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Abstract

This paper examines the job search behavior of unemployed workers over the business cycle. The

paper first constructs a standard search and matching model with endogenous search efforts, wage

rigidity, and a generalized matching function. Contrary to the existing literature, the proposed model

generates both procyclical and countercyclical search intensity, depending on the degree of wage

rigidity and the elasticity parameter of the matching function. The paper then calibrates the model

to the U.S. economy and provides various impulse response analyses. The numerical exercises show

that the model successfully and simultaneously reproduces countercyclical search efforts and sizable

labor market fluctuations.
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1 Introduction

In search and matching models, the labor market is mainly characterized by the number of unemployed

workers and the number of vacancies. The ratio of the latter to the former represents the labor market

tightness, which partially explains the job-finding and job-filling rates in these economies. In reality,

however, the job-finding rate also depends on the worker’s job search effort or search intensity. The

standard Diamond–Mortensen–Pissarides (DMP) model with endogenous search intensity predicts that

search intensity is procyclical—that is, it is positively correlated with total output and thus the labor

market tightness. This procyclical search intensity amplifies labor market fluctuations and appears to

solve, at least partially, the “volatility puzzle” of the labor market. In contrast, some empirical studies

have shown that search intensity is countercyclical; however, relatively few theoretical studies have

investigated countercyclical search intensity so far.

The present paper addresses this inconsistency between the predictions of the standard model and

the empirical findings and provides a comprehensive analysis of the cyclicality of search intensity. To

this end, this paper extends the standard DMP model by incorporating endogenous search intensity and

wage rigidity and relaxing the matching function from the Cobb-Douglas function to the CES function.

The main finding of this paper is that search intensity could be both procyclical and countercyclical,

depending on the degree of wage rigidity, even when the matching function satisfies the standard

properties of the labor market. In examining the cyclicality of search intensity, this paper focuses on

modeling two aspects that are critical to the gain from job search: the role of search intensity in the

matching function and the role of wage rigidity in determining search intensity. The former is already

discussed by Shimer (2004) and Mukoyama, Patterson and Şahin (2018), and this paper similarly derives

the properties of the matching function that makes search intensity countercyclical. The latter is relatively

new in the literature. Incorporating wage rigidity is one of the main approaches to deal with the volatility

puzzle, which was first introduced by Hall (2005). Similar to the previous study, this paper shows that

wage rigidity maintains large labor market fluctuation even when search intensity is countercyclical.

In the DMP model, firm–worker pairs negotiate their wages so that the net gains from the job match

are shared according to the Nash bargaining and renegotiate the wages when new information arrives.

In the model, therefore, wages absorb most of the economic changes, as Shimer (2005) argues. When

a negative productivity shock occurs, for example, wages are immediately adjusted to lower values, and

these lower wages do not significantly reduce the incentive to post a vacancy. When wages are sticky,

however, they remain relatively high for some time and make firms reluctant to post a vacancy. As a
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result, the unemployment rate increases, and the labor market condition worsens.

The main contributions of this paper are as follows. First, this paper presents one of the most

plausible mechanisms to generate countercyclical search intensity. In this model, search intensity would

be countercyclical when wages are sufficiently sticky. Intuitively, unemployed workers increase their

search efforts in response to economic downturns, as relatively high wages and the low job-finding

rate increase the net benefit of being employed. This paper replicates the countercyclicality of search

intensity by incorporating wage rigidity, whereas previous studies replicate it by modifying the matching

functions or incorporating labor–leisure choices. Second, the model generates the plausible size of the

labor market fluctuation even when search intensity is countercyclical. Countercyclical search intensity

dampens the labor market volatility; nevertheless, the model captures the dynamics of the labor market

relatively well compared with the standard model in the presence of wage rigidity.

The rest of this paper is organized as follows: Section 2 reviews the related literature on search

intensity and its cyclicality, Section 3 describes the extended DMP model and characterizes the equi-

librium, Section 4 explains the steady state equilibrium and examines the formulation of the matching

function, Section 5 presents the impulse response analyses of the model under various assumptions of

wage rigidity and matching function, and Section 6 concludes the paper. Appendix describes how to

obtain the Nash bargaining wage and explains the log-linear approximation of the model.

2 Related literature

This section reviews the empirical and theoretical literature on job search intensity and its cyclicality.

Search intensity is the amount of effort put into the job search. Although search intensity is costly

for the unemployed worker, it raises the probability of finding a new job. Pissarides (2000) states that

search intensity can be thought of as a “technical change” parameter in job matching technology. The

number of job matches increases, for the given labor market condition, if unemployed workers search

more intensely. The natural measure of search intensity is the time spent on the job search or the number

of job applications submitted.

Datasets from the Current Population Survey (CPS) and the American Time Use Survey (ATUS)

are often used to measure search intensity. CPS reports the types and number of job search methods

used by unemployed workers, and ATUS reports the time spent on their job search. Literature using

these surveys, such as Shimer (2004), Gomme and Lkhagvasuren (2015), and Mukoyama et al. (2018),

seems to show consensus on the countercyclicality of aggregate or average search intensity, although
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no conclusive findings have been obtained on the cyclicality of individual search intensity. Gomme

and Lkhagvasuren (2015) conclude that individual search intensity is procyclical after controlling for

individual characteristics and that the composition of unemployed workers changes over the business cycle

and derives a countercyclical bias to the average time spent on job search. In contrast, Mukoyama et al.

(2018) conclude that the change in composition significantly contributes to the cyclicality of aggregate

search intensity but that search intensity is countercyclical even when unobserved heterogeneity is taken

into account.

The literature that uses data other than ATUS or CPS to measure job search intensity includes

Pan (2019), Faberman and Kudlyak (2019), and Bransch (2021). Pan (2019) constructs the job search

index based on the internet search volume and shows that search intensity is countercyclical. Faberman

and Kudlyak (2019) use data from SnagAJob, an online private job search website, and measure search

intensity by the weekly number of applications sent to the engine. They find that job seekers in weak labor

markets send more applications throughout the duration of their search spell; this finding is consistent

with countercyclical search intensity. Bransch (2021) measures search intensity by the numbers of

applications and job search methods using Dutch panel data and concludes that search intensity is

countercyclical.

To sum up, much empirical literature has shown the countercyclicality of job search intensity, even

when different data are used for analysis. Because these findings contradict the predictions of the standard

DMP model, it is worthwhile to analyze the cyclicality of search intensity in a theoretical DMP model

with search intensity.

The theoretical models can be broadly classified into two categories in the context of business cycles.

The models in the first category predict procyclical search intensity. Most of the standard models with

search intensity, such as that by Pissarides (2000), belong to this category. When there is a negative

productivity shock, the shock reduces the incentive to post a vacancy and thus lowers the market tightness.

In such a depressed labor market, unemployed workers are reluctant to search for a job partly because

an additional search effort is not very useful for increasing the job-finding rate and because low wages

reduce the benefit of being employed by a firm. Leduc and Liu (2020) develop a DSGE model that

incorporates both search intensity and recruiting intensity and show that both intensities are procyclical.

The models in the second category predict countercyclical search intensity. To the best of our

knowledge, only Shimer (2004), Mukoyama et al. (2018), and Çenesiz and Guimarães (2022) have

developed such models. Unemployed workers increase their search intensity during the economic

downturn because additional search intensity effectively increases the job-finding rate in the first two
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models and because the procyclical value of leisure makes job search cheaper in the third model.

Therefore, the key to reproduce countercyclicality is how search intensity is incorporated in the matching

functions or in the procyclical leisure. Contrary to these models, in the model proposed in the present

paper, unemployed workers search for a job intensely during recession because wage rigidity increases

the net benefit of being employed, although additional search intensity does little to increase the job-

finding rate. One of the main findings of the present paper—both countercyclical search intensity and

the large volatility of the labor market could be predicted at the same time—is consistent with Çenesiz

and Guimarães (2022), but the channels that generate this prediction are different.

Leduc and Liu (2020) and Gertler, Huckfeldt and Trigari (2020) incorporate both wage rigidity and

endogenous search intensity, as in the present paper. Note that the findings of these papers—search

intensity becomes procyclical—do not contradict the findings of the present paper. In the present paper,

search intensity is countercyclical when the matching function is one of CES and satisfies some standard

properties but it is procyclical when the matching function is a Cobb-Douglas function, as in Leduc

and Liu (2020), even if wages are rigid enough. Gertler et al. (2020) focus on the search intensity of

the workers searching on-the-job, rather than unemployed workers, and assume variable search intensity

only for the workers on-the-job and fixed search intensity for unemployed workers. Unlike Gertler et al.

(2020), the present paper assumes variable search intensity for unemployed workers and does not consider

the on-the-job search.

3 Model

This section extends the standard DMP model by incorporating endogenous search intensity and

wage rigidity. The wage setting in the economy follows Gertler and Trigari (2009). Firms hire multiple

workers and pay the same wage for both incumbent and newly hired workers. Workers and firms can

negotiate to update their wages, by Nash bargaining, with probability 1 − 𝜆 in each period.

It is often argued that wages of new hires are more responsive than those of incumbent workers,

e.g., Pissarides (2009). However, some literature, including Gertler and Trigari (2009), Stüber (2017),

and Gertler et al. (2020), show that after controlling for composition effects, the wage cyclicality of new

hires and that of existing workers are almost identical. Especially, Gertler et al. (2020) find that the

procyclical upgrading of job match quality is dominant among the new hires who are job changers, and

as for new hires from unemployment, there is no excess wage cyclicality compared to existing workers.

Their empirical evidence justifies the assumption of wage rigidity in our model.
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Figure 1: Summary of the events

3.1 Settings

Time is discrete and denoted by 𝑡. The economy has a continuum of workers and firms whose

measures are normalized to unity. The workers comprise 𝑛𝑡 employed workers and 𝑢𝑡 ≡ 1 − 𝑛𝑡

unemployed workers. The aggregate state of the economy is denoted by 𝑆𝑡 ≡ (𝑧𝑡 , 𝑛𝑡 , 𝑃𝑡 (𝑤)), where 𝑧𝑡

is the aggregate productivity and 𝑃𝑡 (𝑤) is the wage distribution at the beginning of period 𝑡.

Figure 1 summarizes the timing of events. The workers and firms observe the aggregate productivity

shock 𝑧𝑡 at the beginning of period 𝑡 and negotiate to update their wages with probability 1−𝜆 or keep the

previous wages with probability 𝜆. Then, each firm produces final goods with their workers, and the firm

decides the number of job vacancies for recruiting. At the same time, each unemployed worker searches

for a new job, choosing the optimal level of search intensity. At the end of period 𝑡, a fraction 𝜎 of

employed workers are separated, a fraction 𝑞𝑡 of job vacancies are filled, and a fraction 𝑓𝑡 of unemployed

workers find new jobs.

More specifically, we assume that the probability that an unemployed worker with search intensity

𝑠𝑡 finds a job is given by 𝑓 (𝑠𝑡 , 𝜃𝑡 ), where 𝜃𝑡 denotes the market tightness, 𝜃𝑡 ≡ 𝑣𝑡/𝑢𝑡 . Note that the

job-finding rate depends on individual search intensity and market tightness and not on aggregate search

intensity in this economy. This implicitly assumes that the positive and negative externalities of aggregate

search efforts on individual job-finding rate offset each other. Unemployed workers are assumed to be

identical; thus, aggregate search intensity also becomes 𝑠𝑡 . Then, the number of new matches and the
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firms’ job-filling rate, respectively, are given by

𝑚(𝑠𝑡 , 𝑢𝑡 , 𝑣𝑡 ) = 𝑓 (𝑠𝑡 , 𝜃𝑡 )𝑢𝑡 , 𝑞(𝑠𝑡 , 𝜃𝑡 ) = 𝑓 (𝑠𝑡 , 𝜃𝑡 )/𝜃𝑡 .

The specific form of the job-finding rate function or matching function will be described in Section 4.2.

3.2 Workers

The economy has employed and unemployed workers. Each worker has linear preference and

consumes all disposable income in each period. Let 𝑊 (𝑤𝑡 , 𝑆𝑡 ) be the value function of the employed

worker with wage 𝑤𝑡 , and let 𝑈 (𝑆𝑡 ) be the value function of the representative unemployed worker.

Then, the value function of the employed worker is

𝑊 (𝑤𝑡 , 𝑆𝑡 ) = 𝑤𝑡 + 𝑑𝑡 − 𝜏𝑡 + 𝛽(1 − 𝜎)𝐸 [𝑊 (𝑤𝑡+1, 𝑆𝑡+1) | 𝑤𝑡 , 𝑆𝑡 ] + 𝛽𝜎𝐸 [𝑈 (𝑆𝑡+1) | 𝑆𝑡 ], (1)

subject to

𝑆𝑡+1 = (𝑧𝑡+1, 𝑛𝑡+1, 𝑃𝑡+1(𝑤)) , (2)

ln 𝑧𝑡+1 = 𝜌 ln 𝑧𝑡 + 𝜀𝑡+1, (3)

𝑤𝑡+1 =


𝑤∗
𝑡+1(𝑆𝑡+1) with probability 1 − 𝜆,

𝑤𝑡 with probability 𝜆,
(4)

where 𝑑𝑡 is the distribution of firms’ profits, 𝜏𝑡 is the lump-sum tax, 𝛽 ∈ (0, 1) is the time discount factor,

𝜎 is the job separation probability, 𝑧𝑡 is the labor productivity, 𝜌 ∈ [ 0, 1 ] is the auto correlation of ln 𝑧𝑡 ,

and 𝑤∗
𝑡+1(𝑆𝑡+1) is the wage determined by the Nash bargaining in period 𝑡 + 1. The optimization problem

of the unemployed worker is

𝑈 (𝑆𝑡 ) = max
𝑠𝑡

{
𝜙 − 𝜔(𝑠𝑡 ) + 𝑑𝑡 − 𝜏𝑡

+ 𝛽 𝑓 (𝑠𝑡 , 𝜃𝑡 )�̃� [𝑊 (𝑤𝑡+1, 𝑆𝑡+1) | 𝑆𝑡 ] + 𝛽(1 − 𝑓 (𝑠𝑡 , 𝜃𝑡 ))𝐸 [𝑈 (𝑆𝑡+1) | 𝑆𝑡 ]
}
, (5)

subject to (2) and (3), where 𝑠𝑡 is the search effort, 𝜙 is the unemployment benefit, 𝜔(·) is the search

cost function, 𝑓 (·, ·) is the job-finding rate function, and �̃� [ · ] is the expected value with respect to the

distribution of newly hired workers only. The job-finding rate 𝑓 (𝑠𝑡 , 𝜃𝑡 ) is assumed to be increasing and

7



concave in 𝑠𝑡 . The first-order condition for this problem is

𝜔′(𝑠𝑡 ) = 𝛽 𝑓𝑠 (𝑠𝑡 , 𝜃𝑡 )
{
�̃� [𝑊 (𝑤𝑡+1, 𝑆𝑡+1) | 𝑆𝑡 ] − 𝐸 [𝑈 (𝑆𝑡+1) | 𝑆𝑡 ]

}
. (6)

The unemployed worker decides the optimal search intensity so that the marginal cost of searching a

job equals the discount expected value of getting a job. Solving (6) yields the optimal search intensity

𝑠𝑡 (𝑆𝑡 ), which is identical for all unemployed workers.

3.3 Firms

Firms in this economy hire workers and pay the same wages for both incumbent and newly hired

workers. In each period, firms and the workers renegotiate the wages with probability 1 − 𝜆 or keep

the previously negotiated wages with probability 𝜆. Each firm has its linear production technology. Let

𝐽 (𝑤𝑡 , �̃�𝑡 , 𝑆𝑡 ) be the value function of a firm with �̃�𝑡 workers at wage 𝑤𝑡 . Then, the optimization problem

of the firm is

𝐽 (𝑤𝑡 , �̃�𝑡 , 𝑆𝑡 ) = max
𝑥𝑡

{
𝑧𝑡 �̃�𝑡 − 𝑤𝑡 �̃�𝑡 − 𝜅(𝑥𝑡 )�̃�𝑡 + 𝛽𝐸 [ 𝐽 (𝑤𝑡+1, �̃�𝑡+1, 𝑆𝑡+1) | 𝑤𝑡 , 𝑆𝑡 ]

}
, (7)

subject to (2), (3), (4), and

�̃�𝑡+1 = (1 − 𝜎 + 𝑞(𝑠𝑡 , 𝜃𝑡 )𝑥𝑡 )�̃�𝑡 , (8)

where 𝑥𝑡 is the number of job vacancies per worker or the vacancy rate, 𝜅(·) is the cost function of posting

vacancies per worker, and 𝑞(·) is the job-filling probability function.

Let 𝐹 (𝑤𝑡 , 𝑆𝑡 ) ≡ 𝐽 (𝑤𝑡 , �̃�𝑡 , 𝑆𝑡 )/�̃�𝑡 be the value function of the firm per worker at wage 𝑤𝑡 . Then, the

optimization problem of the firm is modified to

𝐹 (𝑤𝑡 , 𝑆𝑡 ) = max
𝑥𝑡

{
𝑧𝑡 − 𝑤𝑡 − 𝜅(𝑥𝑡 ) + 𝛽(1 − 𝜎 + 𝑞(𝑠𝑡 , 𝜃𝑡 )𝑥𝑡 )𝐸 [ 𝐹 (𝑤𝑡+1, 𝑆𝑡+1) | 𝑤𝑡 , 𝑆𝑡 ]

}
, (9)

subject to (2), (3), and (4). The first-order condition for this problem is

𝜅′(𝑥𝑡 ) = 𝛽𝑞(𝑠𝑡 , 𝜃𝑡 )𝐸 [ 𝐹 (𝑤𝑡+1, 𝑆𝑡+1) | 𝑤𝑡 , 𝑆𝑡 ] . (10)

The firm decides the optimal vacancy rate so that the marginal cost of posting vacancy equals the expected

value of hiring new workers. Solving (10) yields the optimal vacancy rate 𝑥𝑡 (𝑤𝑡 , 𝑆𝑡 ).
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3.4 Wage determination

In each period 𝑡, a fraction 1 − 𝜆 of employed workers and firms negotiate on the new wage, 𝑤∗
𝑡 (𝑆𝑡 ),

by the Nash bargaining,

𝑤∗
𝑡 (𝑆𝑡 ) = arg max

𝑤𝑡

(𝑊 (𝑤𝑡 , 𝑆𝑡 ) −𝑈 (𝑆𝑡 ))𝛾 𝐹 (𝑤𝑡 , 𝑆𝑡 )1−𝛾 , (11)

subject to (1), (2), (3), (4), (5), and (9), where 𝛾 ∈ [0, 1] is the workers’ bargaining power. The negotiated

wage, 𝑤∗
𝑡 (𝑆𝑡 ), is the same across all workers and firms because it is independent of the current wage, 𝑤𝑡 .

Using (4) and (6), the surpluses of the worker and the firm, respectively, are modified to

𝑊 (𝑤𝑡 , 𝑆𝑡 ) −𝑈 (𝑆𝑡 ) = 𝑤𝑡 − 𝜙𝑡 + 𝜔(𝑠𝑡 (𝑆𝑡 )) − 𝑓 (𝑠𝑡 (𝑆𝑡 ), 𝜃𝑡 )
𝜔′(𝑠𝑡 (𝑆𝑡 ))
𝑓𝑠 (𝑠𝑡 (𝑆𝑡 ), 𝜃𝑡 )

+ 𝛽(1 − 𝜎)
{
(1 − 𝜆)𝐸

[
𝑊 (𝑤∗

𝑡+1(𝑆𝑡+1), 𝑆𝑡+1) | 𝑆𝑡
]
+ 𝜆𝐸

[
𝑊 (𝑤𝑡 , 𝑆𝑡+1) | 𝑆𝑡

]
− 𝐸

[
𝑈 (𝑆𝑡+1) | 𝑆𝑡

]}
,

(12)

𝐹 (𝑤𝑡 , 𝑆𝑡 ) = 𝑧𝑡 − 𝑤𝑡 − 𝜅(𝑥𝑡 (𝑤𝑡 , 𝑆𝑡 ))

+ 𝛽(1 − 𝜎 + 𝑞(𝑠𝑡 , 𝜃𝑡 )𝑥𝑡 (𝑤𝑡 , 𝑆𝑡 ))
{
(1 − 𝜆)𝐸 [ 𝐹 (𝑤∗

𝑡+1(𝑆𝑡+1), 𝑆𝑡+1) | 𝑆𝑡 ] + 𝜆𝐸 [ 𝐹 (𝑤𝑡 , 𝑆𝑡+1) | 𝑆𝑡 ]
}
.

(13)

The first-order condition of the Nash bargaining is

𝛾
𝑊𝑤 (𝑤𝑡 , 𝑆𝑡 )

𝑊 (𝑤𝑡 , 𝑆𝑡 ) −𝑈 (𝑆𝑡 )
+ (1 − 𝛾) 𝐹𝑤 (𝑤𝑡 , 𝑆𝑡 )

𝐹 (𝑤𝑡 , 𝑆𝑡 )
= 0, (14)

where, using the envelope theorem,

𝑊𝑤 (𝑤𝑡 , 𝑆𝑡 ) = 1 + 𝛽𝜆(1 − 𝜎)𝐸 [𝑊𝑤 (𝑤𝑡 , 𝑆𝑡+1) | 𝑆𝑡 ] and (15)

𝐹𝑤 (𝑤𝑡 , 𝑆𝑡 ) = −1 + 𝛽𝜆(1 − 𝜎 + 𝑞(𝑠𝑡 , 𝜃𝑡 )𝑥𝑡 (𝑤𝑡 , 𝑆𝑡 ))𝐸 [ 𝐹𝑤 (𝑤𝑡 , 𝑆𝑡+1) | 𝑆𝑡 ] . (16)

Solving (14) yields the bargaining wage 𝑤∗
𝑡 (𝑆𝑡 ).

Now, let Γ𝑡 be the share of the worker’s surplus in total surplus:

Γ𝑡 ≡
𝑊 (𝑤∗

𝑡 , 𝑆𝑡 ) −𝑈 (𝑆𝑡 )
𝑊 (𝑤∗

𝑡 , 𝑆𝑡 ) −𝑈 (𝑆𝑡 ) + 𝐹 (𝑤∗
𝑡 , 𝑆𝑡 )

. (17)
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Then, we can rewrite (14) as follows:

Γ𝑡𝐹 (𝑤∗
𝑡 , 𝑆𝑡 ) = (1 − Γ𝑡 )

(
𝑊 (𝑤∗

𝑡 , 𝑆𝑡 ) −𝑈 (𝑆𝑡 )
)

(18)

and

Γ𝑡 =
𝛾𝑊𝑤 (𝑤∗

𝑡 , 𝑆𝑡 )
𝛾𝑊𝑤 (𝑤∗

𝑡 , 𝑆𝑡 ) − (1 − 𝛾)𝐹𝑤 (𝑤∗
𝑡 , 𝑆𝑡 )

< 𝛾. (19)

This is the extended version of the standard bargaining wage rule. The last inequality holds because,

from (15) and (16), 𝐹𝑤 (𝑤∗
𝑡 , 𝑆𝑡 )/𝑊𝑤 (𝑤∗

𝑡 , 𝑆𝑡 ) < −1 when 𝑞(𝑠𝑡 , 𝜃𝑡 )𝑥𝑡 (𝑤𝑡 , 𝑆𝑡 ) > 0.

3.5 Distribution and aggregation

Let 𝑃𝑡 (𝑤) be the cumulative distribution function of wages at the beginning of period 𝑡 such that

∫
𝑊

d𝑃𝑡 (𝑤) = 1.

The law of motion of the wage distribution is

d𝑃𝑡+1(𝑤) =
1 − 𝜎 + 𝑞(𝜃𝑡 )𝑥𝑡 (𝑤, 𝑆𝑡 )

1 − 𝜎 + 𝑞(𝜃𝑡 )𝑥𝑡

(
(1 − 𝜆)1[𝑤=𝑤∗

𝑡 ] + 𝜆d𝑃𝑡 (𝑤)
)
, (20)

where 𝑤∗
𝑡 is the negotiated wage, 1[𝑤=𝑤∗

𝑡 ] is a indicator function that returns 1 if 𝑤 = 𝑤∗
𝑡 and 0 otherwise,

and 𝑥𝑡 is the average vacancy rate per worker,

𝑥𝑡 = (1 − 𝜆)𝑥𝑡 (𝑤∗
𝑡 , 𝑆𝑡 ) + 𝜆

∫
𝑊

𝑥𝑡 (𝑤, 𝑆𝑡 )d𝑃𝑡 (𝑤). (21)

The total numbers of vacancies is

𝑣𝑡 = 𝑛𝑡𝑥𝑡 . (22)

The total number of unemployed and employed workers in period 𝑡 + 1 are

𝑢𝑡+1 = (1 − 𝑢𝑡 )𝜎 + 𝑢𝑡 (1 − 𝑓 (𝑠𝑡 , 𝜃𝑡 )) (23)

and

𝑛𝑡+1 = (1 − 𝜎 + 𝑞(𝜃𝑡 )𝑥𝑡 )𝑛𝑡 , (24)

respectively, and 𝑛𝑡+1 + 𝑢𝑡+1 = 1.
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In the next period, employed workers receive the negotiated wage 𝑤∗
𝑡+1 with probability 1 − 𝜆 and

the current wage 𝑤𝑡 with probability 𝜆. The conditional expectation of the value of employed workers at

wage 𝑤𝑡 is

𝐸 [𝑊 (𝑤𝑡+1, 𝑆𝑡+1) | 𝑤𝑡 , 𝑆𝑡 ] =
∫
𝑍

{
(1 − 𝜆)𝑊 (𝑤∗

𝑡+1, 𝑆𝑡+1) + 𝜆𝑊 (𝑤𝑡 , 𝑆𝑡+1)
}

dΠ(𝑧𝑡+1 | 𝑧𝑡 ), (25)

where Π(𝑧𝑡+1 | 𝑧𝑡 ) is the conditional distribution function of 𝑧𝑡+1 given 𝑧𝑡 . The conditional expectation

of the value of all employed workers is

𝐸 [𝑊 (𝑤𝑡+1, 𝑆𝑡+1) | 𝑆𝑡 ] =
∫
𝑍

{
(1 − 𝜆)𝑊 (𝑤∗

𝑡+1, 𝑆𝑡+1) + 𝜆

∫
𝑊

𝑊 (𝑤, 𝑆𝑡+1)d𝑃𝑡+1(𝑤)
}

dΠ(𝑧𝑡+1 | 𝑧𝑡 ). (26)

Similarly, the conditional expectation of the value of newly hired workers is

�̃� [𝑊 (𝑤𝑡+1, 𝑆𝑡+1) | 𝑆𝑡 ] =
∫
𝑍

{
(1 − 𝜆)𝑊 (𝑤∗

𝑡+1, 𝑆𝑡+1) + 𝜆

∫
𝑊

𝑊 (𝑤, 𝑆𝑡+1)d�̃�𝑡+1(𝑤)
}

dΠ(𝑧𝑡+1 | 𝑧𝑡 ), (27)

where the wage distribution of newly hired workers is

d�̃�𝑡+1(𝑤) = (1 − 𝜆)
𝑥𝑡 (𝑤∗

𝑡 , 𝑆𝑡 )
𝑥𝑡

1[𝑤=𝑤∗
𝑡 ] + 𝜆

𝑥𝑡 (𝑤, 𝑆𝑡 )
𝑥𝑡

d𝑃𝑡 (𝑤).

The government imposes lump-sum tax on all workers to finance the unemployment benefits. The

lump-sum tax, 𝜏𝑡 , in each period is

𝜏𝑡 = 𝜙𝑢𝑡 . (28)

The sum of the firms’ profits, or the uniform dividend income, is given by

𝑑𝑡 =

{
𝑧𝑡 − (1 − 𝜆)

(
𝑤∗
𝑡 + 𝜅

(
𝑥𝑡 (𝑤∗

𝑡 , 𝑆𝑡 )
) )
− 𝜆

∫
𝑊

(
𝑤 + 𝜅 (𝑥𝑡 (𝑤, 𝑆𝑡 ))

)
d𝑃𝑡 (𝑤)

}
𝑛𝑡 . (29)

3.6 The equilibrium

The state of the economy, 𝑆𝑡 , is characterized by the aggregate productivity, 𝑧𝑡 , the number of

employed workers, 𝑛𝑡 , and the wage distribution at the beginning of period 𝑡, 𝑃𝑡 (𝑤). Then, the recursive

equilibrium of this economy is defined as follows.

Definition: The recursive equilibrium comprises time series of the value functions of employed work-

ers, unemployed workers, and firms,
{
𝑊 (𝑤𝑡 , 𝑆𝑡 ),𝑈 (𝑆𝑡 ), 𝐹 (𝑤𝑡 , 𝑆𝑡 )

}∞
𝑡=0; the decision rules of work-
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ers, firms, and Nash bargaining wages,
{
𝑠𝑡 (𝑆𝑡 ), 𝑥𝑡 (𝑤𝑡 , 𝑆𝑡 ), 𝑤∗

𝑡 (𝑆𝑡 )
}∞
𝑡=0; and the labor market tightness,{

𝜃𝑡 (𝑆𝑡 )
}∞
𝑡=0; such that

1. the workers solve the utility maximization problem, (2), (3), and (5),

2. the firms solve the profit maximization problem, (2), (3), (4), (7), and (8),

3. wage is determined by the Nash bargaining problem, (11), (12), and (13),

4. the labor market clears.

The equilibrium is in a steady state if the distribution functions of workers are time invariant.

4 Steady state analysis

In this section, we first describe the steady state of this model. Next, we analyze how search intensity

in the steady state responds to the changes in market tightness in the two extreme cases—the case of

fixed wages (𝜆 = 1) and the case of flexible wages (𝜆 = 0)—relaxing the matching function form from

the commonly used Cobb-Douglas function.

�̄� denotes the steady state value of 𝑋𝑡 . In the steady state, all employed workers receive the same

wages, and 𝐹 (𝑤, 𝑆) is the same across firms. (9) and (10) imply that 𝑥 satisfies the following:

𝜅′(𝑥) = 𝛽𝑞(𝑠, 𝜃)
(
𝑧 − �̄� − 𝜅(𝑥) +

𝜅′(𝑥)
(
1 − 𝜎 + 𝑥𝑞(𝑠, 𝜃)

)
𝑞(𝑠, 𝜃)

)
=

𝛽𝑞(𝑠, 𝜃) (𝑧 − �̄� − 𝜅(𝑥))
1 − 𝛽

(
1 − 𝜎 + 𝑥𝑞(𝑠, 𝜃)

) . (30)

Because all firms choose the same vacancy rate 𝑥 in the steady state, the numbers of vacancies and

employed workers, respectively, are

�̄� = 𝑥�̄� and �̄� = (1 − 𝜎 + 𝑥𝑞(𝑠, 𝜃))�̄�.

The latter equation leads to

𝑥𝑞(𝑠, 𝜃) = 𝜎.

Using this, we can rewrite (30) as follows:

𝜅′(𝑥) = 𝛽𝑞(𝑠, 𝜃) (𝑧 − �̄� − 𝜅(𝑥))
1 − 𝛽

. (31)
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(1), (5), and (6) also imply that 𝑠 satisfies the following:

𝜔′(𝑠) = 𝛽 𝑓𝑠 (𝑠, 𝜃)
�̄� − 𝜙 + 𝜔(𝑠)

1 − 𝛽(1 − 𝜎 − 𝑓 (𝑠, 𝜃))
. (32)

The steady state wage satisfies Γ̄�̄� = (1 − Γ̄)
(
�̄� − �̄�

)
; then, substituting (1), (5), and (9) into this yields

Γ̄
(
𝑧 − �̄� − 𝜅(𝑥) + 𝜅′(𝑥)𝑥 + 𝛽(1 − 𝜎)�̄�

)
= (1 − Γ̄)

(
�̄� − 𝜙 + 𝜔(𝑠) − 𝜔′(𝑠) 𝑓 (𝑠, 𝜃)

𝑓𝑠 (𝑠, 𝜃)
+ 𝛽(1 − 𝜎)

(
�̄� − �̄�

) )
,

⇔ �̄� = Γ̄
(
𝑧 − 𝜅(𝑥) + 𝜅′(𝑥)𝑥

)
+ (1 − Γ̄)

(
𝜙 − 𝜔(𝑠) + 𝜔′(𝑠) 𝑓 (𝑠, 𝜃)

𝑓𝑠 (𝑠, 𝜃)

)
, (33)

where Γ̄ =
𝛾

𝛾 + (1 − 𝛾) 1−𝛽𝜆(1−𝜎)
1−𝛽𝜆

. (34)

From the above equations, the key labor market variables (𝑥, 𝑠, �̄�, �̄�, 𝜃) are characterized by the following

five equations:

𝜅′(𝑥) = 𝛽𝑞(𝑠, 𝜃) (𝑧 − �̄� − 𝜅(𝑥))
1 − 𝛽

, (31)

𝜔′(𝑠) = 𝛽 𝑓𝑠 (𝑠, 𝜃)
�̄� − 𝜙 + 𝜔(𝑠)

1 − 𝛽(1 − 𝜎 − 𝑓 (𝑠, 𝜃))
, (32)

�̄� = Γ̄
(
𝑧 − 𝜅(𝑥) + 𝜅′(𝑥)𝑥

)
+ (1 − Γ̄)

(
𝜙 − 𝜔(𝑠) + 𝜔′(𝑠) 𝑓 (𝑠, 𝜃)

𝑓𝑠 (𝑠, 𝜃)

)
, (33)

𝜃�̄� = 𝑥(1 − �̄�), and (35)

𝑓 (𝑠, 𝜃)�̄� = 𝜎(1 − �̄�). (36)

Next, to get an intuition about the cyclicality of search intensity in the case of rigid wages, we examine

how the search intensity in the steady state responds to the changes in market tightness when wages are

fixed and flexible.

4.1 Search intensity in the steady state when wages are fixed

When wages are fixed, the relationship between search intensity and market tightness is characterized

only by (32).

𝜔′(𝑠) = 𝛽 𝑓𝑠 (𝑠, 𝜃)
�̄� − 𝜙 + 𝜔(𝑠)

1 − 𝛽(1 − 𝜎 − 𝑓 (𝑠, 𝜃))
. (32)
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This leads to (we denote 𝑓 ≡ 𝑓 (𝑠, 𝜃))

𝑑𝑠

𝑑𝜃
= −

≡𝐴︷                       ︸︸                       ︷
𝛽 𝑓𝑠𝜃

�̄� − 𝜙 + 𝜔(𝑠)
1 − 𝛽(1 − 𝜎 − 𝑓 )

≡𝐵 (<0)︷                            ︸︸                            ︷
−𝛽 𝑓𝑠

𝛽 𝑓𝜃 (�̄� − 𝜙 + 𝜔(𝑠))
(1 − 𝛽(1 − 𝜎 − 𝑓 ))2

𝐶 − 𝜔′′(𝑠)︸       ︷︷       ︸
<0

, (37)

where1

𝐶 ≡𝛽 𝑓𝑠𝑠
�̄� − 𝜙 + 𝜔(𝑠)

1 − 𝛽(1 − 𝜎 − 𝑓 )
+ 𝛽 𝑓𝑠

𝜔′(𝑠)
1 − 𝛽(1 − 𝜎 − 𝑓 )

+ 𝛽 𝑓𝑠
−𝛽 𝑓𝑠 (�̄� − 𝜙 + 𝜔(𝑠))
(1 − 𝛽(1 − 𝜎 − 𝑓 ))2

=𝛽 𝑓𝑠𝑠
�̄� − 𝜙 + 𝜔(𝑠)

1 − 𝛽(1 − 𝜎 − 𝑓 )
+ 𝛽 𝑓𝑠

𝜔′(𝑠)
1 − 𝛽(1 − 𝜎 − 𝑓 )

+ 𝛽 𝑓𝑠
−𝜔′(𝑠)

1 − 𝛽(1 − 𝜎 − 𝑓 )

=𝛽 𝑓𝑠𝑠
�̄� − 𝜙 + 𝜔(𝑠)

1 − 𝛽(1 − 𝜎 − 𝑓 )
< 0.

Unemployed workers determine their search intensity so that the marginal search cost equals the

marginal search benefit, which is the product of the increased odds of job finding and the benefit of being

employed. (37) implies that in the steady state, how search intensity responds to the changes in market

tightness depends on the magnitude of 𝐴 relative to 𝐵. 𝐴 and 𝐵 reflect the direct effects of the changes

in market tightness on the marginal search benefit.

𝐴 represents the effect on the increased odds of finding a job owing to an additional search intensity,

𝑓𝑠 (𝑠, 𝜃), and it determines the sign of 𝐴. How 𝑓𝑠 (𝑠, 𝜃) responds to the change in 𝜃 depends on the

assumption of the matching function. 𝑓𝑠𝜃 (𝑠, 𝜃) > 0 means the complementary relationship between

search intensity and the job-finding rate, where job search efforts become less effective in increasing

the job-finding rate during recession and more effective during booms. On the contrary, 𝑓𝑠𝜃 (𝑠, 𝜃) < 0

implies the substitutive relationship between search intensity and the job-finding rate, where an additional

search effort does not significantly contribute to increasing the job-finding rate during booms.

𝐵 represents the effect on the benefit of being employed. In the steady state, the benefit of being

employed, �̄� ≡ 𝑊 (�̄�, 𝑆) −𝑈 (𝑆), becomes

�̄� =
�̄� − 𝜙 + 𝜔(𝑠)

1 − 𝛽(1 − 𝜎 − 𝑓 )
.

This benefit is discounted by the discount factor 𝛽 and “the relative ease of being employed,” which

is given by the survival rate of employed workers, 1 − 𝜎, minus the job-finding rate of unemployed

1In the second equality, (32) is substituted into the third term.
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workers, 𝑓 (𝑠, 𝜃). The above equation implies that a low job-finding rate or high survival rate increases

the benefit of being employed: the benefit is highly evaluated when finding a job is difficult or becoming

unemployed is unlikely once workers get a job, if all else are equal. Because 𝑓 (𝑠, 𝜃) is assumed to be

increasing in 𝜃, 𝐵 becomes negative. Note that we do not consider the effect of �̄� on �̄� here.

Whether search intensity responds positively or negatively to the change in market tightness depends

on which of the above two effects is dominant, and this is governed by the form of the matching function.

4.2 Formulation of the matching function

In this subsection, we examine how the sign of 𝑑𝑠/𝑑𝜃, or 𝐴 + 𝐵, varies with the formulation of the

matching function when wages are fixed. We can rewrite 𝐴 + 𝐵 as follows:

𝐴 + 𝐵 =
𝛽 (�̄� − 𝜙 + 𝜔(𝑠))(

1 − 𝛽(1 − 𝜎 − 𝑓 )
)2

{
𝑓𝑠𝜃

(
1 − 𝛽(1 − 𝜎 − 𝑓 )

)
− 𝛽 𝑓𝑠 𝑓𝜃

}
, (38)

where the first term is positive. Thus, the sign of 𝐴 + 𝐵 is determined by

𝑓𝑠𝜃
(
1 − 𝛽(1 − 𝜎 − 𝑓 )

)
− 𝛽 𝑓𝑠 𝑓𝜃 ≡ Φ. (39)

(39) implies that when wages are fixed, 𝑓𝑠𝜃 < 0 is sufficient for search intensity to negatively respond

to the change in market tightness, whereas Mukoyama et al. (2018) and Shimer (2004) conclude that

𝑓𝑠𝜃 < 0 is necessary for search intensity to be countercyclical. We show below that Φ could be negative

even under matching functions with 𝑓𝑠𝜃 > 0 and standard properties (e.g., the concavity of 𝑢 or 𝑣).

When the job-finding rate is linear in search intensity,

𝑓 (𝑠, 𝜃) = 𝑓 (𝜃)𝑠, (40)

Φ is always positive because 𝑓𝑠𝜃 𝑓 = 𝑓𝑠 𝑓𝜃 , and this yields

Φ = 𝑓𝑠𝜃 (1 − 𝛽(1 − 𝜎)) = 𝑓 ′(𝜃) (1 − 𝛽(1 − 𝜎)) > 0.

Then, to examine the case where search intensity is nonlinear in the job-finding rate, we assume the
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following job-finding rate function2:

𝑓 (𝑠, 𝜃) = 𝜒
[
𝛼𝑠𝜓 + (1 − 𝛼)𝜃𝜓

]1/𝜓
, (41)

𝜒 > 0, and 𝛼 ∈ (0, 1).

When unemployed workers choose the same 𝑠, the matching function is given by

𝑚(𝑠, 𝑢, 𝑣) = 𝜒
[
𝛼(𝑠𝑢)𝜓 + (1 − 𝛼)𝑣𝜓

]1/𝜓
. (42)

This formulation is the same as that used by Mukoyama et al. (2018); CES-type matching functions

have also been used in other literature (e.g., Hagedorn and Manovskii (2008), Coşar, Guner and Tybout

(2016), and Birinci, Karahan, Mercan and See (2021)). The presented CES matching function includes

the Cobb-Douglas matching function, 𝑚 = 𝜒(𝑠𝑢)𝛼𝑣1−𝛼, when 𝜓 → 0 and is homogenous in 𝑢 and 𝑣.

The elasticity of substitution of the matching function and job-finding rate function is given by 1
1−𝜓 , and

𝜓 < 1 must be satisfied for the job-finding rate to be increasing and concave in 𝑠 and for the matching

function to be increasing and concave in 𝑢 and 𝑣, which are desirable basic properties in a matching

function, as described by Petrongolo and Pissarides (2001), Stevens (2007), and so on. However, 𝜓 > 1

must be satisfied to 𝑓𝑠𝜃 < 0 because

𝑓𝑠𝜃 = 𝜒𝛼(1 − 𝛼)(𝑠𝜃)𝜓−1(1 − 𝜓) [𝛼𝑠𝜓 + (1 − 𝛼)𝜃𝜓]
1−2𝜓
𝜓 .

Φ can be rewritten as follows.

Φ = 𝜒𝛼(1 − 𝛼) (𝑠𝜃)𝜓−1 [𝛼𝑠𝜓 + (1 − 𝛼)𝜃𝜓
] 1−2𝜓

𝜓

(
(1 − 𝜓)(1 − 𝛽(1 − 𝜎)) − 𝜓𝛽 𝑓

)
.

Figure 2A shows how 𝑓𝑠𝜃 and Φ change depending on the value of 𝜓. In our calibration strategy,

roughly when 𝜓 > 0.06, Φ becomes negative. Again, note that here we assume that wages are fixed.

When wages are not fixed (i.e., 0 ≤ 𝜆 < 1), the average wage becomes procyclical and this works

in the direction that makes the benefit of being employed, 𝑉 , procyclical. Therefore, when wages are

2Of course, other formulations are possible. Shimer (2004) uses “urn-ball matching function” with endogenous search
intensity, where the job-finding rate is given as

𝑓 (𝑠, 𝜃) = 1 − (1 − 𝜇(𝜃))𝑠 , where 𝜇(𝜃) = 𝜃 (1 − 𝑒−1/𝜃 ).

In this formulation, 𝑓𝑠 is not a monotone function of 𝜃, and 𝑓𝑠 is decreasing in 𝜃 when the job-finding rate, 𝑓 (𝑠, 𝜃), is sufficiently
high.
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Figure 2: Responses of search intensity and 𝑓𝑠𝜃 to the change in 𝜃

Note: The other parameters are shown in the next section, and 𝑠 and 𝜃 are set to 1. The sign of Φ and 𝐷 captures whether
search intensity responds negatively or positively to the change in 𝜃.

not fixed, 𝜓 should be larger than the above value for search intensity to be countercyclical, but search

intensity becomes countercyclical with 𝜓 < 1 even when wages are not fixed, as shown in the quantitative

exercises.

4.3 Search intensity in the steady state when wages are flexible

In this subsection, we examine the case of flexible wages using the CES matching function defined

in (42). When wages are completely flexible, namely 𝜆 = 0, all employed workers receive the same

renegotiated wage every period, Γ𝑡 = 𝛾, and 𝑊 (𝑤∗
𝑡 , 𝑆𝑡 ) −𝑈 (𝑆𝑡 ) = �̃� [𝑊 (𝑤𝑡 , 𝑆𝑡 ) ] −𝑈 (𝑆𝑡 ). Thus, the

wage satisfies

𝛾𝐹 (𝑤𝑡 , 𝑆𝑡 ) = (1 − 𝛾)
(
�̃� [𝑊 (𝑤𝑡 , 𝑆𝑡 ) ] −𝑈 (𝑆𝑡 )

)
. (43)

From (6), (10), and (43), the below equation holds

𝜅′(𝑥)
𝑞(𝑠, 𝜃)

=
1 − 𝛾

𝛾

𝜔′(𝑠)
𝑓𝑠 (𝑠, 𝜃)

. (44)

Because 𝑥𝑞(𝑠, 𝜃) is equal to 𝜎, the relationship between search intensity and market tightness in the

steady state is characterized by

𝜅′(𝑥) 𝑓𝑠 (𝑠, 𝜃) =
1 − 𝛾

𝛾
𝜔′(𝑠)𝑞(𝑠, 𝜃), and
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𝑥 =
𝜎

𝑞(𝑠, 𝜃)
. (45)

This leads to

𝑑𝑠

𝑑𝜃
=

𝜅′(𝑥) 𝑓𝑠𝜃

>0︷                                    ︸︸                                    ︷
−𝜅′′(𝑥) 𝑓𝑠

𝜎𝑞𝜃

𝑞2 − 1 − 𝛾

𝛾
𝜔′(𝑠)𝑞𝜃

1 − 𝛾

𝛾

(
𝜔′′(𝑠)𝑞 + 𝜔′(𝑠)𝑞𝑠

)
− 𝜅′(𝑥) 𝑓𝑠𝑠 + 𝜅′′(𝑥) 𝑓𝑠

𝜎𝑞𝑠
𝑞2︸                                                                 ︷︷                                                                 ︸

>0

. (46)

The above equation implies that 𝑓𝑠𝜃 < 0 is not sufficient for search intensity to negatively respond

to the change in market tightness, unlike the case of fixed wages. On the contrary, when 𝑓𝑠𝜃 is positive,

𝑑𝑠/𝑑𝜃 always becomes positive. Figure 2B plots 𝑓𝑠𝜃 and 𝐷 for varying 𝜓, where 𝐷 is the numerator of

the RHS in (46):

𝐷 ≡ 𝜅′(𝑥) 𝑓𝑠𝜃−𝜅′′(𝑥) 𝑓𝑠
𝜎𝑞𝜃

𝑞2 − 1 − 𝛾

𝛾
𝜔′(𝑠)𝑞𝜃 .

𝐷 < 0 means that search intensity negatively responds to the change in market tightness. The figure

implies that 𝑓𝑠𝜃 must be significantly negative for search intensity to be countercyclical.

5 Quantitative analysis

In this section, we quantitatively examine our model. First, we show how the labor market responds

to a one percent negative productivity shock and how the impulse responses vary with the degree of

wage rigidity or the form of matching functions. Next, we compare our model predictions with U.S. data

and show that our model can reproduce both countercyclical search intensity and plausible labor market

fluctuations compared to the standard models.

5.1 Calibration

We consider a monthly model. In our calibration, we target the steady state unemployment rate of

�̄� = 0.055. Following Shimer (2005), we set 𝛽 to 0.9881/3 and 𝜎 to 0.034; then, the job-finding rate

in the steady state becomes 0.58. We also set 𝛼 = 0.5 so that the commonly used Cobb-Douglas form

would be included—that is, 𝑚𝑡 = 𝜒(𝑠𝑡𝑢𝑡 )0.5𝑣0.5
𝑡 when 𝜓 → 0. Table 1 summarizes the calibrated and

implied parameters, most of which are commonly used in the literature. We assume that the search cost

function and vacancy cost function are given by 𝜔(𝑠𝑡 ) = 𝜔0𝑠
2
𝑡 and 𝜅(𝑥𝑡 ) = 𝜅0𝑥

2
𝑡 , respectively, and set

𝜔0, 𝜅0, and 𝜙 so that in the steady state, market tightness and search intensity are 1 and the net flow of
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Table 1: The parameters for calibration

Parameters Value Sources
Calibrated parameters

𝛽 discount factor 0.996 Shimer (2005)
𝜎 separation rate 0.034 Shimer (2005)
𝜆 wage rigidity 11/12 Gertler et al. (2020)
𝜌 autocorrelation of 𝑧 0.983 Gertler et al. (2020)

Implied parameters
𝜅0 slope of vacancy cost 4.68
𝜔0 slope of search cost 0.13
𝜙 unemployment benefit 0.53
𝜒 matching efficiency 0.58
𝛾 workers’ bargaining power 0.57

unemployment is 0.4. 𝛾 is set such that the effective bargaining power, Γ, becomes 0.5 in the steady

state. We also set the degree of wage rigidity, 𝜆, to 11/12, following Gertler et al. (2020). This implies

that the average duration of wages is one year.

5.2 Impulse response exercise

In this subsection, we show how the labor market in the model economy responds to one percent

negative productivity shock and examine the effects of the degree of wage rigidity or the formulation of

matching functions on the predicted labor market fluctuations. We assume that productivity follows the

below AR(1) process and set the AR(1) parameter, 𝜌, to 0.983:

ln 𝑧𝑡+1 = 𝜌 ln 𝑧𝑡 + 𝜀𝑡+1, 𝜀 ∼ 𝑁 (0, 𝜎2
𝜀). (47)

To better understand the result, we again show the two key equations below using 𝑉 (·): the benefit of

being employed and the first-order condition with respect to search intensity, respectively:

𝜔′(𝑠𝑡 ) = 𝛽 𝑓𝑠 (𝑠𝑡 , 𝜃𝑡 )𝐸 [𝑉 (�̃�𝑡+1, 𝑆𝑡+1) | 𝑆𝑡 ] and (48)

𝑉 (�̃�𝑡 , 𝑆𝑡 ) =�̃�𝑡 − 𝜙 + 𝜔(𝑠𝑡 ) + 𝛽 (1 − 𝜎 − 𝑓 (𝑠𝑡 , 𝜃𝑡 )) 𝐸 [𝑉 (�̃�𝑡+1, 𝑆𝑡+1) | 𝑆𝑡 ]

+ 𝛽(1 − 𝜎)
{
𝐸 [𝑊 (𝑤𝑡+1, 𝑆𝑡+1) | �̃�𝑡 , 𝑆𝑡 ] − �̃� [𝑊 (𝑤𝑡+1, 𝑆𝑡+1) | 𝑆𝑡 ]

}
, (49)

where �̃� denotes the average wage among new hires; the last term in (49) captures the difference in the

expected value in period 𝑡 + 1 between new hires in period 𝑡 and those in period 𝑡 + 1, and this term
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Figure 3: Effect of wage rigidity on the labor market

Note: Impulse response to one percent negative productivity shock for varying degree of wage rigidity. Unemployment,
vacancy, job-finding rate, and job-filling rate are plotted in terms of their deviation from the steady state, and the others are
plotted as percentage change from the steady state.

becomes 0 in the steady state.

In the below figures, unemployment rate, vacancy, job-finding rate, and job-filling rate are plotted

in terms of their deviation from the steady state. For example, an increase from 3 to 6 percent of �̄� is

expressed as an increase of 3 and not (log 2) × 100. The remaining parameters are plotted in terms of

the log deviation value from the steady state.

5.2.1 Effect of wage rigidity on labor market

First, we show how wage rigidity affects the cyclicality of search intensity and labor market fluctua-

tions. We simulate the three cases, 𝜆 = 0, 8/9, and 11/12.3 𝜆 = 0 and 8/9 correspond to the cases where

wages are renegotiated every month and three quarters, respectively. We set 𝜓 = 0.5 in all three cases.

Note that the wage and firms’ surplus in the figures are average values. The result is shown in Figure 3,

and this shows that the more rigid the wages are, the larger the labor market fluctuations are and the more

unemployed workers increase their search intensity in response to the shock. The intuitive explanation

3In the case of 𝜆 = 0 and 𝜆 = 8/9, 𝛾 is set to 0.5 and 0.55, respectively, so that Γ would be 0.5 in the steady state.
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of this result is as follows. When wages are sticky, they remain relatively high in response to a negative

productivity shock for a certain period. Therefore, the firms’ average surplus significantly decreases,

making them reluctant to post vacancies; this lowers market tightness, 𝜃, and the job-finding rate, 𝑓 . On

the contrary, a relatively high wage and low job-finding rate enhance the benefit of being employed, 𝑉 .

As mentioned in the previous section and implied by (49), 𝑉 is discounted by 𝛽(1 − 𝜎 − 𝑓 ): that

is, low job-finding rate improves the benefit of being employed. The marginal job-finding rate, 𝑓𝑠, is

increasing in 𝜃; therefore, 𝑓𝑠 decreases, as we use the CES matching function with 𝜓 < 1. As (48)

shows, search intensity is determined by 𝑉 and 𝑓𝑠. When wages are sufficiently sticky, the increase in 𝑉

is larger than the decrease in 𝑓𝑠, leading unemployed workers to increase their search efforts; although

finding a job is getting more difficult, the benefits of being employed are sufficiently large owing to wage

rigidity, which increases the total search benefit, 𝑓𝑠𝑉 . Note that the job-finding rate gradually recovers

to the pre-shock level and wages reflect the actual economic condition. When the wages reflect the

actual economic condition and the job-finding rate sufficiently recovers,𝑉 becomes lower than that at the

pre-shock level and unemployed workers reduce their search intensity to less than that at the pre-shock

level. In other words, unemployed workers increase search intensity only for the periods when wages

remain high; after these periods, they maintain the search intensity at a lower level than that before the

shock until the productivity recovers.

5.2.2 Effect of matching function form on labor market

Next, we examine how the formulation of the matching function affects the cyclicality of search

intensity and labor market fluctuations. We analyze three cases, 𝜓 = 0.8, 𝜓 = 0.5, and 𝜓 = 0, and set

𝜆 = 11/12 in all three cases. Figure 4 shows the result. The key to this result is the marginal job-finding

rate, 𝑓𝑠. The change in 𝑓𝑠 in response to the change in 𝜃, 𝑓𝑠𝜃 , can be rewritten as follows.

𝑓𝑠𝜃 = 𝜒𝛼(1 − 𝛼) (𝑠𝜃)𝜓−1(1 − 𝜓)
[
𝛼𝑠𝜓 + (1 − 𝛼)𝜃𝜓

] 1−2𝜓
𝜓 , 𝜓 < 1.

The above equation implies that when 𝜓 is small, the marginal job-finding rate, 𝑓𝑠, is sensitive to the

change in market tightness, as also shown in the figure. In the case of 𝜓 = 0, the decrease in 𝑓𝑠 is

larger than the increase in 𝑉 ; thus, unemployed workers decrease their search intensity. In other words,

during recession, unemployed workers are reluctant to search for a job because an additional search

intensity does little to increase the job-finding rate, whereas the benefit of being employed increases

owing to wage rigidity. As the figure shows, this procyclical search intensity amplifies the increase in the
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Figure 4: Effect of matching function form on the labor market

Note: Impulse response to one percent negative productivity shock for varying 𝜓. Unemployment, vacancy, job-finding rate,
and job-filling rate are plotted in terms of their deviation from the steady state, and the others are plotted as percentage change
from the steady state.

unemployment rate or the decrease in market tightness. On the contrary, when 𝑓𝑠 is not very responsive

to market tightness, as in the case of 𝜓 = 0.8 and 0.5, unemployed workers increase their search intensity,

and this countercyclical search intensity dampens the increase in the unemployment rate or the decrease

in market tightness. As the figure shows, 𝜓 has little effect on wage or vacancy. (17) implies that the

job-finding rate and the level of search intensity affect 𝑤∗
𝑡 , but the net effect is not large. Moreover,

the average wage reflects the bargaining wage considerably slowly owing to wage rigidity; therefore, the

behaviors of average wage, firms’ average surplus, and vacancy are quite similar in all three cases.

5.2.3 Effect of endogenous search intensity on labor market

Finally, we examine the role of endogenous search intensity in explaining labor market fluctuations.

For this purpose, we compare the three cases; the first is the case where search intensity is endogenous

and wages are sticky (case1), the second is the case where search intensity is fixed and wages are sticky

(case2), and the third is the case where search intensity is fixed and wages are flexible (case3). We make

this comparison for 𝜓 = 0 and 𝜓 = 0.8.
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Figure 5: Comparison of the benchmark model and standard models when 𝜓 = 0

Note: Impulse response to one percent negative productivity shock for the standard and benchmark models. Unemployment,
vacancy, job-finding rate, and job-filling rate are plotted in terms of their deviation from the steady state, and the others are
plotted as percentage change from the steady state.

In Figure 5, we set 𝜓 to 0. Comparison of case2 (dashed line) with case3 (dotted line) shows that

wage rigidity significantly amplifies the labor market fluctuations; this finding is consistent with previous

research such as Hall (2005) and Shimer (2005). As shown earlier, 𝜓 = 0 makes search intensity

procyclical. As case1 (solid line) and case2 (dashed line) show, endogenous search intensity additionally

amplifies the increase in the unemployment rate or the decrease in the job-finding rate. In Figure 6, we set

𝜓 to 0.8. As before, the figure shows that wage rigidity amplifies the labor market fluctuations. Contrary

to the previous case, however, when search intensity is endogenous, unemployed workers increase their

search intensity in response to the negative productivity shock because of 𝜓 = 0.8. For a while after

the shock, endogenous search intensity dampens the labor market fluctuations, but a few moments after

the shock, wages begin to reflect the economic condition, causing unemployed worker to decrease their

search intensity to less than that at the pre-shock level and maintain this lower level until the productivity

recovers. In the latter phase, endogenous search intensity delays the recovery of the unemployment rate

or the job-finding rate. As the figure shows, even if search intensity is countercyclical, labor market

fluctuations are still large compared with the standard model (case3).
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Figure 6: Comparison of the benchmark model and standard models when 𝜓 = 0.8

Note: Impulse response to one percent negative productivity shock for the standard and benchmark models. Unemployment,
vacancy, job-finding rate, and job-filling rate are plotted in terms of their deviation from the steady state, and the others are
plotted as percentage change from the steady state.

5.3 Comparison with actual data

Finally, we evaluate how successful our model is in reproducing the labor market fluctuations. We

compare the model predictions with monthly U.S. data from 1985 to 2019. Table 2 shows the U.S.

data and the predictions on the labor market obtained using our model and the standard model, where

search intensity is constant, wages are flexibly determined (𝜆 = 0), and the matching function is Cobb-

Douglas (𝜓 = 0). All variables are logged and HP filtered with smoothing parameter 14, 400 for monthly

frequency. As before, we assume that 𝑧 follows (47) and set 𝜎𝜀 to 0.007, following Gertler et al. (2020).

Table 2 shows that the assumption of wage rigidity captures the wage dynamics relatively well

(the theoretical standard deviation is 0.37 and that in the data is 0.42), although it overshoots the

autocorrelation. Overall, our model reproduces labor market fluctuations reasonably well compared to

the standard model. As explained in the previous subsection, when 𝜓 = 0, search intensity becomes

procyclical (the correlation with 𝜃 is 0.62), and when 𝜓 = 0.5, it becomes countercyclical (the correlation

is −0.87). The table shows that in the case of 𝜓 = 0.5, countercyclical search intensity slightly dampens

the labor market fluctuations, but the model still captures the labor market dynamics well compared
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Table 2: The predictions of the models and actual data (Monthly)

�̄� �̄� 𝜃 𝑤

U.S. data
𝑠𝑡𝑑 × 100 5.39 7.55 12.79 0.42
autocorrelation 0.89 0.74 0.87 0.87

Model (𝜆 = 11/12, 𝜓 = 0)
𝑠𝑡𝑑 × 100 4.75 6.57 10.05 0.37
autocorrelation 0.94 0.76 0.90 0.98
correlation with 𝑠 −0.89 0.30 0.62 0.83

Model (𝜆 = 11/12, 𝜓 = 0.5)
𝑠𝑡𝑑 × 100 3.47 6.40 8.93 0.36
autocorrelation 0.94 0.77 0.88 0.98
correlation with 𝑠 0.47 −0.95 −0.87 0.23

Standard model (𝜆 = 0, 𝜓 = 0)
𝑠𝑡𝑑 × 100 0.54 0.79 1.21 1.16
autocorrelation 0.94 0.77 0.90 0.84

Note: �̄� is the seasonally adjusted unemployment for individuals aged 16 years and over, and �̄� is the job opening level in the
non-farm sector (Job Openings and Labor Turnover Survey). 𝜃 is calculated by diving the job opening level in the non-farm
sector by the unemployment level, and this value is calculated from 2001 to 2019 owing to the unavailability of data on the job
opening level before 2000. Wages are measured by the average hourly earnings of a production and nonsupervisory employee
in the Current Employment Statistics survey and deflated with the PCE.

to the standard model. In sum, when wages are rigid, search intensity could be both procyclical and

countercyclical under the matching functions that satisfy the standard properties. Moreover, even when

search intensity is countercyclical, the labor market fluctuations are large.

6 Concluding Remarks

This paper extends the standard DMP model by incorporating endogenous search intensity and

wage rigidity to address the inconsistency between the canonical models and the empirical evidence

presented in previous studies: the theoretical models predict that search intensity is procyclical, but much

empirical evidence suggests that search intensity is countercyclical or acyclical. The paper proposes a

new mechanism that makes search intensity countercyclical. In the model, the assumption of wage

rigidity makes the net benefit of being employed as well as total marginal search benefit countercyclical,

even when the marginal job-finding rate is procyclical. Further, quantitative exercises show that the labor

market fluctuations of the model economy are still large even when search intensity is countercyclical.

The model makes a simple assumption about the unemployment benefit: unemployed workers are

assumed to receive constant and identical income in every period. This assumption makes the benefit

of being employed uniform across all unemployed workers. In reality, however, the benefit of being

employed varies for each unemployed workers, depending on various factors such as the eligibility of
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unemployment insurance, assets holdings, and household composition (e.g., marital status and spouse’s

employment status). Relaxing this assumption and introducing heterogeneity in unemployment status

would provide rich insights into not only the individual job search behavior but also the composition

change of unemployed workers, which some literature such as Gomme and Lkhagvasuren (2015) and

Mukoyama et al. (2018) argue is an important factor in explaining the fluctuations of aggregate search

intensity. Therefore, future research should incorporate such heterogeneity and examine job search

behavior in a more general framework.

Appendix

A Renegotiated wage 𝑤∗
𝑡

For the firms and workers that renegotiate wages in period 𝑡, the expected wages in future periods
are as follows:

𝐸𝑡𝑤𝑡+1 = (1 − 𝜆)𝐸𝑡𝑤
∗
𝑡+1 + 𝜆𝑤∗

𝑡

𝐸𝑡𝑤𝑡+2 = (1 − 𝜆)𝐸𝑡𝑤
∗
𝑡+2 + (1 − 𝜆)𝜆𝐸𝑡𝑤

∗
𝑡+1 + 𝜆2𝑤∗

𝑡

...

𝐸𝑡𝑤𝑡+𝑠 = (1 − 𝜆)𝐸𝑡

𝑠∑
𝑚=1

𝜆𝑠−𝑚𝑤∗
𝑡+𝑚 + 𝜆𝑠𝑤∗

𝑡 . (A.1)

The discounted sum of expected future wage, W𝑡 , is given as follows:

W𝑡 =𝑤
∗
𝑡 + 𝐸𝑡

∞∑
𝑠=1

𝛽𝑠 (1 − 𝜎)𝑠𝑤𝑡+𝑠

=
(
1 + 𝛽𝜆(1 − 𝜎) + 𝛽2𝜆2(1 − 𝜎)2 + 𝛽3𝜆3(1 − 𝜎)3 + · · ·

)
𝑤∗
𝑡+

𝛽(1 − 𝜎)(1 − 𝜆)
(
1 + 𝛽𝜆(1 − 𝜎) + 𝛽2𝜆2(1 − 𝜎)2 + · · ·

)
𝐸𝑡𝑤

∗
𝑡+1+

...

=Δ−1𝑤∗
𝑡 + (1 − 𝜆)Δ−1𝐸𝑡

∞∑
𝑚=1

𝛽𝑚(1 − 𝜎)𝑚𝑤∗
𝑡+𝑚, (A.2)

where Δ ≡ 1− 𝛽𝜆(1−𝜎). 𝐻 (𝑤∗
𝑡 , 𝑆𝑡 ) ≡ 𝑊 (𝑤∗

𝑡 , 𝑆𝑡 ) −𝑈 (𝑆𝑡 ) and 𝐹 (𝑤∗
𝑡 , 𝑆𝑡 ) can be rewritten4, respectively,

as

𝐻 (𝑤∗
𝑡 , 𝑆𝑡 ) =W𝑡 + 𝐸𝑡

∞∑
𝑚=0

𝛽𝑚(1 − 𝜎)𝑚 (−ℎ𝑡+𝑚) and

𝐹 (𝑤∗
𝑡 , 𝑆𝑡 ) = −W𝑡 + 𝐸𝑡

∞∑
𝑚=0

𝛽𝑚(1 − 𝜎)𝑚
(
𝑧𝑡+𝑚 + 𝜅0𝑥

2
𝑡+𝑚

(
𝑤𝑡+𝑚 | 𝑤∗

𝑡

) )
,

4For simplicity, we denote 𝐸𝑡
[
𝑥𝑡+𝑚 (𝑤𝑡+𝑚, 𝑆𝑡+𝑚) | 𝑤𝑡 = 𝑤∗

𝑡

]
by 𝐸𝑡𝑥𝑡+𝑚 (𝑤𝑡+𝑚 | 𝑤∗

𝑡 ).
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where ℎ𝑡+𝑚 = 𝜙 − 𝜔(𝑠𝑡+𝑚) + 𝜔′(𝑠𝑡+𝑚) 𝑓 (𝑠𝑡+𝑚, 𝜃𝑡+𝑚)/ 𝑓𝑠 (𝑠𝑡+𝑚, 𝜃𝑡+𝑚). Substituting these into (18), that
is, Γ𝑡𝐹 (𝑤∗

𝑡 , 𝑆𝑡 ) = (1 − Γ𝑡 )𝐻 (𝑤∗
𝑡 , 𝑆𝑡 ), we get

W𝑡 = 𝐸𝑡

∞∑
𝑚=0

𝛽𝑚(1 − 𝜎)𝑚
{
Γ𝑡

(
𝑧𝑡+𝑚 + 𝜅0𝑥

2
𝑡+𝑚

(
𝑤𝑡+𝑚 | 𝑤∗

𝑡

) )
+ (1 − Γ𝑡 )ℎ𝑡+𝑚

}
. (A.3)

We can rewrite the above equation as

W𝑡 =Γ𝑡 𝑧𝑡 + (1 − Γ𝑡 )ℎ𝑡 + 𝐸𝑡

{
Γ𝑡

∞∑
𝑚=0

𝛽𝑚(1 − 𝜎)𝑚𝜅0𝑥
2
𝑡+𝑚

(
𝑤𝑡+𝑚 | 𝑤∗

𝑡

)}
+ 𝐸𝑡

∞∑
𝑚=1

𝛽𝑚(1 − 𝜎)𝑚
{
Γ𝑡 𝑧𝑡+𝑚 + (1 − Γ𝑡 )ℎ𝑡+𝑚

}
.

Factoring out the last terms with 𝛽(1 − 𝜎) yields5

W𝑡 = Γ𝑡 𝑧𝑡 + (1 − Γ𝑡 )ℎ𝑡 + 𝐸𝑡

{
Γ𝑡

∞∑
𝑚=0

𝛽𝑚(1 − 𝜎)𝑚𝜅0𝑥
2
𝑡+𝑚

(
𝑤𝑡+𝑚 | 𝑤∗

𝑡

) }
+𝛽(1 − 𝜎)

𝐸𝑡

[ ∞∑
𝑚=0

𝛽𝑚(1 − 𝜎)𝑚
{
Γ𝑡+1

(
𝑧𝑡+𝑚+1 + 𝜅0𝑥

2
𝑡+𝑚+1

(
𝑤𝑡+𝑚+1 | 𝑤∗

𝑡+1
) )

+ (1 − Γ𝑡+1)ℎ𝑡+𝑚+1

+ (Γ𝑡 − Γ𝑡+1)
(
𝑧𝑡+𝑚+1 − ℎ𝑡+𝑚+1

)
− Γ𝑡+1𝜅0𝑥

2
𝑡+𝑚+1

(
𝑤𝑡+𝑚+1 | 𝑤∗

𝑡+1
)}]

.

Based on (𝐴.3), the second line is equal to 𝐸𝑡 [W𝑡+1], and (𝐴.2) implies W𝑡 − 𝛽(1 − 𝜎)𝐸𝑡 [W𝑡+1] =
Δ−1𝑤∗

𝑡 − (1 − Δ)Δ−1𝐸𝑡𝑤
∗
𝑡+1. Then,

Δ−1𝑤∗
𝑡 = (1 − Δ)Δ−1𝐸𝑡𝑤

∗
𝑡+1 + Γ𝑡

(
𝑧𝑡 + 𝜅0𝑥

2
𝑡 (𝑤∗

𝑡 , 𝑆𝑡 )
)
+ (1 − Γ𝑡 )ℎ𝑡

+ 𝜅0

∞∑
𝑚=1

𝛽𝑚(1 − 𝜎)𝑚𝐸𝑡

{
Γ𝑡𝑥

2
𝑡+𝑚

(
𝑤𝑡+𝑚 | 𝑤∗

𝑡

)
− Γ𝑡+1𝑥

2
𝑡+𝑚

(
𝑤𝑡+𝑚 | 𝑤∗

𝑡+1
) }

+ 𝛽(1 − 𝜎)𝐸𝑡

{
(Γ𝑡 − Γ𝑡+1)

∞∑
𝑚=0

𝛽𝑚(1 − 𝜎)𝑚 (𝑧𝑡+𝑚+1 − ℎ𝑡+𝑚+1)
}

≡(1 − Δ)Δ−1𝐸𝑡𝑤
∗
𝑡+1 + 𝑤𝑁

𝑡 +
(
𝜇𝑡 (𝑤∗

𝑡 ) − 𝜇𝑡 (𝑤∗
𝑡+1)

)
+ 𝛽(1 − 𝜎)𝐸𝑡

{
Γ𝑡𝑄𝑡+1 − Γ𝑡+1𝑄𝑡+1

}
, (A.4)

where

𝑤𝑁
𝑡 = Γ𝑡

(
𝑧𝑡 + 𝜅0𝑥

2
𝑡 (𝑤∗

𝑡 , 𝑆𝑡 )
)
+ (1 − Γ𝑡 )ℎ𝑡 , (A.5)

𝜇𝑡 (𝑤∗
𝑡 ) = 𝜅0

∞∑
𝑚=1

𝛽𝑚(1 − 𝜎)𝑚𝐸𝑡

{
Γ𝑡𝑥

2
𝑡+𝑚

(
𝑤𝑡+𝑚 | 𝑤∗

𝑡

) }
, (A.6)

𝜇𝑡 (𝑤∗
𝑡+1) = 𝜅0

∞∑
𝑚=1

𝛽𝑚(1 − 𝜎)𝑚𝐸𝑡

{
Γ𝑡+1𝑥

2
𝑡+𝑚

(
𝑤𝑡+𝑚 | 𝑤∗

𝑡+1
) }

, and (A.7)

𝑄𝑡 =
∞∑

𝑚=0
𝛽𝑚(1 − 𝜎)𝑚 (𝑧𝑡+𝑚 − ℎ𝑡+𝑚) . (A.8)

5We denote 𝐸
[
𝑥𝑡+𝑚 (𝑤𝑡+𝑚, 𝑆𝑡+𝑚) | 𝑤𝑡+1 = 𝑤∗

𝑡+1

]
by 𝐸

[
𝑥𝑡+𝑚

(
𝑤𝑡+𝑚 | 𝑤∗

𝑡+1

)]
.
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B Log-linearization

In this section, we first describe the log-linear model and then its derivations. Let ˆ denote the log
deviation from the steady state.

B.1 Log-linear model

(−1) and (+1) denote the previous period and the next period, respectively.

• matching function

�̂� =
𝛼(𝑠�̄�)𝜓 (𝑠 + �̂�) + (1 − 𝛼)�̄�𝜓 �̂�

𝛼(𝑠�̄�)𝜓 + (1 − 𝛼)�̄�𝜓 (B.1)

• job-finding rate and marginal job-finding rate

𝑓 =
𝛼𝑠𝜓𝑠 + (1 − 𝛼)𝜃𝜓𝜃
𝛼𝑠𝜓 + (1 − 𝛼)𝜃𝜓

(B.2)

𝑓𝑠 = (𝜓 − 1)𝑠 +
(1 − 𝜓)

(
𝛼𝑠𝜓𝑠 + (1 − 𝛼)𝜃𝜓𝜃

)
𝛼𝑠𝜓 + (1 − 𝛼)𝜃𝜓

(B.3)

• job-filling rate
𝑞 = �̂� − �̂� (B.4)

• market tightness
𝜃 = �̂� − �̂� (B.5)

• unemployed and employed workers
�̄��̂� = −�̄��̂� (B.6)

�̄��̂� = (1 − 𝜎)�̄��̂�(−1) + �̄��̂�(−1) (B.7)

• average vacancy
�̂� = �̂� + ˆ̄𝑥 (B.8)

• average vacancy rate

ˆ̄𝑥 = 𝑞 + 𝐸𝑡 �̄�
−1
(
𝑧𝑧(+1) − �̄��̂�(+1)

)
+ 𝛽𝐸𝑡 ˆ̄𝑥(+1) − 𝛽(1 − 𝜎)𝐸𝑡𝑞(+1) (B.9)

• average wage
�̂� = (1 − 𝜆)�̂�∗ + 𝜆�̂�(−1) (B.10)

• bargaining wage

�̂�∗ = Δ̃�̂�𝑁 + (1 − Δ̃)𝐸𝑡 �̂�
∗(+1) + Λ

(
Γ̂ − 𝐸𝑡 Γ̂(+1)

)
, (B.11)

where Δ̃ =
(
1 − 𝛽𝜆(1 − 𝜎)

) (
1 + (𝛽𝜆)2𝜎(1 − 𝜎)Γ̄

1 − 𝛽𝜆

)−1

and

Λ =
Δ̃𝛽(1 − 𝜎)Γ̄

(
𝑧 − ℎ̄ + 𝜅0𝑥

2) (�̄�)−1

1 − 𝛽(1 − 𝜎)

• Nash bargaining wage

�̄��̂�𝑁 = Γ̄
(
𝑧𝑧 + 2𝜅0𝑥

2𝑥∗
)
+ (1 − Γ̄)

(
−2𝜔0𝑠

2𝑠 + �̄�′ 𝑓

𝑓𝑠

(
𝑠 + 𝑓 − 𝑓𝑠

))
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+ Γ̄

(
𝑧 + 𝜅0𝑥

2 − 𝜙 + 𝜔0𝑠
2 − �̄�′ 𝑓

𝑓𝑠

)
Γ̂ (B.12)

• bargaining power
Γ̂ = −(1 − Γ̄)�̂�𝑤 and (B.13)

�̂�𝑤 = 𝛽𝑥𝑞𝜆(𝑥∗ + 𝑞) + 𝛽𝜆𝐸𝑡 �̂�𝑤 (+1) +
{(

𝛽𝜆

1 − 𝛽𝜆

)2 (
�̄�𝜆𝜎�̄�−1

)} (
𝐸𝑡 �̂�

∗(+1) − �̂�∗) (B.14)

• vacancy rate for renegotiated firms

𝑥∗ = 𝑞 + 𝐸𝑡 �̄�
−1
(
𝑧𝑧(+1) − �̄�

[
�̂�∗(+1) + 𝜆

1 − 𝛽𝜆
(�̂�∗ − �̂�∗(+1))

] )
− 𝛽(1 − 𝜎)𝐸𝑡𝑞(+1) + 𝛽𝐸𝑡𝑥

∗(+1) (B.15)

• average value of firms

�̄� �̂� = 𝑧𝑧 − �̄��̂� + 2𝜅0𝑥
2 ˆ̄𝑥 + 𝛽(1 − 𝜎)�̄�𝐸𝑡 �̂� (+1) (B.16)

• expected surplus of being employed

�̄��̂� = �̄��̂� + 2�̄�𝑠 + 𝛽(1 − 𝜎)�̄�𝐸𝑡�̂� (+1) − 𝛽 𝑓 �̄�
(
𝑓 + 𝐸𝑡�̂� (+1)

)
(B.17)

• search intensity
𝑠 = 𝑓𝑠 + 𝐸𝑡�̂� (+1) (B.18)

B.2 Renegotiated wage and its marginal effect

In this subsection, we derive �̂�∗ and 𝐹𝑤 , namely (𝐵.11) and (𝐵.14). First, we obtain the following
equation by log-linearizing (𝐴.4).

�̄��̂�∗
𝑡 = (1 − Δ)�̄�𝐸𝑡 �̂�

∗
𝑡+1 + Δ�̄��̂�𝑁

𝑡 + Δ�̄�
(
�̂�𝑡 (𝑤∗

𝑡 ) − �̂�𝑡 (𝑤∗
𝑡+1)

)
+ Δ𝛽(1 − 𝜎)Γ̄�̄�

(
Γ̂𝑡 − 𝐸𝑡 Γ̂𝑡+1

)
, (B.19)

where
Δ𝛽(1 − 𝜎)Γ̄�̄� =

Δ𝛽(1 − 𝜎)Γ̄(𝑧 − ℎ̄)
1 − 𝛽(1 − 𝜎) . (B.20)

For log-linearizing 𝜇𝑡 (𝑤∗
𝑡 ) − 𝜇𝑡 (𝑤∗

𝑡+1), we first calculate 𝑥𝑠
(
𝑤∗
𝑡

)
− 𝑥𝑠

(
𝑤∗
𝑡+1

)
, where 𝑠 ≥ 𝑡 + 16. From

(10), 𝑥𝑠 (𝑤∗
𝑡 ) and 𝑥𝑠 (𝑤∗

𝑡+1) satisfy,

2𝜅0𝑥𝑠 (𝑤∗
𝑡 ) = 𝛽𝑞𝑠𝐸𝑠

{
(1 − 𝜆)𝐹 (𝑤∗

𝑠+1, 𝑆𝑠+1) + 𝜆𝐹 (𝑤∗
𝑡 , 𝑆𝑠+1)

}
and

2𝜅0𝑥𝑠 (𝑤∗
𝑡+1) = 𝛽𝑞𝑠𝐸𝑠

{
(1 − 𝜆)𝐹 (𝑤∗

𝑠+1, 𝑆𝑠+1) + 𝜆𝐹 (𝑤∗
𝑡+1, 𝑆𝑠+1)

}
.

These imply

𝑥𝑠 (𝑤∗
𝑡 ) − 𝑥𝑠 (𝑤∗

𝑡+1) =
𝛽𝜆𝑞𝑠
2𝜅0

𝐸𝑠

{
𝐹 (𝑤∗

𝑡 , 𝑆𝑠+1) − 𝐹 (𝑤∗
𝑡+1, 𝑆𝑠+1)

}
=

𝛽𝜆𝑞𝑠
2𝜅0

×

𝐸𝑠

{
𝑤∗
𝑡+1 − 𝑤∗

𝑡 + 𝜅0

(
𝑥2
𝑠+1(𝑤∗

𝑡 ) − 𝑥2
𝑠+1(𝑤∗

𝑡+1)
)
+ 2(1 − 𝜎)𝜅0

𝑞𝑠+1

(
𝑥𝑠+1(𝑤∗

𝑡 ) − 𝑥𝑠+1(𝑤∗
𝑡+1)

)}
.

6In this subsection, we denote 𝑥𝑡 (𝑤∗
𝑠 , 𝑆𝑡 ) by 𝑥𝑡 (𝑤∗

𝑠).
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Log-linearizing the above yields

𝑥𝑠 (𝑤∗
𝑡 ) − 𝑥𝑠 (𝑤∗

𝑡+1) = 𝜆�̄��̄�−1 (�̂�∗
𝑡+1 − �̂�∗

𝑡

)
+ 𝛽𝜆𝐸𝑠

(
𝑥𝑠+1(𝑤∗

𝑡 ) − 𝑥𝑠+1(𝑤∗
𝑡+1)

)
=
𝜆�̄��̄�−1

1 − 𝛽𝜆

(
�̂�∗
𝑡+1 − �̂�∗

𝑡

)
, (B.21)

where �̄�−1 = 𝛽𝑞/(2𝜅0𝑥). (𝐴.6) can be rewritten as follows:

𝜇𝑡
(
𝑤∗
𝑡

)
𝜅0

= 𝛽(1 − 𝜎)𝐸𝑡

{
(1 − 𝜆)Γ𝑡𝑥

2
𝑡+1(𝑤∗

𝑡+1) + 𝜆Γ𝑡𝑥
2
𝑡+1(𝑤∗

𝑡 )
}

+𝛽2(1 − 𝜎)2𝐸𝑡

{
(1 − 𝜆)Γ𝑡𝑥

2
𝑡+2(𝑤∗

𝑡+2) + (1 − 𝜆)𝜆Γ𝑡𝑥
2
𝑡+2(𝑤∗

𝑡+1) + 𝜆2Γ𝑡𝑥
2
𝑡+2(𝑤∗

𝑡 )
}

+𝛽3(1 − 𝜎)3𝐸𝑡

{
(1 − 𝜆)Γ𝑡𝑥

2
𝑡+3(𝑤∗

𝑡+3) + (1 − 𝜆)𝜆Γ𝑡𝑥
2
𝑡+3(𝑤∗

𝑡+2) + (1 − 𝜆)𝜆2Γ𝑡 · · ·

Similarly, (𝐴.7) can be rewritten as

𝜇𝑡
(
𝑤∗
𝑡+1

)
𝜅0

= 𝛽(1 − 𝜎)𝐸𝑡

{
Γ𝑡+1𝑥

2
𝑡+1(𝑤∗

𝑡+1)
}

+ 𝛽2(1 − 𝜎)2𝐸𝑡

{
(1 − 𝜆)Γ𝑡+1𝑥

2
𝑡+2(𝑤∗

𝑡+2) + 𝜆Γ𝑡+1𝑥
2
𝑡+2(𝑤∗

𝑡+1)
}

+ 𝛽3(1 − 𝜎)3𝐸𝑡

{
(1 − 𝜆)Γ𝑡+1𝑥

2
𝑡+3(𝑤∗

𝑡+3) + (1 − 𝜆)𝜆Γ𝑡+1𝑥
2
𝑡+3(𝑤∗

𝑡+2) + 𝜆2Γ𝑡+1𝑥
2
𝑡+3(𝑤∗

𝑡+1)
}
+ · · ·

Then,

𝜇𝑡 (𝑤∗
𝑡 ) − 𝜇𝑡 (𝑤∗

𝑡+1)
𝜅0

= 𝛽(1 − 𝜎)𝐸𝑡

{
Γ̃𝑥2

𝑡+1(𝑤∗
𝑡+1) + 𝜆Γ𝑡

(
𝑥2
𝑡+1(𝑤∗

𝑡 ) − 𝑥2
𝑡+1(𝑤∗

𝑡+1)
)}

+𝛽2(1 − 𝜎)2𝐸𝑡

{
(1 − 𝜆)Γ̃𝑥2

𝑡+2(𝑤∗
𝑡+2) + 𝜆Γ̃𝑥2

𝑡+2(𝑤∗
𝑡+1) + 𝜆2Γ𝑡

(
𝑥2
𝑡+2(𝑤∗

𝑡 ) − 𝑥2
𝑡+2(𝑤∗

𝑡+1)
)}

+𝛽3(1 − 𝜎)3𝐸𝑡

{
(1 − 𝜆)Γ̃𝑥2

𝑡+3(𝑤∗
𝑡+3) + (1 − 𝜆)𝜆Γ̃𝑥2

𝑡+3(𝑤∗
𝑡+2) + 𝜆2Γ̃𝑥2

𝑡+3(𝑤∗
𝑡+1) + · · · ,

where Γ̃ ≡ Γ𝑡 − Γ𝑡+1. By log-linearizing the above and substituting (𝐵.21) into it, we get

�̄�
(
�̂�𝑡 (𝑤∗

𝑡 ) − �̂�𝑡 (𝑤∗
𝑡+1)

)
=

𝛽(1 − 𝜎)Γ̄𝜅0𝑥
2

1 − 𝛽(1 − 𝜎)
(
Γ̂𝑡 − 𝐸𝑡 Γ̂𝑡+1

)
+ 2Γ̄𝜅0𝑥

2𝛽𝜆(1 − 𝜎)
1 − 𝛽𝜆(1 − 𝜎)

{𝜆�̄��̄�−1

1 − 𝛽𝜆

(
𝐸𝑡 �̂�

∗
𝑡+1 − �̂�∗

𝑡

)}
, (B.22)

where
2Γ̄𝜅0𝑥

2𝛽𝜆(1 − 𝜎)
1 − 𝛽𝜆(1 − 𝜎)

𝜆�̄��̄�−1

1 − 𝛽𝜆
= Δ−1 (𝛽𝜆)2𝜎(1 − 𝜎)Γ̄�̄�

1 − 𝛽𝜆
. (B.23)

Substituting (𝐵.22) into (𝐵.19) yields

�̂�∗
𝑡 = (1 − Δ)𝐸𝑡 �̂�

∗
𝑡+1 + Δ�̂�𝑁

𝑡 +
Δ𝛽(1 − 𝜎)Γ̄

(
𝑧 − ℎ̄ + 𝜅0𝑥

2) (�̄�)−1

1 − 𝛽(1 − 𝜎)
(
Γ̂𝑡 − 𝐸𝑡 Γ̂𝑡+1

)
+ (𝛽𝜆)2𝜎(1 − 𝜎)Γ̄

1 − 𝛽𝜆

(
𝐸𝑡 �̂�

∗
𝑡+1 − �̂�∗

𝑡

)
.
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Rearranging this, we get

�̂�∗
𝑡 = Δ̃�̂�𝑁

𝑡 + (1 − Δ̃)𝐸𝑡 �̂�
∗
𝑡+1 + Λ

(
Γ̂𝑡 − 𝐸𝑡 Γ̂𝑡+1

)
, (B.11)

where

Δ̃ = Δ

(
1 + (𝛽𝜆)2𝜎(1 − 𝜎)Γ̄

1 − 𝛽𝜆

)−1

and

Λ =
Δ̃𝛽(1 − 𝜎)Γ̄

(
𝑧 − ℎ̄ + 𝜅0𝑥

2) (�̄�)−1

1 − 𝛽(1 − 𝜎) .

Next, we describe the derivation of (𝐵.14). (16) can be rewritten as

𝐹𝑤 (𝑤∗
𝑡 , 𝑆𝑡 ) = − 1 + 𝛽𝜆(1 − 𝜎 + 𝑞𝑡𝑥𝑡 (𝑤∗

𝑡 ))𝐸𝑡 [ 𝐹𝑤 (𝑤∗
𝑡+1, 𝑆𝑡+1) ]

+ 𝛽𝜆(1 − 𝜎 + 𝑞𝑡𝑥𝑡 (𝑤∗
𝑡 ))𝐸𝑡

[
𝐹𝑤 (𝑤∗

𝑡 , 𝑆𝑡+1) − 𝐹𝑤 (𝑤∗
𝑡+1, 𝑆𝑡+1)

]
,

where

𝐹𝑤 (𝑤∗
𝑡 , 𝑆𝑡+1) = − 1 + 𝛽𝜆

(
1 − 𝜎 + 𝑞𝑡+1𝑥𝑡+1(𝑤∗

𝑡 )
)
𝐸𝑡+1 [ 𝐹𝑤 (𝑤∗

𝑡 , 𝑆𝑡+2) ] and

𝐹𝑤 (𝑤∗
𝑡+1, 𝑆𝑡+1) = − 1 + 𝛽𝜆

(
1 − 𝜎 + 𝑞𝑡+1𝑥𝑡+1(𝑤∗

𝑡+1)
)
𝐸𝑡+1 [ 𝐹𝑤 (𝑤∗

𝑡+1, 𝑆𝑡+2) ] .

Log-linearizing this yields the following:

�̂�𝑤 (𝑤∗
𝑡 , 𝑆𝑡 ) = 𝛽𝜆𝑞𝑥

(
𝑞𝑡 + 𝑥𝑡 (𝑤∗

𝑡 )
)
+ 𝛽𝜆𝐸𝑡 �̂�𝑤 (𝑤∗

𝑡+1, 𝑆𝑡+1) + 𝛽𝜆
(
𝐸𝑡 �̂�𝑤 (𝑤∗

𝑡 , 𝑆𝑡+1) − 𝐸𝑡 �̂�𝑤 (𝑤∗
𝑡+1, 𝑆𝑡+1)

)
,

(B.24)

where

𝐸𝑡 �̂�𝑤 (𝑤∗
𝑡 , 𝑆𝑡+1) − 𝐸𝑡 �̂�𝑤 (𝑤∗

𝑡+1, 𝑆𝑡+1)

= 𝛽𝜆𝑞𝑥
(
𝐸𝑡𝑥𝑡+1(𝑤∗

𝑡 ) − 𝐸𝑡𝑥𝑡+1(𝑤∗
𝑡+1)

)
+ 𝛽𝜆

(
𝐸𝑡 �̂�𝑤 (𝑤∗

𝑡 , 𝑆𝑡+2) − 𝐸𝑡 �̂�𝑤 (𝑤∗
𝑡+1, 𝑆𝑡+2)

)
.

Using (𝐵.21), we get

𝐸𝑡 �̂�𝑤 (𝑤∗
𝑡 , 𝑆𝑡+1) − 𝐸𝑡 �̂�𝑤 (𝑤∗

𝑡+1, 𝑆𝑡+1) =
𝛽𝜆𝑞𝑥

1 − 𝛽𝜆

(
𝜆�̄��̄�−1

1 − 𝛽𝜆

(
𝐸𝑡 �̂�

∗
𝑡+1 − �̂�∗

𝑡

) )
. (B.25)

We get (𝐵.14) by substituting (𝐵.25) into (𝐵.24).

B.3 Average vacancy and average wages

In this subsection, we derive (𝐵.9) and (𝐵.10). The average wages across all workers in period 𝑡,
�̄�𝑡 , and 𝑡 + 1, �̄�𝑡+1 and that among new hires, �̃�𝑡+1, are respectively given by

�̄�𝑡 = (1 − 𝜆)𝑤∗
𝑡 (𝑆𝑡 ) + 𝜆

∫
𝑤d𝑃𝑡 (𝑤), (B.26)

𝐸 [�̄�𝑡+1 | 𝑆𝑡 ] =
∫
𝑍

{
(1 − 𝜆)𝑤∗

𝑡+1(𝑆𝑡+1) + 𝜆
(
(1 − 𝜆)

1 − 𝜎 + 𝑞𝑡𝑥𝑡 (𝑤∗
𝑡 , 𝑆𝑡 )

1 − 𝜎 + 𝑞𝑡𝑥𝑡
𝑤∗
𝑡 (𝑆𝑡 )

+ 𝜆

∫
𝑊

1 − 𝜎 + 𝑞𝑡𝑥𝑡 (𝑤, 𝑆𝑡 )
1 − 𝜎 + 𝑞𝑡𝑥𝑡

𝑤d𝑃𝑡 (𝑤)
)}

dΠ(𝑧𝑡+1 | 𝑧𝑡 ), and (B.27)
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𝐸 [�̃�𝑡+1 | 𝑆𝑡 ] =
∫
𝑍

{
(1 − 𝜆)𝑤∗

𝑡+1(𝑆𝑡+1) + 𝜆
(
(1 − 𝜆)

𝑥𝑡 (𝑤∗
𝑡 , 𝑆𝑡 )
𝑥𝑡

𝑤∗
𝑡 (𝑆𝑡 )

+ 𝜆

∫
𝑊

𝑥𝑡 (𝑤, 𝑆𝑡 )
𝑥𝑡

𝑤d𝑃𝑡 (𝑤)
)}

dΠ(𝑧𝑡+1 | 𝑧𝑡 ), (B.28)

where
𝑥𝑡 = (1 − 𝜆)𝑥𝑡 (𝑤∗

𝑡 , 𝑆𝑡 ) + 𝜆

∫
𝑊

𝑥𝑡 (𝑤, 𝑆𝑡 )d𝑃𝑡 (𝑤). (21)

Log-linearizing (𝐵.26) and (𝐵.27) yields7

ˆ̄𝑤𝑡 = (1 − 𝜆)�̂�∗
𝑡 + 𝜆

∫
𝑊

�̂�d𝑃𝑡 (𝑤) and (B.29)

𝐸𝑡 ˆ̄𝑤𝑡+1 = (1 − 𝜆)𝐸𝑡 �̂�
∗
𝑡+1 + 𝜆(1 − 𝜆)

(
𝑥𝑡 (𝑤∗

𝑡 , 𝑆𝑡 ) + �̂�∗
𝑡 − ˆ̄𝑥𝑡

)
+ 𝜆2

∫
𝑊

(
𝑥𝑡 (𝑤, 𝑆𝑡 ) + �̂� − ˆ̄𝑥𝑡

)
d𝑃𝑡 (𝑤)

= (1 − 𝜆)𝐸𝑡 �̂�
∗
𝑡+1 + 𝜆

{
(1 − 𝜆)�̂�∗

𝑡 + 𝜆

∫
𝑊

�̂�d𝑃𝑡 (𝑤)
}

+ 𝜆

{
(1 − 𝜆)𝑥𝑡 (𝑤∗

𝑡 , 𝑆𝑡 ) + 𝜆

∫
𝑊

𝑥𝑡 (𝑤, 𝑆𝑡 )d𝑃𝑡 (𝑤) − ˆ̄𝑥𝑡
}
. (B.30)

By log-linearizing (21), we get

ˆ̄𝑥𝑡 = (1 − 𝜆)𝑥𝑡 (𝑤∗
𝑡 , 𝑆𝑡 ) + 𝜆

∫
𝑊

𝑥𝑡 (𝑤, 𝑆𝑡 )d𝑃𝑡 (𝑤). (B.31)

Thus, the following equation is obtained by substituting (𝐵.29) and (𝐵.31) into (𝐵.30):

𝐸𝑡 ˆ̄𝑤𝑡+1 = (1 − 𝜆)𝐸𝑡 �̂�
∗
𝑡+1 + 𝜆 ˆ̄𝑤𝑡 . (B.32)

Similarly, log-linearizing (𝐵.28), the expected wage among new hires becomes

𝐸𝑡 ˆ̃𝑤𝑡+1 = (1 − 𝜆)𝐸𝑡 �̂�
∗
𝑡+1 + 𝜆 ˆ̄𝑤𝑡 . (B.33)

This implies that to a first-order approximation, the average wage among new hires is the same as that
among all workers.

Next, we derive (𝐵.9). From (10), the vacancy rate in period 𝑡 of the firm paying 𝑤 satisfies

2𝜅0𝑥𝑡 (𝑤, 𝑆𝑡 ) = 𝛽𝑞𝑡𝐸𝑡

[
𝑧𝑡+1 −

(
(1 − 𝜆)𝑤∗

𝑡+1 + 𝜆𝑤
)
+ 𝜅0𝑥

2
𝑡+1(𝑤𝑡+1, 𝑆𝑡+1) +

2(1 − 𝜎)𝜅0𝑥𝑡+1(𝑤𝑡+1, 𝑆𝑡+1)
𝑞𝑡+1

]
,

where 𝑤𝑡+1 =

{
𝑤∗
𝑡+1 with probability 1 − 𝜆

𝑤 with probability 𝜆
. (B.34)

Log-linearizing this around the steady state, we get

𝑥𝑡 (𝑤, 𝑆𝑡 ) = 𝑞𝑡 + 𝐹−1𝐸𝑡

(
𝑧𝑧𝑡+1 − (1 − 𝜆)�̄��̂�∗

𝑡+1 − 𝜆�̄��̂�
)
+ 𝛽𝐸𝑡𝑥𝑡+1(𝑤𝑡+1, 𝑆𝑡+1) − 𝛽(1 − 𝜎)𝐸𝑡𝑞𝑡+1.

(B.35)

Substituting this into (𝐵.31):

ˆ̄𝑥𝑡 = 𝑞𝑡 + 𝐹−1𝐸𝑡

[
𝑧𝑧𝑡+1 − �̄�

{
(1 − 𝜆)�̂�∗

𝑡+1 + 𝜆

(
(1 − 𝜆)�̂�∗

𝑡 + 𝜆

∫
𝑊

�̂�d𝑃𝑡 (𝑤)
)}]

− 𝛽(1 − 𝜎)𝐸𝑡𝑞𝑡+1

7Let 𝑤𝑡 denote the average wage among all workers.
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+ 𝛽𝐸𝑡

[
(1 − 𝜆)𝑥𝑡+1(𝑤∗

𝑡+1, 𝑆𝑡+1) + 𝜆
(
(1 − 𝜆)𝑥𝑡+1(𝑤∗

𝑡 , 𝑆𝑡+1) + 𝜆

∫
𝑊

𝑥𝑡+1(𝑤, 𝑆𝑡+1)d𝑃𝑡 (𝑤)
)]

= 𝑞𝑡 + 𝐹−1𝐸𝑡
(
𝑧𝑧𝑡+1 − �̄� ˆ̄𝑤𝑡+1

)
+ 𝛽𝐸𝑡 ˆ̄𝑥𝑡+1 − 𝛽(1 − 𝜎)𝐸𝑡𝑞𝑡+1. (B.36)

B.4 Vacancy rate of renegotiated firms

Finally, we derive the vacancy rate of renegotiated firms, 𝑥𝑡 (𝑤∗
𝑡 , 𝑆𝑡 ). Using (𝐵.35), we get the

following equation.

𝑥𝑡 (𝑤∗
𝑡 , 𝑆𝑡 ) = 𝑞𝑡 + 𝐹−1𝐸𝑡

(
𝑧𝑧𝑡+1 − �̄�

(
�̂�∗
𝑡+1 + 𝜆

(
�̂�∗
𝑡 − �̂�∗

𝑡+1
) ) )

− 𝛽(1 − 𝜎)𝐸𝑡𝑞𝑡+1

+ 𝛽𝐸𝑡𝑥𝑡+1(𝑤∗
𝑡+1, 𝑆𝑡+1) + 𝛽𝐸𝑡

(
(1 − 𝜆)𝑥𝑡+1(𝑤∗

𝑡+1, 𝑆𝑡+1) + 𝜆𝑥𝑡+1(𝑤∗
𝑡 , 𝑆𝑡+1) − 𝑥𝑡+1(𝑤∗

𝑡+1, 𝑆𝑡+1)
)
. (B.37)

Using (𝐵.21), the last term can be rewritten as

𝛽𝜆𝐸𝑡

(
𝑥𝑡+1(𝑤∗

𝑡 , 𝑆𝑡+1) − 𝑥𝑡+1(𝑤∗
𝑡+1, 𝑆𝑡+1)

)
= 𝛽𝜆

𝜆�̄�𝐹−1

1 − 𝛽𝜆

(
𝐸𝑡 �̂�

∗
𝑡+1 − �̂�∗

𝑡

)
. (B.38)

Substituting (𝐵.38) into (𝐵.37), we get

𝑥𝑡 (𝑤∗
𝑡 , 𝑆𝑡 ) = 𝑞𝑡 + 𝐹−1𝐸𝑡

(
𝑧𝑧𝑡+1 − �̄�

{
�̂�∗
𝑡+1 +

𝜆

1 − 𝛽𝜆

(
�̂�∗
𝑡 − �̂�∗

𝑡+1
)})

− 𝛽(1 − 𝜎)𝐸𝑡𝑞𝑡+1 + 𝛽𝐸𝑡𝑥𝑡+1(𝑤∗
𝑡+1, 𝑆𝑡+1). (B.15)
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