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Formation Control of Multi-Agent System Based
on Higher-Order Partial Differential Equations

Kaiyo Yamaguchi, Takahiro Endo Member, IEEE , and Fumitoshi Matsuno, Senior Member, IEEE

Abstract— We propose a method of controlling the for-
mation in a multi-agent system using partial differential
equations (PDEs). In this method, the behavior of the entire
multi-agent system is modeled by second- or higher-order
PDEs. We also propose a boundary controller that expo-
nentially stabilizes the PDE model. By discretizing the PDE
model under the proposed controller, the follower agents’
control laws can be derived. Moreover, the boundary con-
troller corresponds to the leader agents’ control laws. The
use of higher-order PDEs leads to the generation of various
formations that cannot be generated by using lower-order
PDEs. Finally, we conduct numerical simulations and exper-
iments to validate the proposed method.

Index Terms— stability, swarm, multiple robots, forma-
tion control, decentralized, partial differential equation,
boundary control.

I. INTRODUCTION

IN recent years, research on a robotic swarm, which is a
group of multiple robots, has been actively conducted. A

swarm has the robustness necessary to achieve a goal even
if the environment or the situation changes, the flexibility to
respond to changes in the environment or the situation, and
sufficient scalability to use a large number of individuals. In
a robotic swarm, decentralized formation control is attracting
attention as a swarm application and is expected to be applied
to autonomous driving technology, mobile robot arrangement,
UAV formation flight, and others [1].

Most studies on the formation control of multi-agent sys-
tems have described the behavior of an entire system in terms
of ordinary differential equations (ODE), which can be roughly
divided into three control methods [1]. The first is the position-
based method, in which the desired formation is achieved by
all agents having their own position information on a global
coordinate system and controlling their positions to converge
to the desired position [2]–[4]. The second method is the
displacement-based method, in which each agent knows the
relative position vectors with its neighbor agents and the de-
sired formation is achieved by converging them to the desired
values [5]–[11]. And the third is the distance-based method,
in which the desired formation is achieved by each agent
having information on the relative distance to its neighboring
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agents and converging them to the desired values [12]–[15].
However, in any of these methods, the control laws of each
agent include information on the desired formation, such as the
desired position, the desired relative position, and the desired
relative distance of each agent, that differs for each agent.
Thus, to apply the above methods to a huge number of agents,
we need to calculate the desired formation value for each of
the huge number of agents, and it requires a lot of work to
implement the desired value in the controller of each of the
huge number of agents becomes difficult. Furthermore, in the
method using ODE, the gains of the model need to be tuned
again when the number of agents is changed.

To solve these problems, formation control methods based
on partial differential equations have been proposed. These
methods use partial differential equations (PDEs) to represent
the behavior of an entire robot group. A control method for
the PDE model is also proposed. Then, the controller for
each agent is derived by discretizing the PDE model. In these
methods, we can place all agents in the desired formation
merely by setting a few parameters given uniformly to all
follower agents included in the PDEs and a few parameters
given to the leader agent. The advantage of this method is
that it is not necessary to retune the gain of the model itself,
even when the number of agents increases. This is because a
model of the multi-agent system is described by the partial
differential equation independent of the number of agents.

First, G. Ferrari et al. showed that the consensus control law
often used in conventional formation control was consistent
with the heat equation, which is a partial differential equation,
and they suggested that the heat equation could serve as a
model of the multi-agent system [16]. P. Frihauf et al. proposed
a method that enables multi-agent formation control by using
the boundary controller of a PDE model based on the heat
equation [17]. Since then, much research has been conducted
on the formation control of multiple robots using the boundary
control of partial differential equations. T. Meurer et al. used
Burgers equations, which are nonlinear second-order partial
differential equations, and proposed a method to achieve the
desired formation that conventional methods could not [18].
J. Qi et al. proposed a method that can control the formation
of a multi-agent system in a three-dimensional environment
by using two polar coordinate heat equations [19], [20]. J.
Qi et al. proposed a method that can set a time-varying
desired shape by using a wave equation [21]. In addition,
there have been many studies on the formation control of a
multi-agent system by using boundary control of second-order
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PDEs [22]–[24]. However, the methods using boundary control
proposed in these studies have second-order partial differential
equations, and the number of PDE parameters that can be set
is limited. Therefore, there are problems such as limitations on
the desired formation that can be achieved. Furthermore, when
achieving the desired shape at an arbitrary position, some PDE
parameters must be set to 0, and the desired shape that can be
achieved is further limited.

To address this problem, G. Freudenthaler et al. proposed a
method that can move the desired shape to an arbitrary position
by a method that uses an exogenous system and can achieve
abundant desired shapes [25]. J. Qi et al. proposed a method
that can control the trajectory by using a distributed control
that gives the desired shape in advance to a closed-loop system
of partial differential equations [26]. Here, note that there
are two kinds of controllers for PDE: boundary controllers
and distributed controllers. The control action of a boundary
controller is at the boundary of the PDE system, and that of a
distributed controller is distributed in the domain of the PDE
system. In addition, Wei et al. proposed a distributed control
method for a model based on the heat equation and proposed
a method that can achieve all functions that are second-
order differentiable as the desired shapes [27]. Although these
methods can achieve many shapes, the controller used is a
distributed controller. Thus, due to the nature of the control
method, the information on the desired shape is included in the
control law of each follower agent. Therefore, as the number
of agents increases, it becomes difficult to design control laws
for each agent, and communication with all agents is required
to change the size and position of the target shape.

From these points of view, in this paper we propose a
formation control method of a multi-agent system by using the
boundary control method of higher-order PDEs. The proposed
method has the following advantages.

(i) As in the previous studies on boundary control methods
of multi-agent systems, follower agents do not need individual
desired values in the implementation of the controller.

(ii) Since the order of a PDE model can be designed freely, it
is possible to achieve formations that cannot be achieved with
other PDE-based formation control methods using boundary
control.

Our proposed method utilizes a more conceptually difficult,
higher-order PDE model to synthesize controllers that can
generate agent deployment to a richer class of planar curves.
The added complexity from designing controllers for higher-
order PDEs allows the user to assign multi-agent deployment
to a much richer class of planar curves than what is achievable
in the existing literature, where only second-order PDEs are
considered. The additional planar curves that our proposed
algorithms can achieve require additional equilibria for the
PDE, which necessitates the higher-order PDEs. Further, in
the previous studies, the methods were validated only by
numerical simulation as far as we know, whereas in this paper
experiments confirmed that the method is useful for an actual
robot.

This paper is organized as follows. Section II presents the
problem settings. Section III proposes a boundary controller
and describes the stability analysis. Section IV and V provide

Fig. 1: Placement of N agents

the numerical and experimental results to validate the proposed
method, respectively. Finally, section VI concludes the paper.

II. PROBLEM STATEMENT

A. Problem setting
This paper discusses the placement of N agents on the

desired shape as shown in Fig. 1. Here, note that Fig. 1 is
an example, and it is not the goal of this paper to achieve
the formation as shown in the right figure of Fig. 1. In this
method, we consider a multi-agent system consisting of m
leader agents corresponding to the boundary conditions of the
mth-order PDE and N−m follower agents that determine their
own behavior based on the PDEs. The purpose of this method
is to place N agents on the desired formation by designing a
model of the PDEs and the boundary input that converges the
agents to the desired formation.

We give an overview of formation control using a PDE-
based approach. For example, let us consider a situation in
which there are multiple follower agents, and they are arranged
in a chain, as shown in Fig. 1. We assume that each agent
is connected so that information can be exchanged with the
neighbor agents. Then, let us consider the case where the
behavior of entire agents, that is, the swarm, is given by the
following one-dimensional heat equation:

ẋ(α, t) = ax′′(α, t), α ∈ (0, 1), t ≥ 0, (1)
x(0, t) = u0(t), x(1, t) = ua(t), (2)

where x(α, t) is the temperature at time t at position α, and a
is a physical parameter. Here, a dot denotes the time derivative,
and a prime means the spatial derivative. Further, u0(t) and
ua(t) are the boundary inputs. α ∈ [0, 1] is corresponding
to the agent index number. Now, we assume that the control
inputs u0(t) and ua(t) converge x(α, t) to a certain desired
formation x̄(α). We spatially discretize (1) and let xi(t) =
x((i−1)h, t), i = 1, · · · , N . Here, h = 1/(N −1) is a spatial
difference, and xi(t) is corresponding to the position of the
i-th agent. Then, we obtain the following equation:

ẋi(t) =
∑
j∈Ni

{xi(t)− xj(t)} , (3)

where Ni is the set of neighbors of agent i. Here note that, in
the derivation of (3), we performed the change of variables t =
h2τ and replace τ with t. Equation (3) corresponds to agent
i = 1, · · · , N − 1 is controlled by the well-known consensus-
based control. In addition, the leaders at the boundaries are
position-controlled as x1(t) = u0(t) and xN (t) = ua(t).
Therefore, by finding the control inputs u0(t) and ua(t) that
converge x(α, t) to x̄(α), we can converge the swarm to the
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desired formation. In particular, the positions of the leaders
are controlled by x1(t) = u0(t) and xN (t) = ua(t), and
the followers other than the leaders are controlled by the
consensus-based control. This procedure is formation control
using a PDE-based approach.

This paper focuses on boundary control and boundary
sensing as the leader’s controller. Here, note that the boundary
control/sensing means that the control/measurement action is
at the boundary of the system. This is because only the leader’s
controller requires information on the desired formation, and
the leader’s controller should be constructed using the infor-
mation of the neighbors around the leader. As explained in
the previous paragraph, the controllers of agents other than
the leaders are determined from PDE dynamics, which does
not include the information on the desired formation. Taking
the one-dimensional heat equation (1) and (2) as an example,
let us consider the controller that converges x(α, t) to x̄(α).
If the controllers consists only of the values obtained by
boundary sensing, we can design the controllers as u0(t) =
−kf0{x′(0, t)−x̄′(0)}+ū0, ua(t) = −kfa{x′(1, t)−x̄′(1)}+
ū1, for example. Here, kf0 and kfa are some feedback gains,
ū0 and ū1 are constant determined from the desired formation.
Further, the controllers are derived by (21) and (22). Using
the spatial difference, the leaders’ controllers are as follows:
u0(t) = −kf0/h{x2(t) − x1(t) − x̄′(0)} + ū0, and ua(t) =
−kfa/h{xN (t)− xN−1(t)− x̄′(1)}+ ū1. Thus, by focusing
on boundary control and boundary sensing, we can be seen
that only the leaders’ controllers have the information of the
desired formation, and the leaders’ controllers become the
decentralized control. Here, note that the decentralized control
for multi-agent systems is the control method, in which the
agents act according to the locally available information. In
contrast, a centralized control for multi-agent systems is the
control method, in which the information of the whole agents
is managed by a central computer.

On the other hand, if we use the information obtained by
internal sensing in the construction of the controllers, we can
design the controllers as follows: u0(t) = −kf0

∫ 1

0
{x(α, t)−

x̄(α)}dα + ū0 and ua(t) = −kfa
∫ 1

0
{x(α, t) − x̄(α)}dα +

ū1. Here, note that these controllers are just an example,
and the stability of (1) by these controllers has not been
examined. Further, internal sensing means that the spatially
continuous x(α, t) value can be measured. Using the spa-
tial difference, the leaders’ controllers become as follows:
u0(t) = −kf0

∑N
j=0{xj(t) − x̄j} + ū0, and ua(t) =

−kfa
∑N
j=0{xj(t)− x̄j}+ ū1, where x̄j = x̄((i−1)h). Thus,

the leaders’ controllers require all agents’ information, and
the leaders’ controllers are no longer decentralized controllers.
For this reason, boundary control and boundary sensing are
adopted in this paper.

B. Proposed PDE model

We specify the behaviors of the agents by the following
PDEs:

ẋ(α, t) =

m∑
i=0

aix
(i)(α, t), (4)

ẏ(α, t) =

m∑
i=0

biy
(i)(α, t), (5)

where x(α, t) and y(α, t) are real numbers representing the
x-axis and y-axis coordinates of the agents, respectively,
and they are the state variables of the PDE. ai and bi are
constant parameters. In addition, α is a spatial variable that
characterizes each agent satisfying 0 ≤ α ≤ 1, and t represents
time. x(i)(α, t) represents the i-th order derivative of the
spatial variable α of x(α, t). Since the discussions of (4) and
(5) are equivalent, we consider only the model for the x-axis
(4) here. Here, note that (4) and (5) are decoupled. That is,
the x-axis and y-axis coordinates of the agents are decoupled.
In general, there are many dynamics in which the x-axis and
y-axis coordinates are coupled. However, as we mentioned in
the experiment, we envision the use of mobile robots with
decoupled x-axis and y-axis, such as omnidirectional robots.
Our method can be applied to an object whose x-axis and
y-axis are decoupled, such as an omnidirectional robot. The
design of the controller for decoupled PDEs is future work.
In addition, PDEs (4) and (5) are set so that the behavior of
the swarm follows these PDEs (4) and (5). In particular, these
PDEs do not follow a kinematic model and are not derived
from Newton’s Second Law.

We set the boundary conditions of this model as follows:

x(0, t) = u0(t), (6)

x(j)(0, t) = u0j , for j = 1, ..., [m/2]− 1, (7)
x(1, t) = ua(t), (8)

x(l)(1, t) = ual, for l = 1, ..., [(m− 1)/2], (9)

where u0(t) and ua(t) are control inputs for stabilizing
the PDE model (4), and u0j and ual are constants set by
the designer according to the desired formation. [m/2] and
[(m−1)/2] represent the integer parts of m/2 and (m−1)/2,
respectively. Here, the boundary conditions (7) and (9) are not
required when m = 2, and the boundary condition (7) is not
required when m = 3, so we do not define them in that case.

Next, we derive the equilibrium curve of this PDE model. In
(4), ẋ(α, t) equals 0 at the equilibrium point, so that when the
system converges to the equilibrium point (x(α, t) → x̄(α)),
x̄(α) is a solution that satisfies the following ODE:

m∑
i=0

aix̄
(i)(α) = 0, (10)

x̄(0) = ū0, x̄(j)(0) = u0j , (11)

x̄(1) = ūa, x̄(l)(1) = ual, (12)

where ū0 and ūa are constants uniquely obtained from the
desired formation. Therefore, we propose boundary controllers
to converge x(α, t) to x̄(α). Then, the agents can be placed on
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the desired shape by setting x̄(α) to the desired formation. For
example, to deploy agents in a circle, the order m and ū0, ūa,
u0j are set so that x̄(α) = sin(2πα) and ȳ(α) = cos(2πα).

Now, let us introduce the new variable x̃(α, t) = x(α, t)−
x̄(α). Then, the error system of this PDE model (4) can be
expressed as follows:

˙̃x(α, t) =
m∑
i=0

aix̃
(i)(α, t), (13)

x̃(0, t) = ∆u0(t), (14)

x̃(j)(0, t) = 0, for j = 1...[m/2]− 1, (15)
x̃(1, t) = ∆ua(t), (16)

x̃(l)(1, t) = 0, for l = 1...[(m− 1)/2], (17)

where ∆u0(t) = u0(t)− ū0, and ∆ua(t) = ua(t)− ūa.

III. CONTROLLER DESIGN AND STABILITY ANALYSIS

In this section, we design the boundary controllers that
exponentially stabilize the PDE system (4).

A. Controller design

The control objective is to propose a boundary controller
satisfying

x(α, t) → x̄(α). (18)

This means that the agent is placed on the desired shape,
which corresponds to x̃(α, t) → 0 in the error system (13).
To achieve this control objective, we prove the exponential
stability of the closed-loop system using the Lyapunov method
described later. At that time, the designed control inputs when
m ≥ 3 are as follows:

∆u0(t) = k0

{
L
( m∑
j=3

aj x̃
(j−2)(0, t)

)
−K

( m∑
j=2

aj x̃
(j−1)(0, t)

)}
, (19)

∆ua(t) = ka

{
(K + L)

( m∑
j=2

aj x̃
(j−1)(1, t)

)
− L

( m∑
j=3

aj x̃
(j−2)(1, t)

)}
, (20)

where k0 and ka are feedback gains and are non-zero real
numbers. L and K are positive constants derived from the
Lyapunov function. In the case of m = 2, since the first term
on the right-hand side in (19) and the second term on the right-
hand side in (20) cannot be defined, the following control input
is designed with these terms eliminated:

∆u0(t) = −k0Ka2x̃(1)(0, t), (21)

∆ua(t) = ka(K + L)a2x̃
(1)(1, t). (22)

B. Stability analysis

Now we prove the exponential stability in Theorem 1.
However, the proof of Theorem 1 is a proof for the case
m ≥ 3. Even when m = 2, only some exponential stability
conditions are changed, and the outline of the proof does not
change. For the proof when m = 2, see Appendix II.

Theorem 1: The closed-loop system (13) is exponentially
stable if the following conditions are satisfied.

• When m is an even number,

(−1)m/2am ≤ 0, (23)

ϕs := Ls(−1)s+1a2s+1 − L
(−1)sa2s+1

2
+ |a2s|L

+K(−1)sa2s ≤ 0, for s = 1, . . . ,
m

2
, (24)

ψ := a0K − a1
L

2
+

m
2 −1∑
s=1

ϕs
2s

+K
(−1)

m
2 am

2
m
2

< 0, (25)

(1− p)ψ + a0L

L
< 0, (26)

k0 +

(m
2 −1∑
s=1

ϕs
2s−1

+K
(−1)

m
2 am

2
m
2 −1

+
La2 −Ka1

2

)
k20 ≤ 0, (27)

ka +

(
K + L

2
a1 −

a2
2
L

)
k2a ≤ 0. (28)

• When m is an odd number,

(−1)
m−1

2 am ≥ 0, (29)

ϕs := Ls(−1)s+1a2s+1 − L
(−1)sa2s+1

2
+ |a2s|L

+K(−1)sa2s ≤ 0, for s = 1, . . . ,
m− 1

2
, (30)

ψ := a0K − a1L/2 +

m−1
2∑
s=1

ϕs
2s

< 0, (31)

(1− p)ψ + a0L

L
< 0, (32)

k0 +

(m−1
2∑
s=1

ϕs
2s−1

+
La2 −Ka1

2

)
k20 ≤ 0, (33)

ka +

(
K + L

2
a1 −

a2
2
L

)
k2a ≤ 0. (34)

Here, p is a constant satisfying 0 < p ≤ 1.
Proof: For this proof, see Appendix I.

Remark 1: Our proposed method enriches the class of
planar curves to which we can deploy the agent. However,
as the order of PDE increases, the number of neighbor
agents required for each agent’s controller increases when we
implement the controller. For example, the control input of
the i-th follower needs information from at least [(m+ 1)/2]
agents next to the follower, where m is the order of the PDE.
In addition, the controllers of the leader agents when m ≥ 3
require information on m agents in its neighbor. For more
details, please see the following subsection. Therefore, when
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increasing the order of PDE, enough agents are required to
realize the controller.

C. Controller of each agent

To apply the above PDE to the control of a multi-agent
system, it is necessary to discretize the PDE. For this, we
use the discretization method used in [28]. In particular, we
use the central difference for the first-order spatial derivative.
On the other hand, for spatial derivatives of other orders,
we discretize the partial derivative by alternately repeating
forward and backward differences. Except for the first-order
derivative, the terms of x(s)(α, t) are discretized with respect
to spatial variables as follows:

x(s)(α, t) = X(s) =

∑s
k=0(−1)ksCkxi+[(s+1)/2]−k

hs
, (35)

where h represents the spatial difference 1/(N −1), and xi is
the i -th node where α = 0 is the node x1 and corresponds to
the x coordinate of i-th agent. Thus, the control input of the
i-th follower agent ẋi is as follows:

ẋi =

m∑
s=2

asX(s) + a1
xi+1 − xi−1

2h
+ a0xi. (36)

From (36), we can see that the controller of each follower
agent contains only the common PDE parameters, as, a1, and
a0, and the information of the neighboring agents.

Next, we derive the controllers of the leader agents. For the
discretization of the boundary conditions, we use the forward
difference for the boundary condition at α = 0 and the
backward difference for the boundary condition at α = 1. This
discretization of the boundary conditions is based on [28]. By
discretizing the designed boundary controller (19) and (20),
the two leaders’ controllers x1(t) and xN (t) corresponding to
α = 0 and 1 become

x1(t) = k0

{
L

m∑
j=3

ajX0(j − 2)−K

m∑
j=2

ajX0(j − 1)
}
+ ū0,

(37)

xN (t) = ka

{
(K + L)

m∑
j=2

ajXa(j − 1)

− L

m∑
j=3

ajXa(j − 2)
}
+ ūa, (38)

where

X0(j) =

j∑
k=0

(−1)kjCkx1+j−k
hj

− x̄(j)(0), (39)

Xa(j) =

j∑
k=0

(−1)kjCkxN−k

hj
− x̄(j)(1). (40)

Here, x̄(j)(0) and x̄(j)(1) are related to the desired shape x̄(α),
and thus we can see that the controls of the leader agents
include information about the desired shape.

On the other hand, controllers of m− 2 leader agents other
than i = 1 and N are as follows:

xp(t) = k0

{
L

m∑
j=3

ajX0(j − 2)−K

m∑
j=2

ajX0(j − 1)
}

+ ū0 +

P−1∑
j=1

P−1Cju0jh
j , (41)

xq(t) = ka

{
(K + L)

m∑
j=3

ajXa(j − 1)− L

m∑
j=2

ajXa(j − 2)
}

+ ūa +

N−Q∑
j=1

(−1)jN−QCjuajh
j , (42)

where P,Q are integers, and P = 2, · · · , [m/2] − 1, Q =
N − [(m− 1)/2], · · · , N − 1.

IV. NUMERICAL SIMULATIONS

Here we confirm by the numerical simulations that various
desired shapes can be achieved. We consider the following
cases:

Case 1:
x̄(α) = sin(2πα) + 0.5 and ȳ(α) = cos(2πα) + 1.
This means that the desired shape is a circle whose
center is far from the origin.

Case 2:
x̄(α) = sin(3πα) + 0.5 and ȳ(α) = sin(2πα) + 0.5.
The desired shape is a heart shape whose center is
far from the origin.

Case 3:
x̄(α) = α and ȳ(α) =

(
α− 1

2

)2
.

The desired shape is a quadratic curve.
Case 4:

x̄(α) = α+ 0.5 and ȳ(α) =
(
α− 1

2

)2
+ 0.25.

The desired shape is a quadratic curve with offset.
Case 5:

x̄(α) = α+0.5 and ȳ(α) = 10α(α− 1/2)(α− 1)+
0.25.
The desired shape is a cubic curve whose center is
far from the origin.

In particular, in Cases 2 to 5, the shape cannot be achieved
unless the desired values are given to all agents in the previous
studies. In addition, the initial positions of the agents are
deployed at equal intervals on the x-axis [0, 1].

A. Setting of parameters

Now we demonstrate how to set the PDE and various
parameters when the desired shape is given in our method.
As a simple example, we consider a case where the desired
shape is given by x̄(α) = α.

(Step 1): Setting the order m of the PDE model and the
PDE parameters. Substituting the desired shape x̄(α) into the
equilibrium curve (10) gives the following identity for α:

a1 + a0α = 0. (43)
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We set m so that the PDE parameters have nontrivial solutions
when solving this identity for α. In this simple example, we
need to set m to be 2 or higher. If m = 2, the boundary
conditions (7) and (9), which correspond to the control inputs
of the leader agents, are omitted. Now we describe how to
determine the control inputs of the leader agents, so we set
m = 3 here.

Finding ai, i = 0, . . . , 3, that satisfies the identity (43) gives

a2, a3 : arbitrary, (44)
a0 = a1 = 0. (45)

We set the PDE parameters to 0 as much as possible within
the range that satisfies the exponential stabilization conditions
(23)–(34), that is, the conditions for the closed loop system to
be exponential stable. This is to make it easier to confirm the
uniqueness of the equilibrium curve solution described later.
Now, we set a3 = −1, a0 = a1 = a2 = 0.

(Step 2): Setting the desired value in the controllers of the
leader agents. From x̄(α) = α, the parameters related to the
leader agents can be uniquely determined as follows: ū0 =
x̄(0) = 0, ūa = x̄(1) = 1, ua1 = x̄(1)(1) ≈ x̄N−x̄N−1

h = 1,
where x̄i represents the desired position of agent i and is
represented as x̄((i − 1)h). In addition, x̄(1)(0), x̄(2)(0), and
x̄(2)(1) which are parameters included in (39) and (40), can
be uniquely determined as follows: x̄(1)(0) ≈ x̄2−x̄1

h =

1, x̄(2)(0) ≈ x̄3−2x̄2+x̄1

h2 = 0, x̄(2)(1) ≈ x̄N−2x̄N−1+x̄N−2

h2 = 0.

(Step 3): Investigating the uniqueness of a solution to the
equilibrium curve. Up to Step 2, an equilibrium curve with
x̄(α) = α as the solution could be set. However, if a solution
other than the desired shape exists in this ODE, the model may
not converge to the desired shape due to the superposition
of the solutions. Therefore, it is necessary to find that the
solution to the equilibrium curve set by the user has only
the function of the desired shape. In this method, since the
equilibrium curve is a linear ordinary differential equation
with simple boundary conditions (which are constants), we can
easily derive solutions by using symbolic calculation software.
The equilibrium curve for this example of x̄(α) = α is as
follows: {

x̄(3)(α) = 0,
x̄(0) = 0, x̄(1) = 1, x̄(1) = 1.

(46)

Solving this ODE gives the solution x̄(α) = α. From this, it
is confirmed that this ODE has only the desired shape as the
solution.

(Step 4): Setting the feedback gain. Since the setting of each
PDE parameter was completed in Step 2, we substitute those
parameters into the exponential stability conditions (27) and
(28), or (33) and (34). We only need to set the feedback gains
k0 and ka to satisfy the exponential stability conditions. If the
response of the system diverges from this setting, the values of
the PDE parameters are large, and the discretization error may
be amplified. In that case, a reduction coefficient of less than
1 is multiplied by all the PDE parameters obtained in Step 2,
and the feedback gain setting in Step 5 is re-set accordingly.

Using the above method, PDE parameters can be set for
each case in the simulation. The results are as follows:

Cases 1 and 2:
(a0, a1, · · · , am)
= (0, 0, 4π2, 38/15(4π2), 1, 38/15)× 10−4,

(b0, b1, · · · , bm)
= (0, 0, 4π2, 38/15(4π2), 1, 38/15)× 10−4,

(k0x, kax, k0y, kay) = (−0.1,−0.1,−0.1,−0.1).

Cases 3 and 4:
(a0, a1, · · · , am) = (0, 0, 0,−2)× 10−3,
(b0, b1, · · · , bm) = (0, 0, 0,−2)× 10−3,
(k0x, kax, k0y, kay)

= (−1.25,−1,−1.25,−1)× 10−2.

Case 5: (a0, a1, · · · , am) = (0, 0, 0, 0,−1, 0)× 10−2,
(b0, b1, · · · , bm) = (0, 0, 0, 0,−1, 0)× 10−2,
(k0x, kax, k0y, kay) = (−1,−1,−1,−1)× 10−2.

The parameters of each leader agent are uniquely obtained
from each desired shape. For Cases 1, 2, and 5, the 5th-order
PDE model, m = 5, is used, the step time ∆t is set as 1ms,
and the number of agents N is 11. For Cases 3 and 4, the 3-rd
order PDE model, m = 3, is used, the step time ∆t is 0.25s,
and the number of agents N is 7.

B. The shapes in cases 2 to 5
We describe why the shapes in cases 2 to 5 cannot be

achieved by the conventional method that uses the boundary
control of PDEs. Since the existing researches consider a
second-order PDE model, its equilibrium curve is defined as
follows:

a2x̄
(2)(α) + a1x̄

(1)(α) + a0x̄(α) = 0, (47)

where the PDE parameters a0, a1, a2 are set so that the solu-
tion of (47) becomes the desired shape. Now, let us consider
case 2. Substituting the desired shape x̄(α) = sin(3πα) + 0.5
into (47) gives

−9π2a2 sin(3πα)+3πa1 cos(3πα)+a0 sin(3πα)+0.5a0 = 0.
(48)

In order for (48) to hold at any α ∈ [0, 1], parameters a0, a1,
a2 must all be set to 0. This means that all the coefficients
of the PDE model are set to 0, in which case each agent
does not move from the initial position. Therefore, with the
conventional method, it is not possible to set a complicated
function like cases 2-5. On the other hand, in our method,
since the partial derivative of the arbitrary high order is used,
it is possible to use the partial derivative of the order whose
target shape is the solution.

C. Results of numerical simulations
Figures 2–6 show the simulation results of Cases 1 to 5,

respectively. In each figure, (a) shows the time response of
each agent’s position. The black line is the trajectory of each
follower agent, and the blue line is the trajectory of each leader
agent. The target shape is shown by an orange line, the initial



YAMAGUCHI et al.: FORMATION CONTROL OF MULTI-AGENT SYSTEM BASED ON HIGHER-ORDER PARTIAL DIFFERENTIAL EQUATIONS 7

(a) Time response of each agent’s position

0 1 2 3 4
0

0.5

1

(b) Lyapunov function of x-axis

0 1 2 3 4
0

1

2

(c) Lyapunov function of y-axis

Fig. 2: Simulation results (Case 1).

(a) Time response of each agent’s position

0 5 10 15 20 25
0

0.5

1

(b) Lyapunov function of x-axis

0 5 10 15 20 25
0

0.5

1

(c) Lyapunov function of y-axis

Fig. 3: Simulation results (Case 2).

position of each agent is shown as a black point, and the
convergence point of each agent is shown as a red point. From
these figures, we can see that all agents are deployed on the
desired shapes.

On the other hand, in Figs. 2–6, (b) and (c) show the time
response of the L2 norm Vx(t) and Vy(t) of the error system,
respectively. Here, Vx(t) and Vy(t) are the Lyapunov function
of the model on the x and y axes, respectively. In the figures,
the value of the Lyapunov function Vi(t), for i = x and y,
is shown by a blue line. The Lyapunov function V (t) in the
simulation is derived as follows:

V (t) =

∫ 1

0

x̃2dα ≈
N∑
i=0

x̃2((i− 1)h)h. (49)

In a multi-agent system, this equation corresponds to the
sum of the squared error between each agent and its desired
position. From these figures, we found that all agents converge
to the target shape while satisfying the exponential stability.

V. EXPERIMENTS

Now, we consider the validity of our method using real
robots.

(a) Time response of each agent’s position

0 5 10 15 20
-1

0

1

(b) Lyapunov function of x-axis

0 5 10 15 20
0

0.01

0.02

0.03

(c) Lyapunov function of y-axis

Fig. 4: Simulation results (Case 3).

(a) Time response of each agent’s position

0 10 20 30 35
0

0.1

0.2

0.3

(b) Lyapunov function of x-axis

0 10 20 30 35
0

0.05

0.1

0.15

(c) Lyapunov function of y-axis

Fig. 5: Simulation results (Case 4).

A. Update algorithm of desired formation

An actual robot has a speed limitation, that is, the maximum
speed the robot can output. However, the control input for
the leader agent in our method is a position input, and thus
there is a possibility that the speed of the leader agent exceeds
the real robot’s speed limitation. For example, Fig. 7 shows
the time response of each agent’s velocity in Case 5 of the
numerical simulation. In this figure, the blue lines represent
the speed of each leader agent and the black lines represent
the speed of each follower agent. The maximum speed of the
omni-wheel robot used in the experiment is 0.3m/s, and we
can see that several robots are faster than that. Here, note
that the reason why the speed limitation occurs is that the
desired formation is far from the initial configuration, and
the leader agent moves fast accordingly. Thus, we update
the desired shape as follows: as shown in Fig. 8, the desired
shape is gradually updated in a time-varying manner from a
location close to the initial arrangement and is fixed to the
desired shape that the user finally wants to reach when the
time becomes t = tk. By using this time-varying manner,
it can be considered that all agents are finally placed on the
desired shape while keeping the speed limitation. At that time,
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(a) Time response of each agent’s position

0 0.5 1
0

0.1

0.2

0.3

(b) Lyapunov function of x-axis

0 0.5 1
0

0.1

0.2

(c) Lyapunov function of y-axis

Fig. 6: Simulation results (Case 5).

Fig. 7: Time response of each agent’s velocity (Case3 in
numerical simulation).

only the design parameters of the leader agent are updated,
and it is not necessary to update the design parameters of the
follower agent.

Figure 9 shows the results of application of the update
algorithm to Case 3 in the numerical simulation, and Fig. 10
shows the time response of the speed of each agent at that
time. These results indicate that all agents converged to the
desired shape while keeping the real robot’s speed limitation
0.3m/s. In this simulation, the values of x̄(α), ȳt(α), tk, and
tend were set to α, 2t

tend
(α−1/2)2, tend

2 , and 30s, respectively.

B. Experiment environment

In this experiment, we used a motion capture system.
Figure 11 shows a schematic diagram of the experimental
system. Although control of the system itself was centralized,
each agent used only local information when calculating its
control inputs on the control PC, and the inputs were sent to
each agent via Bluetooth from the control PC.

We performed the following cases in the experiment:
Case E1:

x̄(α) = 1.8α and ȳ(α) = 2.5(α− 1/2)2.
Case E2:

x̄(α) = 1.8α+0.3 and ȳ(α) = 2.5(α− 1/2)2 +0.3.
In both cases, the desired formations were quadratic curves,
and the desired formation in Case E1 is generated near the
origin while that in Case E2 is generated at a position distant
from the origin. Setting parameters, such as PDE parameters
and feedback gains, took the same values as in Cases 3 and 4

Fig. 8: Schematic diagram of updating target formation.

Fig. 9: Time response of each agent’s position after applying
the update algorithm (Case3 in numerical simulation).

in the numerical simulation. To update the desired formation,
we set ȳt = 5.0t(α − 1/2)2/tend on Case E1, and x̄t =
1.8α + 0.6t/tend, ȳt = 5.0t(α − 1/2)2/tend + 0.6t/tend on
Case E2. In both cases, the desired shape is finally fixed at
tend/2s. The end time tend is set to 30s for Case E1 and 48s
for Case E2. The initial state in both cases is a state in which
agents are arranged at equal intervals in the [0, 1.8] section on
the x-axis, and the total number of agents N is set to 7.

C. Experimental results

The experimental results for Cases E1 and E2 are shown in
Fig. 12 and 13, respectively. In the figures, (a) is a snapshot of
the experiment and shows the appearance of the experiment at
0s, 10s, 20s, and tend after the start time. In both cases, agents
1 to 7 were set as agents 1 to 7 from the left robot to the right
robot, and agents 1, 6, and 7 were set as the leader agents. (b)
shows the behavior of each agent by using different colors.
The initial position is represented by a black point, and the
convergence position is represented by a black dotted line. (c)
and (d) show the time responses of the x and y coordinates,
respectively. Information on the positions of these agents was
obtained from motion capture data.

From Fig. 12 and 13, we can see that the proposed method
makes it is possible to generate quadratic curves in a real robot
system near the origin and at points away from the origin. We
calculated the sum of squared error between the convergence
position of each agent and the desired position of each agent
for each axis. In Case E1, the error of the x axis was 4.39×
10−8m2 and that of the y axis was 1.83×10−7m2. In Case E2,
the error of the x axis was 2.89×10−9m2 and the error of the
y axis was 3.37 × 10−9m2. Therefore, in both cases, it was
confirmed that all agents converged to the desired formation.
The reason why a little error remains in some agents is that
the input to the robot decreases as the position approaches



YAMAGUCHI et al.: FORMATION CONTROL OF MULTI-AGENT SYSTEM BASED ON HIGHER-ORDER PARTIAL DIFFERENTIAL EQUATIONS 9

Fig. 10: Time response of each agent’s velocity after applying
the update algorithm (Case 3 in numerical simulation).

Fig. 11: Schematic diagram of the experimental system

the desired position, and the applied voltage drops below the
minimum applied voltage.

VI. CONCLUSION

We have proposed a method that uses higher-order PDEs to
control formation in a multi-agent system to achieve abundant
formations that the previous methods could not achieve. In
this method, only the leader agent has the relative position
information of the desired shape, and the controller of the
follower agent contains only constants of the PDE. Therefore,
even if we apply this method to a huge number of robot groups,
the number of parameters to be set does not change.

We derived a boundary controller that stabilizes a PDE
having any m-order and showed that each agent converges
exponentially to the desired shape by using this control
method. Furthermore, we showed that the proposed method
can be applied to a real robot system by proposing an update
algorithm of the desired formation.

In our future work we will prove the well-posedness of
PDEs in this method and collision avoidance between agents,
and we will propose a method that can be applied even when
the desired shape is time-varying. Further, we did not consider
the loss of a leader agent in this paper. We hypothesize,
however, that such fragility could be solved by a moving agent
who could replace the leader when a leader agent is lost, with
the leader as an escort runner. The robustness to the loss of a
leader agent will be addressed in future research.

APPENDIX I
PROOF OF THEOREM 1

We consider L2 := L2(0, 1) as the state space and consider
a candidate for the Lyapunov function as follows: That is,
we consider L2(0, 1) space as the state space of closed-loop
system, and we consider the Lyapunov function consisting of
the norm in L2(0, 1) space:

V (t) =
K

2

∫ 1

0

x̃2dα+
L

2

∫ 1

0

αx̃2dα, (50)

(a) Snapshot of experiment

(b) Time response of each agent’s position

(c) x coordinate of each agent (d) y coordinate of each agent

Fig. 12: Experimental results (Case E1).

where K and L are positive constants. Differentiating (50)
with respect to time and employing (13) gives

V̇ (t) = KI1 + LI2, (51)

where

I1 =

∫ 1

0

( m∑
i=0

aix̃
(i)
)
x̃dα, I2 =

∫ 1

0

α
( m∑
i=0

aix̃
(i)
)
x̃dα. (52)

For clarity, we divide the proof into three steps.
(1st step): First, we consider I1, which is rewritten as follows:

I1 =

∫ 1

0

( m∑
i=2

aix̃
(i)
)
x̃dα+a1

∫ 1

0

x̃(1)x̃dα+a0

∫ 1

0

x̃2dα. (53)

When m ≥ 4, using integration by parts for the first term on
the right side, I1 can be written as

I1 = U1−
∫ 1

0

( m∑
i=4

aix̃
(i−1)

)
x̃(1)dα+J3+J2+J1+J0, (54)

where
U1 =

[(∑m
i=2 aix̃

(i−1)
)
x̃

]1
0

,

J0 = a0
∫ 1

0
x̃2dα, J1 = a1

∫ 1

0
x̃(1)x̃dα,

J2 = −a2
∫ 1

0
(x̃(1))2dα, J3 = −a3

∫ 1

0
x̃(1)x̃(2)dα.

(55)

Furthermore, we can perform the integration by parts on the
second term of (54). This allows us to transform (54) just
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(a) Snapshot of experiment

(b) Time response of each agent’s position

(c) x coordinate of each agent (d) y coordinate of each agent

Fig. 13: Experimental results (Case E2).

as (53) has been transformed into (54). By repeating this
procedure, I1 can finally be rewritten as follows:

I1 =

[m/2]∑
i=1

Ui +
m∑
i=0

Ji, (56)

where
Ui = (−1)i+1

[(∑m
j=2i aj x̃

(j−i)
)
x̃(i−1)

]1
0

,

J2s = (−1)sa2s
∫ 1

0
x̃(s)x̃(s)dα, for s = 0, 1, 2, · · · ,

J2s+1 = (−1)sa2s+1

∫ 1

0
x̃(s+1)x̃(s)dα.

(57)
For i = 2, . . . , [m/2], x̃(i−1)(0) = x̃(i−1)(1) = 0, and thus

Ui = 0. So, the first term on the right side of (56) becomes
[m/2]∑
i=1

Ui =
( m∑
j=2

aj x̃
(j−1)(1)

)
x̃(1)

−
( m∑
j=2

aj x̃
(j−1)(0)

)
x̃(0). (58)

For J2s+1, using the integration by parts gives

J2s+1 =
(−1)sa2s+1

2
{(x̃(s)(1))2 − (x̃(s)(0))2}. (59)

In s = 1, . . . , [(m− 1)/2], if m is an even number, x̃(s)(1) =
x̃(s)(0) = 0, and thus we obtain

[(m−1)/2]∑
s=0

J2s+1 =
a1
2
(x̃2(1)− x̃2(0)). (60)

On the other hand, if m is an odd number, x̃([((m−1)/2])(0) ̸=
0, and thus we obtain

[(m−1)/2]∑
s=0

J2s+1 =
a1
2
(x̃2(1)− x̃2(0))

− (−1)[(m−1)/2]am
2

(x̃([(m−1)/2])(0))2. (61)

Therefore, when the condition (29) holds, J2s+1 can be
evaluated as follows:

[(m−1)/2]∑
s=0

J2s+1 ≤ a1
2
(x̃2(1)− x̃2(0)). (62)

Thus, we obtain the following inequality for I1 regardless of
whether m is even or odd.

I1 ≤
( m∑
j=2

aj x̃
(j−1)(1)

)
x̃(1)−

( m∑
j=2

aj x̃
(j−1)(0)

)
x̃(0)

+
a1
2
(x̃2(1)− x̃2(0)) +

[m/2]∑
s=0

(−1)sa2s

∫ 1

0

(x̃(s))2dα. (63)

(2nd step): Next, we consider I2, the second term on the right
side of (51). Using the integration by parts gives

I2 =

[
α
( m∑
i=2

aix̃
(i−1)

)
x̃

]1
0

−
∫ 1

0

( m∑
i=2

aix̃
(i−1)

)
x̃dα

−
∫ 1

0

α
( m∑
i=2

aix̃
(i−1)

)
x̃(1)dα

+ a1

∫ 1

0

αx̃(1)x̃dα+ a0

∫ 1

0

αx̃2dα. (64)

By repeating the same procedure as the expansion of I1 using
the integration by parts, we obtain

I2 =

[m/2]∑
i=1

Ūi +

[m/2]∑
i=1

Si +

m∑
i=0

J̄i, (65)

where
Ūi =

[
α
(∑m

j=2i aj x̃
(j−i)

)
x̃(i−1)

]1
0

,

Si = (−1)i
∫ 1

0

(∑m
j=2i aj x̃

(j−1)
)
x̃(i−1)dα,

J̄2s = (−1)sa2s
∫ 1

0
α(x̃(s))2dα, for s = 0, 1, 2, · · · ,

J̄2s+1 = (−1)sa2s+1

∫ 1

0
αx̃(s+1)x̃(s)dα.

(66)
Since x̃(i−1)(1) = 0 at i = 2, · · · , [m/2], we obtain Ūi = 0.

Thus, the first term on the right side of (65) can be written as

[m/2]∑
i=1

Ūi =
( m∑
j=2

aj x̃
(j−1)(1)

)
x̃(1). (67)

For J̄2s+1, using the integration by parts leads to

J̄2s+1 =
(−1)sa2s+1

2

{
(x̃(s))2(1)−

∫ 1

0

(x̃(s))2dα
}
. (68)
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For J̄2s, we have the following inequality for s =
1, . . . ,m/2 when m is even and for s = 1, . . . , (m − 1)/2
when m is odd:

J̄2s = (−1)sa2s

∫ 1

0

α(x̃(s))2dα ≤ |a2s|
∫ 1

0

(x̃(s))2dα. (69)

For Si, simple calculations give

Si = (−1)i
[( m∑

j=2i+1

aj x̃
(j−i−1)

)
x̃(i−1)

]1
0

+ Si+1

+ (−1)i+1a2i+1

∫ 1

0

(x̃(i))2dα

+
(−1)ia2i

2

{
(x̃(i−1))2(1)− (x̃(i−1))2(1)

}
, (70)

and thus we obtain

[m/2]∑
i=1

Si = [m/2]S[m/2] +

[m/2]−1∑
i=1

i(−1)i+1a2i+1

∫ 1

0

(x̃(i))2dα

−
( m∑
j=3

aj x̃
(j−2)(1)

)
x̃(1)

+
( m∑
j=3

aj x̃
(j−2)(0)

)
x̃(0)− a2

2

(
x̃2(1)− x̃2(0)

)
. (71)

Here, if m is even, we can easily obtain S[m/2] = 0, which
leads to

[m/2]∑
i=1

Si =

[m/2]−1∑
i=1

i(−1)i+1a2i+1

∫ 1

0

(x̃(i))2dα

−
( m∑
j=3

aj x̃
(j−2)(1)

)
x̃(1)

+
( m∑
j=3

aj x̃
(j−2)(0)

)
x̃(0)− a2

2

(
x̃2(1)− x̃2(0)

)
. (72)

Thus, when m is even, we obtain the following estimation
about I2 by substituting (23), (67)–(69), and (72) into (65):

I2 ≤
[( m∑

j=2

aj x̃
(j−1)(1)

)
−
( m∑
j=3

aj x̃
(j−2)(1)

)]
x̃(1)

+
a1 − a2

2
x̃2(1) +

( m∑
j=3

aj x̃
(j−2)(0)

)
x̃(0) +

a2
2
x̃2(0)

+

m/2−1∑
s=1

ps

∫ 1

0

(x̃(s))2dα− a1
2

∫ 1

0

x̃2dα+ a0

∫ 1

0

αx̃2dα, (73)

where ps = s(−1)s+1a2s+1 − (−1)sa2s+1

2 + |a2s|.
On the other hand, when m is odd, we obtain

S[m/2] = (−1)[m/2]+1am

∫ 1

0

(x̃([m/2]))2dα. (74)

Thus, using the same procedure as when m is even, the

following equation holds for I2 when m is odd:

I2 =

[( m∑
j=2

aj x̃
(j−1)(1)

)
−
( m∑
j=3

aj x̃
(j−2)(1)

)]
x̃(1)

+
a1 − a2

2
x̃2(1) +

( m∑
j=3

aj x̃
(j−2)(0)

)
x̃(0)

+
a2
2
x̃2(0) +

(m−1)/2∑
s=1

ps

∫ 1

0

(x̃(s))2dα

− a1
2

∫ 1

0

x̃2dα+ a0

∫ 1

0

αx̃2dα. (75)

(3rd step): We evaluate the time derivative of the Lyapunov
function.

First, let us consider the case where m is even. By substi-
tuting (63) and (73) into (51), the following estimation can be
obtained if condition (24) holds:

V̇ (t) ≤
[
(K + L)

( m∑
j=2

aj x̃
(j−1)(1)

)
− L

( m∑
j=3

aj x̃
(j−2)(1)

)]
x̃(1)

+
(K + L

2
a1 −

a2
2
L
)
x̃2(1)

+

[
L
( m∑
j=3

aj x̃
(j−2)(0)

)
−K

( m∑
j=2

aj x̃
(j−1)(0)

)]
x̃(0)

+
La2 −Ka1

2
x̃2(0) + a0L

∫ 1

0

αx̃2dα

+
(
a0K +

a1
2
L+

m/2−1∑
s=1

ϕs
2s

+K
(−1)m/2am

2m/2

)∫ 1

0

x̃2dα

+
(m/2−1∑

s=1

ϕs
2s−1

+K
(−1)m/2am
2m/2−1

)
x̃2(0). (76)

In this derivation, we used (78). Here, from the equality
x̃(i−1) =

∫ α
0
x̃(i)dα + x̃(i−1)(0) and Young’s inequality, we

obtain

(x̃(i−1))2 ≤ 2

∫ 1

0

(x̃(i))2dα+ 2(x̃(i−1)(0))2. (77)

Since x̃(i)(0) = 0 for i = 1, · · · ,m/2 − 1, we obtain the
following estimation:∫ 1

0

(x̃(i))2dα ≥ 1

2

∫ 1

0

(x̃(i−1))2dα−
(
x̃(i−1)(0)

)2

≥ 1

2i

∫ 1

0

x̃2dα− 1

2i−1
x̃2(0). (78)

Further, substituting the control inputs (19) and (20) into (76)
gives

V̇ (t) ≤
{(K + L

2
a1 −

a2
2
L
)
k2a + ka

}
A2

+ (k0 + qk20)O
2 + ψ

∫ 1

0

x̃2dα+ a0L

∫ 1

0

αx̃2dα, (79)
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where
q =

∑m/2−1
s=1

ϕs

2s−1 +K (−1)m/2am
2m/2−1 + La2−Ka1

2 ,

A = (K + L)
∑m
j=2 aj x̃

(j−1)(1)− L
∑m
j=3 aj x̃

(j−2)(1),

O = L
∑m
j=3 aj x̃

(j−2)(0)−K
∑m
j=2 aj x̃

(j−1)(0).
(80)

Therefore, when the conditions (27) and (28) hold, V̇ (t)
satisfies the following by using a real number p satisfying
0 < p ≤ 1.

V̇ ≤ ψ

∫ 1

0

x̃2dα+ a0L

∫ 1

0

αx̃2dα

≤ pψ

∫ 1

0

x̃2dα+ {(1− p)ψ + a0L}
∫ 1

0

αx̃2dα

≤ 2ρV (t), (81)

where ρ = max{pψK and (1−p)ψ+a0L
L }. If conditions (25) and

(26) are satisfied, ρ < 0. Therefore, the following inequality
is derived.

K

2

∫ 1

0

x̃2dα ≤ exp(2ρt)
K + L

2

∫ 1

0

x̃2(α, 0)dα (82)

This inequality means

∥x̃(α, t)∥L2 ≤
√
K + L

K
exp(ρt)∥x̃(α, 0)∥L2 , (83)

where ∥·∥L2 =
√∫ 1

0
(·)2 dα. From the above, when m is even,

it is shown that the L2 norm decreases exponentially with time,
indicating that the closed-loop system is exponentially stable.

Next, let us consider the case where m is odd. Using the
same procedure in the case where m is even, we obtain the
following estimation for V̇ :

V̇ (t) ≤
(
a0K − a1

2
L+

(m−1)/2∑
s=1

ϕs
2s

)∫ 1

0

x̃2dα

+ a0L

∫ 1

0

αx̃2dα ≤ 2ρV (t). (84)

If the conditions (31) and (32) are satisfied, ρ < 0. Therefore,
the following inequality is derived.

K

2

∫ 1

0

x̃2dα ≤ exp(2ρt)
K + L

2

∫ 1

0

x̃2(α, 0)dα. (85)

From the above, when m is odd, it is shown that the L2 norm
decreases exponentially with time, indicating that the closed-
loop system is exponentially stable.

APPENDIX II
PROOF OF STABILITY WHEN m = 2

Here, we prove the stability of the closed-loop system for
m = 2 described in III-B. The closed-loop system (13) is
exponentially stable when m = 2 if the following conditions

hold:

−a2 ≤ 0, (86)

ψ = a0K − a1L/2−K
a2
2
< 0, (87)

(1− p)ψ + a0L

L
< 0, (88)

k0 +
(
−Ka2 +

La2 −Ka1
2

)
k20 ≤ 0, (89)

ka +
(K + L

2
a1 −

a2
2
L
)
k2a ≤ 0. (90)

Let us consider the state space as L2 = L2(0, 1), as in the
case of m ≥ 3, and consider the following function as the
Lyapunov function candidate:

V (t) =
K

2

∫ 1

0

x̃2dα+
L

2

∫ 1

0

αx̃2dα, (91)

where K and L are positive constants. The time derivative of
V (t) can be calculated as follows by employing (13):

V̇ (t) = KI1 + LI2, (92)

where

I1 =

∫ 1

0

( 2∑
i=0

aix̃
(i)
)
x̃dα, I2 =

∫ 1

0

α
( 2∑
i=0

aix̃
(i)
)
x̃dα. (93)

Now, I1 can be expanded as

I1 = a2

∫ 1

0

x̃(2)x̃dα+ a1

∫ 1

0

x̃(1)x̃dα+ a0

∫ 1

0

x̃2dα. (94)

Using the integration by parts on the first and second terms
on the right side of the above equation, and performing the
same procedure for m ≥ 3, we obtain

I1 = a2x̃
(1)(1)x̃(1)− a2x̃

(1)(0)x̃(0)− a2

∫ 1

0

(x̃(1))2dα

+
a1
2
(x̃2(1)− x̃2(0)) + a0

∫ 1

0

x̃2dα. (95)

Next, following the same procedure for I2, we obtain

I2 = a2x̃
(1)(1)x̃(1)− a2

2
(x̃2(1)− x̃2(0))− a2

∫ 1

0

α(x̃(1))2dα

+
a1
2
x̃2(1)− a1

2

∫ 1

0

x̃2dα+ a0

∫ 1

0

αx̃2dα. (96)

Substituting the obtained I1, I2, and the conditions (86)–
(90) into (92) leads to

V̇ (t) ≤ 2max
{pψ
K
,
(1− p)ψ + a0L

L

}
V (t). (97)

From conditions (87) and (88), max{pψ/K, ((1 − p)ψ +
a0L)/L} is negative. Therefore, the closed-loop system is
exponentially stable as in the case of m ≥ 3.
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