which individuals increase their savings to protect

against ambiguity in future income compared with the case of risk.6 Following Osaki

and Schlesinger (2014), ambiguity aversion distorts the relative weights on worse

priors and the preference for consumption timing. This distortion also occurs in

our analyses. Unlike Osaki and Schlesinger (2014), we introduce ambiguity into the

correlation between the two risky attributes, not future income.

3 Optimal savings in the presence of correlation

In this section, we provide a basic framework for analyzing the effects of correlation

between two attributes on optimal savings under risk. Let us consider a simple

dynamic model with two dates, t = 0 and t = 1. An individual enjoys lifetime

time-separable utility from two attributes (x, y) ∈ X × Y ⊆ R2
+. The first attribute

is a financial variable and the second is a nonfinancial variable. For the sake of ex-

position, we assume that the financial variable is wealth level and the nonfinancial

variable is health condition. Other examples of nonfinancial variables are other’s

wealth level and environmental conditions. The analysis can be applied to nonfi-

nancial variables, which can be measured numerically.

Let us denote a bivariate utility function u : X × Y → R. We denote u(1,0)(x, y)

as ∂u/∂x, u(0,1)(x, y) as ∂u/∂y and u(1,1)(x, y) as ∂2u/∂x∂y. The same notation

can be used for the function u(i,j)(x, y), which stands for ∂i+ju/∂xi∂yj . We assume

that all higher-order partial and cross derivatives exist if necessary for the analysis.

6Gierlinger and Gollier (2017) consider the term structure of interest rates under ambiguous
consumption growth. As in Berger (2014), their results can be translated in terms of precautionary
saving against ambiguity.
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The utility function u(x, y) is increasing and concave in both wealth and health,

u(1,0)(x, y) ≥ 0, u(0,1)(x, y) ≥ 0, and u(2,0)(x, y) ≤ 0, u(0,2)(x, y) ≤ 0. The concavity

means risk aversion for both wealth and health. We do not impose any restriction on

the sign of u(1,1)(x, y). The signs of the higher-order cross derivatives play a crucial

role in our analyses.

The individual faces a future income risk and future health risk. Two types of

risks, which are called “good” and “bad,” are involved in both the future income and

health risks. Regarding the future income risk, the random variables ϵ̃B and ϵ̃G occur

with probability p and 1−p. Regarding the future health risk, the random variables

δ̃B and δ̃G occur with probability q and 1− q. We assume that all future risks, ϵ̃G,

ϵ̃B, δ̃G, and δ̃B, are mutually independent. The terms “good” and “bad” indicate

that both good wealth and health risks are preferred, that is, E[u(x + ϵ̃G, y)] ≥

E[u(x + ϵ̃B, y)] and E[u(x, y + δ̃G)] ≥ E[u(x, y + δ̃B)] for all x, y. As in the next

section, we rank good and bad by stochastic dominance relations.

There are four possible combinations of future income and health risks. The

following are the combinations and their probabilities:

• ϵ̃B and δ̃B with probability kpq;

• ϵ̃G and δ̃B with probability (1− kp)q;

• ϵ̃B and δ̃G with probability p(1− kq);

• ϵ̃G and δ̃G with probability 1− p− q + kpq.

We can calculate the probability of the future income and health risks, for example,

the probability of the simultaneous occurrence of bad future income and health risk

is kpq. Other probabilities of the future income and health risks can be calculated

similarly. A positive value of k is chosen so that all probabilities are nonnegative

and less than unity. This value of k captures the correlation between the future

income risk and the health risk. When the value of k is unity, the future income risk

and the health risk are independent. Indeed, if k = 1, the probability occuring ϵ̃B
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and δ̃B is equal to pq, which is the multiplication of each probability. A value of k

greater (less) than unity indicates a positive (negative) correlation. The correlation

increases in k.

The individual earns the sure income w and is endowed with the sure health

condition h in both t = 0 and t = 1. In addition to the sure income and health, the

individual faces the income and health risks at t = 1. The individual must decide

a level of saving at t = 0 to maximize the lifetime utility. The savings are invested

at the risk-free rate of interest. Negative savings are the amount of borrowing

from future income for current consumption. We assume that the risk-free rate of

interest is zero and the individual is not impatient, the latter of which means no

time-discounting. Because of this simplified setting, we can focus on the effect of

risk on saving decisions. The individual determines the level of saving to maximize

lifetime time-separable utility from wealth and health:

max
s
U(s)

=u(w − s, h) + v(s, k)

=u(w − s, h) + kpqE[u(w + s+ ϵ̃B, h+ δ̃B)] + (1− kp)qE[u(w + s+ ϵ̃G, h+ δ̃B)]

+ p(1− kq)E[u(w + s+ ϵ̃B, h+ δ̃G)] + (1− p− q + kpq)E[u(w + s+ ϵ̃G, h+ δ̃G)].

(1)

Here, v(s, k) denotes the expected utility at t = 1 given s and k.

The first-order condition for (1) is

U ′(s)

=− u′(w − s∗, h) + vs(x
∗, k)

=− u′(w − s∗, h) + kpqE[u(1,0)(w + s∗ + ϵ̃B, h+ δ̃B)] + (1− kp)qE[u(1,0)(w + s∗ + ϵ̃G, h+ δ̃B)]

+ p(1− kq)E[u(1,0)(w + s∗ + ϵ̃B, h+ δ̃G)] + (1− p− q + kpq)E[u(1,0)(w + s∗ + ϵ̃G, h+ δ̃G)] = 0.

(2)

Because U(s) is concave by u(2,0) ≤ 0, the second-order condition for a maximum is
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satisfied. For simplicity, we assume that the optimal amount of savings is interior,

−w ≤ s∗ ≤ w, and is unique throughout the paper.

4 Stochastic dominance

In this section, we introduce the notion of stochastic dominance to represent the

“good” or “bad” future income risk and health risk. Stochastic dominance is a

partial order to compare two random variables. Let us consider two random variables

x̃ and ỹ with the cumulative distribution functions F and G, which are defined over

a bounded support [a, b]. We note that the notation of x̃ and ỹ is used for the

exposition of stochastic dominance in this section.

The distribution function F dominates the distribution function G in the sense

of first-order stochastic dominance (FSD) if F (z) ≤ G(z) for all z ∈ [a, b]. If the

random variables x̃ and ỹ have the distribution functions F and G, and F dominates

G in the sense of FSD, it is said that a random variable x̃ dominates ỹ in the sense

of FSD. The same goes for other notions of stochastic dominance. Applying FSD to

the future income risk, the individual with u(1,0) ≥ 0 prefers the good future income

risk ϵ̃G to the bad one ϵ̃B. Formally, the following two conditions are equivalent:

• ϵ̃G dominates ϵ̃B in the sense of FSD;

• E[u(w + ϵ̃G, h)] ≥ E[u(w + ϵ̃B, h)] for u(1,0) ≥ 0.

The same argument can be applied to the future health risk. The individual with

u(0,1) ≥ 0 prefers the good future health risk δ̃G to the bad one δ̃B, that is, E[u(w, h+

δ̃G)] ≥ E[u(x, h+ δ̃B)] for u(0,1) ≥ 0 when δ̃G dominates δ̃B in the sense of FSD.

For the distribution functions F and G on [a, b], let us define F1(z) = F (z) and

G1(z) = G(z), and define Fn(z) =
∫ z
a Fn−1(t)dt and Gn(z) =

∫ z
a Gn−1(t)dt for all

z ∈ [a, b] and for all n = 2, 3, . . . , N . Following Jean (1980) and Ingersoll (1987),

the distribution function F dominates the distribution function G in the sense of

Nth-order stochastic dominance (NSD) if FN (z) ≤ GN (z) for all z ∈ [a, b] and
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Fn(b) ≤ Gn(b) for all n = 1, 2, . . . , N − 1. The following result is known in the

literature, for example, see Ingersoll (1987).

• ϵ̃G dominates ϵ̃B in the sense of NSD;

• E[u(w+ϵ̃G, h)] ≥ E[u(w+ϵ̃B, h)] for any function u such that (−1)n+1u(n,0) ≥ 0

for all n = 1, 2, . . . , N .

The individual prefers the future good income risk to the bad one, which are ranked

according to second-order stochastic dominance because we assume that u(1,0) ≥

0 and u(2,0) ≤ 0. For the third-order stochastic dominance, we need to assume

u(3,0) ≥ 0 in addition to u(1,0) ≥ 0 and u(2,0) ≤ 0 so that the individual prefers the

good future income risk to the bad one. Because the positive third-order derivative

represents prudence in the univariate utility framework, we refer to u(3,0) ≥ 0 as

prudence for wealth. The same argument can be applied to the future health risk.

The following two conditions are equivalent:

• δ̃G dominates δ̃B in the sense of NSD;

• E[u(w, h+ δ̃G)] ≥ E[u(w, h+ δ̃B)] for any function u such that (−1)n+1u(0,n) ≥

0 for all n = 1, 2, . . . , N .

Following the terminology coined by Caballé and Pomansky (1996), the second con-

dition represents mixed risk aversion in wealth and health, respectively. In other

words, individuals are called mixed risk averse if the signs of successive derivatives

of utility functions have alternate signs, with all positive odd derivatives and all

negative even derivatives. As shown by Brockett and Golden (1987), the utility

functions commonly adopted in economics have the property of having all positive

odd derivatives and all negative even derivatives.7

7A real-valued function u(x) on (0,∞) is complete monotone if its derivatives un(x) of all orders
exist and (−1)nun(x) ≥ 0 for all x > 0 and all n = 0, 1, 2, . . .. A real-valued, continuous utility
function u defined on [0,∞) exhibits mixed risk aversion if it has a completely monotone first
derivative on (0,∞) (i.e., (−1)nun+1(x) ≥ 0 for all x > 0 and for all n = 0, 1, 2, . . .) and u(0) = 0.
As also pointed out by Pratt and Zeckhauser (1987), the majority of utility functions analyzed in
applied work have completely monotone first derivatives. For example, if a class of utility functions
u is the class of hyperbolic absolute risk aversion with −u′′(x)/u′(x) = 1/(a + bx) for a > 0 and
b > 0, then they are mixed risk averse. See Caballé and Pomansky (1996, p.490) for details.
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We introduce another stochastic dominance relation referred to as an increase

in N -th degree risk. As a special case of NSD, Ekern (1980) proposes that the

distribution function G has more Nth-degree risk than the distribution function F

if FN (z) ≤ GN (z) for all z ∈ [a, b] and Fn(b) = Gn(b) for all n = 1, 2, . . . , N . This

indicates that the first (N−1)th-moments of F and G coincide. Ekern (1980) shows

that the following conditions are equivalent:

• δ̃B has more Nth-degree risk than δ̃G;

• E[u(w + ϵ̃G, h)] ≥ E[u(w + ϵ̃B, h)] for (−1)N+1u(N,0) ≥ 0.

The same argument can be applied to the case of health risk. We provide some

examples from the literature. An increase in risk by Rothschild and Stiglitz (1970)

corresponds to a second-degree increase in risk. Rothschild and Stiglitz (1970) show

that any increase in risk can be obtained by a sequence of mean-preserving spreads.

This implies that two random variables with the same means are ranked by an

increase in risk. Risk averse individuals dislike any increases in risk. An increase

in downside risk introduced by Menezes et al. (1980) corresponds to a third-degree

increase in risk. This implies that two random variables with the same means and

the same variances are ranked by an increase in downside risk. Prudent individuals

dislike any increases in downside risk.

5 Precautionary saving against correlation under risk

In this section, we examine how correlation affects optimal savings under risk. In

our setup, this means that we examine how optimal savings change in k, which is

the parameter representing correlation. Before stating the main result, we present

the following lemma.
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Lemma 1. Let f(ϵ, δ) be the payoff function and define

E[f(ϵ̃, δ̃)] = kpqE[f(ϵ̃B, δ̃B)] + (1− kp)qE[f(ϵ̃G, δ̃B)]

+ p(1− kq)E[f(ϵ̃B, δ̃G)] + (1− p− q + kpq)E[f(ϵ̃G, δ̃G)].

Suppose that

• ϵ̃G dominates ϵ̃B in the sense of NSD;

• δ̃G dominates δ̃B in the sense of MSD.8

If (−1)n+mf(n,m) ≥ (≤)0 for all n = 1, 2, . . . , N and m = 1, 2, . . . ,M , then E[f(ϵ̃, δ̃)]

increases (decreases) in k.

Proof We will prove the case that E[f(ϵ̃, δ̃)] increases in k, because the oppo-

site case can be proven in a similar way.

By a simple calculation, we have the following:

∂E[f(ϵ̃, δ̃)]

∂k
= pq

(
E[f(ϵ̃B, δ̃B)]− E[f(ϵ̃G, δ̃B)]− E[f(ϵ̃B, δ̃G)] + E[f(ϵ̃G, δ̃G)]

)
.

This leads to the following:

sgn

(
∂E[f(ϵ̃, δ̃)]

∂k

)
≥ 0 ⇔ E[f(ϵ̃G, δ̃G)]−E[f(ϵ̃G, δ̃B)] ≥ E[f(ϵ̃B, δ̃G)]−E[f(ϵ̃B, δ̃B)].

(3)

When

(−1)n+1∂
n{E[f(ϵ, δ̃G)]− E[f(ϵ, δ̃B])}

∂ϵn
≥ 0 for all n = 1, 2, . . . , N, (4)

we have that

E[f(ϵ̃G, δ̃G)]− E[f(ϵ̃G, δ̃B)] ≥ E[f(ϵ̃B, δ̃G)]− E[f(ϵ̃B, δ̃B)]

8Recall that NSD and MSD denote Nth-order stochastic dominance and Mth-order stochastic
dominance, respectively.
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because ϵ̃G dominates ϵ̃B in the sense of NSD. We can prove (3) by determining the

condition in which (4) holds. The condition (4) can be rewritten as follows:

(−1)n+1E[f(n,0)(ϵ, δ̃G)] ≥ (−1)n+1E[f(n,0)(ϵ, δ̃B)] for all n = 1, 2, . . . , N. (5)

Inequality (5) holds for

(−1)m+1∂
m{(−1)n+1f(n,0)(ϵ, δ)}

∂δm
= (−1)n+m+2f(n,m)(ϵ, δ) = (−1)n+mf(n,m)(ϵ, δ) ≥ 0

for all n = 1, 2, . . . , N and m = 1, 2, . . . ,M , because δ̃G dominates δ̃B in the sense

of MSD. Thus, the proof is complete. (Q.E.D.)

A similar result can be obtained for Nth-degree risk.

Lemma 2. For the payoff function f(ϵ, δ), define

E[f(ϵ̃, δ̃)] = kpqE[f(ϵ̃B, δ̃B)] + (1− kp)qE[f(ϵ̃G, δ̃B)]

+ p(1− kq)E[f(ϵ̃B, δ̃G)] + (1− p− q + kpq)E[f(ϵ̃G, δ̃G)].

Suppose that

• ϵ̃B has more N th-degree risk than ϵ̃G;

• δ̃B has more M th-degree risk than δ̃G.

If (−1)N+Mf(N,M) ≥ (≤)0, then E[f(ϵ̃, δ̃)] is increasing (decreasing) in k.

Assume that future income risk is ranked by NSD and future health risk is ranked

by MSD, that is,

• ϵ̃G dominates ϵ̃B in the sense of NSD;

• δ̃G dominates δ̃B in the sense of MSD.
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It follows from Lemma 1 that

vs(s, k)

= kpqE[u(1,0)(w + s+ ϵ̃B, h+ δ̃B)] + (1− kp)qE[u(1,0)(w + s+ ϵ̃G, h+ δ̃B)]

+ p(1− kq)E[u(1,0)(w + s+ ϵ̃B, h+ δ̃G)] + (1− p− q + kpq)E[u(1,0)(w + s+ ϵ̃G, h+ δ̃G)].

(6)

increases (decreases) in k for (−1)n+mu(n+1,m)(x, y) ≥ (≤)0 for all n = 1, 2, . . . , N

and m = 1, 2, . . . ,M . Here, recall that v represents the expected utility at t = 1

given s and k.

Let us consider an individual whose correlation between future income risk and

health risk is represented by k. We consider two cases where the correlation is low or

high, denoted by kL and kH with kL ≤ kH and all other things equal. Note that the

correlation increases in k. We denote sL and sH as optimal savings under kL and

kH , respectively. Suppose that (−1)n+mu(n+1,m)(x, y) ≥ (≤)0 for all n = 1, 2, . . . , N

and m = 1, 2, . . . ,M . We obtain the following inequality:

Vs(sL, kL) = −u′(w − sL, h) + vs(sL, kL) = 0

≤ (≥)− u′(w − sL, h) + vs(sL, kH) = Vs(sL, kH)

⇔ sL ≤ (≥)sH

(7)

The inequality follows from Lemma 1 where f(ϵ, δ) is set to u(1,0)(w + s+ ϵ, h+ δ).

Now, we can summarize the above argument into the following proposition. We refer

to individuals as being mixed correlation averse (seeking) if the following holds:

(−1)n+mu(n+1,m)(x, y) ≥ (≤)0 for n = 1, 2, . . . , N and m = 1, 2, . . . ,M.

Proposition 1. Suppose that the future income risk is ranked by NSD and the future

health risk is ranked by MSD, that is,

• ϵ̃G dominates ϵ̃B in the sense of NSD;
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• δ̃G dominates δ̃B in the sense of MSD.

If the following condition holds,

(−1)n+mu(n+1,m)(x, y) ≥ (≤)0 for n = 1, 2, . . . , N and m = 1, 2, . . . ,M,

then optimal savings increase (decrease) in k.

Let us consider the special case of N =M = 1. In this case, if u(2,1)(x, y) ≥ (≤)0,

then optimal savings increase in k. Following the terminology by Eeckhoudt et al.

(2007), individuals are called cross prudent (imprudent) if u(2,1)(x, y) ≥ (≤)0. We

provide an interpretation of the condition on the sign of the cross derivatives and

provide the intuition of this proposition in the next section.

6 Signs of cross derivatives

Following Eeckhoudt et al. (2007), we provide the intuition of the result in Propo-

sition 1 by relating the signs of the cross derivatives to the precautionary saving

against correlation. In the following analyses, we investigate individual’s prefer-

ences for a 50–50 lottery. Let [A,B] denote a lottery that pays either A or B with

a probability of one-half. Cross prudence (imprudence) is characterized as a type

of lottery preference.9 An individual is cross prudent (imprudent) if the lottery

[(w + ϵ̃, h), (w, h − c)] is preferred to the lottery [(w, h), (w + ϵ̃, h − c)] (the lottery

[(w, h), (w + ϵ̃, h − c)] is preferred to the lottery [(w + ϵ̃, h), (w, h − c)]) such that

h − c > 0. Each outcome of the lottery occurs with equal probability. The first

outcome is wealth level and the second outcome is health status. ϵ̃ is zero-mean risk

in wealth and −c is sure loss in health. ϵ̃ is considered to be “bad” compared with 0
9Strictly speaking, this definition corresponds to cross prudence (imprudence) in health. Cross

prudence (imprudence) in wealth can be defined in a similar way. An individual is cross prudent
(imprudent) in wealth if the lottery [(w, h + δ̃), (w − k, h)] is preferred to the lottery [(w, h), (w −
k, h+ δ̃)] (the lottery [(w, h), (w − k, h+ δ̃)] is preferred to the lottery [(w, h+ δ̃), (w − k, h)]) such
that w − k > 0. Eeckhoudt et al. (2007, p.120, Proposition 1) show that an individual is cross
prudent (imprudent) in health if and only if u(2,1) ≥ (≤)0 and that an individual is cross prudent
(imprudent) in wealth if and only if u(1,2) ≥ (≤)0. Because only the results about cross prudence
(imprudence) in health appear in the following analyses, we omit the phrase “in health.”
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because ϵ̃ is preferred to 0 by u(2,0) ≤ 0. Cross-prudent (imprudent) individuals pre-

fer to accept noise risk δ̃ to wealth in good (bad) health outcomes. Cross prudence

(imprudence) displays a type of preference to receive one of the two bads for certain

rather than both two bads or nothing (both two bads or nothing rather than one of

the two bads for certain). This is referred to as a type of preference for combining

good with bad (good) following Eeckhoudt and Schlesinger (2006) and Eeckhoudt

et al. (2007).

Next, we see the intuition as to why cross-prudent individuals increase their

savings as k increases. Cross-prudent individuals dislike occurring bad future income

and health risks simultaneously. Because the simultaneous occurrence increases in k,

cross-prudent individuals increase their savings to protect against the simultaneous

occurrence of the two bad future risks. This leads to positive precautionary saving

against correlation for cross-prudent individuals. The opposite intuition can be

applied for cross-imprudent individuals.

Epstein and Tanny (1980) propose the notion of correlation aversion. An indi-

vidual is correlation averse (seeking) if the lottery [(w− k, h), (w, h− c)] is preferred

to the lottery [(w, h), (w − k, h− c)] (the lottery [(w, h), (w − k, h− c)] is preferred

to the lottery [(w− k, h), (w, h− c)]). Here, sure losses −k and −c are considered to

be “bad.” Eeckhoudt et al. (2007, p.120, Proposition 1) show that an individual is

correlation averse (seeking) if and only if u(1,1) ≤ (≥)0.10 Correlation aversion (seek-

ingness) is a type of preference for combining good with bad (good with good). We

can characterize higher-order versions of correlation aversion (seekingness), which

are called mixed correlation aversion (seekingness). Cross prudence (imprudence)

can be viewed as the third-order version of correlation aversion (seekingness).

Let us consider two risks ϵ̃G and ϵ̃B in wealth and assume that ϵ̃G dominates ϵ̃B

in the sense of NSD. Then, individuals with (−1)n+1u(n,0) ≥ 0 for n = 1, 2, . . . , N

prefer ϵ̃G to ϵ̃B, that is, E[u(w+ ϵ̃G, h)] ≥ E[u(w+ ϵ̃B, h)] for all w and h. The two

random variables ϵ̃G and ϵ̃B can be viewed as good and bad, respectively. Let us

10See also Richard (1975, p.14, Theorem 1) and Epstein and Tanny (1980, p.20).
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also consider two risks δ̃G and δ̃B in health and that δ̃G dominates δ̃B in the sense

of MSD. Then, individuals with (−1)m+1u(0,m) ≥ 0 for m = 1, 2, . . . ,M prefer δ̃G to

δ̃B, that is, E[u(w, h+ δ̃G)] ≥ E[u(w, h+ δ̃B)] for all w and h. The two variables δ̃G

and δ̃B can be viewed as good and bad, respectively.

An individual is called mixed correlation averse (seeking) if11

(−1)n+m+1u(n,m)(x, y) ≥ (≤)0 for n = 1, 2, . . . , N and m = 1, 2, . . . ,M.

Jokung (2011, p.449, Theorem 3) shows that if individuals are mixed correlation

averse (seeking), then the lottery [(w+ ϵ̃G, h+ δ̃B), (w+ ϵ̃B, h+ δ̃G)] is preferred to the

lottery [(w+ϵ̃G, h+δ̃G), (w+ϵ̃B, h+δ̃B)] (the lottery [(w+ϵ̃G, h+δ̃G), (w+ϵ̃B, h+δ̃B)]

is preferred to the lottery [(w + ϵ̃G, h+ δ̃B), (w + ϵ̃B, h+ δ̃G)]).
12

As in correlation aversion (seekingness), mixed correlation aversion (seekingness)

is a type of preference for combining good with bad (good). The condition in our

proposition is mixed correlation aversion (seekingness) excluding correlation aversion

(seekingness). We obtain the intuition of the result by the analogy of the case

N = M = 1. Because the simultaneous occurrence of the two bad future risks

increases in k, mixed correlation-averse individuals increase their savings to protect

against the simultaneous occurrence. The opposite argument can be applied to

mixed correlation-seeking individuals.

7 Ambiguous correlation

In sections above, we considered the case of risk, in the sense that the correla-

tion is uniquely identified. In this section, we introduce ambiguity into correlation

11Although this property was first proposed by Jokung (2011), in this paper, it might be better
called “mixed correlation averse (seeking)” based on the notion of being “mixed risk averse” by
Caballé and Pomansky (1996).

12By introducing the notion of increasing concave order, Jokung (2011, p.449, Theorem 3) extends
Eeckhoudt et al. (2009, p.997, Theorem 3) to the bivariate case. Eeckhoudt et al. (2009, p.997,
Theorem 3) show that if X̃ dominates Ỹ in the sense of NSD and Z̃ dominates T̃ in the sense of
MSD, then [X̃ + T̃ , Ỹ + Z̃] dominates [X̃ + Z̃, Ỹ + T̃ ] in the sense of (N +M)th-order stochastic
dominance.
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through the parameter k. We assume that a plausible set of possible k is the set

{k1, k2, . . . , kΘ} . Without loss of generality, kθ is arranged in ascending order,

k1 < k2 < . . . < kΘ. The individual attaches subjective probability qθ to the param-

eter of kθ for θ = 1, 2, . . . ,Θ. We assume that the individual follows the recursive

version of the smooth ambiguity model by Klibanoff et al. (2005, 2009). Define an

increasing and concave second-order utility function ϕ whose variable takes expected

utility. The function ϕ is assumed to be thrice differentiable. The concavity of ϕ

captures ambiguity aversion. Given s, the objective function is written as

V (s) = u(w − s, h) + ϕ−1(

Θ∑
θ=1

qθϕ(v(s, k)). (8)

Recall that v(s, k) is the expected utility at t = 1 given s and k, that is,

v(s, k)

= kpqE[u(w + s+ ϵ̃B, h+ δ̃B)] + (1− kp)qE[u(w + s+ ϵ̃G, h+ δ̃B)]

+ p(1− kq)E[u(w + s+ ϵ̃B, h+ δ̃G)] + (1− p− q + kpq)E[u(w + s+ ϵ̃G, h+ δ̃G)].

The first-order condition for (8) is

V ′(s∗) = −u′(w − s∗, h) +
Θ∑

θ=1

qθ
ϕ′(v(s∗, kθ))

ϕ′(ϕ−1(
∑

θ qθϕ(v(s
∗, kθ))))

vs(s
∗, kθ) = 0. (9)

The second-order condition is easily verified by the concavity of u and ϕ.

We define kO by kO =
∑

θ qθkθ. The level of optimal savings is denoted sO under

kO. To examine the effect of ambiguous correlation on optimal savings, we evaluate
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(9) at sO as follows:

V ′(sO) = −u′(w − sO, h) +
∑
θ

qθ
ϕ′(v(sO, kθ))

ϕ′(ϕ−1(
∑

θ qθϕ(v(s
O, kθ))))

vs(s
O, kθ)

= −u′(w − sO, h) +

∑
θ qθϕ

′(v(sO, kθ))

ϕ′(ϕ−1(
∑

θ qθϕ(v(s
O, kθ))))

∑
θ

qθvs(s
O, kθ)

+
Cov(ϕ′(v(sO, kθ), vs(s

O, kθ))

ϕ′(ϕ−1(
∑

θ qθϕ(v(s
O, kθ))))

(10)

The second equality is obtained by applying Cov(x̃, ỹ) = E[x̃ỹ] − E[x̃]E[ỹ] for all

random variables x̃ and ỹ.

The second term of (10) is called the timing of uncertainty effect by Osaki and

Schlesinger (2014). Because the probability is linear in expected utility theory,

∑
θ

qθvs(s
O, kθ) = vs(s

O, kO)(= −u′(w − sO, h)).

When

β(sO) =

∑
θ qθϕ

′(v(sO, kθ))

ϕ′(ϕ−1(
∑

θ qθϕ(v(s
O, kθ))))

≥ (<)1,

the effect implies that savings should increase (decrease) because the individual

places more (less) weight on the future.

Let λ(z) ≡ −ϕ′′(z)/ϕ′(z) denote the coefficient of absolute ambiguity aversion

defined by Klibanoff et al. (2005). If λ(z) is a decreasing function in z, then the

function ϕ exhibits decreasing absolute ambiguity aversion (DAAA). Following Osaki

and Schlesinger (2014), it holds that β(sO) ≥ 1 if and only if ϕ exhibits DAAA.13 The

proof can be found in Appendix. We need to determine the sign of the covariance

in the third term of (10) to see whether ambiguous correlation increases the amount

of savings.

We assume for now that the future income risk is ordered by NSD and the future

health risk is ordered by MSD. Applying Lemma 1 to v(s, k) and vs(s, k), we have

13Note that β(sO) < 1 if and only if ϕ exhibits strictly increasing absolute ambiguity aversion,
which defines that λ(z) is a strictly increasing function in z.
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the following Lemma.

Lemma 3. Suppose that

• ϵ̃G dominates ϵ̃B in the sense of NSD;

• δ̃G dominates δ̃B in the sense of MSD.

When the individual is mixed correlation averse (seeking), that is, (−1)n+mu(n,m) ≥

(≤)0 for all n = 1, 2, . . . , N and m = 1, 2, . . . ,M , then v(s, k) is increasing (decreas-

ing) in k and vs(s, k) is decreasing (increasing) in k.

Assume that u exhibits mixed correlation aversion or seeking. From Lemma 3,

the signs of ∂v(sO, k)/∂k and ∂vs(s
O, k)/∂k are different. Because ϕ′(·) is a decreas-

ing function, the covariance is positive when u exhibits mixed correlation aversion

or seeking. Combining the above arguments, we have the following proposition.

Proposition 2. Suppose that the future income risk is ranked by NSD and the future

health risk is ranked by MSD, that is,

• ϵ̃G dominates ϵ̃B in the sense of NSD;

• δ̃G dominates δ̃B in the sense of MSD.

If ϕ exhibits DAAA and u exhibits mixed correlation aversion or seeking, then am-

biguous correlation raises the optimal amount of savings.

Even though decreasing absolute risk aversion is a reasonable property, there

are few experimental or empirical studies that examine the property of absolute

ambiguity aversion to our knowledge. Berger and Bosetti (2020) are an exception

and found experimental evidence on DAAA.We need additional evidence to conclude

that absolute ambiguity aversion is either decreasing or increasing.

We provide the intuition for Proposition 2 under DAAA. Assume that v(sO, kθ)

is decreasing in θ without loss of generality. Ambiguity averse individuals place more

weight on higher θ, which is a worse correlation in the sense that expected utility
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is lower. When individuals increase their precautionary savings in the face of worse

correlation, vs(s
O, kθ) is increasing in θ. Combining the above argument, ambiguous

correlation raises savings to protect against the worse correlation. This case holds

for mixed correlation aversion. The opposite case where v(sO, kθ) is increasing in θ

and vs(s
O, kθ) is decreasing in θ holds for mixed correlation seeking.

The same result can be obtained for the case where the future income risk and

the future health risk are replaced with Nth-degree risk andMth-degree risk. First,

we show the following lemma corresponding to Lemma 3.

Lemma 4. Suppose that

• ϵ̃B increases ϵ̃G in N th-degree risk;

• δ̃B increases δ̃G in M th-degree risk.

When (−1)N+Mu(N,M) ≥ (≤)0, v(s, k) is increasing (decreasing) in k and vs(s, k)

is decreasing (increasing) in k.

The same argument leads to the following proposition corresponding to Propo-

sition 2.

Proposition 3. Suppose that the future income risk is ranked by N th-degree risk

and the future health risk is ranked by M th-degree risk, that is,

• ϵ̃B increases ϵ̃G in N th-degree risk;

• δ̃B increases δ̃G in M th-degree risk.

If ϕ exhibits DAAA and u satisfies (−1)N+Mu(N,M) ≥ (≤)0 and (−1)N+Mu(N+1,M) ≥

(≤)0, then ambiguous correlation raises the optimal amount of savings.

We note that mixed correlation aversion (seeking) is a sufficient condition for

(−1)N+Mu(N,M) ≥ (≤)0 and (−1)N+Mu(N+1,M) ≥ (≤)0 to hold when N +M is odd

(even). The intuition of Proposition 2 can be applied to Proposition 3.
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8 Linkage between actual observations and theoretical

results

There are two types of actual observations that can be related to our theoretical

results:

• experimental observations about the signs of cross derivatives of multivariate

preferences;

• empirical observations of household financial decisions in the presence of mul-

tivariate risks.

We consider the case of risk in the sense that correlation is uniquely identified.

Based on the framework of Eeckhoudt and Schlesinger (2005), numerous studies

have conducted an experimental analysis to test higher-order risk aversion in a one-

dimension framework since Deck and Schlesinger (2010).14 However, few studies test

higher-order risk attitudes of multivariate preferences. Even though it is difficult to

draw their concluding evidence, Attema et al. (2019) assume that the first attribute

is the level of wealth and the second is the length of longevity which is viewed as a

proxy of the condition of health. We apply the framework of Attema et al. (2019) in

our analysis.15 For ease of exposition, we consider a special case of N =M = 1, that

is, both future income and health risks are ranked by the FSD. Proposition 1 in this

paper states that the amount of optimal savings increases (decreases) in correlation

if an individual is cross prudent (imprudent). Attema et al. (2019) observe both

cross prudence and cross imprudence. From their experimental observations, we can

conclude that the optimal amount of savings can increase or decrease in correlation.

As a realistic case, let us assume that the wealth level and health status are positively

correlated, k > 1. In this case, the optimal amount of savings is higher (lower) than

14Instead of referring to individual studies, we cite the review by Trautmann and van de Kuilen
(2015).

15Ebert and van de Kuilen (2015) are another experimental study on this topic. They take the
first attribute as the level of current wealth, and the second as time, the level of future wealth and
the other’s wealth
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in the case of independence, k = 1, when an individual is cross prudent (imprudent).

Next, we consider the case of ambiguity in the sense that multiple correlations

are perceived. As in the previous section, we assume that an individual is ambiguity

averse and exhibits decreasing absolute ambiguity aversion. As in the case of risk,

we assume that both the future income and health risks are ranked by FSD. From

our Proposition 2, ambiguous correlation raises the optimal amount of savings if

an individual is correlation averse and cross prudent or correlation seeking and

cross imprudent in wealth and health. Attema et al. (2019) observe that most

subjects exhibit correlation aversion in the gain domain and correlation seekingness

in the loss domain. However, Attema et al. (2019) observe both cross prudence and

imprudence in both the gain and loss domains. For example, when an individual

exhibits correlation aversion and cross prudence, ambiguous correlation raises the

optimal amount of savings. Following the experimental evidence of Attema et al.

(2019), when health status is considered in the gain domain, ambiguous correlation

raises the optimal amount of savings if an individual is cross prudent. However, for

cross-imprudent individuals, we cannot obtain a definitive prediction, and ambiguous

correlation might lower the optimal amount of savings.16

Finally, we discuss the literature that empirically investigates the effect of health

conditions on household financial decisions. Rosen and Wu (2004) observe that poor

health status leads to safer investment choices. These observations are consistent

with cross prudence, which means positive precautionary savings against correla-

tion. The subject of this paper, precautionary savings against correlation, is closely

related to the literature on the role of the public health system in household financial

decisions because it affects the correlation between wealth and health. The coverage

rate of medical expenses depends on the public health system and its expansion can

separate the riskiness of wealth and health to some extent, which means a decrease

in correlation in our context. Atella et al. (2012) investigate the influence of current

health conditions and future health risk on households’ investments in risky assets

16Note that Cov(ϕ′(v(sO, kθ), vs(s
O, kθ)) is negative for correlation-averse and cross-imprudent

individuals.
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and empirically find that households are more willing to invest in risky assets when

health risk is mitigated by a highly protective national health care system. Naranjo

and Gameren (2016) find that the population of Mexicans aged from 50 to 75 years

accumulate precautionary savings for fear that the future of the social security sys-

tem is uncertain. Ayyagarari and He (2017) find that the reduction in prescription

drug spending by the introduction of Medicare Part D in the US in 2006 increased

risky investments. As a recent study related to Ayyagarari and He (2017), Christelis

et al. (2020) empirically show that Medicare eligibility has quantitatively and sta-

tistically significant effects on stockholding for households with college degrees. It

is observed that the public health system affects precautionary saving. Chou et al.

(2003) observe that the introduction of public health insurance reduced the amount

of precautionary savings in Taiwan. Jappelli et al. (2007) find that the amount of

precautionary savings is higher in districts with lower health care quality in Italy.

The former corresponds to a decrease in correlation between wealth and health,

and the latter corresponds to an increase in correlation. These empirical results are

consistent with cross prudence in our theoretical results, which is also observed in

households’ portfolio choices in the literature.

9 Conclusion

This paper provided a framework for analyzing the effect of correlation among risky

attributes in multivariate preferences with higher-order risk changes on the optimal

amount of savings. We investigated not only the situation in which a unique correla-

tion is identified but also the situation in which multiple correlations are perceived.

Under the risky situation, we showed that whether the optimal amount of savings

increases or not depends on the signs of the derivatives of the utility functions. Fur-

thermore, in the ambiguous situation, we showed that whether the optimal amount

of savings increases or not depends on not only the signs of the derivatives of the

utility functions (being mixed correlation averse (seeking)) but also the coefficient

of absolute ambiguity aversion.
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Future research should address several issues. As we mentioned above, it should

be emphasized that experimental evidence is insufficient, and more studies are nec-

essary to obtain firm observations on the properties of higher-order risk attitudes

of multivariate preferences. From a theoretical perspective, an extension to multi-

period models is worth investigating. The results can be embedded into multiple-

period models in a straightforward manner under the same settings. For example,

we can investigate the situation where the value and the uncertainty of correlation

change over time in multiperiod frameworks.
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Appendix

We present the proof that shows that decreasing absolute ambiguity aversion

is equivalent to β(s) ≥ 1. A complete proof of this claim can be found in Os-

aki and Schlesinger (2014). We define the ambiguity premium πA and ambiguity

precautionary premium ψA, which are analogous to risk, as follows:

∑
θ

qθϕ(v(s, kθ)) = ϕ[v(s, kO)− πA],

∑
θ

qθϕ
′(v(s, kθ)) = ϕ′[v(s, kO)− ψA].

We can therefore rewrite β(s) as

β(s) =
ϕ′[v(s, kO)− ψA]

ϕ′[v(s, kO)− πA]
.

Here, we note that ϕ′[ϕ−1ϕ[v(s, kO) − πA]] = ϕ′[v(s, kO) − πA]. Because ϕ′(·) is a

decreasing function because of ambiguity aversion, we have

β(s) ≥ 1 ⇔ ψA ≥ πA.

Thus, we obtain that decreasing absolute ambiguity aversion is equivalent to ψA ≥

πA, which is an analogous property of decreasing absolute risk aversion in expected

utility.
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