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SUMMARY

An alternative model that reliably predicts human-specific toxicity is necessary
because the translatability of effects on animal models for human disease is
limited to context. Previously, we developed a method that accurately predicts
developmental toxicity based on the gene networks of undifferentiated human
embryonic stem (ES) cells. Here, we advanced this method to predict adult toxic-
ities of 24 chemicals in six categories (neurotoxins, cardiotoxins, hepatotoxins,
two types of nephrotoxins, and non-genotoxic carcinogens) and achieved high
predictability (AUC = 0.90–1.00) in all categories. Moreover, we screened for
an induced pluripotent stem (iPS) cell line to predict the toxicities based on the
gene networks of iPS cells using transfer learning of the gene networks of ES
cells, and predicted toxicities in four categories (neurotoxins, hepatotoxins,
glomerular nephrotoxins, and non-genotoxic carcinogens) with high performance
(AUC = 0.82–0.99). This method holds promise for tailor-made safety evaluations
using personalized iPS cells.

INTRODUCTION

To date, chemical toxicity studies have been primarily conducted by in vitro testing in cultured human can-

cer cell lines or in animals such as mouse, rat, and rabbit. However, because these tests are not on ‘‘normal’’

human cells, their applications are limited (Perel et al., 2007). In addition, the use of animals has become a

major issue from the standpoint of animal welfare; in 2019, the U.S. Environmental Protection Agency (EPA)

announced that research studies using mammals as well as funding for mammal studies will be cut by 30%

by 2025 and abolished by 2035 (Grimm, 2019). To reduce animal studies, new approach methodologies

(NAMs) (Topical Scientific Workshop - New Approach Methodologies in Regulatory Science, 2016), which

are any technology, methodology, approach, or combination thereof that can be used to provide informa-

tion on chemical hazard and risk assessment that avoids the use of intact animals (New Approach Methods

Work Plan: Reducing Use of Animals in Chemical Testing, 2016), are widely investigated and adopted for

the development of new tools for testing pharmaceuticals and other chemicals for potential adverse im-

pacts on human health and ecological endpoints, under the direction of the U.S. EPA and the amended

Toxic Substances Control Act (TSCA) for improving regulatory toxicology guidelines to consider the use

of toxicity information, computational toxicology and bioinformatics, and high-throughput screening

methods and prediction models, prior to animal studies (Becker, 2019).

The embryonic stem cell test (EST) reported by Scholz et al. was the first to examine embryotoxicity in vitro

using mouse fibroblasts, embryonic stem (ES) cells, and cardiomyocytes differentiated from ES cells; these

developmental toxicity tests were previously performed only in animals (Scholz et al., 1999; Seiler and Spiel-

mann, 2011). Later, this method was approved as a scientifically valid alternative by the European Centre for

the Validation of Alternative Methods (ECVAM) (https://tsar.jrc.ec.europa.eu/test-method/tm1999-01).

However, the EST uses mouse cells, and species-specific differences must be clarified in order to extrap-

olate its results to human. Subsequently, another research group reported that in an EST based on a human

cell system (hEST), homologous human and mouse neurodevelopmental gene expressions are similar

(Schulpen et al., 2015). Moreover, there is an extensive collection of literature on the research and
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development of pluripotent stem cell models for predictive toxicology, including assays based on specific

biomarkers such as Hand-1 and Sox17 (Kameoka et al., 2014; Suzuki et al., 2011), assays customized to spe-

cific toxicities such as teratogenicity (West et al., 2010), models for relevant pathways such asWnt signaling

or TGF-b (Kugler et al., 2015; Uibel et al., 2010), detected by various modalities such as luciferase reporter,

metabolomics, high-throughput imaging (Kameoka et al., 2014; Kleinstreuer et al., 2011; Uibel et al., 2010),

and others, which have been summarized in the review papers of Luz and Tokar (2018) and Kim et al. (Kim

et al., 2019).

In 2012, the U.S. Defense Advanced Research Projects Agency (DARPA) and the NIH invested a huge

amount of budget on a national project to promote the development of biomimetic systems, leading to

rapid progress in the field (Low et al., 2021). These systems, which mimic the (adult) human body and

are constructed by filling tissues created in individual compartments with culture fluid and connecting

them together, are expected to be used in human toxicity testing systems as an alternative to animals.

Currently, however, very little progress has been made in adapting these systems for developmental

toxicity testing, and no evaluation method has been established to determine how accurately these sys-

tems mimic the function of the normal human body (Allwardt et al., 2020). Realizing the practical applica-

tion of these systems as high-throughput toxicity screening tools is likely to take several years.

For many years, the prediction of chemical toxicity has been carried out using a method based on the phys-

icochemical parameters of the chemicals, referred to as the quantitative structure–activity relationship

(QSAR) (Schultz, 1999). Computational QSAR models have been widely used in various fields of predictive

toxicology such as DILI severity in hepatotoxicity or hERG ligands in cardiotoxicity (Ekins, 2014). However,

there is a limit to the predictive ability of QSAR. One reason is that the mechanism that induces toxic re-

sponses resides within the cell, so information about the chemical alone cannot predict the response. In

this regard, it should be possible to detect toxicity more accurately by obtaining information about

changes in gene expressions in the cells. In addition, as stem cells differentiate, only the genes essential

for that lineage are expressed and conserved through DNA methylation (Reik et al., 2001), whereas in

pluripotent stem cells, a very large number of genes are expressed, including transporters and transcrip-

tion factors; consequently, pluripotent stem cells are superior to differentiated cells as a tool for compre-

hensively detecting toxic chemicals. In light of these considerations, we developed hEST-GN (human em-

bryonic stem cell test with gene networks), a prediction method that uses information on feature gene

networks based on massive gene expression datasets obtained by exposing human ES cells to toxic chem-

icals as input data for machine learning. Using this method, we achieved highly accurate predictions of

developmental toxicity categories (Yamane et al., 2016).

In this study, we advanced the hEST-GN and achieved high performance predictions of 24 toxic chemicals in

broad toxicity categories, including adult toxicity. Furthermore, by selecting induced pluripotent stem (iPS) cells,

which can be used as an alternative to ES cells in toxicity testing, and using a gene expression database created

fromES cells, wewere able todevelop a system called ‘‘StemPanTox’’ that can predict chemical toxicity using iPS

cell data via transfer learning and ameliorate the ethical issues related to ES cells. With further improvement,

StemPanTox will contribute to the development of tailor-made, individualized toxicity assessment/prevention

using personalized iPS cells, which would have enormous clinical value.

RESULTS

Development of an hEST-GN library for 24 chemicals and prediction using iPS cells

A schematic of the chemical assay is shown in Figure 1A. The human ES cell line KhES-3 was exposed to a

total of 24 chemicals in six toxicity categories [neurotoxins, hepatotoxins, cardiotoxins, two types of neph-

rotoxins (glomerular nephrotoxins and tubular nephrotoxins), and non-genotoxic carcinogens] at six con-

centrations, including vehicle (solvent) alone. The chemicals were carefully assigned to the toxicity cate-

gories by referring to previous reports (Table 1). Gene expression data were obtained by RNA-seq at

two time points, 24 and 48 h, after exposure. At each time point, a principal component analysis (PCA)

was performed using transcription factor genes, and a total of 20 genes from the top five PCs were ex-

tracted as feature genes. Using these genes, gene network libraries were created for each of the 24 chem-

icals using the graphical Gaussian model (GGM) (Goodal, 1991). Similarly, the screened iPS cells were sub-

jected to RT-qPCR to obtain gene expression data for the same 20 genes and create gene network libraries.

Next, using ES cell library labels, a chemical toxicity prediction system trained by both libraries from ES and
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iPS cells was developed via transfer learning (Vapnik, 2006) using support vector machines (SVMs) (Cortes

and Vapnik, 1995).

Gene expression response database of ES cells for 24 chemicals

To obtain the largest amount of data about the expression of genes that were perturbed by the 24 chemicals, ES

cells need to be exposed to chemicals at the maximum concentration that does not cause an excessive degree

of cell death. To this end, we first performed ATP assays and then plotted regression curves to calculate inhib-

itory concentrations (ICs) by carrying out serial dilutions of stock solutions containing the maximum soluble con-

centrations of the 24 chemicals. ICs in the range of 0.1%–50%, at which cell death begins to be observed, were

set as the maximum exposure concentration (Table S1, Figure S1). The estimated IC50 and 95% confidence in-

terval (CI) for each chemical are shown in Figure 1B (Table S2). Serial dilutions were carried out, with the

maximum exposure concentration set as 1/1 to obtain ½, 1/4, 1/8, and 1/16 dilutions, and a six-step exposure

including vehicle alone was performed and repeated twice, yielding a total of 63 2 = 12 samples for each chem-

ical. We collected RNA 24 and 48 h after exposure to the 24 chemicals, performed transcriptome analysis, and

generated gene expression datasets for a total of 12 3 24 3 2 = 576 samples.

To examine the characteristics of the 24 chemicals at the level of differentially expressed genes (DEGs), we

selected transcription factor-related genes (GO: 0,006,351) from the 576 datasets (4,032 genes). After log-

normalization, batch effect elimination, and repeat merging, we generated DEG sets for which differences

between each exposure data and vehicle values were significant (FDR <0.01 and log2|FC| > 1) and pre-

sented them in a heatmap (Figures 1C and S2). According to this analysis, the number of DEGs was higher

at 48 h than at 24 h for all concentrations, and over time, more genes were up- or downregulated due to

exposure to the chemicals. At both 24 and 48 h, valproic acid, a strong neurodevelopmental toxicant, eli-

cited gene expression patterns that were clearly distinct from those of the other chemicals. Similarly, lith-

ocholic acid, a mammalian bile acid and well-known carcinogen, yielded distinct expression patterns.

Construction of gene networks of the 24 chemicals by the graphical Gaussian model (GGM)

To obtain feature genes used in the prediction, we performed PCA on the basis of the exposure data of each

transcription factor gene, expressed as a log fold change (LFC) in expression relative to vehicle after log-normal-

ization and batch effect elimination. There were 3,200 genes for the 24-h samples and 3,255 genes for the 48-h

samples. For both exposure times, it was difficult to clearly separate the chemicals by the toxicity categories us-

ing two-dimensional PCA (Figures 1D and S3). Accordingly, we selected two genes with maximum positive and

negative loading values, which were considered to contribute themost to the first to fifth PCs; at each time point,

20 genes were selected as feature genes (Table S3). Among the 20 selected genes in each group, only ACTR3

(Welch et al., 1997), which has been implicated in cell shape and motility, was common.

Using the 20 selected genes, we estimated sparse gene networks based on GGMs using an L1 graphical

lasso for each chemical at each time point (i.e., 24 and 48 h) (Figures 2A, S4, and S5). The figures illustrate

the estimated 190 partial correlation coefficients incorporated into the gene networks; edges with positive

partial correlation values between two genes are shown in green, and edges with negative values are

shown in red; the thickness, distance, and arrangement of the edges correspond to the degree of correla-

tion between the two genes. Because these genes were obtained from the top five PCs that maximize the

dispersion of the 24 chemicals using PCA, the estimated GGMs that describe the networks of all 20 genes

differed considerably among chemicals, and it was difficult to classify the chemicals simply based on the

network patterns as a whole. Therefore, for actual predictions, we decomposed the networks into their con-

stituent edges rather than using them as a whole and used those with higher discriminative potential for

training data as features. In other words, the partial correlation coefficients of the edges that are charac-

teristic of the respective toxicity categories contributed to the SVM discrimination.

Prediction of six toxicity categories using KhES-3 cells and the GGM network

Using the 190 partial correlation coefficients in the GGM as input data, we predicted the toxicities of the 24

toxic chemicals in six categories using SVMs with leave-one-out-cross-validation (LOOCV). For the

Figure 1. Construction of a gene expression database for 24 chemicals

(A) Schema of the chemical assay. hESC, human ES cells; hiPSC, human iPS cells. (B) IC50 for 24 chemicals. Data are

represented as estimated value with 95% confidence intervals. (C) Transcription factor genes differentially expressed

following exposure to 24 chemicals at ½ dose. (D) PCA of 24 chemicals in six toxicity categories at two time points.
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Table 1. List of 24 chemicals

Chemical namea CAS RN M.W. NT HT CT GT TT NGC

Acetonylacetone 110-13-4 114.14 Nervous System

Diseases [LoPachin

et al., 2002]

NA NA NA NA NA

Acrylamide 79-06-1 71.08 Nervous System

Diseases [LoPachin

et al., 2002]

Liver Diseases [Allam

et al., 2010]

NA NA NA Group B2

https://www.

epa.gov/iris

Amiodarone 1951-25-3 645.3 Cerebellar Diseases

[Abarbanel et al.,

1987]

DILIrank: 8 (Most-

DILI-Concern)

LiverTox: Likelihood

score: A

Cardiotoxicity

[Clements et al.,

2015]

Glomerulonephritis,

Membranous

[Kimura et al.,

2008]

NA NA

AmitriptylineHCl 549-18-8 313.9 Nervous System

Diseases [Sudoh

et al., 2004]

DILIrank: 5 (Less-

DILI-Concern)

LiverTox: Likelihood

score: B

Arrhythmias,

Cardiac [Srinivasa

et al., 2003]

NA NA NA

Atorvastatin 134523-00-5 558.6 Hemorrhagic Stroke

[https://www.drugs.

com/sfx/atorvastatin-

side-effects.html]

DILIrank: 5 (Most-

DILI-Concern)

LiverTox: Likelihood

score: A

NA NA NA NA

Axitinib 319460-85-0 386.5 NA LiverTox: Likelihood

score: E

Cardiotoxicity

[Clements et al.,

2015]

Heart disease [Lin

and Will, 2012]

Proteinuria

[https://www.drugs.

com/sfx/axitinib-

side-

effects.html]

NA NA

Bucillamine 65002-17-7 223.3 NA NA NA Nephrotic Syndrome

[Ohno, 2004]

NA NA

Butylated HA 25013-16-5 180.24 NA NA NA NA NA Group 2B

Precancerous

Conditions

[Hirose et al., 1990]

Chlorpheniramine 132-22-9 274.79 NA DILIrank: 0 (No-DILI-

Concern)

LiverTox: Likelihood

score: E

NA NA NA NA

Chlorpromazine 50-53-3 318.9 Parkinsonian

Disorders [Ferguson

and Paule, 1992]

DILIrank: 2 (Less-

DILI-Concern)

LiverTox: Likelihood

score: A

Cardiomyopathies

[Saito et al., 1985]

NA NA NA

(Continued on next page)
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Table 1. Continued

Chemical namea CAS RN M.W. NT HT CT GT TT NGC

Cisplatin 15663-27-1 300.05 Peripheral

Neuropathy [https://

www.drugs.com/sfx/

cisplatin-side-effects.

html]

DILIrank: 3 (Less-

DILI-Concern)

LiverTox: Likelihood

score: C

NA NA Acute Renal Failure

[Ozkok and

Edelstein,

2014]

Group 2A

http://ntp.niehs.

nih.gov/ntp/roc/

eleventh/profiles/

s053cycl.pdf

Cyclopamine 4449-51-8 411.6 NA NA NA NA NA NA

Cyclosporin A 59865-13-3 1202.6 Abducens Nerve

Diseases [Pilling

et al., 2005]

DILIrank: 7 (Most-

DILI-Concern)

LiverTox: Likelihood

score: C

Heart Diseases

[Miller, 2002]

NA Acute Kidney Injury

[Humes et al., 1985]

Group 1

http://ntp.niehs.nih.

gov/ntp/roc/

eleventh/profiles/

s053cycl.pdf

Digoxin 20830-75-5 780.9 Cognition Disorders

[Maheut-Bosser

et al., 2006]

DILIrank: 0 (No-DILI-

Concern)

LiverTox: Likelihood

score: E

Heart arrest [Rea

et al., 2003]

NA NA Group 2B

https://monographs.

iarc.who.int/list-of-

classifications

Doxorubicin 23214-92-8 543.5 Spinal Cord Diseases

[Jordan et al., 2004]

DILIrank: 3 (Less-

DILI-Concern)

LiverTox: Likelihood

score: B

Arrhythmias,

Cardiac

[Mladosievicova

et al., 2001]

Albuminuria

[Baroni et al.,

1999]

NA Group 2A

https://monographs.

iarc.who.int/agents-

classified-by-the-

iarc/

Gentamicin 1403-66-3 477.6 Hearing Loss [Sha

and Schacht, 1999]

LiverTox: Likelihood

score: E

Heart Diseases

[Hendry et al., 1988]

NA Kidney Tubular

Necrosis, Acute

[Xie et al., 2001]

NA

Ibuprofen 15687-27-1 206.28 Meningoencephalitis

[Lee et al., 2002]

DILIrank: 3 (Less-

DILI-Concern)

LiverTox: Likelihood

score: A

Heart Septal

Defects, Ventricular

[Cappon et al., 2005]

NA Kidney Tubular

Necrosis, Acute

[Marasco et al.,

1987]

NA

Itraconazole 84625-61-6 705.6 NA DILIrank: 8 (Most-

DILI-Concern)

LiverTox: Likelihood

score: B

Heart Failure

[Okuyan and Altin,

2013]

NA Kidney Diseases

[Boelaert et al.,

1988]

NA

Lithocholic Acid 434-13-9 376.6 NA Liver Cirrhosis

[Fickert et al., 2006]

NA NA NA Precancerous

Conditions [Kitazawa

et al., 1990]

[Kitazawa, 1993]

Cystic fibrosis

[Colombo et al.,

2016]

(Continued on next page)
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Table 1. Continued

Chemical namea CAS RN M.W. NT HT CT GT TT NGC

Methapyrilene HCl 135-23-9 297.8 NA Liver Neoplasms

[Ellinger-Ziegelbauer

et al., 2005]

NA NA NA Precancerous

Conditions

[Mizukami et al.,

2017]

Sunitinib 557795-19-4 398.5 NA DILIrank: 8 (Most-

DILI-Concern)

LiverTox: Likelihood

score: B

Arrhythmias,

Cardiac [Doherty

et al., 2013]

Proteinuria

[Sorich et al.,

2016]

NA NA

Thioacetamide 62-55-5 75.14 NA Hepatic Insufficiency

[El-Tanbouly et al.,

2017]

Liver Cirrhosis

[Seong et al., 2003]

NA NA NA Group 2B

http://ntp.niehs.nih.

gov/ntp/roc/

eleventh/

profiles/s172thio.pdf

Valproic Acid 99-66-1 144.21 CNS

Diseases [Ruuskanen

et al., 1979]

DILIrank: 8 (Most-

DILI-Concern)

LiverTox: Likelihood

score: A

Heart Septal

Defects, Atrial

[Carter and Stewart,

1989]

NA Kidney Diseases

[Raza et al., 2000]

NA

Verapamil HCl 152-11-4 491.1 NA DILIrank: 3 (Less-

DILI-Concern)

LiverTox: Likelihood

score: B

Ventricular

Fibrillation

[McGovern et al.,

1986]

Kidney Diseases

[Ali et al., 2002]

Kidney Tubular

Necrosis, Acute

[Kreft et al., 1991]

NA

Bold characters indicate positive toxicity.

NT, Neurotoxin; HT, Hepatotoxin; CT, Cardiotoxin; GT, Glomerular toxin (Nephrotoxin); TT, Tubular toxin (Nephrotoxin); NGC, Non-genotoxic carcinogen.
aChemical names are given by referring to PubChem (as of April 20, 2021).
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Figure 2. Prediction of six toxicity categories using KhES-3 cells

(A) Gene network representation of GGMs from KhES-3 cells. (B) ROC curves for the prediction of chemicals in two toxicity categories (C) Pathway analysis for

hepatotoxins at 24 h and high-dose (1/1, ½ doses) samples.
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predictions, we followed the procedures described in a previous report on hEST-GN (Yamane et al., 2016)

using four kernels (linear, polynomial, RBF, and maximum entropy) and increased the number of top fea-

tures ranked by a t-test from 1 to 190. We also performed the prediction with the raw LFC values of the

3,200 (24 h) and 3,255 (48 h) transcription factor genes at each of the five concentrations relative to the

vehicle-only expression. To compare the predictive accuracy, the same number of input data used for

the GGM (i.e., up to 190 genes) was used as features. Predictions with the raw LFC values did not achieve

a significantly higher prediction performance than the mean predictions using 10 uniform random

numbers. On the other hand, in the prediction based on the GGM, the area under the receiver operating

characteristic curve (AUC) values were R0.90 for chemicals in all toxicity categories, and because the pre-

diction accuracy or AUC values was significantly high (p < 0.05), we concluded that prediction with high per-

formance is possible. Predictions were performed separately at 24 and 48 h, but depending on the chem-

ical, the time point at which higher prediction accuracy could be obtained differed; thus, neither time point

was considered particularly superior in terms of yielding a better prediction. Overall, these results demon-

strated that hEST-GN based on ES cell gene networks allows for the prediction of not only developmental

toxicity but also broad toxicity categories including adult toxicity.

In addition, to compare with predictions based on the QSAR theory, we generated 5,666 molecular de-

scriptors including 3D descriptors (Table S4) and performed predictions using top 1 to 190 feature genes

according to the aforementioned method. None of the six categories, except for tubular nephrotoxin (ac-

curacy of 91.7%), gave a significantly high prediction result. The results of all predictions are presented

together in a table and as ROC curves (Table 2, Figures 2B and S6). These results suggest that chemical

toxicity predictions that use the partial correlation coefficients of the GGM as features can achieve signif-

icantly higher accuracy than predictions based on gene expression values or QSAR. In the GGM-based pre-

diction, the prediction accuracy for each of the 24 chemicals was examined from the SVM results. This anal-

ysis revealed that with respect to 16 chemicals (acetonylacetone, acrylamide, amitriptyline HCl,

atorvastatin, bucillamine, chlorpheniramine, chlorpromazine, digoxin, doxorubicin, gentamicin, itracona-

zole, lithocholic acid, methapyrilene HCl, sunitinib, thioacetamide, and valproic acid), the prediction accu-

racy was 100% for all six categories at 24 and 48 h. On the other hand, for axitinib, cisplatin, and cyclosporin

Table 2. Summary of prediction performance for KhES-3

NT (13) HT (15) CT (13) GT (6) TT (7) NGC (9)

Random 24 h Mean Accuracy (%) 85.8 83.7 83.3 87.5 87.0 87.0

SD 8.13 6.92 6.81 6.21 6.65 5.38

Mean AUC 0.86 0.82 0.85 0.88 0.86 0.87

SD 0.09 0.11 0.09 0.07 0.11 0.06

48 h Mean Accuracy (%) 85.8 83.7 83.3 87.5 87.0 87.0

SD 8.13 6.92 6.81 6.21 6.65 5.38

Mean AUC 0.86 0.82 0.85 0.88 0.86 0.87

SD 0.09 0.11 0.09 0.07 0.11 0.06

Molecular descriptors
Accuracy (%) 83.3 70.8 83.3 83.3 91.7 83.3

AUC 0.83 0.76 0.90 0.82 0.86 0.60

RNA-seq

log fold change

24 h Accuracy (%) 75.0 75.0 79.2 79.2 75.0 66.7

AUC 0.73 0.73 0.83 0.83 0.74 0.76

48 h Accuracy (%) 62.5 75.0 75.0 83.3 79.2 66.7

AUC 0.71 0.73 0.78 0.66 0.61 0.79

GGM network coefficient 24 h Accuracy (%) 83.3 91.7* 87.5 87.5 79.2 91.7

AUC 0.73 0.99* 0.91 0.83 0.76 0.97*

48 h Accuracy (%) 87.5 83.3 91.7* 91.7 91.7 83.3

AUC 0.93 0.79 0.9 1.00* 1.00* 0.80

p < 0.05 and *p < 0.01 in one-sample t-test (one-sided).

NT, Neurotoxin; HT, Hepatotoxin; CT, Cardiotoxin; GT, Glomerular toxin (Nephrotoxin); TT, Tubular toxin (Nephrotoxin); NGC, Non-genotoxic carcinogen.

SD, Sample SD; AUC, Area Under the ROC Curve; GGM, Graphical Gaussian Model.
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A, the prediction accuracy was 66.6%, suggesting that the prediction of these chemicals is difficult

(Table S5).

Pathway analysis of KhES-3 genes following exposure to 24 chemicals

To determine the effects of exposure to chemicals on biological pathways, we performed a Hallmark

pathway analysis by Gene Set Enrichment Analysis (GSEA) using all genes. When performing this analysis,

we divided the samples into high dose (1/1 and ½ doses) and low dose (1/8 and 1/16 doses). For hepatotox-

ins, cardiotoxins, and glomerular nephrotoxins, differences were observed in the types of pathways that

were induced or suppressed in comparison with other toxic chemicals in the high-dose samples at 24 h

(Figures 2C and S7). In addition, the responses of ES cell genes to the toxic chemicals were diverse and

dependent on the type of chemical to which they were exposed and not limited to specific pathways

such as apoptosis. This observation suggests that it is possible to predict toxicity categories on the basis

of perturbed pathways that can be detected by transcription factors. On the other hand, differences in con-

centrations or among categories that may have been present at 48 h were not as pronounced as those at 24

h. However, analyses using available pathways based on human knowledge accumulated in the past pro-

vide limited information. Instead, the computational extraction of feature genes from the PCA of all genes

without bias and predictions based on their GGM networks is likely to be more effective.

Selection of iPS cells as an alternative to human ES cells

The results of the present and previous studies suggest that hEST-GN can predict not only develop-

mental toxicity but also broad toxicity categories with high performance. However, there are still hurdles

to overcome, including ethical issues, before this system can be generally and widely accepted as a

toxicity test. Accordingly, to make iPS cells a possible alternative to hEST-GN, we performed pre-

screening by comparing ATP assays with ES cells exposed to 20 toxic chemicals across a wide range

of categories. As candidates, we used the top 20 cell lines selected from among Japanese male cell lines

(Matsuda et al., 2020) derived from healthy individuals, which had been examined and ranked in terms of

their differentiation potential into the three germ layers. For exposure concentration, we adopted the

IC50 that was determined using the KhES-3 cell line and examined the toxicity response of human iPS

cells. Among the candidate cell lines, we selected the top three cell lines with well-correlated growth

rates at IC50 (HPS4138, HPS4234, and HPS4046) and confirmed the correlation coefficients of the growth

rates at IC50 with KhES-3 using 20 of the 24 toxic chemicals investigated in this study. HPS4138 had the

highest value of 0.94; accordingly, this cell line was used for the predictions as an alternative to ES cells

(Table S6).

Prediction of chemicals in six toxicity categories using HPS4138 iPS cells

For HPS4138, which was selected by screening, we performed ATP assays with the 24 chemicals (Figure S8;

Tables S7 and S8). As in the case of ES cells, the cells were exposed to vehicle alone or five concentrations

obtained by serial dilutions of stock solutions containing the maximum exposure concentration (i.e., the

maximum value between IC0.1 and IC50 that did not cause an excessive degree of cell death); this exper-

iment was repeated twice. Gene expression data for 20 genes selected from KhES-3 cells at 24 and 48 h

were obtained by qRT-PCR, and GGMs were created for each of the 24 chemicals based on LFC values rela-

tive to the vehicle. Partial correlation coefficients were used for the prediction, as in the case of ES cells. In

the prediction, data were created by integrating iPS cell data with ES cell data as well as by transductive

transfer learning, in which toxicity category labels in the ES cell data were used for the learning to allow

for category prediction using iPS cells. Assessment was performed by LOOCV, similarly to the predictions

made using ES cells only. Chemicals in all categories except cardiotoxins and tubular nephrotoxins yielded

AUC values from 0.82 to 0.99, and the accuracy or AUC was significantly higher than for results obtained

with uniform random numbers. Thus, although this approach was not perfect, the results of the prediction

using HPS4138 were very accurate for most toxicity categories (Table 3). The summary of toxicity category

predictions for the 24 chemicals using HPS4138 is shown in Figure 3. Prediction was difficult for butylated

HA, but satisfactory for the other chemicals (Table S9). These results demonstrate that if a gene expression

database for toxicity responses could be created with ES cells, chemical toxicity prediction using iPS cells

would also be possible by means of transductive transfer learning. Our findings also raise the possibility of

achieving practical applications of toxicity testing using standardized or individualized iPS cells in the

future. A description of transductive transfer learning is available on our web site at https://stempantox.

stemcellinformatics.org.
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DISCUSSION

Here, we presented a proof-of-concept study that enables a toxicity hazard assessment using human iPS

cells and transfer learning based on the transcription factor gene network libraries made from the gene

expression data of human ES cells exposed to 24 chemicals for 6 categories.

In this paper, we clarified that i) human ES cells are sufficient to detect not only developmental toxicities

during embryogenesis but also broad toxicity categories such as adult toxins (neurotoxin, cardiotoxin, hep-

atotoxin, and glomerular and tubular nephrotoxins) and non-genotoxic carcinogens; ii) the chemical

toxicity prediction using transcription factor gene networks of human ES cells shows an AUC = 0.90–

1.00, which is significantly more accurate than predictions based on the QSAR theory or from raw gene

expression data; iii) there exist differences in the biological pathways affected by the toxicity categories,

suggesting the mechanisms that underlie the transcription factor networks that control the pathways

may be used to predict toxicity categories; and iv) the gene network data from properly screened human

iPS cells can successfully, although not perfectly, predict the toxicity categories at significant accuracies

once the toxicities are learned by transfer learning using the models based on human ES cell data only.

Various alternative methods using pseudo-human systems, such as differentiated human cell lines (HepG2,

MCF-7, HeLa, etc.), have been reported (Qu et al., 2021) since animal protection has become a higher pri-

ority in research. However, these lines are often derived from cancer or immortalized cells and thus have

limited use (Kim et al., 2019). On the other hand, primary cells, which are assumed to resemble natural

states in the human body, show batch-to-batch variability (Kim et al., 2019) and are difficult to collect at suf-

ficient amounts. Furthermore, it is difficult to extrapolate toxicity tests on some cell types to other target

cell types due to differences in cytotoxicity tolerance (Laschinski et al., 1991). Performing a multi-target

toxicity prediction system based on stem cells, as we propose here, provides a more valid prediction of

toxicity to a larger range of cell types.

Toxicological assessment using the transcriptome is frequently used by the U.S. EPA, Tox21 project and in

Europe. Particularly, new approach methodologies (NAMs), which are any technology, methodology,

approach, or combination thereof that can be used to provide information on chemical hazards and risk

assessments that avoids the use of intact animals (New ApproachMethodsWork Plan: Reducing Use of An-

imals in Chemical Testing 2016), are often directional concepts using transcriptomics with other omics or

traditional toxicology methods. Our study indicated that transcription factor gene networks exist in a mas-

ter layer of biological pathways to activate molecular initiation events (MIEs), in which the initial chemical

trigger starts an adverse outcome pathway (AOP) via DNA binding, receptor activation, or a disturbance of

cellular/organelle systems (Allen et al., 2016), thus revealing toxicity reactions. Recent studies have

Table 3. Prediction for HPS4138 cells

NT (13) HT (15) CT (13) GT (6) TT (7) NGC (9)

Random 24 h Mean Accuracy (%) 81.6 82.5 80.8 89.5 85.0 81.2

SD 3.49 3.82 4.89 2.95 4.49 5.65

Mean AUC 0.81 0.77 0.78 0.79 0.80 0.74

SD 0.06 0.08 0.07 0.08 0.10 0.11

48 h Mean Accuracy (%) 81.6 82.0 80.4 88.7 86.2 81.2

SD 5.27 4.82 5.21 2.03 4.43 4.04

Mean AUC 0.77 0.81 0.8 0.84 0.77 0.77

SD 0.09 0.05 0.07 0.10 0.13 0.08

GGM network coefficient 24 h Accuracy (%) 87.5* 87.5* 79.2 87.5 79.2 91.7*

AUC 0.90* 0.85* 0.81 0.84 0.71 0.82

48 h Accuracy (%) 91.7* 83.3 79.2 95.8* 83.3 83.3

AUC 0.99* 0.85 0.75 0.94* 0.81 0.77

p < 0.05 and *p < 0.01 in one-sample t-test (one-sided).

NT, Neurotoxin; HT, Hepatotoxin; CT, Cardiotoxin; GT, Glomerular toxin (Nephrotoxin); TT, Tubular toxin (Nephrotoxin); NGC, Non-genotoxic carcinogen.

SD, Sample SD; AUC, Area Under the ROC Curve; GGM, Graphical Gaussian Model.
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endorsed the idea that transcription factors of signal receptors might play a role in interfacing outside sig-

nals, such as aryl hydrocarbon or androgen, to activate toxicological AOPs in HepaRG� cells (Franzosa

et al., 2021). In our system, we used 20 transcription factor genes from 5 PCs due to limited resources

and cost, but it should be possible to customize the set of genes and PCs to reflect more accurately the

specific AOPs in the endpoint organ. To pursue a full coverage of endpoint organs and AOPs, RNA-seq

analysis and a library of all 4,033 transcription factor genes for the test chemicals at low cost are needed.

Previous systems using QSAR theory depend on the information of chemicals only and are thus inappli-

cable to mixtures such as food, Chinese or herbal medicines, and other compounds to assess toxicity as

a whole. Our StemPanTox system detects the cellular toxic events of these mixtures, providing the

Figure 3. Summary of toxicity category prediction for 24 chemicals using HPS4138 cells

Red dots indicate predicted SVM values of iPS cell data, and filled and open markers indicate true and false predictions, respectively. Black dots and bars

indicate the means G SEM of SVM values for random data. In the tables, the label columns contain prior knowledge regarding whether the chemical shows

toxicity (P: positive) or not (N: negative). The SVM column contains the SVM values of the iPS cell data. The expected accuracy (Exp.Acc.) columns contain the

prediction accuracy using random data. The graphs below the tables show the probability distribution of the prediction accuracy using random data. Black

lines indicate the probability density estimated using the t distribution (degrees of freedom = 9). Black shaded areas represent the upper 5%. Red dashed

lines indicate the prediction accuracy using iPS cell data.
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prediction of holistic cellular reactions, making it a resource for industries that mix independent chemical

ingredients, including cosmetic, air-conditioner, and automotive companies who need to assess the

toxicity of mixtures in their final or intermediate products, media, emissions, detergents, etc. In fact,

more than 100 members from a wide variety of industry-government-academia fields are involved in our

non-profit consortium (scChemRISC). By developing products from candidate substances that are pre-

dicted to have little toxicity, our system will contribute to industry not only for efficiency but also for human

health.

Recently, toxicity reaction differences due to ethnicity, or genome haplotypes, have been widely re-

ported due to the globalization of foods and products among countries. For example, catechin, which

is contained in green tea and is widely consumed in Asian countries, is reported to induce severe liver

injury in the United States (Oketch-Rabah et al., 2020). The CiRA Foundation (Kyoto, Japan) has

announced myiPS cells, a project in which individuals can have their own iPS cells generated and banked.

Our StemPanTox system could allow a tailor-made chemical toxicity assessment for these cells to detect

individual differences in toxic tolerance for different substances. Ideally, it also has the potential to

reduce medical accidents if myiPS cells could be used to diagnosis whether a medication is toxic before

receiving the treatment (Easley, 2019; Kim et al., 2019). In general, by performing a battery of toxicity

assessments using multiple iPS cell lines from individuals with various haplotypes, our system may

contribute to reducing toxicity accidents often caused by a small number of test samples of limited

genomic variances.

In conclusion, the largest advantage of our StemPanTox is the ability to perform toxicity hazard assess-

ments for multiple endpoints with high accuracy in a short amount of time and a low cost. We believe

that our system will greatly benefit research aimed at amending gaps between current animal studies,

which are resource-intensive and show uncertainty for human extrapolation, and NAMs, which are ex-

pected to use the latest science, technology, and computational models for improving regulatory toxi-

cology guidelines.

Limitations of the study

Although we showed that human pluripotent stem cells are useful devices capable of qualitatively predict-

ing adult toxicities of 24 chemicals in six categories, it is yet to be confirmed whether other chemicals and

categories can be predicted and whether it is extendable to quantitative prediction.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Vitronectin (VTN-N) Thermo Fisher Scientific Cat # A14700

CultureSure� Y-27632 FUJIFILM WAKO Cat # 036-24023

Dimethyl sulfoxide, for molecular biology Sigma-Aldrich Cat # D8418

2,5-Hexanedione Sigma-Aldrich Cat # 00770-50ml

Acrylamide(monomer) NACALAI TESQUE Cat # 06114-24

Amiodarone Hydrochloride TCI (Tokyo Chemical Industry) Cat # A2530

Amitriptyline hydrochloride Sigma-Aldrich Cat # A8404

Atorvastatin Calcium Salt Trihydrate TCI (Tokyo Chemical Industry) Cat # A2476

Axitinib Selleck Chemicals Cat # S1005

Bucillamine Toronto Research Chemicals Cat # B689375

Butylated hydroxyanisole Sigma-Aldrich Cat # B1253-5G

(+)-Chlorpheniramine Maleate FUJIFILM WAKO Cat # 030-13271

Chlorpromazine Hydrochloride FUJIFILM WAKO Cat # 033-10581

cis-Diammineplatinum(II) dichloride crystalline Sigma-Aldrich Cat # P4394-250MG

Cyclopamine hydrate SIGMA Cat # C4116-1MG

Ciclosporin A FUJIFILM WAKO Cat # 031-24931

Digoxin Sigma-Aldrich Cat # D6003-1G

Doxorubicin (hydrochloride) Cayman Chemical Cat # 15007

Gentamicin sulfate Sigma-Aldrich Cat # G3632-1G

Ibuprofen FUJIFILM WAKO Cat # 098-02641

Itraconazole Sigma-Aldrich Cat # I6657-100MG

Lithocholic acid Sigma-Aldrich Cat # L6250-10G

Methapyrilene HCl Sigma-Aldrich Cat # 442641

Sunitinib malate Tocris Bioscience Cat # 510-86011

Thioacetamide Sigma-Aldrich Cat # 172502-25G

Valproic acid SIGMA Cat # PHR1061-1G

Verapamil Hydrochloride Sigma-Aldrich Cat # V4629-1G

RNasin� Plus RNase Inhibitor, 2500u Promega Cat # N2611

Dimethoate Standard FUJIFILM WAKO Cat # 041-15843

Arsenic (III) oxide Sigma-Aldrich Cat # 311383-125G

Quinidine hydrochloride monohydrate

technical grade

Sigma-Aldrich Cat # Q0750-5G

Critical commercial assays

CellTiter-Glo� Luminescent Cell Viability

Assay

Promega Cat # G7571

RNeasy Mini Kit QIAGEN Cat # 74106

RNase-Free DNase Set (50) QIAGEN Cat # 79254

TruSeq Stranded mRNA Library Prep (48

Samples)

Illumina Cat # 2020594

TruSeq RNA Single Indexes Set A (12 Indexes,

48 Samples)

Illumina Cat # 20020492

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Professor Wataru Fujibuchi (wfujibuchi@gmail.com).

Materials availability

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact.

Data and code availability

d The accession number for RNA-seq data reported in this paper is GEO: GSE188203.

d The source code of R analysis script is available from: https://www.stemcellinformatics.org/toxicology/.

d The data supporting the findings of this study are available from: https://www.stemcellinformatics.org/

toxicology/.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture experiments

The KhES-3 cell line was established at and provided by Kyoto University (Nakatsuji, 2005). The protocol of

this study was reviewed by the Ethics Committee of CiRA in accordance with the "Guidelines for Derivation

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

TruSeq RNA Single Indexes Set B (12 Indexes,

48 Samples)

illumina Cat # 20020493

HiSeq 3000/4000 SR Cluster Kit illumina Cat # GD-410-1001

HiSeq 3000/4000 SBS Kit (50 Cycles) illumina Cat # FC-410-1001

PrimeScript� RT Reagent Kit (Perfect Real

Time)

TAKARA BIO Cat # RR037B

KAPA SYBR Fast qPCR Kit (Universal qPCR kit) KAPA BIOSYSTEMS Cat # KK4602

Deposited data

RNA-seq This study GEO: GSE188203

Experimental models: Cell lines

KhES-3 cell line (XY) (Nakatsuji, 2005) NA

HPS4138 cell line (XY) RIKEN BRC NA

HPS4234 cell line (XY) RIKEN BRC NA

HPS4046 cell line (XY) RIKEN BRC NA

Oligonucleotides

Primers for qRT-PCR This study https://www.stemcellinformatics.org/

toxicology/

Software and algorithms

alvaDesc Affinity Science https://www.alvascience.com/alvadesc/

CORINA Classic mn-am.com https://www.mn-am.com/online_demos/

corina_demo/

Other

The source code of R analysis script and the

data supporting the findings of this study

This study https://www.stemcellinformatics.org/

toxicology/
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and Utilization of Human Embryonic Stem Cells" by the Ministry of Education, Culture, Sports, Science and

Technology, Japan. The iPS cell lines were established from healthy Japanese donors at CiRA, Kyoto Uni-

versity, and were approved for use by the Ethics Committee of Kyoto University.

Since it has been reported that the toxicity of antioxidants such as catechin is suppressed in the presence of

albumin (Zhang et al., 2016), maintenance culture was carried out for all cell lines including human ES cells

using albumin-free Essential 8 Medium (Thermo Fisher Scientific) in six-well feeder-free culture dishes

coated with 5 mg/mL vitronectin (VTN-N; Thermo Fisher Scientific). When seeding the cells, 10 mM

CultureSure� Y-27632 (FUJIFILM WAKO) was added, and medium exchange on day 1 and thereafter

was performed without Y-27632.

METHOD DETAILS

Selection of toxic chemicals

Twenty-four chemicals were selected and mainly included neurotoxins, hepatotoxins, cardiotoxins, neph-

rotoxins, and non-genotoxic carcinogens (Table 1). The presence or absence of toxicity was determined

mainly on the basis of information regarding toxicity and assorted disorders and diseases available at

PubChem (https://pubchem.ncbi.nlm.nih.gov/). With respect to neurotoxicity, among the chemicals previ-

ously reported in the literature, those having only developmental toxicity were classified as ’negative,’ as

the present study targeted adult toxicity. In addition, when determining the presence or absence of hep-

atotoxicity, chemicals with DILI rank R 3 were considered hepatotoxic chemicals; with regard to others,

those with reliable reports of liver diseases were considered hepatotoxic. As for cardiotoxicity, chemicals

that have been reported to be associated with heart disease were considered cardiotoxic. With regard to

the kidney, due to its diverse and complex structure, the area of damage was divided into two sites, namely,

the glomeruli and renal tubules. Chlorpheniramine and cyclopamine were the chemicals judged to be

completely ‘negative’ and belonged to none of the toxicity categories examined in the present study.

On the other hand, 19 chemicals had multiple overlapping toxicities, whereas acetonylacetone, bucill-

amine, and butylated HA had only one toxicity (Abarbanel et al., 1987; Ali et al., 2002; Allam et al., 2010;

Baroni et al., 1999; Boelaert et al., 1988; Cappon et al., 2005; Carter and Stewart, 1989; Clements et al.,

2015; Colombo et al., 2016; Doherty et al., 2013; El-Tanbouly et al., 2017; Ellinger-Ziegelbauer et al.,

2005; Ferguson and Paule, 1992; Fickert et al., 2006; Hendry et al., 1988; Hirose et al., 1990; Humes

et al., 1985; Jordan et al., 2004; Kimura et al., 2008; Kitazawa, 1993; Kitazawa et al., 1990; Kreft et al.,

1991; Lee et al., 2002; Lin and Will, 2012; LoPachin et al., 2002; Maheut-Bosser et al., 2006; Marasco

et al., 1987; McGovern et al., 1986; Miller, 2002; Mizukami et al., 2017; Mladosievicova et al., 2001;

Ohno, 2004; Okuyan and Altin, 2013; Ozkok and Edelstein, 2014; Pilling et al., 2005; Raza et al., 2000;

Rea et al., 2003; Ruuskanen et al., 1979; Saito et al., 1985; Seong et al., 2003; Sha and Schacht, 1999; Sorich

et al., 2016; Srinivasa et al., 2003; Sudoh et al., 2004; Xie et al., 2001).

Chemical exposures and determination of IC logistic model equations

DMSO or water was used as solvent (vehicle) for the 24 chemicals based on known information (https://

pubchem.ncbi.nlm.nih.gov/). For each of the 24 toxic chemicals, a stock solution was prepared with the

highest soluble concentration. First, in order to perform the ATP assay to determine the exposure doses

for testing, we performed 10 serial three-fold dilutions of the stock solution; the prepared exposure solu-

tion was added to the cells (i.e., exposure) so that the concentration in the medium was 0.1% of the expo-

sure solution. The cells were cultured on 96-well black/clear flat bottom TC-treated plates (Falcon), 8,000

cells were seeded, and themediumwas exchanged on day 1. The cells were exposed to chemicals on day 2.

No medium exchange was performed after exposure, and the ATP assay was performed 48 h after expo-

sure. For 100 mL of culture medium, 100 mL of CellTiter-Glo� Luminescent Cell Viability Assay (Promega

Corporation) was added, and emitted light was measured with a 2104 EnVision Multilabel Plate Reader

(PerkinElmer). From four luminescence measurements for 10 concentrations and a blank, regression anal-

ysis was performed by fitting the three-parameter log-logistic model with the R-4.0.5 drc package, and

IC0.1 and IC50 values were obtained (Tables S1 and S2). IC50 values were plotted using the ggplot2 pack-

age (Figure 1B).

RNA-seq analysis

On day 2 after seeding, the cells were exposed to the chemicals. For each of the 24 chemicals, the exposure

dose was set between IC0.1 and IC50 depending on the degree of cell death. Using this value as the
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maximum exposure dose, five serial two-fold dilutions (1/1, 1/2, 1/4, 1/8, 1/16) were performed, and a total

of six doses including a solvent-only control (vehicle) were used. After exposure, no medium exchange was

performed, and samples were obtained at two time points (24 h and 48 h) with two repeats, i.e., a total of 24

x 6 x 2 x 2=576 samples. After RNA purification using an RNeasy Mini Kit (QIAGEN), sequence libraries were

prepared for each sample using TruSeq Stranded mRNA Library Prep/TruSeq RNA Single Indexes Set A &

Set B (Illumina, Inc.). For sequencing, high-throughput sequencing was performed using HiSeq4000 (Illu-

mina, Inc.). We used bowtie-2.2.5 with the option "–very-sensitive-local" to map the obtained Illumina

reads to Ensemble GRCh38r100 human cDNA and ncRNA sequences, added up the reads for each

gene using MAPQ R 1 transcript, and obtained average counts of 28,652,809 and 28,291,682 reads for

each sample at 24 h and 48 h, respectively. From these, we selected only transcription factor-related genes

included in the Gene Ontology GO:0006351 using BioMart (4,032 genes). These genes were filtered using

the statistical analysis language R-4.0.5 package edgeR (Robinson et al., 2010) (https://www.r-project.org/)

with the filterByExpr function min.count = 30, min.total.count = 0, and then normalized to log2 counts per

million (logCPM) using the voom function. Furthermore, the removeBatchEffect function was used to elim-

inate batch effects.

Differentially expressed gene analysis and principal component analysis

At 24 h and 48 h, for a total of 122 groups including 120 conditions (five concentrations each for 24 chem-

icals) and two solvent conditions (DMSO or water), we used a linear model fitting with the lmFit function of

the limma package (Ritchie et al., 2015) in R and moderated t-statistics with eBayes to analyze differentially

expressed genes (DEGs) with respect to gene expression levels in terms of the log-fold–change (LFC) be-

tween 24 chemicals and their corresponding solvent, and created a heatmap of genes with an LFC > 1 and

FDR (false discovery rate) < 0.01 using the pheatmap package in R (Figures 1C and S2). In addition, using

the LFC values obtained for 120 conditions, PCA was performed for each of the two time points (24 h, 48 h)

using the prcomp function in R (Figures 1D and S3).

Gene network construction by Graphical Gaussian Model (GGM)

Based on results obtained in the aforementioned PCA, a total of 20 genes (two genes each with the top

positive and negative loading values in the first to fifth PCs) were used to construct gene networks. To es-

timate the GGM for each of the 24 chemicals, we used the aforementioned LFC values to calculate the

sparse partial correlation coefficient network with L1 graphical lasso using EBICglasso in the R package

qgraph (https://cran.r-project.org/web/packages/qgraph/qgraph.pdf) (Epskamp and Fried, 2018). For

model fitting, regular BIC with gamma = 0 was used, and regularization of sparsity was tried 1000 different

ways with nlambda = 1000 for estimation. In the estimation, in order to avoid the problem of covariance

matrices failing to be positive definite, calculations were performed with checkPD = FALSE (Figures 2A,

S4, and S5).

Prediction by support vector machine (SVM)

The SVM program and protocol used in the present study were adopted according to the report of Taka-

hashi et al. (2018) Four kernel functions were used: linear, polynomial, RBF, and maximum entropy, and

parameter types and combinations were calculated according to the above report (Takahashi et al.,

2018). In the calculation, 190 values of partial correlation coefficients among 20 genes in the GGM for

each of the 24 chemicals were used as input data, and using leave-one-out-cross-validation (LOOCV),

the genes were ranked using the two-sample t-test (two-sided) in each iteration, and the maximum accu-

racy and the maximum AUC (area under the receiver operating characteristic curve) to achieve the

maximum accuracy were recorded, varying the number of values from 1 to 190. For comparison, LFC

data for the transcription factor genes at five concentrations before calculating the GGM (24 x 5 x 3,200

or 3,255 values in total) were used as input data, and the maximum accuracy and the corresponding

AUC value were recorded in a similar manner. In addition, to compare with predictions based on QSAR,

5,666 molecular descriptors were created using alvaDesc (Affinity Science) (https://www.alvascience.

com/alvadesc/). We obtained information from PubChem DB (https://pubchem.ncbi.nlm.nih.gov/) 3D

Conformer data regarding 20 of the 24 chemicals; for the four other chemicals for which information could

not be obtained from PubChem DB (cisplatin, cyclosporin A, digoxin, and gentamicin), the SMILES format

was converted into 3D molecular descriptors using CORINA Classic (https://www.mn-am.com/

online_demos/corina_demo) and entered into alvaDesc.
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Gene set enrichment analysis

We created LFC data for all genes by performing the same preprocess as for the transcription factor genes

(21,650 and 22,298 genes for 24 h and 48 h, respectively) and divided them into high-dose (1/1/, 1/2) and

low-dose (1/8, 1/16) groups to perform GSEA for each group using the R package fgsea (Korotkevich et al.,

2016). As for the gene sets used, among the MSigDB Collections provided by GSEA (https://www.gsea-

msigdb.org/gsea/index.jsp), we used 50 hallmark gene sets. The heatmap was generated with FDR-

adjusted p values obtained using the fgsea package.

Selection of HPS4138 iPS cells

The measurement of the differentiation potential to the three germ layers was performed according to a

previous report (Matsuda et al., 2020), where we examined the expression ratio of two marker genes for

each layer (PAX6, SOX2, BRA,NCAM, SOX17, and FOXA2) by means of fluorescence activated cell sorting.

Among the ranked Japanese male cell lines derived from healthy individuals, we used the top 20 cell lines

according to their total ratios (Matsuda et al., 2020). These cell lines were kept in maintenance culture with

StemFit AK02N medium (Ajinomoto) and then cultured for two passages in maintenance culture using

Essential 8 Medium (Thermo Fisher Scientific) as in the case of KhES-3. Among the 20 cell lines, one under-

went cell death, and the remaining 19 were subjected to pre-screening using 20 chemicals with a wide

range of toxicities (valproic acid, cyclopamine, acrylamide, acetonylacetone, chlorpromazine, chlorphenir-

amine, atorvastatin, amiodarone, verapamil HCl, dimethoate, arsenic trioxide, quinidine, axitinib, doxoru-

bicin, gentamicin, ibuprofen, lithocholic acid, thioacetamide, butylated HA, and methapyrilene HCl) by

comparing the ATP assay results with those for ES cells. The details of the ATP assay are described in

‘‘Chemical exposures and determination of IC logistic model equations’’. For exposure concentrations,

the IC50 determined with KhES-3 was used, and the growth rate of human iPS cells was examined. Among

the candidate cell lines, the top three cell lines (HPS4138, HPS4234, and HPS4046) whose growth rates at

IC50 correlated well with that of KhES-3 were selected, and again, the growth rate at IC50 was confirmed by

the ATP assay using 20 of the 24 toxic chemicals examined in the present study (Table S6) to select the cell

line with the largest correlation coefficient, i.e., HPS4138.

Gene expression data from HPS4138 by RT-qPCR

The five serial exposure concentrations of the 24 chemicals for iPS cells were determined by the ATP assay,

as described in ‘‘Chemical exposures and determination of IC logistic model equations’’ with respect to ES

cells. For each of the 20 genes at 24 h and 48 h used for the construction of the GGM for ES cells, the primer

sequence pair was designed using Primer 3 (version 0.4.0) based on the human cDNA sequence data ob-

tained from Ensembl GRCh38r100, and the obtained primer sequence pair was synthesized (Hokkaido Sys-

tem Science). We confirmed whether the target PCR product could be obtained from the primer sequence

pair according to the product size determined by electrophoresis. On day 2 after seeding, HPS4138 cells

were exposed to the 24 chemicals. With regard to exposure concentrations, time points, and repeat exper-

iments, we followed the experiments performed with ES cells. After purification using an RNeasy Mini Kit,

RNA was transcribed to cDNA using a PrimeScriptTM RT Reagent Kit (Perfect Real Time) (TaKaRa), and the

synthesized primers for qRT-PCR and KAPA SYBR Fast qPCR Kit (KAPA BIOSYSTEMS) were used to perform

qRT-PCR with StepOnePlus (Applied Biosystems). DCT values of the resulting genes were obtained by sub-

tracting from the CT values the value of the internal control (GAPDH gene). The average value of two

repeated measurements at each concentration was determined. In addition, for solvents (DMSO and wa-

ter), DCT values were obtained by subtracting the value of GAPDH gene, and the average of all values was

determined. The difference, DDCT, between the DCT value at each concentration and that of the solvent

was determined and is referred to as LFC. Covariance matrices among the 20 genes were calculated

and used as input data in the construction of the GGM.

Transductive transfer learning by SVM

A total of 380 edges in the GGMof ES cells and the GGMof iPS cells were used to perform the prediction of

chemicals in the six toxicity categories under conditions similar to the SVM protocol described in ‘‘Predic-

tion by support vector machine (SVM)’’. For learning, labels of the 24 chemicals in ES cells were provided,

whereas none of the labels of the 24 chemicals in iPS cells were provided (i.e., zero); prediction was per-

formed via transductive transfer learning. As in the case of ES cells, prediction was also performed by re-

placing with uniform random numbers 10 times only the values of the 24 x 190 input data for iPS cells, and
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similar to ES cells, the one-sample t-test (one-sided) was used to assess themaximum accuracy and the cor-

responding AUC value.

QUANTIFICATION AND STATISTICAL ANALYSIS

In this paper, we used accuracy (=(TP+TN)/(TP+TN+FP+FN) where TP: true positive, TN: true negative, FP:

false positive, and FN: false negative) and AUC (the area under the receiver operating characteristic curve)

for the statistical measurement of prediction performance. To statistically evaluate the maximum accuracy

and AUC, uniform random numbers that have the same dimensions as the actual input data were gener-

ated 10 times, and the maximum accuracy with the maximum AUC were recorded. One-sample t-test

(one-sided) was performed with the average values and standard deviations obtained from these 10 at-

tempts to test actual maximum accuracies and AUCs. Differences were considered significant for p values

at two levels p<0.05 and p<0.01 and indicated by boldface and boldface with asterisks, respectively.

ADDITIONAL RESOURCES

None.
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