Prognostic and therapeutic factors influencing the clinical outcome of metastatic Ewing's sarcoma family of tumors: a retrospective report from the Japan Ewing Sarcoma Study Group

Journal:	Pediatric Blood & Cancer
Manuscript ID	PBC-20-1595.R2
Wiley - Manuscript type:	Oncology: Research Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Umeda, Katsutsugu; Graduate School of Medicine, Kyoto University, pediatrics Miyamura, Takako; Osaka University Graduate School of Medicine , Pediatrics Yamada, Kenji; Okazaki City Hospital Sano, Hideki; Fukushima Medical University, Pediatric Oncology Hosono, Ako; National Cancer Center Hospital East sumi, minako; Public Interest Incorporated Foundation Cancer Institute Hospital of JFCR Okita, Hajime; Keio University, Department of Pathology; Kokuritsu Kenkyu Kaihatsu Hojin Kokuritsu Seiiku Iryo Kenkyu Center, Department of Pediatric Hematology and Oncology Research Kamio, Takuya; Hirosaki University Graduate School of Medicine, Pediatrics Maeda, Naoko; National Hospital Organization Nagoya Medical Center Fujisaki, Hiroyuki; Osaka City General Hospital, Pediatric Hematology/Oncology Jyoko, Ryoji; Okayama Daigaku Daigakuin Ishiyakugaku Sogo Kenkyuka Igakubu Watanabe, Atsuko; Saitama Medical University International Medical Center, Department of pediatric Hematology/Oncology Hosoya, Yosuke; St. Luke's International Hospital, Department of Pediatrics Hasegawa, Daiichiro; Kobe Children's Hospital, Hematology and Oncology Takenaka, Satoshi; Osaka University Nakagawa, Shunsuke; Kagoshima Daigaku Chin, Motoaki; Nihon University Itabashi Hospital, Department of Pediatrics and Child Health Ozaki, Toshifumi; Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences
Keywords:	Ewing's sarcoma family of tumors, metastatic, Chemotherapy, Stem Cell Transplantation

SCHOLARONE[™] Manuscripts

1 RESEARCH ARTICLE

2 Prognostic and therapeutic factors influencing the clinical outcome of metastatic

3 Ewing's sarcoma family of tumors: a retrospective report from the Japan Ewing

4 Sarcoma Study Group

5 Katsutsugu Umeda^{1*}, Takako Miyamura², Kenji Yamada³, Hideki Sano⁴, Ako Hosono⁵,

6 Minako Sumi⁶, Hajime Okita⁷, Takuya Kamio⁸, Naoko Maeda⁹, Hiroyuki Fujisaki¹⁰,

7 Ryoji Jyoko¹¹, Atsuko Watanabe¹², Yosuke Hosoya¹³, Daiichiro Hasegawa¹⁴, Satoshi

8 Takenaka¹⁵, Shunsuke Nakagawa¹⁶, Motoaki Chin¹⁷, and Toshifumi Ozaki¹¹; Japan

- 9 Ewing Sarcoma Study Group.
- 10

11 ¹Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, 12 Japan; ²Department of Pediatrics, Osaka University Graduate School of Medicine, 13 Suita, Japan; ³Department of Orthopedic Surgery, Okazaki City Hospital, Okazaki, 14 Japan; ⁴Department of Pediatric Oncology, National Cancer Center Hospital East, 15 Kashiwa, Chiba, Japan; ⁵Department of Pediatric Oncology, Fukushima Medical 16 University Hospital, Fukushima, Japan; ⁶Department of Radiation Oncology, Tokyo 17 Metropolitan Geriatric Hospital, Tokyo, Japan; ⁷Department of Pathology, Keio 18 University School of Medicine, Tokyo, Japan; ⁸Department of Pediatrics, Hirosaki 19 University Hospital, Hirosaki, Japan; ⁹Department of Pediatrics, National Hospital 20 Organization Nagova Medical Center, Nagova, Japan; ¹⁰Department of Pediatric Hematology/Oncology, Osaka City General Hospital, Osaka, Japan; ¹¹Department of 21 22 Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and 23 Pharmaceutical Sciences, Okayama, Japan; ¹²Division of Pediatric Oncology, 24 Comprehensive Cancer Center, International Medical Center, Saitama Medical 25 University, Saitama, Japan; ¹³Department of Pediatrics, St. Luke's International Hospital, Tokyo, Japan; ¹⁴Department of Hematology and Oncology, Children's Cancer 26 27 Center, Kobe Children's Hospital, Kobe, Japan; ¹⁵Department of Orthopedic Surgery, 28 Osaka University Graduate School of Medicine, Suita, Japan; ¹⁶Department of 29 Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, 30 Kagoshima, Japan; ¹⁷Department of Pediatrics and Child Health, Nihon University 31 Itabashi Hospital, Tokyo, Japan.

- **33** *Correspondence: Katsutsugu Umeda, Department of Pediatrics, Graduate School of
- 34 Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507,
- 35 Japan. E-mail: umeume@kuhp.kyoto-u.ac.jp
- 36
- 37 Running head: Clinical outcome of metastatic ESFT
- 38 Text word count: 2,214
- **39** Abstract word count: 195
- 40 Tables: 3, Figures: 2
- 41 Supplementary Tables: 3, Supplementary Figures: 1
- 42 References: 29
- 43

44 ABBREVIATIONS

ACT	Actinomycin D
BU	Busulfan
CI	Confidence interval
СРА	Cyclophosphamide
CR	Complete response
DXR	Doxorubicin
ESFT	Ewing's sarcoma family of tumors
ETP	Etoposide
EWSR	Ewing's sarcoma breakpoint region
FISH	Fluorescent in situ hybridization
IE	Ifosfamide+etoposide
IFM	Ifosfamide
OS	Overall survival
MEL	Melphalan
PD	Progressive disease
PFS	Progression-free survival
PR	Partial response
SD	Stable disease
SCT	Stem cell transplantation

ТРТ	Topotecan
VACA	Vincristine+actinomycin D+cyclophosphamide+doxorubicin
VAIA	Vincristine+actinomycin D+ifosfamide+doxorubicin
VCR	Vincristine
VDC	Vincristine+doxorubicin+cyclophosphamide
VIDE	Vincristine+ifosfamide+doxorubicin+etoposide

46 ABSTRACT

47 **Background.** The prognosis of patients with metastatic Ewing's sarcoma family of 48 tumors (ESFT) remains poor. *Procedure*. We retrospectively analyzed 57 patients 49 diagnosed with metastatic ESFT between 2000 and 2018 to identify prognostic and 50 therapeutic factors affecting the clinical outcome. Results. The 3-year overall survival 51 (OS) rate of the entire cohort was 46.8% [95% confidence interval (CI), 33.0–59.4%]. 52 Treatment-related death was not observed. Multivariate analysis identified stem cell 53 transplantation (SCT), response to first-line chemotherapy, and bone metastasis as 54 independent risk factors for OS. Objective response rate to first-line chemotherapy was 55 65.1% in the 43 evaluable patients. There was no significant difference in the response 56 to different types of first-line chemotherapy. Among patients with lung metastasis 57 alone, the 3-year OS rate was higher in 13 patients who received local treatment than in 58 four who did not, although the difference was not significant. Conclusions. One 59 possible reason for the high OS rates was the absence of treatment-related mortality 60 even in patients receiving SCT, which could be attributed to advances in the 61 management of post-SCT complications. Novel first-line chemotherapy strategies need

- 62 to be established to improve the disease status prior to SCT in a higher proportion of
- 63 patients.
- 64
- 65 Keywords: Ewing's sarcoma family of tumors; metastatic; chemotherapy; stem cell
- 66 transplantation.
- 67
- 68

for per peries

69 1 | INTRODUCTION

70	Ewing's sarcoma family of tumors (ESFT), the second most frequent bone tumor in
71	children and young adults, is driven by an Ewing's sarcoma breakpoint region
72	(EWSR)1 fusion oncogene. ¹ Metastasis, which most commonly affects the bone, lung,
73	and bone marrow, is detected in approximately 20-30% of patients with ESFT at initial
74	diagnosis. ^{1,2} The long-term survival rate of patients with metastatic ESFT is $<30\%$, ¹⁻⁶
75	which is lower than that of localized ESFT. ^{1,2,7–9} The main prognostic factors in patients
76	with ESFT are age at diagnosis, tumor volume, modality of metastasis (i.e., bone
77	marrow involvement, number of bone metastasis, and additional lung metastasis), and
78	histological or radiological response of the primary tumor to first-line
79	chemotherapy. ^{6,10–12}
80	One of the main causes of a poor outcome in patients with metastatic ESFT is
81	a poor response to chemotherapy. Multidrug chemotherapy regimens established as
82	first-line chemotherapy for localized ESFT, such as vincristine (VCR)+doxorubicin
83	(DXR)+cyclophosphamide (CPA; VDC) alternating with ifosfamide (IFM)+etoposide
84	(ETP; IE), VCR+actinomycin D (ACT)+CPA+DXR (VACA), VCR+ACT+IFM+DXR
85	(VAIA), and VCR+IFM+DXR+VP16 (VIDE), are often ineffective for metastatic
86	ESFT. ^{3,6,13} In Western countries, the efficacy of intensified chemotherapy has been
87	investigated by adding another anticancer drug to these combination chemotherapies, or
88	by increasing the dose of each anticancer drug. However, these therapeutic approaches
89	have increased the incidence of acute and late adverse effects without improving the
90	curative rate. ^{7,13–15} Furthermore, evidence supporting the clinical benefit of stem cell

91	transplantation (SCT) ^{5,10,11,16–22} or local treatment (surgery and radiotherapy) for
92	primary site or metastatic disease in ESFT remains limited. ^{23–25}
93	Here, we retrospectively analyzed the clinical outcomes of patients with
94	metastatic ESFT to evaluate the prognostic and therapeutic factors affecting patient
95	outcome in the recent era.
96	
97	2 MATERIALS AND METHODS
98	Study design and data collection
99	This study was approved by the Clinical Research Review Committee of the Japan
100	Children's Cancer Group, and the institutional ethics committee of Kyoto University
101	Hospital. A questionnaire was distributed to 51 institutions (see Appendix for detail) to
102	gather information about patient characteristics, treatment, and clinical outcome of
103	patients who were diagnosed with metastatic ESFT between 2000 and 2018 from
104	medical records. Data from 67 patients were obtained from the 29 institutions. Of the 67
105	patients, eight were excluded due to a lack of data on survival status $(n = 2)$ or EWS-
106	ETS fusion gene ($n = 6$). One patient with central nervous system ESFT and another
107	with Ewing-like sarcoma harboring the BCOR-CCNB fusion gene were also excluded.
108	EWS-ETS fusion genes, including <i>EWS-FL11</i> ($n = 39$) and <i>EWS-ERG</i> ($n = 2$), were
109	detected in 41 patients by reverse transcription polymerase chain reaction. In the
110	remaining 16 patients, the EWSR1 translocation was detected by fluorescent in situ
111	hybridization (FISH). In total, 57 patients with metastatic ESFT were analyzed.

The radiological response to chemotherapy was evaluated according to
 RECIST guidelines (version 1.1).²⁶

114

115 Statistical analysis

116 The characteristics of patients in the two groups were compared using Fisher's exact 117 test for categorical variables. The probability of overall survival (OS), defined as the 118 duration of survival between the diagnosis and either death or the last follow-up, and 119 progression-free survival (PFS), defined as the duration of survival between the 120 diagnosis and either disease progression, death, or the last follow-up, were estimated 121 using the Kaplan-Meier method; the log-rank test and Cox proportional hazard model 122 were used for univariate and multivariate analyses, respectively. The factors included in 123 the analyses were patient age group (0–12 years vs. \geq 13), gender (male vs. female), 124 fusion gene (EWS-FLI1 vs. EWS-ERG vs. EWS-FEV vs. EWSR1-FISH), primary tumor 125 origin (bone vs. soft tissue), primary tumor site (extremity vs. axial vs. other), primary 126 tumor size (<200 ml vs. \geq 200 ml), lung metastasis (isolated vs. combined vs. no), bone 127 marrow metastasis (no vs. yes), bone metastasis (no vs. 1-4 vs. ≥ 5), response to first-128 line salvage chemotherapy [complete response (CR)/partial response (PR) vs. stable 129 disease (SD)/progressive disease (PD)], SCT (no vs. yes), and type of SCT (single 130 autologous SCT vs. other types of SCT, including tandem autologous SCT, single 131 allogeneic SCT, and tandem autologous-allogeneic SCT). Factors with P < 0.1 in the 132 univariate analysis were included in the multivariate analysis. The response to first-line 133 chemotherapy was evaluated by univariate analysis using Pearson's chi-square test. All

134	statistical analyses were performed using EZR (version 1.32, Saitama Medical Center,
135	Jichi Medical University), which is a graphical user interface for R (the R Foundation
136	for Statistical Computing). ²⁷
137	
138	3 RESULTS
139	Patient characteristics
140	Of 51 surveyed institutions, 29 (56.9%) responded. The characteristics of the 57 patients
141	included in the study are shown in Table 1. Of the 57 patients, 35 received SCT [SCT
142	(+) group], whereas 22 patients did not [SCT (-) group]. Patients in the SCT (+) group
143	were more likely to be younger at diagnosis and to have a primary tumor in the bone.
144	Fifty patients were initially treated with chemotherapy before local treatment, including
145	VDC/IE at 2-week ($n = 11$) or 3-week ($n = 24$) intervals, VIDE ($n = 7$), and VAIA ($n = 11$)
146	3). Five of the remaining seven patients received chemotherapy, including
147	VCR+ACT+IFM ($n = 2$), VDC/IE at 3-week intervals ($n = 1$), VIDE ($n = 1$), and VAIA
148	(n = 1), after local treatment for primary site tumors or metastasis. Nine patients
149	underwent surgery, 29 received radiotherapy, and 14 received both as local treatment
150	for primary site tumors. One patient underwent surgery, 32 received radiotherapy, and
151	four received both as local treatment for metastasis.
152	
153	Factors affecting overall and progression-free survival
154	The 3-year OS rate of the entire cohort was 46.8 % [95% confidence interval (CI),

155 33.0–59.4%]. Treatment-related death was not observed. One female patient developed

156	a secondary follicular thyroid carcinoma outside the irradiated field 5 years and 10
157	months after the treatment. In the multivariate analysis, in addition to bone metastasis
158	and response to first-line chemotherapy, SCT was identified as the independent risk
159	factor for OS (adjusted hazard ratio, 0.14; 95% CI, 0.05–0.46, $P = 0.001$; Table 2). The
160	3-year PFS rate of the entire cohort was 41.4% (95% CI, 28.0–54.2%). Multivariate
161	analysis of factors affecting PFS showed that in addition to lung metastasis and
162	response to first-line chemotherapy, SCT was identified as the independent risk factor
163	(adjusted hazard ratio, 0.23; 95% CI, 0.08–0.65, $P = 0.005$; Supplementary Table 1).
164	The 3-year OS and PFS rates grouped by SCT and adjusted for other potential
165	confounding factors were 74.8% (95% CI, 59.0–94.7%) and 60.4% (95% CI, 43.4–
166	84.0%), respectively, in patients who underwent SCT, and 22.5% (95% CI, 7.8-64.5%)
167	and 15.2% (95% CI, 9.9–74.7%), respectively, in those who did not (Fig. 1a and b).
168	Among the 43 patients evaluable for radiological response to first-line
169	chemotherapy before local treatment, there were 4 CR, 24 PR, 10 SD, and 5 PD, with an
170	objective response rate (CR+PR) of 65.1%. There was no significant difference in the
171	response to different types of first-line chemotherapy ($P = 0.960$, Fig. 2).
172	
173	Clinical significance of SCT
174	The clinical information of 35 patients undergoing SCT is shown in Supplementary

- 175 Table 2. The 35 patients received median 6 (range, 2–16) cycles of firs-line
- 176 chemotherapy. The attending physicians at each hospital chose the conditioning
- 177 regimen or modality of SCT. Twenty-three patients received single autologous SCT,

eight received tandem autologous SCT, one received single allogeneic SCT, and three

179	received tandem autologous-allogeneic SCT. The most common conditioning regimens
180	were busulfan (BU)+melphalan (MEL) (n = 18), ETP+MEL (n = 7),
181	CBDCA+ETP+MEL ($n = 6$), and topotecan (TPT)+CPM+MEL ($n = 4$).
182	The effect of other confounding factors on the benefits of SCT was analyzed.
183	Univariate analysis of factors affecting OS in patients receiving SCT identified primary
184	tumor site, response to first-line chemotherapy, type of SCT, and disease status before
185	SCT as significant factors (Table 3). Univariate analysis of factors affecting PFS
186	demonstrated similar tendencies (Supplementary Table 3). Multivariate analysis of
187	factors affecting OS and PFS was not performed because of the low number of patients
188	included in the study. The 3-year OS and PFS rates in patients receiving single
189	autologous SCT were significantly lower than those in patients receiving other types of
190	SCT ($P = 0.018$ and 0.035, Supplementary Fig. 1a and b). Among patients who
191	underwent single autologous SCT, the 3-year OS rate was significantly higher in
192	patients receiving BU+MEL than in those receiving other conditioning regimens
193	(53.8%; 95% CI, 24.8–76.0% vs. 0%; $P = 0.035$), as previously reported. ²⁰
194	
195	Impact of local treatment of lung metastasis on clinical outcome

196 The 3-year OS rate in 17 patients with lung metastasis alone was 68.8% (95% CI, 40.0–

- 197 85.9%). After grouping patients by local treatment for lung metastases, the 3-year OS
- 198 rate was higher in 13 patients who received local treatment than in four patients who did

199	not, although the difference was not statistically significant [100% vs. 59.3% (95% CI
200	27.5–81.0%), <i>P</i> = 0.176].
201	
202	4 DISCUSSION
203	In the present study, OS and PFS rates in patients with metastatic ESFT were higher
204	than those reported previously. ^{1,3–6} One possible reason for the encouraging outcome is
205	the absence of treatment-related mortality even in patients receiving SCT, which could
206	be attributed to advances in the management of post-SCT complications. Another
207	possible explanation is that the present study included a higher proportion of younger
208	patients with a better outcome, although OS and PFS rates did not differ significantly
209	between younger and older age groups.
210	The present study identified response to first-line chemotherapy and SCT as
211	independent risk factors for both OS and PFS. Previous reports demonstrating the
212	clinical benefit of SCT excluded patients who did not achieve CR or PR, which
213	introduces selection bias favoring patients with a better clinical course. ^{10,17,20} By
214	contrast, the present study, which included such chemotherapy-resistant patients,
215	demonstrated the contribution of SCT to increasing OS after adjusting for other
216	potential confounding factors, including lung metastasis, bone metastasis, and response
217	to first-line chemotherapy.
218	Allogeneic SCT for metastatic ESFT is not regarded favorably because it is
219	associated with a higher rate of complications, and because there is a lack of evidence
220	supporting the immune-mediated graft-versus-Ewing tumor effect. ^{11,16,18} The clinical

221	benefit of tandem SCT also remains controversial. ^{18,19,21,22} The present study
222	demonstrated that OS and PFS are somewhat better in patients treated with other types
223	of SCT (tandem and/or allogeneic SCT) than in those receiving single autologous SCT,
224	although the clinical significance of tandem or allogeneic SCT was not evaluated
225	individually because of the low number of patients included in the study. There was no
226	treatment-related mortality among patients receiving other types of SCT, which can be
227	attributed to advances in the management of post-SCT complications. However, the
228	data should be interpreted with caution because treatment bias (i.e., contraindication of
229	other types of SCT in patients with worse disease status or general conditions) may
230	affect the clinical outcome.
231	Histological or radiological response to first-line chemotherapy is a strong
232	prognostic factor in patients with metastatic ESFT. ¹² The radiological objective
233	response rate in the present study (65.1%) was almost equivalent to that reported
234	previously, ¹² although there is still room for improvement. Intensification of
235	chemotherapy with established activity against localized ESFT has reached maximal
236	efficacy and toxicity; therefore, novel first-line therapies need to be established to
237	improve disease status prior to SCT in a higher proportion of patients with metastatic
238	ESFT. Among novel therapies, interval-compressed chemotherapy, which has increased
239	efficacy without increasing toxicity,8 should lead to favorable results. Alternatively,
240	recently established salvage chemotherapy regimens for recurrent or refractory ESFT,
241	such as TPT+CPA and irinotecan+temozolomide, ^{27,28} are good candidates for first-line
242	therapy.

243	Consistent with previous analyses, ^{3,6,14} the present study demonstrated that the
244	prognosis of patients with lung metastasis alone is better than that of patients with bone
245	and/or bone marrow metastasis. Furthermore, surgery or whole lung irradiation have a
246	potentially significant therapeutic effect in patients with lung metastasis alone. ^{23–25}
247	However, these results may be associated with treatment selection bias because local
248	treatment was performed according to the response to first-line chemotherapy or disease
249	status. The clinical significance of local treatments for metastatic disease needs to be
250	evaluated in prospective analyses of larger populations. The ongoing Euro-Ewing-
251	Intergroup EE99 trial, which compares whole lung irradiation with high-dose
252	chemotherapy plus SCT following standard chemotherapy in patients with lung
253	metastasis alone will clarify this point.
254	The present study had several limitations. First, it is a retrospective analysis of
255	data from a heterogeneous group of patients. Second, the association between surgical
256	margin or histological response to first-line chemotherapy and clinical outcome was not
257	examined because these data were lacking in most patients, which hampered more
258	extensive evaluation of their clinical significance. Lastly, the follow-up period was too
259	short to evaluate late adverse effects, particularly secondary malignancies. Nonetheless,
260	the present study demonstrated that SCT contributes to a significantly better clinical
261	outcome in patients with metastatic ESFT, especially in those with a better disease
262	status prior to SCT.
263	

264 ACKNOWLEDGEMENTS

265 We thank all doctors who responded to the questionnaire.

266

267 AUTHOR CONTRIBUTIONS

- 268 KU, TM, KY, MC, and TO designed the research and organized the project. KU, TM,
- and HS performed statistical analyses and analyzed the data. KU wrote the manuscript.
- 270 TK, NM, HF, RJ, AW, YS, DH, ST, and SN collected data. HS, AH, MS, HO, MC, and
- 271 TO assisted with the interpretation of data and provided insightful comments. All
- authors interpreted the data and reviewed and approved the manuscript.
- 273

274 CONFLICTS OF INTEREST

- 275 The authors have no conflicts of interest to declare.
- 276

277 REFERENCES

- 278 1. Grier HE. The Ewing family of tumors: Ewing's sarcoma and primitive
 279 neuroectodermal tumors. Pediatr Clin North Am. 1997;44:991-1004.
- 280 2. Balamuth NJ, Womer RB. Ewing's sarcoma. Lancet Oncol. 2010;11:184-192.
- 281 3. Paulussen M, Ahrens S, Burdach S, et al. Primary metastatic (stage IV) Ewing tumor:
- Survival analysis of 171 patients from the EICESS studies—European Intergroup
- 283 Cooperative Ewing Sarcoma Studies. Ann Oncol. 1998;9:275-281.
- 4. Cotterill SJ, Ahrens S, Paulussen M, et al. Prognostic factors in Ewing's tumor of
- bone: Analysis of 975 patients from the European Intergroup Cooperative Ewing's
- Sarcoma Study Group. J Clin Oncol. 2000;18:3108-3114.

287	5.	Meyers PA, Krailo MD, Ladanyi M, et al. High-dose melphalan, etoposide, total-
288		body irradiation, and autologous stem-cell reconstitution as consolidation therapy for
289		high-risk Ewing's sarcoma does not improve prognosis. J Clin Oncol. 2001;19:2812-
290		2820.
291	6.	Ladenstein R, Pötschger U, Le Deley MC, et al. Primary disseminated multifocal
292		Ewing sarcoma: results of the Euro-EWING 99 trial. J Clin Oncol. 2010;28:3284-
293		3291.
294	7.	Grier HE, Krailo MD, Tarbell NJ, et al. Addition of ifosfamide and etoposide to
295		standard chemotherapy for Ewing's sarcoma and primitive neuroectodermal tumor of
296		bone. N Engl J Med. 2003;348:694-701.
297	8.	Womer, RB, West DC, Krailo MD, et al. Randomized controlled trial of interval-
298		compressed chemotherapy for the treatment of localized Ewing sarcoma: a report
299		from the Children's Oncology Group. J Clin Oncol. 2012;30:4148-4154.
300	9.	Chin M, Yokoyama R, Sumi M, et al. Multimodal treatment including standard
301		chemotherapy with vincristine, doxorubicin, cyclophosphamide, ifosfamide, and
302		etoposide for the Ewing sarcoma family of tumors in Japan: Result of the Japan
303		Ewing sarcoma Study 04. Pediatr Blood Cancer. 2020;67:e28194.
304	10.	Oberlin O, Rey A, Desfachelles AS, et al. Impact of high-dose busulfan plus
305		melphalan as consolidation in metastatic Ewing tumors: a study by the Société
306		Française des Cancers de l'Enfant. J Clin Oncol. 2006;24:3997-4002.
307	11.	Thiel U, Wawer A, von Luettichau I, et al. Bone marrow involvement identifies a
308		subgroup of advanced Ewing sarcoma patients with fatal outcome irrespective of

309		therapy in contrast to curable patients with multiple bone metastases but unaffected
310		marrow. Oncotarget. 2016;7:70959-70968.
311	12.	Luksch R, Tienghi A, Hall KS, et al. Primary metastatic Ewing's family tumors:
312		results of the Italian Sarcoma Group and Scandinavian Sarcoma Group ISG/SSG IV
313		Study including myeloablative chemotherapy and total-lung irradiation. Ann Oncol.
314		2012;23:2970-2976.
315	13.	Miser JS, Krailo MD, Tarbell NJ, et al. Treatment of metastatic Ewing's sarcoma or
316		primitive neuroectodermal tumor of bone: evaluation of combination ifosfamide and
317		etoposidea Children's Cancer Group and Pediatric Oncology Group study. J Clin
318		Oncol. 2004;22:2873-2876.
319	14.	Kushner BH, Meyers PA, Gerald WL, et al. Very-high-dose short-term
320		chemotherapy for poor-risk peripheral primitive neuroectodermal tumors, including
321		Ewing's sarcoma, in children and young adults. J Clin Oncol. 1995;13:2796-2804.
322	15.	Paulussen M, Craft AW, Lewis I, et al. European Intergroup Cooperative Ewing's
323		Sarcoma Study-92. Results of the EICESS-92 Study: two randomized trials of
324		Ewing's sarcoma treatmentcyclophosphamide compared with ifosfamide in
325		standard-risk patients and assessment of benefit of etoposide added to standard
326		treatment in high-risk patients. J Clin Oncol. 2008;26:4385-4393.
327	16.	Thiel U, Wawer A, Wolf P, et al. No improvement of survival with reduced- versus
328		high-intensity conditioning for allogeneic stem cell transplants in Ewing tumor
329		patients. Ann Oncol. 2011;22:1614-1621.

330 17. Kushner BH, Meyers PA. How effective is dose-intensive/myeloablative therapy

331		against Ewing's sarcoma/primitive neuroectodermal tumor metastatic to bone or
332		bone marrow? The Memorial Sloan-Kettering experience and a literature review. J
333		Clin Oncol. 2001;19:870-880.
334	18.	Burdach S, Meyer-Bahlburg A, Laws HJ, et al. High-dose therapy for patients with
335		primary multifocal and early relapsed Ewing's tumors: results of two consecutive
336		regimens assessing of the role of total-body irradiation. J Clin Oncol. 2003;21:3072-
337		3078.
338	19.	Loschi S, Dufour C, Oberlin O, et al. Tandem high-dose chemotherapy strategy as
339		first-line treatment of primary disseminated multifocal Ewing sarcomas in children,
340		adolescents and young adults. Bone Marrow Transplant. 2015;50:1083-1088.
341	20.	McTiernan A, Driver D, Michelagnoli MP, et al. High dose chemotherapy with bone
342		marrow or peripheral stem cell rescue is an effective treatment option for patients
343		with relapsed or progressive Ewing's sarcoma family of tumours. Ann Oncol.
344		2006;17:1301-1305.
345	21.	Burke MJ, Walterhouse DO, Jacobsohn DA, et al. Tandem high-dose chemotherapy
346		with autologous peripheral hematopoietic progenitor cell rescue as consolidation
347		therapy for patients with high-risk Ewing family tumors. Pediatr Blood Cancer.
348		2007;49:196-198.
349	22.	Rosentahl J, Bolotin E, Shakhnovits M, et al. High-dose therapy with hematopoietic

351 Transplant. 2008;42:311-318.

350

stem cell rescue in patients with poor prognosis Ewing family tumors. Bone Marrow

352	23.	Haeusler J, Ranft A, Boelling T, et al. The value of local treatment in patients with
353		primary, disseminated, multifocal Ewing sarcoma (PDMES). Cancer. 2010;116:443-
354		450.
355	24.	Bölling T, Schuck A, Paulussen M, et al. Whole lung irradiation in patients with
356		exclusively pulmonary metastases of Ewing tumors. Toxicity analysis and treatment
357		results of the EICESS-92 trial. Strahlenther Onkol. 2008;184:193-197.
358	25.	Letourneau PA, Shackett B, Xiao L, et al. Resection of pulmonary metastases in
359		pediatric patients with Ewing sarcoma improves survival. J Pediatr Surg.
360		2011;46:332-335.
361	26.	Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in
362		solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228-
363		247.
364	27.	Kanda Y. Investigation of the freely available easy-to-use software 'EZR' for
365		medical statistics. Bone Marrow Transplant. 2013;48:452-458.
366	28.	Hunold A, Weddeling N, Paulussen M, et al. Topotecan and cyclophosphamide in
367		patients with refractory or relapsed Ewing tumors. Pediatr Blood Cancer. 2006;47:
368		795-800.
369	29.	Casey DA, Wexler LH, Merchant MS, et al. Irinotecan and temozolomide for Ewing
370		sarcoma: the Memorial Sloan-Kettering experience. Pediatr Blood Cancer 2009;53:
371		1029-1034.
372		
373	FIC	GURE LEGENDS

374	Fig. 1 OS (a) and PFS rates (b) grouped by SCT. The survival curves were adjusted for
375	other potential confounding factors. OS, overall survival; PFS, progression-free
376	survival.
377	
378	Fig. 2 Radiological response to first-line chemotherapy before local treatment grouped
379	by type of chemotherapy. CR, complete response; PR, partial response; SD, stable
380	disease; PD, progressive disease; VDC, vincristine+doxorubicin+cyclophosphamide;
381	IE, ifosfamide+etoposide; VIDE, vincristine+ifosfamide+doxorubicin+etoposide;
382	VAIA, vincristine+actinomycin D+ifosfamide+doxorubicin.
383	
384	Supplementary Fig. 1 OS (a) and PFS rates (b) grouped by type of SCT. OS, overall
385	survival; PFS, progression-free survival; auto-SCT, autologous stem cell
386	transplantation.

	All pat	All patients $(n = 57)$		SCT (-) (n = 22)		SCT (+) (n = 35)	
Characteristics	No.	%	No.	%	No.	%	P-value
Gender							
Male	29	50.9	11	50.0	18	51.4	1.000
Female	28	49.1	11	50.0	17	48.6	
Age at diagnosis, years							
Median (range)		4 (3–33)	15	(3–33)	12	(4–26)	
0–12	22	38.6	4	18.2	18	51.4	0.014
≥13	35	61.4	18	81.8	17	48.6	
Primary tumor site							0.291
Axial	29	50.9	9	40.9	20	57.1	
Extremity	16	28.0	6	27.3	10	28.6	
Other	9	15.8	6	27.3	3	8.6	
Missing	3	5.3	1	4.6	2	5.7	
Primary tumor origin							0.023
Bone	37	64.9	10	45.5	27	77.1	
Soft tissue	20	35.1	12	54.5	8	22.9	
Primary tumor volume, ml							
Median (range)	314	(19–1,953)	408 (1	19–1,953)	314 (1	9–1,383)	
<200 ml	13	22.8	5	22.7	8	22.9	0.940
≥200 ml	27	47.4	11	50.0	16	45.7	

Table 1. Patient characteristics at initial diagnosis and treatment

Pediatric Blood & Cancer

Missing	17	29.8	6	27.3	11	31.4	
Fusion gene							0.786
EWS-FLI1	39	68.5	16	72.7	23	65.7	
EWS-ERG	2	3.5	1	4.6	1	2.9	
EWS-FISH	16	28	5	22.7	11	31.4	
Sites of metastasis							0.105
Lung alone	18	31.6	6	27.3	12	34.3	
Bone (plus lung)	29 (15)	50.9	9 (3)	40.9	20 (12)	57.1	
BM and bone (plus lung)	4 (2)	7.0	2 (2)	9.1	2 (0)	5.7	
Other	6	10.5	5	22.7	1	2.9	
Initial chemotherapy beofe local treatme	ent						0.237
VDC/IE q2w	11	19.4	7	31.8	4	11.4	
VDC/IE q3w	25	43.9	10	45.5	14	40.0	
VIDE	7	12.3	1	4.6	6	17.1	
VAIA	3	5.3	0	0	3	8.6	
Other	5	8.8	1	4.6	4	11.4	
No	7	12.3	3	13.6	4	11.4	
Local treatment for primary site							0.386
Surgery	9	15.8	2	9.1	7	20.0	
Radiotherapy	29	50.9	10	45.5	19	54.3	
Surgery and radiotherapy	14	24.5	8	36.4	6	17.1	
No	5	8.8	2	9.1	3	8.6	

Local treatment for metastasis							0.316	
Surgery		1	5.8	1	4.6	0	0	
Radiotherapy		32	56.1	10	45.5	22	62.9	
Surgery and radiotherapy		4	7.0	1	4.6	3	8.6	
No		20	35.1	10	45.5	10	28.6	
Follow-up period, months								
Median (range)	N.	27 (0–177)	15 (0-162)	31 (0–177)	

SCT, stem cell transplantation; EWSR, Ewing's Sarcoma Region; FISH, fluorescent in situ hybridization; VDC, vincristine-doxorubicincyclophosphamide, IE, ifosfamide-etoposide; q2w, every 2 weeks; q3w, every 3 weeks; VAIA, vincristine-actinomycin-ifosfamidedoxorubicin; VIDE, vincristine--ifosfamide-doxorubicin-etoposide.

Review

Variables	Factors (r)	3yr OS,	Univariate analysis	Multivariate a	Multivariate analysis		
variables	Factors (n)	% (95% CI)	<i>P</i> -value	HR (95% CI)	<i>P</i> -value		
Age group	0-12 (22)	56.8 (33.0-75.0)	0.178	N.E.	N.E.		
	≥13 (35)	39.9 (23.3–55.9)					
Gender	Male (29)	48.2 (28.2–65.6)	0.995	N.E.	N.E.		
	Female (28)	45.4 (26.4–62.6)					
Fusion gene	EWS-FLI1 (39)	48.5 (31.5–63.6)	0.989	N.E.	N.E.		
	EWS-ERG (2)	50.0 (0.6–91.0)					
	EWS-FISH (16)	41.7 (17.4–64.5)					
Primary tumor origin	Bone (37)	52.4 (34.9–67.2)	0.307	N.E.	N.E.		
	Soft tissue (20)	37.0 (15.9–58.5)					
Primary tumor site	Axial (29)	57.8 (37.8–73.5)	0.274	N.E.	N.E.		
	Extremity (16)	40.4 (16.7–63.1)					
	Other (9)	27.8 (4.4–59.1)					
Primary tumor size	<200 ml (13)	40.3 (13.7-66.0)	0.965	N.E.	N.E.		
	≥200 ml (27)	40.3 (20.9–59.0)					
Lung metastasis	Isolated (18)	70.0 (41.5-86.5)	0.009	Reference			
	Combined (17)	46.3 (22.1–67.6)		0.77 (0.12–5.18)	0.790		
	No (22)	29.0 (11.9–48.7)		2.89 (0.58–14.4)	0.194		
Bone marrow metastasis	No (53)	46.4 (32.0–59.5)	0.942	N.E.	N.E.		
	Yes (4)	50.0 (5.8-84.5)					
Bone metastasis	No (24)	60.9 (37.9–77.6)	0.065	Reference			

 Table 2. Univariate and multivariate analyses of factors affecting OS

	1–4 (19)	49.7 (25.4–70.0)		2.77 (0.55–13.9)	0.216
	≥5 (12)	25.0 (6.0-50.5)		7.23 (1.09–47.8)	0.040
Response to initial chemotherapy	CR/PR (28)	61.7 (40.3–77.4)	0.017	Reference	
	SD/PD (15)	26.7 (8.3–49.6)		9.17 (2.64–31.9)	< 0.001
SCT	No (22)	31.5 (12.9–52.1)	0.039	Reference	
	Yes (35)	51.5 (33.0-67.3)		0.14 (0.05–0.46)	0.001

OS, overall survival; CI, confidence interval; HR, hazard ratio; N.E., not evaluated; EWSR, Ewing's Sarcoma Region; FISH, fluorescent in situ hybridization; CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease; SCT, stem cell transplantation.

Per Review

ĩ	8 1	8	
Variables	Factors (n)	3-yr OS, % (95% CI)	Univariate analysis <i>P</i> -value
Age group	0-12 (18)	57.8 (30.6–77.6)	0.657
	≥13 (17)	52.9 (27.6–73.0)	
Gender	Male (18)	52.5 (26.5-73.2)	0.512
	Female (17)	58.8 (32.5-77.8)	
Fusion gene	EWS-FLI1 (23)	55.5 (33.0-73.2)	0.700
	EWS-ERG (1)	0	
	EWSR1-FISH (11)	50.9 (18.2–76.6)	
Primary tumor origin	Bone (27)	55.3 (34.9–71.7)	0.633
	Soft tissue (8)	56.2 (14.7-84.2)	
Primary tumor site	Extremity (10)	40.0 (12.3-67.0)	0.021
	Axial (20)	74.0 (48.2–88.3)	
	Other (3)	0	
Primary tumor size	<200 ml (8)	46.9 (12.0–76.3)	0.851
	≥200 ml (16)	46.9 (20.8–69.4)	
Lung metastasis	No (11)	36.4 (11.2–62.7)	0.071
	1–4 (11)	71.6 (35.0-89.9)	
	≥ 5 (11)	53.0 (20.9–77.3)	
Bone marrow metastasis	No (33)	56.1 (37.1–71.3)	0.720
	Yes (2)	50.0 (0.6–91.0)	

Table 3. Univariate analysis of factors affecting OS in patients receiving SCT

Bone metastasis	No (13)	75.2 (40.7–91.4)	0.081
	1-4 (12)	58.3 (27.0-80.1)	
	≥5 (9)	33.3 (7.8–62.3)	
Response to initial chemotherapy	CR/PR (17)	75.6 (47.3–90.1)	0.042
	SD/PD (10)	40.0 (12.3–67.0)	
Local treatment for primary site	No (3)	0	0.477
	Radiotherapy (19)	50.7 (26.3-70.8)	
	Surgery (7)	57.1 (17.2–83.7)	
	Surgery and radiotherapy (6)	83.3 (27.3–97.5)	
Local treatment for metastasis	No (10)	60.0 (25.3-82.7)	0.985
	Radiotherapy (22)	53.4 (30.6–71.7)	
	Surgery and radiotherapy (3)	66.7 (5.4–94.5)	
Type of SCT	Single auto SCT (23)	38.3 (18.9–57.4)	0.018
	Other types (12)	91.7 (53.9–98.8)	
Disease status before SCT	CR/PR (23)	68.7 (45.3–83.8)	0.042
	SD/PD (9)	33.3 (7.8–62.3)	

OS, overall survival; CI, confidence interval; HR, hazard ratio; N.E., not evaluated; EWSR, Ewing's Sarcoma Region; FISH, fluorescent in situ hybridization; CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease; SCT, stem cell transplantation; auto, autologous.

Supplementary Figure 1

338x190mm (300 x 300 DPI)

Variables	Factors (n)	3yr PFS,	Univariate analysis	Multivariate analysis		
variables	Factors (n)	% (95% CI)	<i>P</i> -value	HR (95% CI)	P-value	
Age group	0-12 (22)	45.5 (24.4–64.3)	0.674	N.E.	N.E.	
	≥13 (32)	38.5 (21.6–55.2)				
Gender	Male (27)	35.2 (17.9–53.1)	0.227	N.E.	N.E.	
	Female (27)	47.6 (28.1–64.9)				
Fusion gene	EWS-FLI1 (37)	44.5 (28.0–59.8)	0.976	N.E.	N.E.	
	EWS-ERG (2)	50.0 (0.6–91.0)				
	EWSR1-FISH (15)	33.3 (12.2–56.4)				
Primary tumor origin	Bone (35)	50.2 (32.7-65.5)	0.051	Reference		
	Soft tissue (19)	23.7 (7.6–44.7)		2.27 (0.85-6.06)	0.102	
Primary tumor site	Axial (28)	50.0 (30.6-66.6)	0.189	N.E.	N.E.	
	Extremity (15)	36.7 (13.6–60.4)				
	Other (8)	16.7 (0.9–50.8)				
Primary tumor size	<200 ml (13)	35.2 (11.2–60.7)	0.962	N.E.	N.E.	
	$\geq 200 \text{ ml}(25)$	34.7 (16.9–53.2)				
Lung metastasis	Isolated (18)	53.8 (28.4–73.7)	0.055	Reference		
	Combined (16)	50.0 (24.5-71.0)		1.74 (0.56–5.40)	0.336	
	No (20)	21.7 (6.8-41.9)		3.41 (1.09–10.6)	0.035	
Bone marrow metastasis	No (50)	40.6 (26.8–54.0)	0.771	N.E.	N.E.	
	Yes (4)	50.0 (5.8-84.5)				
Bone metastasis	No (24)	44.6 (24.3-63.2)	0.456	N.E.	N.E.	

Supplementary Table 1. Univariate and multivariate analyses of factors affecting PFS

	1-4 (19)	45.1 (22.1–65.7)			
	≥5 (10)	30.0 (7.1–57.8)			
Response to initial chemotherapy	CR/PR (27)	58.2 (37.3–74.4)	0.045	Reference	
	SD/PD (13)	23.1 (5.6–47.5)		4.30 (1.62–11.4)	0.003
SCT	No (20)	33.3 (14.1–54.0)	0.036	Reference	
	Yes (34)	47.1 (29.8–62.5)		0.23 (0.08–0.65)	0.005

PFS, progression-free survival; CI, confidence interval; HR, hazard ratio; N.E., not evaluated; EWSR, Ewing's Sarcoma Region; FISH, fluorescent in situ hybridization; CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease; SCT, stem cell transplantation.

John Wiley & Sons

Supplementary Table 2	Clinical information of	f patients ı	undergoing SCT
-----------------------	-------------------------	--------------	----------------

No.	Age at diagnosis (yr)	Sex	Lung metastasis	Bone metastasis	BM metastasis	Local treatment for primary site (timing)	Local treatment for metastatic site (timing)	Cycle number of first-line chemotherapy	Disease status before SCT	First SCT source (regimen)	Second SCT source (regimen)	Outcome (mo)
1	15	М	1 to 4	Yes (NA)	No	R (post-SCT)	R (post- SCT)	6	PR	Auto-PB (CBDCA, ETP, MEL)	_	28 (DOD)
2	11	F	No	No	No	R (pre-SCT)	R (pre-SCT)	7	PR	Auto-PB (BU, MEL)	_	80 (AWD)
3	11	F	5	No	No	R (pre-SCT)	No	5	NA	Auto-PB (ETP, MEL)	_	32 (DOD)
4	15	М	No	1 to 4	No	R (post-SCT)	R (post- SCT)	8	PD	Auto-PB (BU, MEL)	_	20 (DOD)
5	8	М	Yes (NA)	No	No	S (pre- SCT)/R (post- SCT)	R (post- SCT)	4	CR	Auto-PB (MEL, TEPA)	_	30 (NED)
6	10	F	No	1 to 4	No	S (pre-SCT)	R (pre-SCT)	5	NA	Auto-PB (BU, MEL)	_	45 (NED)
7	14	F	1 to 4	1 to 4	No	R (pre-SCT)	R (pre-SCT)	16	PR	Auto-PB (BU, MEL)	_	34 (NED)

8	16	М	1 to 4	1 to 4	No	S (pre-SCT)	S (pre- SCT)/R (pre- SCT)	8	CR	Auto-PB (BU, MEL)	_	73 (NED)
9	7	F	No	1 to 4	No	S (pre-SCT)	R (post- SCT)	2	PD	Auto-PB (MEL, TEPA)	_	10 (DOD)
10	20	М	5	No	No	S (pre- SCT)/R (pre- SCT)	No	4	CR	Auto-PB (CBDCA, ETP, MEL)	_	113 (NED)
11	10	F	5	No	No	R (pre-SCT)	No	5	PR	Auto-PB (BU, MEL)	-	98 (NED)
12	12	F	No	5	Yes	S (pre-SCT)	R (pre-SCT)	6	NA	Auto-PB (TPT, CPM, MEL)	_	8 (DOD)
13	13	М	1 to 4	1 to 4	No	S (pre-SCT)	R (post- SCT)	6	PR	Auto-PB (TPT, CPM, MEL)	_	20 (DOD)
14	12	М	No	5	No	R (post-SCT)	R (post- SCT)	8	PR	Auto-PB (BU, MEL)	_	31 (DOD)
15	14	М	No	5	No	No	R (pre-SCT)	11	PR	Auto-PB (BU, MEL)	_	14 (DOD)
16	8	М	5	1 to 4	No	S (pre- SCT)/R (post- SCT)	R (post- SCT)	4	PR	Auto-PB (BU, MEL)	_	52 (NED)
17	17	F	5	1 to 4	No	R (pre-SCT)	R (post- SCT)	6	SD	Auto-PB (BU, MEL)	_	26 (DOD)

10	11	Б	5	5	Na	\mathbf{D} (mm \mathbf{C} \mathbf{C} \mathbf{T})	D (mag CCT)	(חח	Auto-PB (ETP,		14
18	11	Г	3	5	INO	K (pre-SCT)	K (pre-SCT)	0	ΓK	MEL)	_	(DOD)
10	12	Б	1 to 4	No	No	D (pro SCT)	No	2	DD	Auto-PB (ETP,		17
19	12	Г	1 10 4	INO	INO	K (pre-SCT)	INO	3	ΓK	TEPA)	_	(DOD)
20	12	м	5	No	No	D (post SCT)	No	5	۲D	Auto-PB (BU,		10
20	12	IVI	3	INO	INO	K (post-SCT)	INO	5	5D	MEL)	_	(DOD)
21	12	Б	1 to 4	No	No	S (pro SCT)	No	5	CP	Auto-PB (BU,		85
21	12	Г	1 10 4	INO	NO	S (pre-SCT)	INO	5	CK	MEL)	_	(NED)
						S (pre-	S (pre-			Auto DD (DI		
22	26	М	No	5	No	SCT)/R (pre-	SCT)/R (pre-	7	CR	Auto-FB (BO,	-	1 (DOD)
						SCT)	SCT)			WIEL)		
23	16	F	5	5	No	No	No	1	SD	Auto-PB (MEL,		23
23	10	1	5	5	NO	INU	INU	4	3D	TEPA)	_	(DOD)
			M No		ł No	R (post-SCT)	R (nost-	t- 3 SD	Auto-PB SD (CBDCA, ETP,	Auto-PR (BU	U	
24	15	М		1 to 4			SCT)			(CBDCA, ETP,	MEL)	9 (DOD)
							501)			MEL)	WILL)	
										Auto-PB (ETP	Auto-PB	165
25	4	М	5	No	No	S (pre-SCT)	No	4	CR	TEPA)	(CBDCA,	(NFD)
										ILIA)	ETP, MEL)	(ILD)
26	13	М	1 to 4	No	No	R (post-SCT)	R (post-	5	CR	Auto-PB (ETP,	Auto-PB	80
20	15	141	1 10 4	110	110	R (post be I)	SCT)	5	CR	MEL)	(ETP, MEL)	(NED)
27	13	F	No	5	Ves	R (nost-SCT)	R (post-	2	PR	Auto-PB (TPT,	Auto-PB (BU,	197
21	15	1	110	5	1 05	R (post 501)	SCT)	~	1 10	CBDCA, TEPA)	MEL)	(NED)

28	4	М	5	No	No	R (post-SCT)	S (post- SCT)/R (post-SCT)	6	PD	Auto-PB (TPT, CPM, MEL)	Auto-PB (BU, MEL)	26 (AWD)
29	14	М	1 to 4	5	No	R (post-SCT)	R (post- SCT)	6	SD	Auto-PB (TPT, CPM, MEL)	Auto-PB (BU, MEL)	31 (NED)
30	15	М	No	1 to 4	No	R (pre-SCT)	No	6	CR	Auto-PB (ETP, TEPA)	Auto-PB (ETP, MEL)	53 (DOD)
31	10	F	1 to 4	No	No	R (post-SCT)	No	6	SD	Auto-PB (ETP, MEL)	Auto-PB (ETP, MEL)	83 (NED)
32	10	М	1 to 4	1 to 4	No	No	R (post- SCT)	6	CR	MMR-PB (FLU, MEL, ATG)	_	27 (NED)
33	14	F	5	No	No	S (post- SCT)/R (pre- SCT)	R (post- SCT)	6	PR	Auto-PB (CBDCA, ETP, CPM)	MR-BM (CPM, MEL)	112 (NED)
34	11	F	1 to 4	5	No	S (post- SCT)/R (pre- SCT)	R (post- SCT)	6	PR	Auto-PB (CBDCA, ETP, CPM)	MMR-BM (CPM, MEL)	112 (NED)
35	13	F	Yes (NA)	1 to 4	No	R (post-SCT)	R (post- SCT)	2	PR	Auto-PB (BU, MEL)	MMR-PB (FLU, MEL)	106 (NED)

SCT, stem cell transplantation; yr, years; mo, months; F, female; M, male; CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease; Auto-PB, autologous peripheral blood stem cells; MMR-PB, HLA-mismatched related peripheral blood stem cells; UR-CB, unrelated cord blood; ETP, etoposide; BU, busulfan; MEL,

Pediatric Blood & Cancer

melphalan; FLU, fludarabine; ATG, anti-thymocyte globulin; IFO, ifosfamide; CBDCA, carboplatin; TEPA, thiotepa; TBI, total body irradiation; DOD, died of disease; DOC, died of complications; AWD, alive with disease; NED, no evidence of disease.

For peer Review

Variables	Factors (n)	3-yr PFS, % (95% CI)	Univariate analysis <i>P</i> -value
Age group	0–12 (18)	50.0 (25.9–70.1)	0.930
	≥13 (16)	43.8 (19.8–65.6)	
Gender	Male (18)	33.3 (13.7–54.5)	0.072
	Female (16)	62.5 (34.9-81.1)	
Fusion gene	EWS-FLI1 (22)	50.0 (28.2-68.4)	0.630
	EWS-ERG (1)	0	
	EWSR1-FISH (11)	36.4 (11.2–62.7)	
Primary tumor origin	Bone (26)	50.0 (29.9–67.2)	0.980
	Soft tissue (8)	37.5 (8.7–67.4)	
Primary tumor site	Extremity (10)	30.0 (7.1–57.8)	0.014
	Axial (19)	63.2 (37.9-80.4)	
	Other (3)	0	
Primary tumor size	<200 ml (8)	37.5 (8.7–67.4)	0.714
	≥200 ml (15)	33.3 (12.2–56.4)	
Lung metastasis	No (11)	27.3 (6.5–53.9)	0.051
	1-4 (11)	72.7 (37.1–90.3)	
	≥5 (10)	40.0 (12.3–67.0)	
Bone marrow metastasis	No (32)	46.9 (29.1–62.8)	0.896
	Yes (2)	50.0 (0.6-91.0)	

Supplementary Table 3. Univariate analysis of factors affecting PFS in patients receiving SCT

Bone metastasis	No (13)	53.8 (24.8-76.0)	0.525
	1–4 (12)	50.0 (20.8-73.6)	
	≥5 (8)	37.5 (8.7–67.4)	
Response to initial chemotherapy	CR/PR (17)	70.6 (43.1-86.6)	0.082
	SD/PD (9)	33.3 (7.8–62.3)	
Local treatment for primary site	No (2)	0	0.961
	Radiotherapy (19)	42.1 (20.4–62.5)	
	Surgery (7)	57.1 (17.2-83.7)	
	Surgery and radiotherapy (6)	50.0 (11.1-80.4)	
Local treatment for metastasis	No (9)	44.4 (13.6–71.9)	0.922
	Radiotherapy (22)	50.0 (28.2-68.4)	
	Surgery and radiotherapy (3)	33.3 (0.9–77.4)	
Type of SCT	Single auto-SCT (22)	31.8 (14.2–51.1)	0.035
	Other types (12)	75.0 (40.8–91.2)	
Disease status before SCT	CR/PR (23)	56.5 (34.3-73.8)	0.136
	SD/PD (8)	25.0 (3.7–55.8)	

PFS, progression-free survival; CI, confidence interval; HR, hazard ratio; N.E., not evaluated; EWSR, Ewing's Sarcoma Region; FISH, fluorescent in situ hybridization; CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease; SCT, stem cell transplantation; auto, autologous.

1 SUPPLEMENTARY APPENDIX

2 List of participating hospitals

3	The following institutions participated in the study: Department of Pediatrics, Hirosaki
4	University Hospital, Hirosaki, Japan; Department of Pediatrics, National Hospital
5	Organization Nagoya Medical Center, Nagoya, Japan; Department of Pediatric
6	Hematology/Oncology, Osaka City General Hospital, Osaka, Japan; Department of
7	Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and
8	Pharmaceutical Sciences, Okayama, Japan; Division of Pediatric Oncology,
9	Comprehensive Cancer Center, International Medical Center, Saitama Medical
10	University, Saitama, Japan; Department of Pediatrics, St. Luke's International Hospital,
11	Tokyo, Japan; Department of Hematology and Oncology, Children's Cancer Center,
12	Kobe Children's Hospital, Kobe, Japan; Department of Orthopedic Surgery, Osaka
13	University Graduate School of Medicine, Suita, Japan; Department of Pediatrics,
14	Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima,
15	Japan; Department of Pediatrics, Mie University Graduate School of Medicine, Tsu,
16	Japan; Department of Pediatrics, Faculty of Medicine, University of Toyama, Toyama,

17	Japan; Department of Pediatric Oncology, National Cancer Center Hospital, Tokyo,
18	Japan; Department of Pediatrics, National Hospital Organization, Kyusyu Cancer
19	Center, Fukuoka, Japan; Department of Pediatrics, University of Tsukuba, Tsukuba,
20	Japan; Department of Pediatrics, Niigata University Graduate School of Medicine and
21	Dental Sciences, Niigata, Japan; Department of Orthopedic Surgery, Aichi Cancer
22	Canter Hospital, Nagoya, Japan; Department of Pediatrics, Yokohama City University
23	School of Medicine, Yokohama, Japan; Department of Pediatrics, Hiroshima University
24	Graduate School of Biomedical and Health Sciences, Hiroshima, Japan; Department of
25	Pediatrics, Ehime University Graduate School of Medicine, Toon, Japan; Department of
26	Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan; Center of
27	Bone Marrow Transplantation, Ryukyu University Hospital, Okinawa, Japan;
28	Department of Pediatrics, Wakayama Red Cross Hospital, Wakayama, Japan;
29	Department of Pediatrics, Osaka Medical College, Takatsuki, Japan; Department of
30	Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan;
31	Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan;
32	Division of Hematology and Oncology, Children's Medical Center, Japanese Red Cross

- 33 Nagoya First Hospital, Nagoya, Japan; Department of Hematology/Oncology, Saitama
- 34 Children's Medical Center, Saitama, Japan; Division of Pediatrics, Faculty of Medicine,
- 35 University of Miyazaki; Department of Pediatrics, Graduate School of Medicine, Kyoto
- 36 University, Kyoto, Japan.

for per peries