TITLE:
Eddy-Current Field Analysis in Laminated Iron Cores Using Multi-Scale Model Order Reduction

AUTHOR(S):
Eskandari, Hamed; Gyselinck, Johan; Matsuo, Tetsuji

CITATION:

ISSUE DATE:
2021-06

URL:
http://hdl.handle.net/2433/270017

RIGHT:
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. This is not the published version. Please cite only the published version. この論文は出版社版ではありません。引用の際には出版社版をご確認ご利用ください。
Eddy-Current Field Analysis in Laminated Iron Cores Using Multi-Scale Model Order Reduction

Hamed Eskandari¹, Johan Gysselinck², and Tetsuji Matsuo¹
¹Graduate School of Engineering, Kyoto University, Kyoto, 615-8510 Japan
2 Universite Libre de Bruxelles (ULB), Department of Electrical Engineering, Brussels B-1050, Belgium

This paper develops a multi-scale Model Order Reduction (MOR) method including both material and machine scale MOR. The material-scale MOR homogenizes the eddy-current (EC) field in laminated cores using the Legendre expansion of magnetic induction along the stacking direction within each steel sheet. The machine-scale MOR represents the EC field in electromagnetic devices with their equivalent Cauer Ladder Network (CLN). The former MOR is built into the latter by applying the CLN procedure to the homogenized EC field equation.

Index Terms—Cauer Ladder Network, Eddy-Current, Laminated Core, Model Order Reduction, Multi-Scale.

I. INTRODUCTION

ELECTROMAGNETIC drive systems require accurate and computationally cheap mathematical models for the design and control of their electrical equipment. These models are expected to cover all the complexities including the moving parts, magnetic nonlinearities and micro-structural properties over a wide range of frequencies. Analytically, Finite Element (FE) models, meet all these requirements, however, in practice its prohibitively large systems of equations makes them ineffective, less favorable and sometimes impossible to be used. This is where MOR comes into play by simplifying the large and complex systems of equations without loosing much accuracy [1], [2].

In magneto-quasistatic field analysis, variety of MOR methods are proposed which can be categorized into different groups. Here we would like to classify them as "Machine-Scale" and "Material-Scale" MORs. The former focuses on efficient electromagnetic field calculation over the whole machine on macroscopic scale; while the latter deals with the homogenization and expressing the components of electromagnetic equipment with fine structures, such as laminated steel sheets [3], [4] or windings [5], [6], on microscopic scale. This research aims to develop a multi-scale MOR, integrating the machine-scale and material-scale MOR into a single methodology.

Regarding the material-scale MORs, the simplest one is to consider the stacked laminated-core as a nonconducting nonhysteretic homogenous material and estimating the iron losses a posteriori. However, more advanced homogenizations have been developed to avoid the FE division along the stacking direction. Fig. 1 (a) illustrates how the material-scale MOR approximates a stacked laminated-core (left) into a homogenized bulk material (right); see e.g. [3] for a homogenization method that considers eddy currents and skin effect in laminated stacks using the Legendre polynomials.

In this paper, among machine-scale MOR methods, the CLN method is chosen as one of the newly established MOR techniques, possessing clear physical interpretation, accuracy, and efficiency [7], [8], [10]. As it is shown in Fig. 1 (b), the CLN method finds the equivalent circuit network (right) for any linear domain governed by magneto-quasistatic field (left).

The homogenization method in [3] has intrinsic compatibility with the CLN concept, which makes it a suitable choice to be incorporated with CLN method [9]. The main contribution of this paper is presenting a multi-scale MOR as a combination of the CLN method (machine-scale MOR) and Legendre polynomial based homogenization of laminated sheets (material-scale MOR).

II. SUMMARY ON THE MORs

For the ease of comprehension and implementation, the mathematical terms are expressed in their matrix forms in FE context. When analyzing the magneto-quasistatic using the FE, the domain Ω is discretized via FE mesh encompassing m edges and n facets. The magnetic vector potential A, electric field E, and the magnetic flux density B are approximated by basis vector functions for the edge elements w̃i and the facet elements w̃j as.

Corresponding author: H. Eskandari (email: hamed.eskandari.28x@st.kyoto-u.ac.jp).
Algorithm 1 CLN Procedure

\[a_{-1} = 0 \]
\[1/R_0 = e_0^T \sigma e_0 \]
\[\text{for } n = 0 \text{ to } n = \# \text{stages do} \]
\[\text{solve: } K a_{2n+1} = R_{2n} \sigma e_{2n} \]
\[a_{2n+1} = a_{2n+1} + a_{2n-1} \]
\[L_{2n+1} = a_{2n+1}^T K a_{2n+1} \]
\[e_{2n+2} = e_{2n} - L_{2n+1} a_{2n+1} \]
\[1/R_{2n+2} = e_{2n+2}^T \sigma e_{2n+2} \]
\[\text{end for} \]

\[A = \sum a_i w_i^1, \quad E = \sum e_i w_i^1, \quad B = \sum b_j w_j^2 \]

where \(a_i \) and \(e_i \) are the line integrals of \(A \) and \(E \) over the edge \(i \), and \(b_j \) the surface integral of \(B \) on the facet \(j \) [11]. Thus, \(A \) and \(B \) are expressed by column vectors with \(m \) and \(n \) entities, respectively

\[a = [a_1, a_2, \ldots, a_m]^T, \quad b = [b_1, b_2, \ldots, b_n]^T \]

The curl operator is equivalent to an \(n \times m \) matrix \(C \), known as edge-face incident matrix (i.e., \(B = \nabla \times A \) is equivalent to \(b = Ca \)).

The quasi-static EC field equation in a linear region with magnetic permeability \(\mu \) and electric conductivity \(\sigma \) leads

\[C^T h = C^T \nu Ca = \sigma e + j_0, \quad \text{(3)} \]
\[Ce = -\partial_i b = -\partial_i Ca, \quad \text{(4)} \]

where \(h \) and \(j_0 \) are discretized magnetic field strength and source current density, \(\nu \) and \(\sigma \) are the reluctivity and conductivity matrices given by

\[\nu[i, j] = \int_\Omega \frac{1}{\mu} w_i^2 \cdot w_j^2 d\Omega, \quad \sigma[i, j] = \int_\Omega \sigma w_i^1 \cdot w_j^1 d\Omega. \quad \text{(5)} \]

For the sake of brevity, the double curl operator in (3) will be denoted as \(K = C^T \nu C \).

A. CLN as Material-Scale MOR

In a nutshell, the CLN method is about finding the equivalent circuit for the EC field, Fig. 1(b) [8]. The circuit parameters are the norms of electric, \(e_{2n} \), and magnetic modes, \(a_{2n+1} \) with weight functions \(\sigma \) and \(K \), respectively as

\[1/R_{2n} = e_{2n}^T \sigma e_{2n} \]
\[L_{2n+1} = a_{2n+1}^T K a_{2n+1} \]

Electric and magnetic modes hold the orthogonality and are obtained by the following recurrence formulae:

\[K(a_{2n+1} - a_{2n-1}) = \frac{1}{R_{2n}} \sigma e_{2n}, \quad \text{(8)} \]
\[e_{2n+2} = e_{2n} = -\frac{1}{L_{2n+1}} a_{2n+1}. \quad \text{(9)} \]

The CLN procedure initiates with a unit voltage source on the external excitation terminals, which sets up the first electric mode \(e_0 \), and it continues as in Algorithm 1.

B. Laminated Core Homogenization as Material-Scale MOR

At the laminted scale, the magnetic flux distribution along the thickness direction of a steel sheet is described by Legendre polynomials \(P_n(x) (-1 \leq x \leq 1, n = 0, 1, \cdots) \) as

\[B(t, z) = b_0(t) P_0 \left(\frac{2z}{d} \right) + b_2(t) P_2 \left(\frac{2z}{d} \right) + \cdots \]

where \(d \) and \(z \) are the lamination thickness and stacking direction, and \(b_0, b_2, \cdots \) the homogenized components of induction [3]. Then the magnetic intensity on the surface of the lamination \(H_s \) expanded as

\[\begin{bmatrix} H_s(t) \\ 0 \end{bmatrix} = \nu \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \begin{bmatrix} b_0(t) \\ b_2(t) \\ \vdots \\ b_{2n-2}(t) \end{bmatrix} + d \frac{d}{dt} \begin{bmatrix} b_0(t) \\ b_2(t) \end{bmatrix}. \]

Insulation layers are considered by increased reluctivity \(\nu/\alpha \), and decreased conductivity \(\alpha \sigma \), with \(\alpha \) the fill factor of the laminated core \((0 < \alpha \leq 1) \).

While the EC in Fig. 1(a) is governed by (3), the homogenized EC field in Fig. 1(a) is obtained by integrating (11) into (3). On macroscopic scale, FE utilizes the magnetic field strength on the lamination surface and averaged flux density in stacking direction, which are equivalent to \(H_s \) and \(b_0 \) in (11), respectively. Homogenized EC equation over the entire domain \(\Omega \) is a combination of (11) in the laminated region \(\Omega_l \) (with \(C_l \) as edge-face incident matrix on \(\Omega_l \)) with the standard constitutive laws in non-laminated regions:

\[K' a = \sigma' \partial_i a + j_{0l}, \quad \text{(12)} \]

where

\[K' = \begin{bmatrix} C^T \nu C & 0 & \cdots \\ 0 & C_l^T \frac{\sigma_{l,2} d^2}{60} C_l & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}, \quad \text{(13)} \]

\[\sigma' = \begin{bmatrix} \sigma + C^T \sigma_{d,2} d^2 & -C^T \sigma_{d,2} d^2 C_l & \cdots \\ -C_l^T \sigma_{d,2} d^2 C_l & C_l^T \sigma_{d,2} d^2 C_l & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}, \quad \text{(14)} \]

\[a = [a_0, a_2, \ldots]^T, \quad j_{0l} = [j_{0l}, 0, \cdots]^T. \quad \text{(15)} \]

where \(\nu_l \) and \(\sigma_l \) are the homogenized permeability and conductivity matrices in \(\Omega_l \) given by

\[\nu_l[i, j] = \int_{\Omega_l} \frac{1}{\mu_{\nu}} w_i^2 \cdot w_j^2 d\Omega, \quad \sigma_l[i, j] = \int_{\Omega_l} \alpha \sigma w_i^1 \cdot w_j^1 d\Omega. \quad \text{(16)} \]

III. DERIVATION OF MULTI-SCALE MOR

In this paper multi-scale MOR is about generating the equivalent Cauer ladder network for homogenized EC field in (12). Because the aforementioned homogenization [3] has a high compatibility with FE. generating the CLN process for that is straightforward and relatively similar to the
Algorithm 2 CLN Procedure on Hom. EC Field

\[
\begin{align*}
\alpha_{-1} &= 0 \\
1/R_0 &= e_0^T \sigma e_0 \\
&\text{for } n = 0 \text{ to } n = \# \text{stages do} \\
solve : K^n \alpha_{2n+1} &= R_{2n} \sigma \alpha_{2n} \\
\alpha_{2n+1} &= \alpha_{2n+1} + \alpha_{2n-1} \\
L_{2n+1} &= \alpha_{2n+1} + K^n \alpha_{2n+1} \\
e_{2n+2} &= e_{2n} - L_{2n+1} \alpha_{2n+1} \\
1/R_{2n+2} &= e_{2n+2}^T \sigma e_{2n+2}
\end{align*}
\]

end for

Fig. 2. One quarter of FE model -left: RM -right: homogenized.

The standard procedure. The CLN procedure on homogenized EC is depicted in Algorithm 2.

The accuracy of the material-scale MOR is controlled by the number of homogenized components of induction (i.e. size of \(K' \) and \(\sigma' \)). Additionally, the accuracy of machine-scale MOR is determined by number of CLN stages. As a rule of thumb, the optimum configuration of the proposed multi-scale MOR is obtained when the number of CLN stages is equal to the number of homogenized components of induction.

IV. NUMERICAL EXAMPLES

Accuracy of the proposed multi-scale method is demonstrated by applying it to a 2-D laminated core, extended to infinity in \(z \) direction using FreeFEM++ software [12]. The core is wrapped by a cylindrical shaped coil carrying the external current density \(j_0 \). The core is comprised of \(2 \times 5 \) laminations with \(d = 0.5 \) mm, relative permeability \(\mu_r = 2000 \), conductivity \(\sigma = 1 \) MS/m and fill factor \(\alpha = 0.9 \). The excitation coil width is \(0.2 \) mm with conductivity \(\sigma = 40 \) MS/m. Due to the symmetry, only a quarter of the Reference Model (RM) is analyzed and shown in Fig. 2(left). Fig. 2(right) illustrates the geometry of the homogenized core using (13). Magnetic vector potential \(A \) and electric field \(E \) are approximated by in-plane shape function. Magnetic flux density \(B \), is perpendicular to the plane.

Conducting Algorithm 1 on RM gives the CLN parameters as a machine-scale MOR. On the other hand, proposed multi-scale MOR comes from applying Algorithm 2 on \(0^{th} \) and \(2^{nd} \) order homogenized fields. Those parameters are tabulated in Table 1 too.

Frequency responses are compared with the admittance per unit length seen by source by plotting \(\Re(Y) \) and inductance \(L = \Im((1/Y)/\omega) \) in Fig 3 and Fig. 4. When the excitation coil is fed with a unit alternating voltage source with the angular velocity of \(\omega \), the admittance in RM and homogenized model are

\[
Y_{\text{RM}} = (e_0 - j \omega a)^T \sigma (e_0 - j \omega a) + j \omega a^T K a, \quad (17)
\]

\[
Y_H = (e_0 - j \omega a)^T \sigma' (e_0 - j \omega a) + j \omega a^T K' a. \quad (18)
\]

demonstrate by applying it to a 2-D laminated core, extended to infinity in \(z \) direction using FreeFEM++ software [12].

\[
\begin{align*}
Y_{\text{RM}} &= (e_0 - j \omega a)^T \sigma (e_0 - j \omega a) + j \omega a^T K a, \quad (17) \\
Y_H &= (e_0 - j \omega a)^T \sigma' (e_0 - j \omega a) + j \omega a^T K' a. \quad (18)
\end{align*}
\]

Transient analysis are carried out with square wave unit voltage excitation at 10kHz. Transient responses obtained from FE on RM and its zero and second order equivalent CLN are depicted in Fig. 5. It is simply obvious that the losses in the CLN resistances are equivalent to EC loss [8] in Fig. 6(a). The EC losses separated in coil and core regions are derived using energy division method in Appendix B and compared with FEA in Fig. 6(b-c). The reconstructed magnetic flux density fields on the center-line are shown in Fig. 7. The discrepancies are mainly due to the U-turns of the ECs at the far end side of the laminations which are basically neglected in the homogenization stage.

On Fig. 5, to obtain the RM results with 54540 number of unknowns, it took 1101s using on a computer with a clock frequency of 2.9 GHz and 16.0 GB of RAM. The computational time required to get \(0^{th} \) and \(2^{nd} \) order Hom. CLN results with 3148 and 4017 number of unknowns were 0.31s and 0.73s respectively.

Table I

<p>| Parameters Obtained for the Reference Model, (0^{th}) and (2^{nd}) Order Homogenized Model. |
|---------------------------------|-----------------|-----------------|-----------------|</p>
<table>
<thead>
<tr>
<th>(\Omega)</th>
<th>RM</th>
<th>(0^{th}) Hom.</th>
<th>(2^{nd}) Hom.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_0)</td>
<td>1.05e-06</td>
<td>1.05e-06</td>
<td>1.05e-06</td>
</tr>
<tr>
<td>(L_1)</td>
<td>6.72e-04</td>
<td>6.67e-04</td>
<td>6.67e-04</td>
</tr>
<tr>
<td>(L_2)</td>
<td>9.04e-04</td>
<td>4.70e-07</td>
<td>1.55e-07</td>
</tr>
<tr>
<td>(L_3)</td>
<td>4.58e-09</td>
<td>1.05e-06</td>
<td>1.05e-06</td>
</tr>
<tr>
<td>(R_0)</td>
<td>9.49e-04</td>
<td>4.70e-07</td>
<td>1.55e-07</td>
</tr>
<tr>
<td>(L_4)</td>
<td>3.54e-05</td>
<td>8.09e-07</td>
<td>8.09e-07</td>
</tr>
<tr>
<td>(L_5)</td>
<td>2.18e-08</td>
<td>6.29e-08</td>
<td>6.29e-08</td>
</tr>
<tr>
<td>(L_6)</td>
<td>2.93e-08</td>
<td>4.70e-07</td>
<td>1.55e-07</td>
</tr>
</tbody>
</table>

Fig. 3. Frequency responses obtained with RM, \(0^{th} \) order Homogenization and it’s equivalent CLN (#1: single stage CLN, #2: two stage CLN).

Fig. 4. Frequency responses obtained with RM, \(2^{nd} \) order Homogenization and it’s equivalent CLN (#1: single stage CLN, #2: two stage CLN).

Fig. 5. Transient response to rectangular excitation.
Fig. 6. EC losses on entire domain (a), coil (b) and core (c).

Fig. 7. The distribution of magnetic field at the center-line.

V. CONCLUSION

In this paper a multi-scale MOR method was presented as a combination of material-scale and machine-scale MORs. EC loss separation over arbitrary sub-domains was also developed as an useful feature of CLN method. Numerical examples showed that both frequency and transient responses agreed well with the FE on the reference model. The further steps to be taken are multi-port and nonlinear extensions of the presented work.

APPENDIX A

Due to the distributive property of integration, CLN parameters can be divided into arbitrary number of non-overlapping regions that fill the domain as a whole. For the sake of simplicity, we consider two complementary domains only; \(\Omega_\alpha \) and \(\Omega_\beta \). The CLN parameters in (6)-(7) are rewritten as:

\[
\frac{1}{R_{2n}} = e_{2n}^T \sigma e_{2n} = e_{2n}^T (\sigma_\alpha + \sigma_\beta) e_{2n} \Rightarrow \frac{1}{R_{2n,\alpha}} + \frac{1}{R_{2n,\beta}},
\]

\[
L_{2n+1} = a_{2n+1}^T K a_{2n+1} = a_{2n+1}^T (K_\alpha + K_\beta) a_{2n+1} = L_{2n+1,\alpha} + L_{2n+1,\beta},
\]

where

\[
K_x = C \nu_x C, (x = \alpha \text{ or } \beta)
\]

\[
\nu_x[i, j] = \int_{\Omega_x} \frac{1}{\mu} \mathbf{w}_i \cdot \mathbf{w}_j \text{d}\Omega, \quad \sigma_x[i, j] = \int_{\Omega_x} \sigma \mathbf{w}_i \cdot \mathbf{w}_j \text{d}\Omega.
\]

This feature enables the calculation of the stored magnetic energy or loss dissipation at the desired domain, as shown in Fig. 8.

ACKNOWLEDGMENT

This work was supported in part by the Japan Society for the Promotion of Science under Grant-in-Aid for Scientific Research (C) No. 20K04443. H. Eskandari gratefully acknowledges financial and invaluable moral support from the Yoshida Scholarship Foundation.

REFERENCES