Journal of the Physical Society of Japan

FULL PAPERS

Prevailing Trends Modelled by a Small-World Network
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Graduate School of Informatics, Kyoto University, 606-8501, Japan

We extended a network model of scientific paradigm shifts proposed by S. Bornholdt et al. (2011) to one of prevailing
trends, such as music CDs. A mean-field state-update rule was replaced by a local state-update rule that depends only on
nearest neighbors of a small-world network. Then, we used the extended model to establish a connection between the
model and theories in social sciences. In particular, we used the ideas of the diffusion of innovations and early adopters
introduced by Everett M. Rogers, and a chasm pointed out by Geoftrey A. Moore. Finally, we used real commercial
data of music CDs. We showed that sales of the music CDs of major and independent labels can be modeled using the
original lattice model and our small-world network model, respectively.

1. Introduction

We report our results related to complex networks, which
currently have attracted considerable attention in physics,
mathematics, engineering, and social sciences.” Researchers
also discuss the interrelations between complex networks and
nonlinear science. We have provided examples of associa-
tions among chaos, fractal, and small-world networks.>* One
of the authors also discussed random walks on the Watts—
Strogatz small-world network® and large-deviation statistics
on a social networking service.”

In this study, we numerically examined prevailing so-
ciopsychological trends using a small-world network model.
We demonstrated sociological notions such as the diffusion
of innovations and early adopters introduced by Rogers® and
a chasm described by Moore.” The lattice model of scien-
tific paradigm shifts reported by Bornholdt et al.® has the fol-
lowing characteristics: (1) a scholar interacts with the four
nearest-neighbor scholars on a square lattice; (2) a scientific
paradigm accepted by a scholar is accepted by a nearest-
neighbor scholar with a probability proportional to the ratio of
the number of scholars accepting that paradigm to the number
of all scholars; (3) an existing paradigm is never reproduced.
We describe this model in the first half of Sect. 2.

We extended the above-mentioned model as follows. (1)
The terminology of cellular automata was used. The interac-
tion range is given by the von Neumann neighborhood (square
lattice with four neighbors). We replaced it with the Moore
neighborhood (square lattice plus diagonals with eight neigh-
bors). Then, we easily obtained the cluster coefficient of the
Watts—Strogatz small-world network model by constructing
a triangular lattice. (2) The Moore neighborhood (link) was
rewired analogously to the Watts—Strogatz model. Some of
the Moore neighborhood was replaced by the short-cut neigh-
bors. (3) A scientific paradigm accepted by a scholar was ac-
cepted by the nearest-neighbor scholar with a probability pro-
portional to a function of the ratio of the number of directly
connected scholars accepting the same paradigm to the total
number of directly connected scholars. A function in the form
of a Fermi distribution function in the field of quantum statis-
tical mechanics has two parameters: inverse temperature (the
degree of synchronization) and chemical potential (threshold
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above which a scholar easily accepts the paradigm accepted
by the nearest-neighbor scholars), as shown later in Eq. (1).
This modification enabled us to generalize a scholar accept-
ing a specific scientific paradigm to an ordinary person who
has a specific opinion, is infected by a specific contagion dis-
ease, and is purchasing a specific music CD, as described in
the latter half of Sect. 2. The method of diffusion depends on
the update rule.

Diffusion of innovations was first explained in the book
written by Everett M. Rogers.® He stressed the importance
of the early adopter. In addition, Moore introduced the notion
of crossing a chasm.” In Sect. 3, we verify these diffusion
of innovation, early adopter, and crossing the chasm concepts
using the extended network model. In the mean-field update
rule, the network structure does not affect the diffusion. The
local update rule depends strongly on network structures. For
example, major-label music CDs are sold with aggressive pro-
motion and high advertising costs, while independent-label
CDs might be recommended among enthusiastic admirers.
The former and latter roughly correspond to the mean-field
update rule and the local update rule, respectively.

In Sect. 4, we used the sales data of major- and
independent-label music CDs on the commercial website
Amazon Japan. We compared the original lattice model and
the extended small-world model. Section 5 is devoted to the
concluding remarks.

2. Update Rules on Small-world Networks

We extend the agent-based model on a square lattice by
Bornholdt et al.¥ Their model is intended to describe scien-
tific paradigm shifts. We first quote their model description:
The model is defined on a 2-d square lattice with N = L?
agents. Each agent i is assigned a number r; which can take
any integer value. This number plays the role of a particular
idea or concept. At any time step one random agent i is se-
lected, and the following two actions are attempted: (i) One
of the nearest neighbors j to the agent i is selected. Denoting
by nj the total number of agents with integer value equal to
that of j, we with probability n;/N let the agent i change its
integer value to that of its neighbor j, provided that i never
assumed that particular integer value before. In case it had,
then no update is made. (ii) With probability a another ran-
dom agent k is assigned a new random integer which does
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not appear anywhere else in the system. Thus « represents the
“innovation”rate.® According to their abstract, their model
exhibited a fairly regular pattern of global paradigm shifts,
where older paradigms are eroded and subsequently replaced
by new ones.® The above-mentioned update rule (i) implies
that the change takes place only on the nearest neighbor. We
extend their model, introducing shortcuts and a small-world
network. Scientific paradigms, new products, etc., diffuse not
only locally but also globally and irregularly. In this model,
we observe a variety of spatiotemporal evolution patterns, as
shown later in Fig. 10. Later in this section, we incorporate
psychological peer pressure. We also introduce a biased up-
date rule with a nonlinear logistic function (Eq. (1)).

Bornholdt and his collegues considered four static undi-
rected links between the nearest neighbors on a square lat-
tice under periodic boundary conditions. We added the four
links between the second nearest neighbors in order to incor-
porate small-worldness. Therefore, we considered undirected
links between eight Moore neighborhoods on a square lattice.
Then, we rewired the links with a rewiring probability p, as
in the Watts—Strogatz model. In Fig. 1, we plotted the clus-
tering coefficient C and the mean path length L against the
rewiring probability. The p dependences on C and L are sim-
ilar to those in the original Watts—Strogatz model.” A small-
world network is a type of mathematical graph. Most nodes
are not neighbors. The neighbors of any given node are likely
to be neighbors of each other. Most nodes can be reached from
other nodes within a small number of hops. More specifically,
the model satisfies C(p)/C(0) ~ 1 and L(p)/L(0) < 1. Many
empirical graphs have a small-world nature, including social
networks and gene networks.”

We define a discrete dynamical variable x(i) on node i.
Bornholdt and his colleagues considered the variable as a sci-
entific paradigm. We extend this idea and consider the vari-
able to be hit songs, opinions, and commercial products. One
can consider a variable x(i) as a label of different scientific
paradigms, songs, opinions, products, etc. The original mean-
field update rule consists of two parts. For a fixed node i and
a randomly chosen neighbor j, the value of x(i) is replaced by
x(j) with a certain probability that is given by the ratio of the
number of nodes having the same value as x(j) in the entire
system to the number of all nodes (mean-field update rule).
The index i runs from 1 to the system size N. The propagation
of opinions or products is modelled in this way. We modelled
the creation of a new opinion or product in accordance with
the original model. For a randomly chosen node i, the dynam-
ical variable x(i) takes a new value with probability a. The
new value is never equal to any value appearing in the entire
system thus far. One can consider this to indicate a newly re-
leased music CD. We introduce the following variables and
parameters.

s: The cumulative number of a specific value of x(i). The
value is adopted by nodes (i = 1,2,---,N) from its
emergence to its extinguishment. s satisfies 1 < s < N.
The cumulative adoption rate is given by s/N.

o(i): The cumulative number of a specific value of x(i) di-
rectly connected to node i at a certain time.

N;: The number of nodes that take the most adopted value of
X at a certain time, which is time-dependent. N; satisfies
1<N; <N.

q: The number of alternations of the most adopted value of x
during the entire observation time range.

S max: The maximum value of N; during a time range in
which a single value of x is dominant.

(Smax): The average of S . over ¢ different values of domi-
nant x values.

0: The threshold beyond which we consider a value of x is
diffused over the system (0 < 6 < 1).

I: The number of cases satisfying N;/N > 6 during the en-
tire observation time range. We can consider [ to be the
number of hit products, hit songs, etc.

T: The time difference between the subsequent cases satisfy-
ing Nj/N > 6. We can regard T to be the lifetime of a hit
product, hit song, etc.

(T): The average of T over [ different values.

Important parameters are the rewiring probability p as in the
Watts—Strogatz model and the number of new dynamical vari-
ables per unit time.
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Fig. 1. Rewiring rate dependencies of the clustering coefficient (+) and
mean path length ().

We introduce another extension. This is not for network
structures, but for a mean-field property. To reflect social net-
works, we extended the model to depend on network struc-
tures. We compared the results obtained using our extended
model with the social-science theories about early adopters
and a chasm, as described in the next section.

In Fig. 2 (upper), the value of x(i) (o) is replaced with an-
other value (¥). The transition probability from x(i), indicated
by ¢ in the upper panel of Fig. 2, to x(i) shown as ¥ is given
by the function f(r) of r, in which r is given by the number of
the © nodes o (j) directly connected to node j before the up-
date divided by the total number of nodes directly connected
to node j, or the degree of node j, k(j). In this case, we have
o(j) = 2, k(j) = 8, and, r = 2/8. In other cases, o(j) is
equal to four, one, and one for e, o, and o nodes, respectively.
The transition probability is proportional to f(r) given by the
nonlinear logistic function with two parameters H and u:

1 _9l)
1 +exp[-H(r — w)]’ k(j)

Two parameters, H and y, are respectively referred to as the
synchronization intensity and synchronization threshold. The

f) = ey
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H dependence of the logistic function is shown in Fig. 2 (mid-
dle, lower) for H = 3 and H = 20. For a small H, the logis-
tic function is nearly linear with respect to the ratio r. For a
large H and a larger ratio r than the threshold p, the transi-
tion probability is nearly equal to unity, thus u is termed the
synchronization threshold.

Here, we stress the need for introducing the above-
mentioned logistic function. Solomon Asch conducted a psy-
chology experiment and reported the existence of a threshold
above which the human population makes it easier for an in-
dividual to accept a majority opinion.'®'D It was also sug-
gested that the threshold was determined not by the absolute
number of the majority, but by its relative ratio. Prevailing
trends are sociopsychologically positioned as social synchro-
nization phenomena. First, a new product or opinion first is
gradually adopted at an early stage. Then, explosive growth is
observed in a specific group above the threshold. Finally, the
new product jumps to other groups and spreads throughout
the entire population. The parameter u in the logistic func-
tion is our mathematical realization of the sociopsychological
threshold.

We present trend curves for nine sets of parameters based
on the modified model in Figs. 3-5, in which the total num-
ber of nodes with the most dominant dynamical variable s
is plotted against the number of simulation time steps. Im-
portant parameters are the rewiring probability p defined in
the Watts—Strogatz model and the number of new dynamical
variables per unit time &N, which is given by the new product
creation rate @ multiplied by the system size N. Figures 3, 4,
and 5 correspond to the number of new products aN = 0.1, 4,
and 10 (N = 3600), respectively. The upper, middle, and bot-
tom panels correspond to the rewiring probability p = 0, 0.2,
and 1, namely, a regular lattice, small-world network, and ran-
dom network, respectively. These trend curves depend both on
aN and the rewiring probability p, in contrast to the original
mean-field update rule.

The synchronization intensity (H) dependence of the aver-
age adoption rate (S ) as a function of N is shown in Fig. 6
(upper, middle). The case of weak intensity (H = 3) is shown
in the upper panel. The three symbols correspond to the three
different network structures: regular lattice (+), small-world
network (X), and random network (). In rewired networks,
the size of the dominant variable is larger than that without
rewiring (p = 0). The case of strong intensity (H = 20) is
shown in the middle panel. The values of x with H = 20 are
larger than those of + and * for N > 1. This is not the case
when H = 3.

The synchronization threshold (u) dependence of the av-
erage adoption rate (S .x) as a function of N is shown in
the lower panel of Fig. 6. The three symbols correspond to
the three different values of the synchronization threshold,
u=2/8(+),3/8 (x), and 4/8 (x). The optimal threshold u is
nearly equal to 3/8 at which the dominant nodes easily cover
the entire system. For too large or too small u, the dominant
nodes often fail to cover the entire system completely.

For an optimal threshold i and a strong intensity H, whose
concrete values are given as u = 3/8 and H = 20, we first con-
sider the size distribution of all clusters at a specific value of
aN = 0.363. As shown in the upper panel of Fig. 7, the three
different bars correspond to the three different network struc-
tures: no rewiring (p = 0, vertical rectangles), small-world

(p = 0.2, light gray bars), and full rewiring (p = 1, dark gray
bars). For a regular lattice without rewiring, the cluster size
is concentrated at smaller values. In the case of a small-world
network, the cluster size distributes most widely from a small
value to a large value.

The number of new products whose adoption rate exceeds
4% of the system size during the entire simulation, /, was plot-
ted against aN [Fig. 7 (middle)]. Note that the threshold 6 in
the middle panel of Fig. 7 is equal to 4%. It has a single max-
imum. Symbols +, X, and * correspond to a regular lattice,
small-world network, and random network, respectively. As
shown in the lower panel of Fig. 7, the average duration of the
top product (T') plotted against N has a single minimum. The
maximum and minimum values depend on the rewiring prob-
ability p. Among the different network structures, the largest
maximum of the top product and the smallest average dura-
tion of the top product are obtained in the case of a small-
world range of p. The extrema are located in the range of aN
between 0.1 and 1.

The small-world network with a large H yields a larger
(S max), larger [, and shorter (T) than those of other networks,
which can be regarded to indicate increased circulation of hit
products, as suggested in Figs. 6 (upper, middle) and 7 (mid-
dle, lower).
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Fig. 2. (Upper) Illustration of our modified update rule. The middle node
(¢) has eight neighbors and two nodes (¥) are connected. The transition
probability from o to © is given by Eq. (1), the function of r = o (j)/k(}),
f(r). Different symbols correspond to different values of o7(j). In this case
of the transition from o to ©, o7(j) = 2, the degree of node j, k(j), is 8, and
r = 2/8. (Middle and lower) Transition probability plotted against the ratio r
for 4 = 0.5 and H = 3 (middle) and for u = 0.5 and H = 20 (lower).

3. Comparison with Diffusion of Innovations Theory

First, we will briefly review some social science notions.
Diffusion of innovations is a theory that seeks to explain
how, why, and at what rate new ideas and technology spread
through cultures, as proposed by Everett M. Rogers.® In the
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Fig. 3. Total number of nodes with the most dominant dynamical variable
s is plotted against the number of simulation time steps. We set the number of
new products per unit time aN = 0.1, N = 3600, H = 20, and u = 3/8 in our
modified update rule. The rewiring rate is fixed as p = 0 (top), 0.2 (middle),
and 1 (bottom). The instantaneous top product is switched at a local minimum
(cusp), for example, the 500th time step for p = O (top panel).
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Fig. 4. The same as Fig. 3 except aN = 4.
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(Upper, middle) Average adoption rate over many top products

(Smax) as a function of the number of new products per unit time oN in
our modified update rule is shown for p = 0 (+), 0.2 (X), and 1 (*) and for

= 3/8. H

= 3 (upper) and H =

20 (middle). (Lower) Synchronization

threshold u dependence of the average adoption rate (S max) as a function of
aN for three different values of the synchronization threshold, u = 2/8 (+),

3/8 (X), and 4/8 (x), with H =

20 and p = 0.2.
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Fig. 7. (Upper) Size distribution of all clusters at a specific value of aN =
0.363 (N = 12100) for three different network structures: no rewiring (p = 0,
vertical rectangles), small-world (p = 0.2, light gray bars), and full rewiring
(p = 1, dark gray bars). The gray bars are shown only for the cluster size
larger than 5000 (p = 0.2 and 1). (Middle) Number of clusters larger than
4% of the system size as a function of @N for no rewiring (p = 0, +), small-
world (p = 0.2, X), and full rewiring (p = 1, %) over 250000 time steps.
(Lower) Average duration of the top product (T') plotted against N for no
rewiring (p = 0, +), small-world (p = 0.2, X), and full rewiring (p = 1, *) for
N =3600. We set H = 20 and p = 3/8.

theory, five successive groups of consumers adopt a new tech-
nology. We confine ourselves to a hit product. The number of
consumers as a function of time of purchase since the launch
of the product follows the bell curve. People are divided into
five categories. The first 2.5% of consumers, for example,
consumers who buy the new model of a smartphone on the
launch date, are called innovators. The next 13.5% of con-
sumers are called early adopters. These two categories of con-
sumers amount to 16%. Around 16% of all consumers present
a barrier to occupying the whole market. Geoffrey A. Moore
termed this barrier the chasm. The following 34%, 34%, and
16% are respectively referred to as the early majority, late ma-
jority, and laggards, respectively. The cumulative number of
purchasers implies the market share. Its temporal dependence
follows an S-shaped curve, as shown in the upper panel of
Fig. 8.

For Fig. 8 (lower), we selected the first two top products
from among all products using our extended model with H =
20, 4 = 3/8, N = 3600, and aN = 0.01 in the case of the
small-world network (p = 0.2). The number of instantaneous
adopters of the top product as a function of time has a single
maximum. The first top product emerges approximately at the
300th time step and ends approximately at the 1500th time
step. At this time step, the next top product emerges.

In Fig. 9 (upper), the instantaneous adoption rate As/S p,x

of the top product as a function of time from time step 550 to
680 is magnified. The five categories, from innovators to lag-
gards, are separated by vertical lines in the case of the small-
world network (p = 0.2) (bars) for the first top product in Fig.
8 (lower). The S-shaped cumulative adoption rate or market
share, 5/S max, as a function of time is also shown (crosses).
Note that s is the number of nodes of the top product and
As/S max 18 the difference of s in the unit of time steps.

The cases of no rewiring (p = 0) and full rewiring (p = 1)
are shown in the middle and lower panels of Fig. 9, respec-
tively. In the case of a regular network without rewiring, the
adoption rate curve is highly symmetric. In contrast, the adop-
tion rate as a function time in two rewired cases (p = 0.2 and
p = 1) grows slowly at the innovator and early adopter steps.
After the chasm, which may be termed the 16% barrier, it
grows markedly from the early majority to the laggard steps.

For a specific top product that covers the entire network,
diffusion of the product is illustrated by using snapshots for
the three different network structures, no rewiring (p = 0),
small-world (p = 0.2), and full rewiring (p = 1), in Fig. 10.
The five colors correspond to the five categories from innova-
tors to laggards, as shown in Fig. 9.

In the case of a regular network without rewiring, the prod-
uct diffuses in the form of wave propagation, as shown in
the upper panel of Fig. 10, in which a snapshot is shown
at the time step corresponding to the late majority category.
The empty area is filled with other products at this time step.
Thereafter, the green (x-shaped) late majority area grows and
the laggard part falls into the empty area such that the area
is filled with the five colors (grayscale intensities). In the case
of a small-world network, islands of many sizes correspond to
the five categories distributed over the entire system, as shown
in the middle panel of Fig. 10, which shows a snapshot at the
time step corresponding to the eventual laggard category. The
top product covers the entire network at this time step. In the
full rewired random network, the color (grayscale intensity)
of the node is independently changing and no finite-size is-
land of a specific color (grayscale intensity) can be found, as
shown in the lower panel of Fig. 10, which shows a snapshot
at the time step corresponding to the eventual laggard cate-
gory. The top product covers the entire network at this time
step.

In the discussions thus far, one of the top products was de-
scribed. However, most new products vanish before attaining
a large adoption rate. Probability densities are plotted as a
function of the largest adoption rate of each product using
our modified model with H = 20, u = 3/8, aN = 0.08,
N = 12100, @ = 6.6x107° [p = 0 (+), 0.2 (X)], and aN = 1.0,
@ =8.3x107° [p = 1 ()], as shown in Fig. 11. All probabil-
ity density functions have a minimum adoption rate between
20% and 80%. For a value smaller than the minimum value of
s/N, the PDF monotonically and algebraically decreases. The
power exponent is nearly equal to —1.4. For a larger value of
s/N, a larger realization probability is noted. Thus, the value
of minimum s/N, which is not exactly equal to 16%), is a kind
of barrier against realization across the entire system. This is
the chasm in our modified model.

4. Real Data

In this section, we compared real data with the results of
our extended model. We acquired data from the top 100 rank-
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from a product’s launch (bell curve). The curve has a single maximum.
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(Lower) Instantaneous adoption number of the top product as an asymmetric
function of time for our modified network model in the case of a small-world
network (p = 0.2). Switches of top products are indicated by vertical lines.
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Fig. 9. (Upper) Instantaneous adoption rate As/S max (right axis) of the top
product as a function of time from time steps 550 to 680 is magnified. Five
categories from innovators to laggards are separated by vertical lines in the
case of a small-world network (p = 0.2). The S-shaped cumulative adoption
rate or market share, s/S max (left axis), as a function of time is also shown.
(Middle) p = 0. (Lower) p = 1.

Fig. 10. (Color online) (Upper) Visualization of the square lattice. For the
case of a regular lattice without rewiring (p = 0), a snapshot in the late ma-
jority period is shown. The colored (gray) region is filled with a top product.
Colors (grayscale intensities) correspond to the five categories from innova-
tors to laggards. The blank area is filled with other products. (Middle) Small-
world network (p = 0.2). (Lower) Random network (p = 1).
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Fig. 11. Probability density functions are plotted as double logarithmic
plots against the largest adoption rate of each product for H = 20, u = 3/8,
and aN = 0.08 [p =0 (+),0.2 (X)] and aN = 1.0 [p = 1 (%)]. The power law
with the exponent —1.4 is shown (dashed straight line).

ing of the music CD branch of the Amazon Japan website
(http://www.amazon.co. jp) in November 2013. We com-
pared major-label and independent-label pop music CDs. In
Fig. 12 (upper), we plot cumulative distributions against du-
ration in the top 100 ranking. We normalize the duration
by the average duration. Major-label CDs climb up earlier
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than independent-label CDs but are subsequently overtaken
by independent-label CDs.

Major-label CDs have a larger market. They have high
advertising costs invested in mass media. We can describe
this situation by simulation using the mean-field Bornholdt—
Jensen—Sneppen model. We set N = 10000 and @ = 2 X
1077 (@N = 0.002). The model resembles the real data.
Independent-label CDs have a smaller market. Lower adver-
tising costs are invested. Social networks of enthusiastic fans
are important for independent-label CDs. We can describe this
situation by simulation using our model. We set aN = 0.09
(N =3600and a = 2.5x1075), H = 20,4 = 3/8,and p = 0.2.
Our model resembles the real data. We found a set of parame-
ters that resemble the real data for the two situations shown in
the middle panel of Fig. 12. We found these settings by hap-
penstance. In Fig. 12 (lower), we show a double logarithmic
plot of the upper panel of Fig. 12. Note that the exponents of
the power laws are different in the growing time range. We as-
sume that the exponent depends on the network structure. On
a regular lattice, we consider the bulk of a hit product com-
posed of n nodes. The size of the perimeter is proportional to

d
v/n. We have d—’Z o n, i.e., algebraic growth. In the case of

. . dn
a hit product on a complicated network, the growth rate —

might be proportional to n, i.e., exponential growth. Fractal
growth with a different power exponent might be possible.

5. Concluding Remarks

In Sect. 2, we extended the mean-field Bornholdt—Jensen—
Sneppen model to sensitively reflect the network structure.
We also incorporated the psychological peer pressure into our
model with a simple expression.

In Sect. 3, we compared theories in social sciences and our
simulation model. We used the diffusion of innovation theory
and the chasm theory. We can regard the chasm as the mini-
mum points in Fig. 11 around 0.1 < s/N < 1. The power law
distributions for smaller s/N values correspond to numerous
minor products. The rightmost points in Fig. 11 correspond to
hit products. Note that Bornholdt et al.® first reported that the
distribution consists of a power-law distribution and a right-
most point. Roger’s adoption curve appears as the part of the
waveform of the single top product from its emergence as
the top product to the subsequent emergence of the next top
product, as shown in Figs. 3-5. In the previous study, using
their update rule,® the adoption curve showed an abrupt in-
crease. Using our update rule, we obtained different forms of
the adoption curve. The forms reflect the numerous network
structures (shown in Figs. 3-5).

In Sect. 4, we found that our results resembled real data
of the Japanese major and independent music market. The
data could be simulated using the Bornholdt—Jensen—Sneppen
model and our model. The important point is that the growth
of the cumulative distribution of the duration in top 100 rank-
ing follows power laws with different exponents, which are
assumed to reflect the different network structures.
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