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X-linked sideroblastic anemia (XLSA) is associated with mutations in the erythroid-specific

d-aminolevulinic acid synthase (ALAS2) gene. Treatment of XLSA is mainly supportive,

except in patients who are pyridoxine responsive. Female XLSA often represents a late onset

of severe anemia, mostly related to the acquired skewing of X chromosome inactivation.

In this study, we successfully generated active wild-type and mutant ALAS2-induced

pluripotent stem cell (iPSC) lines from the peripheral blood cells of an affected mother and

2 daughters in a family with pyridoxine-resistant XLSA related to a heterozygous ALAS2

missense mutation (R227C). The erythroid differentiation potential was severely impaired in

active mutant iPSC lines compared with that in active wild-type iPSC lines. Most of the active

mutant iPSC-derived erythroblasts revealed an immature morphological phenotype, and

some showed dysplasia and perinuclear iron deposits. In addition, globin and HO-1

expression and heme biosynthesis in active mutant erythroblasts were severely impaired

compared with that in active wild-type erythroblasts. Furthermore, genes associated with

erythroblast maturation and karyopyknosis showed significantly reduced expression in

active mutant erythroblasts, recapitulating the maturation defects. Notably, the erythroid

differentiation ability and hemoglobin expression of active mutant iPSC-derived

hematopoietic progenitor cells (HPCs) were improved by the administration of

d-aminolevulinic acid, verifying the suitability of the cells for drug testing. Administration of

a DNA demethylating agent, azacitidine, reactivated the silent, wild-type ALAS2 allele in

active mutant HPCs and ameliorated the erythroid differentiation defects, suggesting that

azacitidine is a potential novel therapeutic drug for female XLSA. Our patient-specific iPSC

platform provides novel biological and therapeutic insights for XLSA.

Introduction

Congenital sideroblastic anemias are a group of heterogeneous inherited diseases characterized by
impaired heme synthesis and mitochondrial iron overload with ring sideroblasts in the bone marrow.
X-linked sideroblastic anemia (XLSA) is the most common hereditary sideroblastic anemia and is caused
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Key Points

� A patient-derived
iPSC model
recapitulates defective
erythroid maturation in
female XLSA.

� Azacitidine reactivates
the silent wild-type
ALAS2 allele and
ameliorates inefficient
erythropoiesis in
iPSC-derived HPCs
from female XLSA.
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Figure 1. Identification of XLSA in a family harboring the heterozygous ALAS2-R227C mutation. (A) Pedigree of the family. Squares indicate males, and circles

indicate females. Filled circles denote the patients confirmed by ALAS2 sequencing. The arrow indicates the proband. (B) Sanger sequencing data of ALAS2 genomic DNA

from SA2 buccal cells (top) and ALAS2 cDNA from SA2 peripheral blood erythrocytes (bottom) are shown. (C) Morphology of SA2 and SA3 bone marrow cells. An

increased number of ring sideroblasts was observed with Prussian blue staining (left). The arrows indicate ring sideroblasts. Megaloblastic change was detected by May

Grunwald-Giemsa staining (middle and right). Magnification of the objective lens: 3100 (left and middle) and 340 (right). Bars represent 25 mm. (D) Summary of HUMARA

assays of CD341 and CD235a1 bone marrow cells and ALAS2 cDNA Sanger sequencing of peripheral blood erythrocytes. The schematic diagram of erythropoiesis was

created using BioRender.com. cDNA, complementary DNA.
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by mutations in the erythroid-specific d-aminolevulinic acid synthase
(ALAS2) gene, which is the first enzyme involved in heme biosynthe-
sis in erythroid cells.1,2 Nearly 100 different ALAS2 mutations have
been reported to date.3 XLSA occurs preferentially in males and usu-
ally presents as asymptomatic or mild microcytic anemia. However,
approximately one-fourth of the affected XLSA probands are females,
and those patients show a distinct clinical presentation and mutation
spectrum.4-6 Unlike males, females with XLSA often harbor heterozy-
gous deleterious ALAS2 mutations that are embryonic lethal in males
and develop more severe clinical phenotypes with macrocytic anemia
in mid-to-late adulthood.7 Their anemia is mostly associated with
skewed X-chromosome inactivation, which increases with age.8,9

Most families with female XLSA have multiple affected members, indi-
cating a familial predisposition to acquired X-chromosome skewing.3

One treatment option is pyridoxine, which metabolizes as pyridoxal
59-phosphate, the cofactor for ALAS2. However, pyridoxine refracto-
riness is reported in nearly half of cases, including those with an
R227C mutation.1,10 The severe loss of function caused by this
mutation may explain why no male carriers have been identified in
affected families.11 Therapies for XLSA in patients who do not
respond to pyridoxine are mostly aimed at supportive care. Adminis-
tration of d-aminolevulinic acid (ALA) could ameliorate the heme bio-
synthesis defects that occur in XLSA, because ALAS2 catalyzes
the condensation of glycine and succinyl-CoA into ALA. However, a
recent study of a single case showed no improvement in the hemo-
globin level even at the in vitro effective concentration.12 Therefore,
other treatment approaches should be explored.

Several cell and animal models of male XLSA have been develo-
pedb13-18 but there are no reported models of female XLSA with
heterozygous ALAS2 mutations. In this study, we established active
wild-type induced pluripotent stem cell (WT iPSC) and active-
mutant induced pluripotent stem cell (MT iPSC) lines from the
peripheral blood cells of an affected mother and her 2 daughters in
a family with XLSA caused by a heterozygous ALAS2-R227C muta-
tion. We then differentiated the iPSCs into erythroblasts to model
the pathophysiology of female XLSA. Using this iPSC-based plat-
form, we found that the demethylating agent azacitidine (AZA) indu-
ces the expression of WT ALAS2 in active mutant iPSC-derived
hematopoietic progenitor cells (MT HPCs) to ameliorate abnormal
erythroid differentiation caused by the heme biosynthesis defects.

Materials and methods

Generation of iPSCs from patients with XLSA

This study was approved by the Ethics Committees of the Graduate
School of Medicine, Kyoto University, and Kyoto University Hospital.

Written informed consent was obtained from all patients, and the
study was performed in accordance with the Declaration of Helsinki.
XLSA-iPSCs were established from 3 patients harboring a heterozy-
gous R227C mutation using episomal vectors, as previously
described.19 In brief, the patients’ peripheral blood mononuclear
cells (PBMCs) were transfected with episomal vector mixtures
including pCXLE-hOCT3/4-shp53, pCXLE-hSK, pCXLE-hUL, and
pCXWB-EBNA1, and then seeded onto mouse embryonic fibro-
blasts feeder cells. The iPSC IDs of all XLSA-iPSC lines used in the
differentiation experiment are described in supplemental Table 1.
The WT and MT iPSC lines derived from SA1 are denoted as
WT1-iPSC1, -2, and -3 and MT1-iPSC1, -2, -3, and -4, respectively.
Similarly, those from SA3 are denoted as WT3-iPSC1 and -2 and
MT3-iPSC1 and -2, respectively. We used an iPSC line derived
from a healthy donor (692D2) as the control.19 Chromosomal
G-band analysis of the XLSA-iPSCs was performed at the Nihon
Gene Research Laboratories (Sendai, Japan). Animal experiments
for the teratoma formation of XLSA-iPSCs were performed as previ-
ously described, in accordance with the code of ethics of the Ani-
mal Research Committee of Kyoto University.20

Human androgen receptor assay and

Sanger sequencing

Genomic DNAs from iPSCs, CD431CD341 iPSC–derived HPCs,
and MACS–sorted CD341 and CD235a1 bone marrow cells were
extracted for the HUMARA assay using the DNeasy Blood and Tis-
sue kit (Qiagen). DNA samples (200 ng) were incubated overnight
at 37�C in 20-mL reactions containing 10 U HhaI and 10 U RsaI.
The digested DNA samples were purified on QIAquick spin col-
umns (Qiagen) and amplified with a Veriti Thermal Cycler (Thermo-
Fisher Scientific). Polymerase chain reactions (PCRs) and analyses
of the PCR products were performed as previously described.21,22

Peripheral red blood cells were separated with Polymorphprep
(Abbott Diagnostics Technologies AS), according to the manufac-
turer’s protocol. Sanger sequencing of exon 6 of the ALAS2 gene
was performed as previously reported.6

Hematopoietic differentiation and erythroid

differentiation assays

The hematopoietic differentiation of iPSCs was performed with
embryoid body (EB) formation, and feeder-free erythroid differentia-
tion was performed as previously reported.23,24 For feeder-free ery-
throid differentiation with AZA, FACS-sorted, iPSC-derived HPCs
on day 15 were differentiated in StemPro-34 medium (Invitrogen).
The cytokines used for the differentiation were as follows: on days
15 to 23, human stem cell factor (hSCF, 100 ng/mL; R&D Sys-
tems), human erythropoietin (hEPO, 4 U/mL; Kyowa Kirin Co, Ltd.),

Table 1. Clinical and hematological characteristics of the family members

Patient

Age at diagnosis

(y)

Hb

(g/dL)

RBC

(31012/L)

MCV

(fL)

WBC

(3109/L)

Platelets

(3109/L)

Ferritin

(ng/mL)

TS

(%)

RS

(%) Karyotype

ALAS2
mutation

Skewed

XCI

RBC transfusion

dependency

SA1
(proband)

42 6.3 1.65 112.2 5.28 297 318 89.6 12 46,XX
[20]

R227C Yes Yes

SA2
(younger sister)

40 5.9 1.67 112 3.18 264 645.7 90.3 18 46,XX
[20]

R227C Yes Yes

SA3
(mother)

70 9.1 2.38 110.9 5.5 357 263.1 77.3 17 46,XX
[20]

R227C Yes No

Hb, hemoglobin; RBC, red blood cell; RS ring sideroblasts; MCV, mean corpuscular volume; TS, transferrin saturation; WBC, white blood cells XCI, X chromosome inactivation.
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and human interleukin-3 (hIL-3; 5 ng/mL, R&D Systems); on days
23 to 26, hSCF (100 ng/mL) and hEPO (4 U/mL); and on days 26
to 29, hEPO (4 U/mL). Erythroid differentiation on OP9 stromal
feeder cells was performed as previously described with some modi-
fications.16,18,25 In brief, FACS-sorted HPCs on day 15 were plated
onto OP9 cells and cultured and maintained in a-minimum essential
medium (Invitrogen) supplemented with 10% fetal calf serum, 100
mM glutamine (Invitrogen), 100 mM monothioglycerol (Sigma
Aldrich), 5 mg/mL transferrin (Roche), and 50 mg/mL ascorbic acid
(Sigma Aldrich). The cytokines and chemical compounds used dur-
ing the differentiation were as follows: on days 15 to 20, hSCF
(100 ng/mL), human Fms-like tyrosine kinase 3 ligand (hFlt-3; 100
ng/mL, R&D Systems), hEPO (4 U/mL), and human thrombopoietin
(hTPO; 50 ng/mL R&D Systems); on days 20 to 27, hSCF
(100 ng/mL) and hEPO (4 U/mL); and on days 27 to 34, hEPO
(4 U/mL) and sodium ferrous citrate (SFC; 250 mM, Nihon Generic
Co, Ltd).

Treatment with ALA and AZA

From the beginning of erythroid differentiation, 500 mM ALA
(Sigma) or 100 or 500 nM AZA (Nacalai Tesque) was added to the
cultures. For the ALA-treated cells, ALA was added daily to the ery-
throid differentiation medium. For the AZA-treated cells, AZA was
added at the time of the change of medium (in the EB-feeder–free
method, on days 19, 23, and 26; in the EB-OP9 method, on days
23 and 27). For the methylcellulose assay, AZA was added to the
medium at the beginning of the colony-forming unit (CFU) assay.26

Statistical analyses

GraphPad Prism 9 (GraphPad Software) was used to perform all
statistical analyses. P , .05 indicated significant results.

Results

Female patients with late-onset XLSA show

preferential inactivation of the paternal X chromosome

at the stage of hematopoietic progenitor cells

We had identified a family with XLSA harboring a heterozygous
ALAS2-R227C mutation (c.679C.T, NCBI NM_000032.4;
Figure 1A).27 The clinical features of the proband (SA1) and her
mother (SA3), who were diagnosed with XLSA caused by the muta-
tion, have been published.6 Her younger sister (SA2) also presented
late-onset severe macrocytic anemia and evidence of iron overload
(Table 1). Sanger sequencing of the genomic DNA from SA2 buc-
cal cells demonstrated the same heterozygous ALAS2 missense
mutation as the proband. We also checked the ALAS2 complemen-
tary DNA sequence of her peripheral blood erythrocytes and found
no ALAS2 mutation (Figure 1B). The bone marrow aspirate showed

erythroid hyperplasia with ring sideroblasts and dyserythropoiesis,
such as megaloblastic changes, nuclear budding, and karyorrhexis,
but no apparent abnormalities of megakaryocytes and granulocytes
(Figure 1C). Although the CD341 and CD235a1 bone marrow
cells of SA2 revealed apparent skewing toward the mutant ALAS2
allele, the peripheral blood erythrocytes expressed only WT ALAS2
(Figure 1D). Her condition was diagnosed as XLSA. We also
obtained bone marrow aspirate from SA3, and it verified similar
erythroid-restricted dysplasia (Figure 1C-D). The clinical characteris-
tics of the patients are shown in Table 1, including laboratory data
at the time of diagnosis. SA1 had received 60 mg pyridoxal phos-
phate hydrate for 3 months with no improvement in her anemia
(supplemental Figure 1). Therefore, a clinical trial of ALA administra-
tion was performed with the consent of SA1 and SA2. They
received 150 mg of ALA-phosphate (kindly provided by SBI Phar-
maceuticals, Tokyo, Japan) for 12 and 24 weeks. There were no
side effects of ALA administration; however, the anemia did not
improve (supplemental Figure 2).

Generation of MT and isogenic WT iPSC lines from

female patients with XLSA

We generated iPSCs from the peripheral blood cells of all
3 patients. Because the ALAS2 gene is located on the X chromo-
some, 1 of the 2 ALAS2 genes is randomly inactivated by lyoniza-
tion in female patients. Therefore, the cells in which the X
chromosome with mutated ALAS2 is inactivated (WT cells) and
the cells in which the X chromosome with normal ALAS2 is inacti-
vated (MT cells) were established from the same patient
(Figure 2A; supplemental Table 1). We generated 58 iPSC lines
from SA1, 94 iPSC lines from SA2, and 47 iPSC lines from SA3.
HUMARA assays demonstrated that the PBMCs of all 3 patients
underwent skewed X-chromosome inactivation with preferential
inactivation of the X chromosome with WT ALAS2 (Figure 2B).
The percentage of MT iPSC lines was similar to the percentage of
X-chromosome inactivation in PBMCs for all patients with XLSA
(Figure 2B). The gene expression of pluripotent markers OCT3/4,
SOX2, and NANOG was verified in 3 WT and 4 MT iPSC lines
derived from SA1 according to quantitative reverse transcription-
PCR (qRT-PCR) analysis performed with the primers in supple-
mental Table 2 (Figure 2C). These 7 iPSC lines expressed the
pluripotent markers SSEA-4 and TRA1-60 and formed teratomas
in vivo (supplemental Figure 3A-B). Karyotype analysis revealed no
abnormalities (supplemental Figure 3C). Using the HUMARA assay
and immunostaining of H3K27me3, we demonstrated that the
maternal X chromosome of the WT iPSC lines was inactivated,
whereas the paternal X chromosome of the MT iPSC lines was
inactivated (Figure 2D). The X-chromosome inactivation status was
retained in the iPSC lines after passaging. The maternal X chromo-
some of the WT iPSC lines, which was inactivated immediately

Figure 2. Generation of XLSA patient-derived iPSCs and confirmation of X-chromosome inactivation. (A) Schematic representation of the iPSC generation from

PBMCs of female patients with XLSA who harbored a heterozygous ALAS2 mutation. The figure was created using BioRender.com. (B) Summary of HUMARA assays of

PBMCs from patients with XLSA and the percentage of MT iPSC lines among established iPSCs. (C) Expression levels of OCT3/4, SOX2, and NANOG genes in PBMCs,

1 control iPSC line derived from a healthy donor, 3 WT iPSC lines, and 4 MT iPSC lines. Expression levels of PBMCs were set to 1. Each line was tested in 3 independent

experiments. (D) HUMARA assays of WT and MT iPSCs (left). The undigested control is shown at the bottom left. Representative immunofluorescence staining images for

Hoechst expression and H3K27me3 expression in iPSCs derived from patients with XLSA (right). Magnification of the objective lens: 320. Bars represent 50 mm.

(E) HUMARA assays of representative iPSC lines (WT1-iPSC3 and MT1-iPSC2) after 5, 20, and 30 passages and HPCs derived from the iPSC lines. Complementary DNA

Sanger sequencing data of erythroblasts derived from the iPSC lines are shown on the far right.
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after iPSC establishment (passage 5), remained inactivated at pas-
sages 20 and 30. The paternal X chromosome of the MT iPSC
lines also retained the inactivated state after repeated passages.

Notably, X-chromosome inactivation was maintained after hemato-
poietic differentiation and further differentiation into erythroblasts
(Figure 2E).
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Figure 3. Impaired erythropoiesis in MT iPSCs. (A) Colony formation assay on day 14 of hematopoietic differentiation. Each line was tested in 3 independent

experiments. (B) Erythroid and mixed colony counts in panel A. (C) Representative images of erythroid (left) and mixed (right) colonies derived from WT1-iPSC2.

Magnification of the objective lens: 34. Bars represent 200 mm. (D) Erythroid and mixed colony counts in MT HPCs transduced with WT ALAS2. Each line was tested in

3 independent experiments. (E) Percentages of CD431 hematopoietic cells. Each line was tested in 3 independent experiments. (F) Percentages of CD235a1 erythroblasts.

Each line was tested in 3 independent experiments. All data are presented as the mean 6 standard error of the mean. P-values were calculated by using the unpaired,

2-tailed Student t test. ****P , .0001; N.S., not significant.
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Erythroid differentiation is impaired in MT iPSCs

Next, we differentiated XLSA-iPSCs into HPCs by EB formation.
The hematopoietic maturation capacity was assessed by CFU
assays in iPSC-derived HPCs from SA1. No difference was
observed in the total colony count between the 2 types of HPCs
(Figure 3A). Although erythroid and mixed colonies were observed
in the CFU assay of WT iPSC lines, no erythroid colonies and only
a few mixed colonies were observed in the MT iPSC lines (Figure
3B-C). Lentiviral transduction of WT ALAS2 improved erythroid col-
ony formation in MT HPCs (Figure 3D; supplemental Figure 4A).
We further investigated the erythroid differentiation defects in MT
iPSC lines using a feeder-free erythroid culture system. Hematopoi-
etic differentiation was comparable between the 2 types of iPSC
lines (Figure 3E). However, further differentiation into CD2351 ery-
throid cells was significantly impaired in the MT iPSC lines com-
pared with that in the WT iPSC lines derived from both SA1 and
SA3 (Figure 3F; supplemental Figure 4B-C). In our feeder-free ery-
throid differentiation method, most MT HPCs died at an early stage
of differentiation (supplemental Figure 4D). As a result, we could
neither identify morphological characteristics, such as ring sidero-
blasts or megaloblastic changes, nor perform a precise gene
expression analysis of the erythroblasts expressing mutant ALAS2.
Therefore, we designed a coculture system with OP9 feeder cells
to successfully recapitulate the morphological features of mutant
ALAS2-expressing erythroblasts. In this system, most MT HPCs sur-
vived for extended periods (supplemental Figure 4E-F). The pellet of
active WT iPSC–derived erythroblasts (WT erythroblasts) was red,
whereas that of active mutant iPSC-derived erythroblasts (MT eryth-
roblasts) was white (Figure 4A). Iron staining revealed ring sidero-
blasts in MT erythroblasts, but not in WT erythroblasts (Figure 4A).
May Grunwald-Giemsa staining showed that most WT erythroblasts
were mature, whereas most MT erythroblasts exhibited immature
morphological phenotypes. In addition, dysplastic changes, such as
nuclear budding and karyorrhexis, were observed in MT erythro-
blasts, similar to the primary erythroblasts of the patient (Figure 4B).
Although most of the WT erythroblasts were orthochromatic, most
of the MT erythroblasts were polychromatic erythroblasts and mega-
loblasts (Figure 4C). In addition, although the o-dianisidine staining
of WT erythroblasts was normal, MT erythroblasts were only slightly
stained (Figure 4D), suggesting that heme synthesis was highly
impaired in MT erythroblasts. Furthermore, qRT-PCR analysis with
the primers shown in supplemental Table 2 demonstrated that
HBB, HBG, HO-1, and ALAS2 expression in MT erythroblasts was
significantly decreased (Figure 4E; supplemental Figure 4G). By
contrast, the expression of these genes in WT erythroblasts was
comparable to that in the control erythroblasts.

ALA improves erythroid differentiation capacity

We next explored the potential application of our iPSC-based dis-
ease model for drug testing. Heme synthesis starts with the poly-
merization of succinyl-CoA and glycine, followed by the synthesis of
ALA in the mitochondria. ALAS2 encodes an enzyme that catalyzes
the first step in the heme synthetic pathway. Thus, the administration
of ALA to MT HPCs is expected to improve the capacity for heme
synthesis. Indeed, we observed a marked increase in the erythroid
differentiation of MT iPSCs after the administration of ALA from the
beginning of erythroid differentiation (supplemental Figure 5A-C). In
addition, the pellet of these erythroid cells was red, supporting the
conclusion that ALA restored heme biosynthesis (supplemental Fig-
ure 5D). Moreover, qRT-PCR analysis demonstrated that ALA
administration restored the expression of HBB, HBG, and HO1
(Figure 4F). These results support the use of our iPSC model for
drug testing.

Expression of erythroid maturation-related genes is

impaired in MT erythroblasts

To compare the transcriptional expression patterns during erythroid
differentiation in WT and MT cells, we performed RNA-seq of the
iPSC, CD341 cells on day 8; CD431CD341CD382Lin2 cells on
day 15; and CD235a1 erythroblasts on day 34 in the 3 WT and 4
MT iPSC lines (Figure 5A). No differences were observed between
the WT and MT cells at the stages of iPSCs, CD341 cells, and
CD431CD341382Lin2 cells. However, erythroblasts were divided
into 2 clusters according to hierarchical clustering (Figure 5B). A
principal component analysis of differentiated erythroblasts from the
7 iPSC lines and bone marrow erythroblasts from a healthy donor
and SA3 revealed that iPSC-derived erythroblasts had cluster pat-
terns similar to corresponding primary bone marrow erythroblasts.
MT erythroblasts, and SA3 bone marrow erythroblasts were located
on the positive side of PC2, whereas WT erythroblasts and healthy
donor bone marrow erythroblasts were located on the negative side
(Figure 5C). To verify this observation, the cells were assessed by
using Gene Ontology (GO) analysis of the RNA-seq data. The upre-
gulated genes in WT cells showed enrichment for mature
erythroblast-related GO terms including Ras GTPase binding, r

GTPase binding, and actin binding, and iron-transporter–regulated
GO terms, such as transition metal ion transmembrane transporter
activity (Figure 5D). This analysis indicated that WT erythroblasts dif-
ferentiated into more mature stages than MT erythroblasts, despite
the use of the same differentiation method. We also determined the
enrichment of gene expression in WT erythroblasts and MT erythro-
blasts using gene set enrichment analysis for a set of genes differ-
entially expressed during erythroid differentiation. The heme

Figure 4. Maturation defects of erythroblasts derived from MT iPSCs. (A) The pellets (left) and iron staining (right) of erythroblasts derived from WT1-iPSC2 and

MT1-iPSC3. The arrow indicates a ring sideroblast. CD235a1 cells were sorted on day 34 by FACS. Magnification of the objective lens: 3100. Bars represent 10 mm.

(B) May Grunwald-Giemsa staining of erythroblasts derived from WT1-iPSC2 (top) and MT1-iPSC4 (bottom). CD235a1 cells were sorted on day 34 by FACS. Magnification

of the objective lens: 3100. Bars represent 25 mm. (C) Percentages of polychromatic megaloblasts (Poly-M), polychromatic erythroblasts (Poly-E), and orthochromatic

erythroblasts (Ortho-E) from 3 WT and 4 MT iPSC lines. (D) The pellets (top) and photomicrographs (bottom) of o-dianisidine–stained erythroblasts derived from

WT1-iPSC3 and MT1-iPSC3 (bottom). CD235a1 cells were sorted on day 34 by FACS. Magnification of the objective lens: 310. Bars represent, 200 mm. (E) The

expression levels of HBB, HBG, and HO1 genes in erythroblasts derived from 1 control iPSC line, 3 WT iPSC lines, and 4 MT iPSC lines. Each line was tested in 3

independent experiments. Expression levels were normalized to the level of GAPDH. (F) The expression levels of HBB, HBG, and HO1 genes in WT1-iPSC1– and

MT1–iPSC2-derived erythroblasts treated with DMSO or ALA relative to the expression levels of nontreated erythroblasts derived from a control iPSC line. Each line was

tested in 3 independent experiments. Expression levels were normalized to the level of GAPDH. All data are presented as the mean 6 standard error of the mean. P-values

were calculated by using the unpaired, 2-tailed Student t test. **P , .01; ***P , .001; ****P , .0001; N.S., not significant. DMSO, dimethyl sulfoxide.
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metabolism data set was significantly enriched in WT erythroblasts
(Figure 5E; supplemental Table 3). Hierarchical clustering analysis
of iPSC-derived and bone marrow erythroblasts for genes specifi-
cally expressed in early orthochromatic erythroblasts was performed
(Figure 5F).28 The expression of these genes was lower in MT eryth-
roblasts and SA3 bone marrow erythroblasts than that in WT eryth-
roblasts and healthy donor bone marrow erythroblasts. These gene
expression data support the findings of the phenotype experiments,
which indicated that erythroblasts derived from MT iPSCs stopped
at the immature erythroid stage.

AZA treatment ameliorates heme synthesis failure

and erythroid differentiation defects in MT iPSCs

We hypothesized that the pharmacological reactivation of the silent
WT inactive X chromosome in the ALAS2 gene could ameliorate
heme synthesis failure in patients with XLSA. In a previous study, it
was suggested that the administration of a DNA demethylating
agent, decitabine, reactivates the silent LAMP2 gene in iPSCs in
female patients with Danon disease.29 Notably, in that study, other
silent WT X-chromosome genes, including ALAS2, were also deme-
thylated by decitabine. Therefore, we administered decitabine to the
erythroid differentiation culture medium but found no improvement in
the erythroid differentiation capacity of MT HPCs (data not shown).
Next, we administered another DNA demethylating agent, AZA, at
the erythroid differentiation stage (Figure 6A). The administration of
AZA significantly improved the generation of CD235a1 erythro-
blasts in MT HPCs (Figure 6B; supplemental Figure 5E). Moreover,
with o-dianisidine staining, erythroblasts differentiated from MT
HPCs without AZA showed no positivity, whereas a considerable
number of the same cells with AZA were positively stained (Figure
6C). We collected mRNA from AZA-treated and dimethyl sulfoxide
control erythroblasts and performed complementary DNA sequenc-
ing of the ALAS2 gene. AZA reactivated the silent WT ALAS2
allele in MT HPCs and the silent mutant ALAS2 allele in active WT
HPCs, suggesting the demethylation of the ALAS2 gene after AZA
treatment (Figure 6D; supplemental Figure 5F). We also performed
CFU assays with AZA treatment using iPSC-derived HPCs. There
was no difference in the total colony counts between treated and
control cells (Figure 6E). No erythroid colony and few mixed colo-
nies were observed in MT HPCs with dimethyl sulfoxide. In contrast,
erythroid and mixed colony formation was significantly improved by
AZA treatment in MT HPCs, although it did not reach the levels
seen in WT HPCs (Figure 6F-G). These results show that AZA
treatment ameliorates the defective heme synthesis and ineffective
erythropoiesis in MT HPCs.

Discussion

Most female patients with XLSA exhibit a severe anemia phenotype,
as observed in the patients presented in this study.5,30,31 This

pathology is caused by an increase in erythroblasts expressing a
markedly defective mutant ALAS2 enzyme in the bone marrow
because of the skewed inactivation of the X chromosome harboring
the WT ALAS2 gene in hematopoietic stem cells later in life. In
such cases, few mutant erythroblasts in which mutant ALAS2 is
expressed differentiate into reticulocytes and reach circulation.
Therefore, peripheral blood erythrocytes mainly represent descen-
dant cells of the small number of clones with an active WT ALAS2
allele.5,32 Consistent with these reports, both CD341 and
CD235a1 bone marrow cells from SA2 and SA3 showed preferen-
tial inactivation of the X chromosome carrying WT ALAS2. By con-
trast, peripheral blood erythrocytes from SA2 and SA3 were derived
exclusively from a few erythroblasts expressing the WT ALAS2
gene.

WT and MT iPSC lines have been established for several
X-linked diseases in which X-chromosome inactivation is main-
tained after reprogramming.29,33,34 However, it remains unclear
whether the same is true for XLSA. In the present study, we
generated iPSC lines with an active mutant ALAS2 allele and
isogenic iPSC lines with an active WT ALAS2 allele from the
peripheral blood cells of 3 female patients with XLSA. All female
XLSA-iPSC lines were found to have extremely skewed
X-chromosome inactivation patterns and consistently expressed
either the WT or mutant allele, but not both, of the ALAS2 gene
after erythroid differentiation.

Consistent with the severe ineffective erythropoiesis in our patients
with XLSA, MT HPCs were difficult to differentiate into erythroblasts
in our feeder-free condition, because most of them died at an early
stage of the erythroid differentiation. In a previous report, erythro-
blasts derived from XLSA-iPSCs exhibited ring sideroblasts by
coculturing with stromal cells.16 Therefore, we adopted the OP9
coculture method to perform precise morphological and gene
expression analyses of the MT erythroblasts. According to another
report, the coculture of adult CD341 cells with OP9 feeder cells
increases the proliferation ability of erythroid cells by delaying ery-
throid differentiation.35 We therefore speculated that stromal cell
coculture maintains MT erythroblasts in a more immature state than
the feeder-free condition, preventing their death as maturation pro-
ceeds. MT erythroblasts failed to synthesize heme and exhibited
maturation defects with ring sideroblast formation in contrast to WT
erythroblasts (Figure 7). RNA-seq revealed that MT erythroblasts
showed decreased expression of genes associated with erythroid
maturation, which is consistent with the immature morphology of MT
erythroblasts and female patient bone marrow erythroblasts. To the
best of our knowledge, this is the first report to demonstrate the
defective erythroid differentiation of ALAS2-affected HPCs from
female patients with XLSA with a heterozygous ALAS2 missense
mutation. A previous report of ALAS2-knockout murine embryonic
stem cells showed that ALAS2 deficiency does not interfere with

Figure 5. Gene expression in erythroblasts derived from WT and MT iPSCs. (A) Schema of the protocol for the erythroid differentiation from iPSCs and sample

collection time points. Images of HPCs and OP9 cells were created using BioRender.com. (B) A heat map of the sample-to-sample distance and hierarchical clustering of

iPSCs, CD341 cells, CD431CD341CD382Lin2 cells, and erythroblasts derived from 3 WT and 4 MT iPSC lines with RNA-seq. (C) Principal component analysis of

erythroblasts derived from the 3 WT and 4 MT iPSC lines and bone marrow erythroblasts from a healthy donor and SA3. (D) Two GO analyses showing molecular function

terms enriched for WT erythroblasts (top) and MT erythroblasts (bottom). Differentially expressed genes between WT erythroblasts and MT erythroblasts were used.

(jfold changej .2; adjusted P , .05). (E) Gene set enrichment analysis of the heme metabolism data set showed an enrichment of WT erythroblasts. (F) A heat map of 13

genes characteristically expressed at the orthochromatic stage in the erythroblasts described in panel C. For WT1-erythroblasts and MT1-erythroblasts, the heat map shows

the average expression levels of the 3 and 4 lines, respectively.
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Figure 6. Amelioration of heme synthesis failure and maturation defects of MT erythroblasts with AZA treatment. (A) Schema of a protocol for erythroid

differentiation with AZA administration. The image of sorted HPCs was created using BioRender.com. (B) Percentages of CD235a1 erythroblasts treated with DMSO or

AZA. The generation of CD235a1 erythroblasts in MT HPCs was significantly improved after the administration of AZA, whereas the generation of CD235a1 erythroblasts in

WT HPCs was unchanged. Each line was tested in 3 independent experiments. (C) The pellets of unstained (top left) and o-dianisidine–stained (top right) erythroblasts

derived from MT1-iPSC2 treated with DMSO or AZA. o-Dianisidine–stained images of erythroblasts derived from WT1-iPSC1 (left) and MT1-iPSC2 (right) treated with
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the maturation of definitive erythroid cells.15 One explanation for this
phenomenon could be the differences in mice and human patients
with XLSA. In a previous study, iPSCs derived from male patients
with XLSA differentiated into orthochromatic erythroblasts, and the
erythroid maturation defect was not observed.16 Another study
showed that human iPSC-derived erythroid progenitor cells and
XLSA bone marrow cells lacking the ALAS2 enhancer region had
increased expression levels of antiapoptosis genes.18 However, our
MT erythroblasts stopped at the early stage of erythroid differentia-
tion and did not show the same expression profiles in RNA-seq
(data not shown). Although the reason for the observed discrepan-
cies is unclear, it may be because of the degree of ALAS2 func-
tional loss between our model and the previous models.
Alternatively, sex differences could be a factor. Overall, our iPSC
model may be a useful tool for understanding the roles of ALAS2
and heme synthesis in maintaining the erythroid cell transcriptome
and morphology associated with XLSA.

The responsiveness of patients with XLSA to pyridoxine supple-
mentation varies considerably according to the nature and posi-
tion of the amino acid substitution in ALAS2.11 In our model, the

supplementation of pharmacologic levels of pyridoxal hydrochlo-
ride or pyridoxine hydrochloride did not improve the erythroid
differentiation capacity of MT HPCs, coinciding with the unre-
sponsiveness to pyridoxine in this patient (data not shown). This
finding suggests that our iPSC-based platform is useful for pre-
cisely assessing pyridoxine sensitivity in patients with XLSA with
various ALAS2 mutations.

Previous reports have shown that ALA restores heme synthesis by
human iPSC-derived erythroid progenitor cells and K562 cells.36

Using our iPSC platform, we demonstrated that ALA not only
restores heme synthesis but also ameliorates the erythroid differenti-
ation efficiency of MT iPSC lines in vitro. However, the oral adminis-
tration of ALA did not improve anemia in our patients, consistent
with a reported case.12 This may be because the concentration of
ALA in the bone marrow was not sufficient to improve the patho-
physiology of MT cells. Drugs that increase the cellular uptake of
ALA, especially in early erythroid cells, may improve the drug effi-
cacy. In addition, a dose-escalation clinical study may be useful in
assessing the safety and efficacy of ALA in pyridoxine-resistant
patients with XLSA.

Figure 6 (continued) DMSO or AZA. CD235a1 cells were sorted on day 34 using FACS. Magnification of the objective lens: 320. Bars represent 100 mm.

(D) Representative Sanger sequencing data of ALAS2 complementary DNA from erythroblasts derived from WT iPSC (WT1-iPSC1) and MT iPSC (MT1-iPSC2) lines

treated with DMSO or AZA. (E) Colony formation assay on day 15 of hematopoietic differentiation in WT1-iPSC1– and MT1-iPSC2–derived HPCs treated with DMSO

or AZA. Each line was tested in 3 independent experiments. AZA 100, 100 nM AZA; AZA 500, 500 nM AZA. (F) Erythroid and mixed colony counts in panel E. (G) A

representative image of mixed colonies derived from MT1-iPSC2 with AZA. Magnification of the objective lens: 34. Bars represent 200 mm. All data are presented as the

mean 6 standard error of the mean. P-values were calculated using 1-way analysis of variance with Tukey’s correction and an unpaired, 2-tailed Student t test. *P , .05;

**P , .01; N.S., not significant. DMSO, dimethyl sulfoxide.
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Figure 7. Schematic representation of our results. We established 2 types of iPSC lines derived from individual female patients with XLSA harboring the ALAS2-

R227C mutation. WT iPSCs showed mature erythroid differentiation, and MT iPSCs stopped at the immature erythroblast stage, recapitulating the pathogenesis of XLSA.

AZA administration reactivated the silent WT ALAS2 allele in MT HPCs and ameliorated erythroid differentiation defects. The figure was created using BioRender.com.
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Last, we focused on the unusual disease mechanism of XLSA in
females, which is caused by the acquired skewing of X-chromosome
inactivation in hematopoietic stem cells. We speculated that the res-
toration of the expression of WT ALAS2 in a considerable number
of affected erythroblasts could ameliorate disease phenotypes in
female patients with XLSA. This study provides the first proof of con-
cept that the silent WT ALAS2 allele in female subjects could be
partially reactivated by the DNA demethylating agent AZA, which
serves as a potential novel therapeutic approach for the treatment of
refractory anemia in female patients with XLSA (Figure 7). Although
the demethylating effect of AZA is global and off-target side effects
may occur in both hematopoietic and nonhematopoietic tissues,
AZA is currently being used in clinical practice to treat hematologi-
cal malignancies and has shown acceptable adverse effects. How-
ever, the efficacy of AZA in our XLSA model is limited, and further
studies using DNA demethylating agents are needed for future
therapeutic use.

In summary, this study provides novel biological and therapeutic
insights into XLSA. Using a patient-specific iPSC platform, we
showed that a severe loss-of-function ALAS2 mutation could cause
maturation defects in erythroid cells that resemble the phenotype of
female XLSA. Furthermore, we revealed that the demethylating agent
AZA ameliorates the disease phenotype of female XLSA by reactivat-
ing the silenced WT ALAS2 allele. Considering the acceptable toxic-
ity in some patients with cancer, DNA demethylating agents may
promise new therapeutic candidates for female patients with XLSA.
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