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1 Introduction

A conformal field theory (CFT) which is dual to classical gravity on an anti de-Sitter
space (AdS) via the AdS/CFT [1], is expected to be strongly interacting and to have large
degrees of freedom. Such CFTs, called holographic CFTs, have been considered to describe
quantum systems with maximal quantum chaos [2]. Conformal bootstrap studies predict
the special feature that a holographic CFT has a large spectrum gap and that its low
energy spectrum is sparse [3–5]. Intuitively, such a large spectrum gap is believed to be
produced due to strong interactions in the holographic CFT. This large spectrum gap is
necessary to explain the black hole entropy expected from the AdS/CFT via a modular
transformation. For example, if we assume a pure gravity theory on AdS3, the spectrum
gap of the conformal dimension ∆ = h+ h̄ is expected to be ∆gap = c

12 . Moreover, a basic
property of quantum chaos so called eigenstate thermalization hypothesis (ETH) [6] has
been derived from further studies of conformal bootstrap relations [7–9] (see also [10, 12]
for earlier related works).

In this paper, we study an analogous spectrum property in holographic BCFTs and its
physical implications. A boundary conformal field theory (BCFT) is defined as a CFT on
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a manifold with boundaries where a part of conformal symmetry is preserved [13, 14]. The
gravity duals of BCFTs (AdS/BCFT) can be obtained by inserting a class of end of the
world branes in AdS backgrounds, which satisfy Neumann boundary conditions dual to the
boundary conformal invariance [15–18]. End of the world branes play a crucial role in recent
progress in understanding quantum aspects of black holes. Indeed, a class of microstates of
a single sided AdS black hole with the fixed mass M can be constructed by the insertions
of the end of the world branes to an eternal two sided black hole with the same mass
M , [19–21]. Such a dictionary between black hole microstates and regularized boundary
states plays key role in deriving the Page curve from the bulk perspective, therefore a reso-
lution of black hole information paradox in the light of Island formula [22–27]. We also refer
to [28, 29] for studies utilizing such branes to compute the entropy of Hawking radiation
of higher dimensional black holes. End of the world branes also play a crucial role to find
holographic duals of moving mirrors [30, 31], which mimic black hole evaporation processes.

Motivated by this, we will investigate a chaotic property of holographic boundary states
(or so called Cardy states [13]), namely the inner products of two (regularized) boundary
states. We will see that the off diagonal elements of them are exponentially suppressed in
holographic BCFTs:

〈ψa|ψb〉 = δab +O(e−SBS/2), (1.1)

where |ψa〉 denotes the regularized boundary states, labeled by a. The quantity SBS
estimates the entropy of microstates spanned by the boundary states. This behavior is
directly related to the large spectrum gap in the open string between the two different
boundaries a and b.

This paper is organized as follows. In section two, we give a very brief review of BCFT
and boundary states and examine the inner products of boundary states. We will also
present examples of inner products in a few solvable CFTs. In section three, starting with
a short review of AdS/BCFT, we will study the relation between the inner products and
open string spectra in two dimensional holographic CFTs, using a gravity dual. In section
four, we extend the holographic analysis in section three to higher dimensional holographic
CFTs. In section five, we will discuss our results, in particular by comparing them with
the recent interpretation of a gravitational background as an ensemble of microstates. In
appendix A, we give an argument which shows the absence of traversable wormholes in a
class of Lorentzian AdS/BCFT setups.

2 BCFT and inner products of boundary states

A boundary conformal field theory (BCFT) is a CFT on a manifold with boundaries with
a suitable boundary condition described below [14]. An Euclidean d dimensional CFT
preserves a conformal symmetry SO(d + 1, 1). We choose a boundary condition which
preserves a subgroup SO(d, 1) for a BCFT. In two dimensions d = 2, full conformal
symmetry is enhanced to by a pair of infinite dimensional Virasoro algebras. In the presence
of a conformal boundary, the chiral half of them is preserved as the symmetry of the system.
A boundary state [13] is a useful description of a BCFT in terms of a quantum state. In
this section, we start with a brief review of boundary states and study their inner products.

– 2 –



J
H
E
P
0
6
(
2
0
2
1
)
0
2
3

Although we focus on boundary states in two dimensional CFTs below, we can generalize
their basic definition to higher dimensional CFTs in an obvious way.

2.1 Boundary states

A boundary state is a quantum state created by making a hole. Consider a two dimensional
CFT on a cylinder as depicted in the left picture in figure 1. We describe this cylinder
by the coordinate (τ, x), imposing the periodicity x ∼ x + 2π. The Hamiltonian in the
Euclidean time τ direction is denoted by Hc (closed string Hamiltonian) and is written as

Hc = L0 + L̄0 −
c

12 , (2.1)

in terms of the Virasoro generators and the central charge c.
Adding a boundary along τ = 0 is described by placing a boundary state (or Cardy

state) |Ba〉, where a labels different boundary conditions. A Cardy state [13] is a linear
combination of Ishibashi states |Ik〉 [32], where k labels all primary states in the CFT as

|Ba〉 =
∑
k

cak|Ik〉. (2.2)

The Ishibashi state |Ik〉 is a state constructed from a linear combination of descendant
states on top of the primary state labeled by k and has maximal quantum entanglement
between the left-moving and right-moving sectors. Ishibashi states are orthogonal to each
other. The amplitude of the Euclidean time evolution by β/2 between two such states is
computed as

〈Ik|e−
β
2Hc |Il〉 = δkl χk(e−

β
2 ). (2.3)

χk is the character for the primary k.

2.2 Open-closed duality and overlaps

On the other hand, the Cardy states are not orthogonal to each other but satisfy the
open-closed duality relation as follow (refer to figure 1)

〈Ba|e−
β
2Hc |Bb〉 =

∑
k

N
(k)
a,b Trk

[
e−2πtHo

]
, (2.4)

where
β = 2π

t
, (2.5)

and Ho = L0 − c
24 is the open string Hamiltonian. In the right hand side, Trk[· · · ] denotes

we take the trace with respect to the primary k as well as its descendants. Moreover, N (k)
a,b

counts the degeneracy of sectors which belong to the primary k in the open strings between
the boundaries a and b.

Now if we take the limit β → 0 (or equally t→∞), we find

〈Ba|e−
β
2Hc |Bb〉 ' N

(km)
a,b e

−2πt
(
h

(min)
a,b

− c
24

)
, (2.6)
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2π

x τ

β/2

=
2πｔ

τ x

π

Figure 1. A sketch of cylinder amplitude from the viewpoint of closed string (left) and open string
(right).

where km is the lightest primary among those satisfy N (km)
a,b 6= 0, whose conformal dimension

is denoted as h(min)
a,b .

Since we have h(min)
a,a = 0 when a = b, we can estimate the following ratio in the limit

β → 0 as
〈Ba|e−

β
2Hc |Bb〉√

〈Ba|e−
β
2Hc |Ba〉 · 〈Bb|e−

β
2Hc |Bb〉

' N (km)
a,b e

−4π2
h

(min)
a,b
β . (2.7)

Note that here we used the fact N (0)
a,a = 1.

2.3 Thermal pure states

One of the reasons we are interested in boundary states is that, although they are pure
states, in many respects they are indistinguishable from thermal mixed states under a
suitable coarse-graining. This is in accord with the spirit of eigenstate thermalization
hypothesis (ETH) [6], which claims many properties of typical pure states coincide with
those of corresponding thermal mixed states. Thus, one anticipates that boundary states
in CFT are indeed such typical states, therefore realize the ideas of ETH. To make this
point explicit, now we consider a pure state given by a regularized boundary state

|ψa〉 = Na · e−
β
4Hc |Ba〉, (2.8)

where we assume β is infinitesimally small and we choose the normalization Na such that
〈ψa|ψa〉 = 1.

This state is often employed as that just after a global quantum quench [33], which is
an analytically tractable model of thermalization in an isolated quantum system. Thus,
a late time limit of the time evolution of |ψa〉 can be regarded as a thermal pure state.
Indeed, its expectation value of the energy is computed as

Eth = 〈ψa|Hc|ψa〉
〈ψa|ψa〉

= π2c

3β2 , (2.9)

which agrees with the energy expectation value of the thermal ensemble with the temper-
ature 1/β. This indeed suggests the regularized boundary states are typical states (2.8)
with the temperature β.
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However, we can immediately see that not all typical states with the fixed energy (2.9)
belong to the class of states (2.8), by counting the number of such regularized boundary
states.The total number of the typical states can be read off from the thermodynamic
entropy,

#Typical states ∼ eSth , Sth = 2π2c

3β . (2.10)

Now, let us also estimate the number of such thermal pure states of the form (2.8), by
counting the number of Cardy states. Since the label k of Ishibashi states coincides with
that of primary states with the constraint that left and right are the same primary. There-
fore, the number of different Cardy states at an effective temperature 1/β is estimated as

#Cardy states ∼ eSBS = e
π2c
3β , (2.11)

where SBS = π2c
3β denotes the entropy naively associated with the Cardy states. Thus

we see that the number of the regularized boundary states are too small to account all
typical states.

It is also useful to note that in the AdS/CFT, this pure state (2.8) is dual to a microstate
of a single sided BTZ black hole at inverse temperature β [19], or equally a three dimensional
AdS spacetime with an end of the world-brane where boundary conformal invariance is
preserved [15, 16]. This is indeed a half of the eternal BTZ black hole geometry which is
dual to a thermal CFT.

2.4 Inner products

Now we would like to evaluate the inner products 〈ψa|ψb〉 of the pure states constructed
from boundary states. In the high temperature limit β → 0, we can estimate their inner
products by using (2.7) as follows:

〈ψa|ψb〉 ' δab +N
(km)
a,b · e−

4π2
β
h

(min)
a,b . (2.12)

In this way, the larger gap in the open string channel leads to a larger exponential sup-
pression of off diagonal elements of inner products.

As we will explain in the next section, for an ideal holographic CFT which is dual to
a pure gravity on AdS3, we expect for a 6= b

h
(min)
a,b = c

24 . (2.13)

This bound may be regarded as a chiral version of the well-known maximal gap ∆ = c
12

for a CFT dual of a pure gravity on AdS3 [4, 34].
If we introduce a overall random phase for the state as |ψa〉 → eiθa |ψa〉, we find that

the inner product takes the following behavior

〈ψa|ψb〉 ' δab +Rab · e−
SBS

2 , (2.14)

where SBS is the same as (2.11). Also Rab is the random fluctuations such that 〈R∗abRab〉 =
1. This ETH like property implies that such states are random states among eSBS states
and thus nicely agrees with the estimation (2.11).
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This should be compared to the statistical fluctuations of overlaps between two typical
states |φi〉 [25],

〈φi|φj〉 = δij + e−Sth/2Rij , (2.15)
with the random variable Rij again satisfying 〈R∗ijRij〉 = 1. One can easily see the dif-
ference between the two, namely SBS in the overlap between two regularized boundary
states (2.14) is replaced to the thermodynamic entropy Sth = 2SBS in (2.15). This is again
due to the fact that although such regularized boundary states are the frequently used
model of thermal typical states, the number of such states are quite small compared to the
total number of typical states.

2.5 Examples: free scalar and Liouville CFT

There are several boundary states in two dimensional conformal field theories, whose ex-
plicit forms are known. In this section, we first compute the overlaps of such boundary
states in free boson theory and we compare the results with the general formula (2.7) pre-
sented above. For completeness, we also list several known results in Liouville theory, with
caution that the general formula (2.7) cannot be applied directly to this theory due to its
non-unitarity and continuous spectrum. Notice that these integrable boundary states have
different properties than those of holographic boundary states.

2.5.1 Boundary states in free boson theory
Let us first consider the boundary states in free boson theory, whose action is given by

I = 1
2π

∫
dz2∂zX∂z̄X. (2.16)

There are two types of such states. One is the Dirichlet state |BD,x〉, which is labeled
by a real parameter x of the localized point, and the other is the Neumann state |BN 〉.

The overlap between two Dirichlet boundary states |BD,x1〉 |BD,x2〉 is estimated as
〈BD,x2 |e−πsHc |BD,x1〉√

〈BD,x1 |e−πsHc |BD,x1〉 · 〈BD,x2 |e−πsHc |BD,x2〉
= e−

(x1−x2)2
4πs = e

− (x1−x2)2
2β , (2.17)

where we defined s = β
2π . The above exponential suppression agrees with the lowest open

string energy h
(min)
DD = (x1−x2)2

8π2 between the two boundaries, in accord with the general
formula (2.7).

The overlap between the Neumann state and a Dirichlet state is,

〈BN |e−πsHc |BD,x1〉√
〈BN |e−πsHc |BN 〉 · 〈BD,x1 |e−πsHc |BD,x1〉

=
√

4π
√
sη3(is)

θ2(is) (2.18)

where the right hand side is given by where η(τ) is the eta function,

η(τ) = q
1

24

∞∏
n=1

(1− qn), q = e2πiτ θ2(τ) =
∞∏
n=1

(1− qn)(1 + qn)2. (2.19)

In the β → 0 limit, this ratio (2.18) behaves as e−
π2
4β . This behavior agrees with the

general formula (2.7), where the lowest open string energy is given by h(min)
DN = 1

16 between
the Dirichlet and Neumann boundary.
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2.5.2 Boundary states in Liouville theory

Let us discuss a less trivial example, namely boundary states in Liouville theory. On a
curved background its action reads,

I = 1
4π

∫
dx2√g

[
gab∂aφ∂bφ+QRφ+ 4πµe2bφ

]
, (2.20)

with Q = b+ 1
b , and R is the Ricci scalar. The central charge of this CFT is c = 1 + 6Q2.

In particular, we are interested in the large c limit b→ 0, where c ' 6
b2 .

This theory has two types of boundary states, namely FZZT states [35, 36] and ZZ [37]
states. Since the overlaps between two FZZT states are divergent even in the presence of
the UV regulator, here we only discuss ZZ boundary states. ZZ states are characterized
by two positive integers (m,n), so we denote them |B(m,n)〉. The amplitude between two
such states was computed in [37]:

〈B(m,n)|eπiτH(m,n)(m′,n′) |B(m′,n′)〉=
min(m,m′)−1∑

k=0

min(n,n′)−1∑
l=0

χm+m′−2k−1,n+n′−2l−1(q̃), (2.21)

where
τ = iβ

2π , τ̃ = −1
τ
, q̃ = e2πiτ̃ = e

− 4π2
β , (2.22)

with the caution that we are using an unusual convention for τ , in order to match the
notation with (2.7). Also, we introduced the degenerate character,

χm,n(q) = q−
1
4 (m/b+nb)2

− q−
1
4 (m/b−nb)2

η(τ) (2.23)

For concreteness, let us focus on three simplest states in this class, ie |B(1,1)〉, |B(1,2)〉,
and |B(2,1)〉.

The overlap between |B(1,1)〉 and |B(1,2)〉 is

〈B(1,1)|e−πsHc |B(1,2)〉√
〈B(1,1)|e−πsHc |B(1,1)〉〈B(1,2)|e−πsHc |B(1,2)〉

= χ1,2√
χ1,1(χ1,1 + χ1,3)

. (2.24)

When we take β → 0 limit and the large c limit b→ 0, we find

〈ψ(1,1)|ψ(1,2)〉 ' 1. (2.25)

This means that |B(1,1)〉 and |B(1,2)〉 are indistinguishable in this limit.
On the other hand the overlap between |B(1,1)〉 and |B(2,1)〉 is

〈B(1,1)|e−πsHc |B(2,1)〉√
〈B(1,1)|e−πsHc |B(1,1)〉〈B(2,1)|e−πsHc |B(2,1)〉

= χ2,1√
χ1,1(χ1,1 + χ3,1)

, s = β

2π . (2.26)

If we take the semi classical limit b→ 0 and the high temperature limit β → 0 at the same
time, we get,

〈ψ(1,1)|ψ(2,1)〉 ' e
−π

2c
6β , (2.27)

which interestingly coincides with the expectation in holographic CFTs.
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More generally, in the large c limit b→ 0, we obtain

〈ψ(n1,m1)|ψ(n2,m2)〉 ' e
−π

2c
6β (n1−n2)2

. (2.28)

Note that here we cannot apply directly the general formula (2.7) to Liouville theory
because Liouville theory is non-unitarity and has continuous spectrum, as opposed to the
usual CFTs which we assumed in the derivation of (2.7). Here we nevertheless mention
these states because they are examples of boundary states whose explicit form are known.

3 Holographic analysis in AdS3/BCFT2

Now we move on to our main target: holographic BCFTs [16, 17, 38]. In this section,
we focus on two dimensional BCFTs with classical gravity duals. As we explained in the
previous section, the presence of a conformal boundary is described by a Cardy state,
labeled by boundary conditions.

3.1 Lightning review of AdS/BCFT

We apply the AdS/BCFT duality [16–18] to study a gravity dual of a holographic CFT on
a two-dimensional cylinder. The action of the gravitational system is given by

I = − 1
16πGN

∫
N
dx3√g(R− 2Λ)− 1

8πGN

∫
Q

√
h(K − T ). (3.1)

In the above action, Q is the world volume of the end of the world brane in the bulk, which
is anchored to the boundary of the BCFT region at the asymptotic boundary of the bulk
spacetime. Also, in the action K is the trace of the extrinsic curvature of Q, and T denotes
the tension of the brane. When we consider a gravity dual of a cylinder, there are two
candidates of classical gravity solutions depending on whether the end of the world brane
is connected or disconnected, as depicted in figure 2. We call these two a connected and
disconnected solution, respectively.

First we consider a connected solution based on a thermal AdS3. We write the thermal
AdS3 metric as follows

ds2 = R2
(
dτ2

z2 + dz2

h(z)z2 + h(z)
z2 dx2

)
, (3.2)

where
h(z) = 1−

(
z

z0

)2
. (3.3)

To make the geometry smooth, the coordinate x is compactified as x ∼ x+ 2πz0. We also
compactify the Euclidean time τ such that τ ' τ + 2πzH . A gravity dual of a CFT on a
cylinder is given by the subregion [16, 17]

z0 arctan
(

RTz

z0
√
h(z)−R2T 2

)
≤ x(z) ≤ πz0 − z0 arctan

(
RTz

z0
√
h(z)−R2T 2

)
. (3.4)
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Note that at the AdS boundary z = 0, this leads to 0 ≤ x ≤ πz0 and this interval is identi-
fied with the one where the BCFT is defined. The surface Q which is the boundary of the
above region is a connected surface. By evaluating the gravity action on this background,
we can holographically compute the BCFT partition function as follows

Zcon = e
πczH
12z0 . (3.5)

Note that the result is independent from the value of the tension T , which parameterizes
different boundary conditions.

Next we consider the disconnected solution based on the BTZ black hole solution

ds2 = R2
(
f(z)dτ2

τ2 + dz2

f(z)z2 + dx2

z2

)
, (3.6)

where
f(z) = 1− z2

z2
H

. (3.7)

Now, in this solution, the Euclidean time like direction contractible, as opposed to thermal
AdS.

A gravity dual of a CFT on a cylinder is given by the region [16, 17]

− zH · arcsinh
(

RTaz

zH
√

1−R2T 2
a

)
≤ x(z) ≤ πz0 + zH · arcsinh

 RTbz

zH
√

1−R2T 2
b

 , (3.8)

where Ta,b is the tensions of each brane. By evaluating the gravity action on this background
and we can again evaluate the BCFT partition function as follows

Zdis = e−Idis ,

Idis = −πcz0
6zH

− S(a)
bdy − S

(b)
bdy, (3.9)

where S(i)
bdy, i = a, b are the boundary entropies [39]

S
(i)
bdy = c

3arctanh(RTi). (3.10)

3.2 Inner products of holographic boundary states

When we consider the overlap 〈Ba|e−
β
2Hc |Ba〉 for an identical boundary condition a, then

both the connected and disconnected solutions are allowed, which are depicted as the left
and right picture in figure 2. The connected solution is favored in the limit β → 0. By
choosing πz0 = β

2 and zH = 1 in order to adjust the normalization, we find

〈Ba|e−
β
2Hc |Ba〉 ' e

π2c
6β . (3.11)

When we consider 〈ψa|ψb〉 for two different boundary conditions a and b, only the
disconnected solution is allowed (i.e. the right picture in figure 2). Thus we can evaluate
the overlap as follows

〈Ba|e−
β
2Hc |Bb〉 ' e

cβ
12 +S(a)

bdy+S(b)
bdy . (a 6= b). (3.12)
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x zz0

τ

Q

Disconnected Phase

x zzH

τ

Q1

Connected Phase

Q2
π
z0 π
z0

Figure 2. A sketch of gravity duals of a CFT on a cylinder in the connected phase (left) and
disconnected phase (right) at d = 2.

Thus in the limit β → 0 we find that the inner products of the normalized pure state
|ψa〉 (2.8) are given by as follows (when a 6= b)

〈ψa|ψb〉 ' e−
π2c
6β +S(a)

bdy+S(b)
bdy . (3.13)

This shows that the lowest dimensional state in the open string between a and b (a 6= b)
is given by the previous expectation (2.13) i.e. h(min)

a,b = c
24 , via (2.12), as promised.

4 Higher dimensional generalizations

The holographic approach based on the AdS/BCFT provides predictions also in higher
dimensional BCFTs [17]. Notice that we can define a boundary state |Ba〉 as a state
making a d− 1 dimensional hole in d dimensional space. The inner product 〈Ba|e−

β
2H |Bb〉

can be computed as a partition function on a d dimensional open manifold Iβ/2 × T d−1,
where Iβ/2 is a length β/2 interval. As in the previous d = 2 case, there are two different
solutions, depending on whether the end of the world brane is connected or disconnected.

First we consider a connected solution based on a AdSd+1 soliton. We write the AdSd+1
soliton geometry as follows

ds2 = R2
(
dτ2 +

∑d−2
i=1 dy

2
i

z2 + dz2

h(z)z2 + h(z)
z2 dx2

)
, (4.1)

where
h(z) = 1−

(
z

z0

)d
. (4.2)

We compactify x ∼ x+ 4π
d z0 in order to have a smooth geometry. We also compactify the

Euclidean time τ ∼ τ + 4π
d zH and other spacial coordinates yi ∼ yi + Li. The boundary

CFT is defined in the bounded region

|x| ≤ x(T ). (4.3)
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The function x(T ) is introduced as

x(T ) := ξ(T ) · z0, (4.4)

where ξ(T ) is defined when T ≤ 0 as follows [17]:

ξ(T ) ≡ Γ(1/d)Γ(1/2)
Γ(1/2 + 1/d)

R|T |
d(d− 1)

(
1− R2T 2

(d− 1)2

)1/d−1/2

F

(
1, 1
d
,

1
2 + 1

d
; 1− R2T 2

(d− 1)2

)
.

When T > 0, it is defined by ξ(T ) = 2π
d − ξ(−T ). Note that the tension takes values in the

range |T | < d−1
R . As we see in the previous section, when we set d = 2 we have ξ(T ) = π

2
for any T .

We would like to point out that in higher dimensions the behavior of ξ(T ) is different
from that in d = 2. For d > 2, ξ(T ) non-trivially depends on T . We find ξ(T ) is a
monotnically decreasing function of T such that ξ

(
−d−1

R

)
= ∞, ξ(0) = π

d and ξ(T∗) = 0.
Here T∗ > 0 depends on the dimension. Since we have ξ < 0 for T > T∗, which looks
unphysical, this implies that there is an upper bound of the tension T < T∗ for d > 2.

By evaluating the on-shell gravity action, the partition function is obtained as [17]

Zcon = e
Rd−1(

∏d−2
i=1 Li)zHx(T )

2dGNzd0 . (4.5)

Next we consider the disconnected solution based on the AdS Schwartzshild black hole
solution

ds2 = R2
(
f(z)dτ2

z2 + dz2

f(z)z2 + dx2 +
∑d−1
i=1 dy

2
i

z2

)
, (4.6)

where
f(z) = 1−

(
z

zH

)d
. (4.7)

We compactify τ ∼ τ+ 4π
d zH in order to have a smooth geometry. We also compactify other

spacial coordinates yi ∼ yi + Li, and the boundaries sit at x = ±x(T ). For simplicity, we
consider the case where the tension of the surface Q is vanishing T = 0. This is enough to
extract the leading behavior in the limit β → 0 as was true in d = 2. Then the disconnected
solution is given by the region

|x| ≤ x(T = 0) = π

d
z0. (4.8)

By evaluating the gravity action on this background and we can estimate the partition
function as follows

Zdis = e−Idis , (4.9)

Idis = −R
d−1(

∏d−2
i=1 Li)x(T = 0)
dGNz

d−1
H

. (4.10)

Now let us evaluate the inner products of boundary states using the above holographic
results. For an identical boundary condition a i.e. 〈Ba|e−

β
2Hc |Ba〉, both the connected and
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disconnected solutions are allowed as in AdS3. The connected solution is favored in the
limit β → 0. We set 2x(T ) = 2ξ(T )z0 = β

2 and take the periodicity in the τ and yi direction
to be 4π

d zH = 2π and Li = L, respectively. Then we find from (4.5)

〈Ba|e−
β
2Hc |Ba〉con ' e

(4ξ(T ))dπceff L
d−2
βd−1 . (4.11)

Here we defined
ceff := Rd−1

16πGN
. (4.12)

Note that when d = 2, it is related to the central charge by ceff = c
24π .

When we consider an inner product for two different boundary conditions a and b,
only the disconnected solution is allowed (i.e. the right picture in figure 2). Thus we can
evaluate the overlap for T = 0 from (4.9) as follows

〈Ba|e−
β
2Hc |Bb〉 ' e

8π
dd+1 ceffβL

d−2
. (a 6= b). (4.13)

Thus in the limit β → 0 we find1

〈Ba|e−
β
2Hc |Bb〉√

〈Ba|e−
β
2Hc |Ba〉 · 〈Bb|e−

β
2Hc |Bb〉

' e−
πceff

2
Ld−2
βd−1 ((4ξ(Ta))d+(4ξ(Tb))d), (4.14)

where Ta and Tb are the tensions of surfaces Qa and Qb dual to the boundary states |Ba〉
and |Bb〉, respectively.

This predicts that the lowest energy among states in the open string between a and b
(a 6= b) is given by

E
(min)
a,b = πceff

2

[(2ξ(Ta)
π

)d
+
(2ξ(Tb)

π

)d]
Vd−2, (4.15)

where Vd−2 =
(

2πL
β

)d−2
is the volume of d− 2 dimensional torus in yi direction. We took

the length of x to be π and the periodicity of τ to be 2πt = 4π2

β as in the right of figure 1.
Note also that the above energy gap decreasing as the tensions Ta and Tb gets larger and
does vanish when Ta = Tb = T∗.

5 Discussions: JT gravity vs AdS3/BCFT2?

In this paper, we studied quantum states in CFTs |ψa〉, which are defined by regularized
boundary states (Cardy states) for all possible conformal boundary conditions, labeled
by a. This provides a class of microstates for single sided black holes in AdS. Since the
left-right symmetric constraint is imposed for boundary states, the number of microstates
spanned by boundary states, denoted by eSBS , is of the order of the square root of eSth
i.e. SBS ' Sth

2 . Here eSth denotes the number of typical states |φi〉 in a CFT which are
indistinguishable from the corresponding thermal mixed state. Sth is also equal to the
entropy of eternal black hole dual to the thermo field double of a holographic CFT.

1Here we note that the T dependence for the disconnected solution can be negligible when we focus on
the leading behavior of this ratio in the limit β → 0.
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Figure 3. Gravity evaluations of the inner products of microstates 〈φi|φj〉 in AdS2 gravity (left)
and those of regularized boundary states 〈ψa|ψb〉 in AdS3 gravity (right).

By using the open-closed duality we showed that the inner products 〈ψa|ψb〉 of bound-
ary states for a 6= b are exponentially small such that its exponent is proportional to the
lowest energy in the open string spectrum between a and b as in (2.12). The holographic
analysis of this inner products for a three dimensional AdS pure gravity shows that this
lowest energy is h(min)

ab = c
24 in its dual two dimensional holographic CFT. Indeed, this

value corresponds the estimation of inner products: 〈ψa|ψb〉 ∼ e−SBS/2. A most crucial
fact behind this estimation is that there are two solutions in AdS/BCFT depending on
whether the end of the world brane (EOW brane) is connected or the EOW branes are
disconnected, as depicted as the top and bottom picture in figure 3, respectively. This
result means that the quantum states |ψa〉 are random vectors in the full space spanned
by the left-right symmetric states. Therefore we expect that this lowest energy h(min)

ab = c
24

is maximum possible values for any two dimensional BCFTs. This implies that such CFTs
correspond to maximally chaotic BCFTs and that holographic BCFTs are the most chaotic
BCFTs. We also generalized the above analysis to higher dimensional BCFTs, by applying
the AdS/BCFT. An important new aspect in higher dimensions is that the lowest energy in
open string turns out to depend on the value of the tension of the EOW branes. Therefore
it is an intriguing future problem to understand the distributions of values of tension for
the EOM branes which are dual to conformal boundary states.

Now we would like to compare our results with the analysis of microstates in two di-
mensional AdS gravity (JT gravity) performed in [25] to explain the physics behind the
island formula in the black hole information loss problem. First of all, when we evaluate
the inner products of microstates 〈φi|φj〉, they vanish except a = b in the AdS2 gravity
as depicted in the left of figure 3. In [25], this is interpreted that the gravity calculation
corresponds to taking a random ensemble average 〈φi|φj〉 with respect to all possible mi-
crostates i, j. Even though the gravity analysis cannot directly compute the off diagonal
element of 〈ψi|ψj〉, its square average |〈φi|φj〉|2 is argued to be computable in the two
dimensional gravity, by taking wormhole solutions (called replica wormholes) into account,
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Figure 4. Gravity evaluations of the averages of squares of inner products in AdS2 gravity (left)
and AdS3 gravity (right).

as depicted in the left of figure 4. This leads to the evaluation |〈φa|φb〉|2 ∼ e−Sth and this
implies the behavior 〈φa|φb〉 ' δij +Rije

−Sth2 [25], where Rij is a random matrix.

On the other hand, in the three dimensional AdS gravity we studied in this paper, the
situation is a bit different. Since we can have the solution with two disconnected EOW
branes in AdS3 as depicted in the lower right picture of figure 3, the gravity prediction for
the inner product 〈ψa|ψb〉 does not vanish even if a 6= b, as opposed to the AdS2 case of [25].
Therefore we obtain the off diagonal value of 〈ψa|ψb〉 directly from a gravity calculation.
This leads to the behavior 〈ψa|ψb〉 ' δab +O(e−

SBS
2 ), which leads to the lowest energy gap

h
(min)
ab = c

24 of open strings. These highlight the main difference between the microstate
analysis in two dimensional JT gravity and that in three dimensional AdS gravity.

It may be plausible to think the ensemble average |〈ψa|ψb〉|2 can be computed by
the gravity partition function for a geometry with four boundaries i.e. two as and two
bs, which depicted in the right of figure 4. The first term is the direct product of the
cylinder solutions. We expect that the random averages are responsible for the second term
which corresponds to wormhole geometries which connect two cylinders. However, when
we consider the construction of Euclidean AdS wormholes which connect two boundaries
given in [40], each boundary has to be a surface with genus higher than one. In particular,
we cannot connect two tori by an on shell AdS wormhole. Similarly, we might expect that
it is not possible to connect two cylinders by an AdS wormhole with appropriate EOW
branes.2 This may suggest that in AdS3/BCFT2, we do not need to regard gravity path-
integrals as averaged quantities of holographic CFTs. It would be an intriguing future
problem to explore more on these aspects to understand precisely how gravity can describe
CFT microstates.

2In the appendix A, we gave an argument that we cannot construct a travesable wormhole in the
Lorentzian AdS/BCFT, by picking up a class of examples.
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A Averaged null energy condition and absence of traversal wormholes
in AdS/BCFT

Here we will show that a construction of traversal wormhole with a locally Poincare
AdS metric is not possible in AdS/BCFT when we impose the averaged energy condi-
tion (ANEC). An analogous statement of the absence of traversable wormholes in the
standard AdS/CFT without end of the world branes was proven in [41, 42]. The ANEC for
quantum field theories on flat spaces was derived in [43] using the AdS/CFT and in [44, 45]
using field theoretic arguments. Recently, a necessary modification of ANEC for spaces
with positive curvatures was proposed in [46] via holography.

In the Poincare AdSd+1

ds2 = R2
(
−dt2 + dz2 + dx2 +

∑d−2
i=1 dy

2
i

z2

)
, (A.1)

we consider two BCFTs on regions confined by x ≤ −a or x ≥ a, and ask whether we can
have a static EOW brane that ends at these two boundaries. We write x coordinates of
the brane at x ≤ 0 by x(z), in particular we have x(0) = −a and x′(z∗) =∞ where z = z∗

is the turning point. The null vector which generates null geodesic on the surface Q

(
N t, N z, Nx

)
= Rz2

(
−1, 1√

1 + x′(z)2 ,
x′(z)√

1 + x′(z)2

)
. (A.2)

We fixed the normalization of null vector such that we have dXµ

dλ = Nµ for an affine
parameter λ, namely it satisfies Nµ∇µNν = 0.

The averaged null energy can be decomposed into two parts: the one from x = −a to
x = x(z∗) and the other one x = x(z∗) to x = a. The averaged null energy condition tells
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us that either of them is non-negative, which we can take to be the first one without losing
any generality. Therefore we require∫

dλ (Kµν −Khµν)NµNν = −
∫ z∗

ε
dz

zx′′(z)
(1 + x′(z)2) ≥ 0. (A.3)

However we can show that this integral should be negative by performing a partial inte-
gration:

−
∫ z∗

ε
dz

zx′′(z)
(1 + x′(z)2)

=
[
−z · arctan(x′)

]z∗
ε +

∫ z∗

0
dz arctan x′ = −π2 z∗ +

∫ z∗

0
dz arctan x′ < 0, (A.4)

where we employed that the fact we have x′ = ∞ at the turning point z = z∗ and the
bound | arctan x′| < π

2 for ε ≤ z < z∗. This clearly shows the wormhole solution in the
geometry (A.1) is not possible.
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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