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Abstract

The purpose of this paper is to propose an optimization method for shape design of Auxetic

Bending-Active Gridshells (ABAGs). A 2-dimensional auxetic structure has negative Poisson’s

ratio for in-plane deformation. Positive Gaussian curvature distributed on a curved surface of

ABAG is obtained by out-of-plane deformation of the initial flat grid composed of reentrant

structural units. We introduce discrete differential geometry into shape design of the surface of

ABAG, which can be easily discretized into triangular meshes in accordance with the discrete

member locations. The objective function of the proposed optimization problem is formulated

using discrete Gaussian curvature, which is defined as the angle defect at node. In addition,

discrete mean curvature vector is used for specifying the direction of convexity. We use particle

swarm optimization for solving the problem. It is shown in the numerical examples, that

surfaces with specified distribution of convex region on an ABAG can be obtained using the

proposed method.

Keywords: Auxetic structure, Bending-active gridshell, Discrete differential geometry,

Particle swarm optimization
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1 Introduction

Conventional structures in nature are composed of materials with positive Poisson’s ratio.

When they are compressed or stretched in a uniaxial direction, they expand or shrink, re-

spectively, in the transverse direction. By contrast, the structures with negative Poisson’s

ratio, which are called auxetic structures, are generated by metamaterial design techniques,

which artificially design materials with desirable mechanical properties [1]. An auxetic struc-

ture expands and shrinks, respectively, when it is stretched and compressed in the transverse

direction [2]. Shapes of structural units of auxetic structures are generally repetitive and

reentrant. Under large-deformation, each unit with negative Poisson’s ratio has an effect on

the deformation of the entire structure. Therefore, a design of geometry of each pattern of an

auxetic structure can realize its specific property of the deformed shape.

Liu and Hu [3] stated that the purposes of designing the mechanical properties of 2-

and 3-dimensional auxetic structures are i) to generate a curved surface mainly distributed

by positive Gaussian curvature when subjected to out-of-plane bending, ii) to improve the

resistance against shear deformation [4], iii) to improve the indentation resistance at points

where concentrated loads are applied [5,6], iv) to have a high quantity of energy absorption

and damping [7]. Auxetic structures can be applied to produce devices in a wide range of

scales from microscale material to sports appliance, since the desired mechanical properties by

engineers can be realized by tuning shapes of the structural units without changing the types of

materials [8,9]. There are many researches on the mechanical properties of auxetic structures

[10]. In particular, optimization is a useful tool for design of auxetic structures, since we cannot

design them intuitively to realize the desired properties. Topology optimization method for

continuum models based on homogenization has been used for design of microscale auxetic

structures [11-13]. However, it generally causes grey-scale problems. Kureta and Kanno [14]

proposed a method to solve the topology optimization problem for design of a 2-dimensional

auxetic structure by using mixed-integer linear programming. They use beam elements and

obtain the optimized solutions using the ground structure method.

Most researches on auxetic structures are related to the design or investigation of me-

chanical properties of a 2-dimensional model, or the evaluation of loading capacity or energy

absorption of a 3-dimensional model. In recent years, there have been several researches of
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form-finding tool taking advantage of the mechanical properties of auxetic structures. Ou et

al. [15] proposed a new auxetic-inspired material tool ‘KinetiX’, which is one of the linkage

mechanisms. Konaković et al. [16] showed a method for designing the desired shapes of a

curved surface composed of a triangular linkage, which is an auxetic structure composed of

triangular plates and rotational hinges. Based on Ref. [17], Chen et al. [18] proposed an

inverse design approach for generating a curved surface composed of bistable triangular link-

ages with auxetic properties. However, there are still few researches on form-finding of auxetic

structures in the scale of architectural roof. Furthermore, investigation is needed for practical

application of a bending-active curved surface composed of an auxetic structural units.

Auxetic structures generally consist of flexible members such as beams and plates for

obtaining their specific deformation properties. Among several types of deformable struc-

tures, elastic gridshell is one of the bending-active structures, which is generated by elasti-

cally bending an initial flat grid composed of flexible beams [19-21]. In this paper, Auxetic

Bending-Active Gridshell (ABAG) represents a bending-active gridshell whose initial flat grid

is designed as a 2-dimensional auxetic structure.

Traditionally, to construct a dome-like shape with positive Gaussian curvature, masonry

or latticed shell, which is composed of short members, or continuous shell requiring many

formworks has been applied [22]. By replacing these construction methods with ABAG, con-

struction time and cost can be reduced. In addition, ABAG can be environmentally-friendly

because formworks are not needed and small number of parts are used. Furthermore, it is easy

to add an energy dissipation mechanism utilizing the elastic deformation of its porous shape.

Mechanical properties of ABAGs were investigated to obtain a variety of shapes of curved

surfaces through the particle-spring method and finite element method [23-25]. It is also noted

that in Refs. [23-25] an initial flat grid of ABAGs can be generated by additive manufacturing

technique, i.e. 3D printing. Therefore, the connections between members are designed as

rigid joints, which can reduce the number of structural components and the noise during

deformation as compliant mechanism [26]. Designing honeycomb patterns of an initial flat

grid of ABAGs by gradually increasing their values of Poisson’s ratio from negative to positive

is useful to obtain the desired distribution of Gaussian curvature on an ABAG [27]. By using

Schwarz-Christoffel mapping, a shape of the boundary of an initial flat grid is converted from a

rectangle canonical domain to physical one for generating a curved surface, which is close to the
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upper-half torus. In addition, they also generate a curved surface similar to Downland gridshell

[28] by ABAG composed of non-uniform honeycombs whose Poisson’s ratios are tuned. Sakai

and Ohsaki [29] carried out parametric study for designing ABAG with an initial flat grid

with non-periodic and/or hybrid of two different reentrant patterns. Although the proposed

method by Ref. [29] is a simple technique, it is useful to obtain a more complex free-form

surface of an ABAG than the one composed of a uniform auxetic pattern.

A specific property of ABAG is to generate a distribution of positive Gaussian curvature,

which is a geometrical invariant that can be used for designing a surface. When the absolute

values of Gaussian curvature on a curved surface are too large, we obtain an unfavorable

surface in view of structural or aesthetic properties. Fujita and Ohsaki [30] proposed an

optimization method for designing spatial structures using geometrical invariants of a surface,

which is modeled parametrically as a Bézier surface. However, it is difficult to obtain the

shapes desired by designers, since a parametric surface can generate a limited class of surface

shapes. Furthermore, computation of the higher-order differential coefficients with respect to

the parameter is very complicated.

Higher-order differentiation of geometrical properties can be avoided using the techniques

of discrete differential geometry. There are several methods for computation of discrete Gaus-

sian curvature [31,32], among which the simplest one is the angle defect at node on a polyhedral

surface [33]. Discrete Gaussian curvature measures the quantity of the convexity and concavity

on a polyhedral surface. Similarly, discrete mean curvature vector [34] at node on a polyhe-

dral surface is defined as the normal vector to the surface, whose norm is the discrete mean

curvature. Therefore, discrete mean curvature vector is effective for identifying a direction of

convexity at each node on a surface.

Purpose of this paper is to propose an optimization method for design of the distribution

of discrete Gaussian curvature computed at each node on curved surface of an ABAG. An

optimization problem for designing a curved surface obtained by large-deformation analysis

can usually be formulated with highly complex functions due to geometrical nonlinearity

of ABAGs. Metaheuristic algorithms can be useful tools for solving nonlinear optimization

problems [35-37]. Furthermore, a sufficient number of software libraries are available for basic

algorithms including Genetic Algorithm (GA) [38], Particle Swarm Optimization (PSO) [39],

Simulated Annealing (SA) [40], and so on.
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The remainder of this paper is organized as follows. The design method of an initial flat

grid of ABAGs is proposed in Section 2. In addition, we show the effect of Poisson’s ratio on

the in-plane deformation of an initial flat grid and the shapes of curved surfaces generated by

large-deformation analysis. In Section 3, we introduce the method of discretization of ABAGs

and formulate discrete Gaussian curvature and discrete mean curvature vector [29]. In Section

4, an optimization problem is formulated for designing specified distribution of convex region

on an ABAG. Finally, several numerical examples are carried out in Section 5.

2 Auxetic Bending-Active Gridshells

2.1 Design of an initial flat grid of ABAG

Structures with negative Poisson’s ratio for in-plane deformation are generated by arranging

periodic reentrant units which fill a plane [41]. Reentrant honeycomb [42] and reentrant

triangle [11] are the two well-known units of auxetic structures [10]. As shown in Fig. 1,

these reentrant units are composed of two types of members: the chevron rod consisting of

multiple linear elements connected in x-direction (piecewise linear blue line) and the tie rod in

y-direction (red line). The members of reentrant units are often modeled using shell elements

for large-deformation analysis [23-25,27]. However, we use beam elements for modeling the

members in this paper, because the use of the beam elements can reduce the computational cost

for carrying out geometrically nonlinear analysis many times for optimization. It is confirmed

in Sec. 2.2 that the mechanical properties of the surfaces of ABAGs can be evaluated accurately

by using the beam elements.

Consider an ABAG with m chevron rods. Let θi (i = 1, . . . ,m), w, and d represent the

angle between x-axis and the left-end element of the ith chevron rod, and the sizes of each

reentrant unit in x- and y-directions, respectively, as shown in Fig. 1. Elastic deformation of

each tie rod is smaller than that of a chevron rod during the deformation process. Bending

and twisting of chevron rods have an effect on the deformed shape of an ABAG. The positive

directions of θi of reentrant honeycombs are anti-clockwise and clockwise for odd and even

i, respectively. For reentrant triangles, the positive direction of θi is anti-clockwise for all

chevron rods. The following geometrical constraints are given for the two reentrant units:
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Reentrant honeycombs: d− 1
2
w (tan θi + tan θi+1) > 0,

Reentrant triangles: d− 1
2
w |tan θi − tan θi+1| > 0.

If the left-hand side of each of the above constraint is not positive, the ith and (i+1)th chevron

rods have contact or intersection with each other.

θ  (>0) i

dw

x

y

chevron rod tie rod

θ    (>0)i+1
(w/2)tanθi+1

(w/2)tanθi

(a)

θ  (> 0)i

d

w

θ     (> 0)i+1

tie rod

chevron rod

y

x (w/2)tanθi

(w/2)tanθi+1

(b)

Figure 1: Reentrant units composed of the chevron rods (blue line) and the tie rods (red line)

for realizing auxetic behaviors; (a) reentrant honeycomb, (b) reentrant triangle.

2.2 Poisson’s ratio for in-plane deformation and Gaussian curva-

ture on a curved surface

It is well-known that the sign of Gaussian curvature on a curved surface generated from an

initial flat grid by out-of-plane deformation is dependent on the sign of Poisson’s ratio for in-

plane deformation of the reentrant unit [23-25,27,43,44]. Evans [44] formulated the relationship

between Poisson’s ratio and Gaussian curvature on a 2-dimensional auxetic structure based

on plate theories. In this section, we verify the relationship by carrying out large-deformation

analysis.

Figures 2(a), (b), and (c) show the in-plane (upper three figures) and out-of-plane (lower

three figures) deformations from three different initial flat grids with uniform hexagonal units,

which have positive, almost 0, and negative values of Poisson’s ratio, respectively. The size of
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Figure 2: Comparison of relationships between Poisson’s ratio ν and Gaussian curvature. Plan

view of deformed shapes (blue) and the initial flat grid (black) for 2-dimensional case in the

upper figure. Deformed shapes from an initial flat grid for 3-dimensional case in the lower

figure with contour of z-directional displacement. (a) ν > 0, (b) ν ≃ 0, (c) ν < 0.

each unit is w = d = 0.75 m. The width and height of cross-section of all members are 0.01 m

and 0.10 m, respectively. We set θi = −π/6 and θi = π/6 for ν > 0 and ν < 0, respectively.

For ν ≃ 0, if i is an odd number, then θi = π/6 is assigned; otherwise, θi = −π/6. The

connections between the tie rods and the 1st and mth chevron rods are supported with roller

that can move in y-direction, as illustrated in Fig. 2. Forced displacements of 0.30 m are given

at all supports in y-direction. The arrows indicate the directions of the forced displacements.

For the 2-dimensional deformation, blue and black lines represent the deformed shape and

the initial flat grid, respectively. To generate a curved surface, we apply the virtual upward

load equal to the self-weight to all members before assigning forced displacements so that

an unfavorable buckling is avoided. The vertical load is removed after the forced horizontal

displacement is completed. Details of the process of large-deformation analysis is explained in

Sec. 5.

Figure 2(a) shows the results of a regular honeycomb with positive Poisson’s ratio. In-
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plane deformation shows that the flat grid under uniaxial compression leads to expansion in

the transverse direction. A shape of a curved surface composed of regular units is a saddle

shape, which has negative Gaussian curvature. Figure 2(b) shows the results of an initial flat

grid composed of the honeycomb unit whose Poisson’s ratio is almost 0. It slightly deforms in

x-direction under compression in y-direction for in-plane deformation. The obtained surface

when subjected to 3-dimensional deformation is close to a developable surface, which has

almost 0 Gaussian curvature. Figure 2(c) is an example of ABAG whose initial flat grid

is composed of reentrant honeycombs. It shrinks in x-direction under in-plane compression

in y-direction. ABAG generates a dome-like shape with positive Gaussian curvature when

subjected to out-of-plane deformation.

3 Discrete Gaussian curvature and discrete mean cur-

vature vector

Since the ABAG is modelled as a discrete frame structure, it is effective to evaluate the

amount of convexity and concavity of the curved surface of ABAG as the discrete quantity

without resort to a continuous parametric model of the surface. In this section, we introduce

the discrete Gaussian curvature and the discrete mean curvature vector based on the discrete

differential geometry [31,33], and incorporate the discrete curvatures into the optimization

problem for design of ABAG.

3.1 Discretization of a curved surface of ABAG

Discrete curvature is defined for computing the curvature at node on a polyhedral surface

[31,33]. Triangles based on nodal positions of discrete members of ABAG are needed for

computing the discrete curvatures. In this paper, we simplify the method proposed by Ref.

[29] for creating triangles on a reentrant pattern. Figure 3 shows quadrangular cones on each

node composed of four triangles. Circle marks represent the nodes on the connections. The

grey areas represent quadrangular cones, which are generated for all nodes except those on

the boundaries.
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Figure 3: Quadrangular meshes composed of four triangles at each node on a curved surface

of ABAG; (a) reentrant honeycomb, (b) reentrant triangle.

3.2 Discrete Gaussian curvature

Discrete Gaussian curvature is defined for computing the amount of convexity and concavity

on a polyhedral surface. The correspondence between the Gaussian curvature on a continuous

surface and the discrete Gaussian curvature is guaranteed by Gauss-Bonnet theory [33] related

to the total curvature and topology of a surface. Figure 4 shows the quadrangular cone

composed of the nodes p and qv (v = 1, . . . , 4). Let ev denote the vector which directs from p

to qv. The grey area in Fig. 4 represents a Voronoi region produced by connecting the center

of circumcircles of four surrounding triangles. Sum of the outer angles on four vertices of a

Voronoi region is equal to the sum of the internal angles of four triangles at node p. Therefore,

discrete Gaussian curvature is formulated as angle defect from a flat shape as follows [31,33]:

Kp = 2π −
4∑

v=1

ϕv

= 2π −
4∑

v=1

cos−1

(
ev · ev+1

|ev| · |ev+1|

)
. (1)

The sign of discrete Gaussian curvature at p of a quadrangular cone classifies the geomet-
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ϕv

Figure 4: Quadrangular cone at node p, which is composed of four triangles corresponding to

nodes qv (v = 1, . . . , 4), and Voronoi region (grey) for computing angle defect.

p
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q4

(a)

q1

q2
q3

q4

p

(b)

q1

q2

q3

q4

p

(c)

Figure 5: Shapes of quadrangular cones classified by sign of discrete Gaussian curvature; (a)

Kp > 0, (b) Kp = 0, (c) Kp < 0.

rical relationship between p and qv, as illustrated in Fig. 5. We obtain a cone and a saddle,

respectively, for Kp > 0 and Kp < 0. A flat plane, a cylinder, or a cone is generated if Kp = 0.

3.3 Discrete mean curvature vector

Discrete mean curvature vector is defined as the vector in the opposite direction to the gradient

of an area of four triangles. The discrete mean curvature vector Hp at node p is computed by
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Figure 6: Vectors and angles used for cotangent formula.

the following equation proposed by Sullivan [33]:

Hp =
1

2

4∑
v=1

(cotαv1 + cotαv2) (p− qv) (2)

Equation (2) is called cotangent formula, which is well-known in the field of discrete differential

geometry [31,34]. Weight factor (cotαv1+cotαv2)/2 is derived from the following geometrical

relationship [32]:
|e∗

v1|+ |e∗
v2|

|ev|
=

1

2
(cotαv1 + cotαv2) . (3)

Vectors e∗
v1 and e∗

v2 perpendicular to vector ev connect the midpoints of the edge connecting

nodes p and qv and the centers of circumcircles of triangles T1 and T2, respectively, as shown

in Fig. 6. Figures 7 (a), (b), and (c) show the directions of discrete mean curvature vectors

Hp = (Hx
p , H

y
p , H

z
p )

T at node p. We obtain an upward direction and a downward direction

of convexity at node p, respectively, for Hz
p > 0 and Hz

p < 0, when Kp > 0. The vector Hp

vanishes if the mean curvature is equal to 0.
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Figure 7: Directions of discrete mean curvature vectors; (a) upward direction, (b) zero mean

curvature, (c) downward direction.

4 Optimization for design of distribution of discrete Gaus-

sian curvature of ABAG

4.1 Cross-sectional heights of chevron rods

Saxena et al. [10] demonstrated that the value of Poisson’s ratio for in-plane deformation of

reentrant honeycomb is determined by the cross-sectional height and width of each member.

On the other hand, according to Naboni et al. [23-25], distribution of the discrete Gaussian

curvature on ABAG depends on the cross-sectional height of each member, as mentioned in

Sec. 2.1. Therefore, the cross-sectional heights of reentrant units are tuned to obtain variable

distributions of discrete Gaussian curvature of a curved surface of ABAG. Here, we set the

cross-sectional height of tie rod as a constant value and those of chevron rods as variables,

which are formulated by cubic Bernstein polynomials. Therefore, all cross-sectional heights of

chevron rods are smoothly changed and can reduce the number of design variables by using

Bernstein coefficients as design variables.

By using Bernstein coefficients βl (l = 0, . . . , 3) and parameter u (0 ≤ u ≤ 1), a cubic

Bernstein polynomial is formulated as

B (u) = β0 (1− u)3 + 3β1 (1− u)2 u+ 3β2 (1− u)u2 + β3u
3. (4)
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When an ABAG is composed of m chevron rods, tik represents the cross-sectional height

of element k of the ith chevron rod (i = 1, . . . ,m; k = 1, . . . , ni), where ni is the number

of elements of the ith chevron rod. Let βli (l = 0, . . . , 3) denote the Bernstein coefficients

corresponding to the ith chevron rod. Parameter u is discretized to uk = (k − 1)/(ni − 1) in

terms of the element number k. We consider a symmetric structure and assume ni is an even

number. The Bernstein coefficients also satisfy β3i = β0i and β2i = β1i so that the distribution

of cross-sectional height is symmetric. Therefore, the cross-sectional height tik is written as

tik = β0i

[
(1− uk)

3 + uk
3
]
+ 3β1i

[
(1− uk)

2 uk + (1− uk)uk
2
]
, uk =

k − 1

ni − 1
. (5)

4.2 Optimization for distribution of ratio of discrete Gaussian cur-

vature

The purpose of this study is to present a method for obtaining the shape of ABAG that

has the specific regions where the values of discrete Gaussian curvature at target nodes are

increased. In this section, we formulate the optimization problem for maximizing the objective

function F , which is the minimum value of discrete Gaussian curvatures Kj at each target

node j (j = 1, . . . , N). By solving the problem, we can obtain the optimized surface of ABAG,

which has a distribution of partly maximized discrete Gaussian curvature. A condition for

non-negative value of the z-component of discrete mean curvature vector Hj = (Hx
j , H

y
j , H

z
j )

T

is given at the target node j. This constraint enables us to obtain the curved surface that is

upward convex at all target nodes.

The design variables are θ = {θ1, . . . , θm}, β0 = {β01, . . . , β0m}, and β1 = {β11, . . . , β1m}.

Note that it is difficult to formulate the relationship between Kj and the design variables in an

explicit form. By carrying out large-deformation analysis, we compare distributions of discrete

Gaussian curvature on curved surfaces obtained with different values of three design variables

θi, β0i, and β1i. Boundary conditions and forced displacements are set as explained in Sec.

5. Table 1 shows the values of θi, β0i, and β1i for Cases 1–4. Cases 1 and 2 have different

arrangements of θi and the same values of β0i and β1i. On the other hand, Cases 3 and 4

have the same values of θi and different β0i and β1i. Figure 8 shows distributions of discrete

Gaussian curvature and deformed surfaces of Cases 1–4 composed of reentrant honeycomb. It

is clearly observed from the figure that the values of θi, β0i, and β1i have an effect on a shape
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Table 1: Values of variables θi, β0i, and β1i for Cases 1–4.

Parameters Case 1 Case 2 Case 3 Case 4

θ8 and θ9 0 2π/9 π/6 π/6

θi(i ̸= 8 or 9) 2π/9 0 π/6 π/6

β0i (i = 1, . . . , 16) 0.10 0.10 0.01 0.30

β1i (i = 1, . . . , 16) 0.10 0.10 0.30 0.01

of the curved surface.

The optimization problem is formulated as follows:

max. F = min
1≤j≤N

Kj (θ,β0,β1) (6a)

subject to Hz
j (θ,β0,β1) ≥ 0, (j = 1, . . . , N) (6b)

θL ≤ θ ≤ θU, βL
0 ≤ β0 ≤ βU

0 , βL
1 ≤ β1 ≤ βU

1 (6c)

where the upper scripts U and L indicate the upper and lower bounds of the variables, respec-

tively. The objective function F is a highly nonlinear function of design variables. Therefore,

we use PSO, which is a metaheuristic method, for solving the optimization problem with-

out carrying out the sensitivity analysis [39]. The concept of PSO is that a large number of

particles, i.e., initial solutions are generated randomly and they find the best location in the

feasible region based on their local and global information.

5 Numerical examples

We carry out six numerical examples for designing a curved surface of ABAG for specified

distribution of convex region. The models of Types RH and RT are composed of reentrant

honeycombs and reentrant triangles, respectively.

Cross-sections of chevron rods have rectangular shapes. The cross-sectional height and

width of tie rods are 0.10 m and 0.01 m, respectively. On the other hand, the cross-sectional

heights are designed by Eq. (5), while their widths are fixed at 0.01 m. The lower bounds

of parameters for cross-sectional heights of chevron rods are set as βL
0 = βL

1 = 0.01 m, which

means that the lower bounds on cross-sectional height of chevron rod are 0.01 m. The upper
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Figure 8: Distributions of discrete Gaussian curvature and shapes of curved surfaces with

different values of θi, β0i, and β1i; (a) Case 1, (b) Case 2, (c) Case 3, (d) Case 4.
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Table 2: Parameters for optimization of geometry and cross-section of ABAG surface.

Type w (m) d (m) θL θU βL
0 βU

0 βL
1 βU

1

RH 0.75 0.75 0 2π/9 0.01 0.30 0.01 0.30

RT 0.60 0.30
√
3 0 5π/18 0.01 0.30 0.01 0.30

bounds are βU
0 = βU

1 = 0.30. Table 2 shows parameters for optimization of geometry and cross-

section of ABAG surface. Here, design variables θ are chosen as positive so that the structure

has a negative Poisson’s ratio. The upper bound of θ is assigned by the geometrical constraint

explained in Sec. 2.1. The details of the algorithm of PSO are explained in Appendix. The

parameters of PSO are set as ω = 0.75, c1 = 0.75, and c2 = 0.5. The number of particles and

the maximum number of iterations are 100 and 30, respectively. Effect of parameter values

on the optimal objective function value is investigated in Appendix.

For large-deformation analysis, we carry out a quasistatic incremental path-following analy-

sis. The loading parameter τ is linearly increased with the maximum time increment 5.0×10−2

and is divided into two phases. In the period 0.0 ≤ τ ≤ 1.0, we apply the upward artificial load

equal to self-weight to all members to avoid numerical difficulties due to bifurcation buckling

at the initial state. In the latter period from 1.0 to 2.0, forced displacements are given at the

boundary of the surface deformed by initial artificial loads, while applying the downward load

equal to self-weight to all members. This deformation process enables us to obtain a curved

surface of ABAG [21]. In the following examples, we use pyswarm 0.6 [45], which is a Python

library of PSO for optimization, and Abaqus Ver. 2018 [46] for large deformation analysis.

5.1 Examples of Type RH

The initial flat grid of Type RH is composed of 173 reentrant honeycombs withm = 16 chevron

rods each of which has ni = 24 elements, as illustrated in Fig. 9 (a). The outer connections

of the 1st and mth chevron rods are supported by roller that can move in y-direction. Forced

displacements 0.30 m are given at all supports on the 1st and mth chevron rods as shown with

arrows in 9(a).

The sizes in x-directions of the optimal initial flat grids are 9.0000 m for all cases, and

those in y-directions of RHs 1, 2, and 3 are 7.4243 m, 7.7977 m, and 9.0115 m, respectively.
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Chevron rod i = 1

i = 2

i = m

Element k = 1 k = ni

Node 1 Node 25

x

y

Node 13

Node 13

(a)
(b)

Figure 9: Boundary conditions and forced displacements (arrow); (a) Type RH, (b) Type RT.

The results of RHs 1–3 are shown in Figs. 10–12, respectively. Figure 10(a) and the upper

figures in Fig. 12 show the discrete Gaussian curvatures at nodes on the curved surfaces,

where the target nodes are indicated by the grey area. As can be seen from these figures,

the distributions of discrete Gaussian curvature are almost symmetric with respect to a plane

parallel to yz-plane, since the distributions of cross-sectional heights are symmetric. Figures

10(b), (c) and (d) show distributions of cross-sectional heights of elements of chevron rod, and

the projection of the curved surfaces onto xz- and yz-planes, respectively. Figure 11 and the

lower figures in Fig. 12 show the shapes after forced deformation with the contour of axial

stress of each element, and optimal shape of curved surfaces with contour of z-directional

displacement of RHs 2 and 3, respectively. Various ABAGs with reentrant honeycombs are

obtained by changing distribution of the target nodes. Table 3 shows the optimal angles

(180/2π)θ (deg.) of RHs 1–3.

Figures 13(a), (b), and (c) show the values of Kj of RHs 1, 2, and 3, respectively. The

numbers of chevron rods, which have target nodes, are 2, 12, and 4 for RHs 1, 2, and 3,

respectively. These figures show that all values of Kj of RHs 1–3 are positive. The chevron

rods are numbered in increasing order of y-coordinate. The mean, maximum, and minimum

values of Kj of RHs 1, 2, and 3 are shown in Table 4. RH 1 has comparatively large discrete

Gaussian curvatures at the target nodes distributed widely in x-direction. The histories of

objective function values of RHs 1, 2, and 3 are shown in Fig. 14. Approximate solutions are

found within about 2/3 of the total iterations. The optimal solutions of RHs 1–3 are obtained
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Table 3: Optimal angles (180/2π)θ (deg.) of RHs 1–3 and RTs 1–3.

i RH 1 RH 2 RH 3 RT 1 RT 2 RT 3

1 40.0000 14.7488 13.7760 12.0472 31.0229 0.0000

2 30.2662 27.4255 24.3656 50.0000 50.0000 34.7531

3 39.9802 21.4771 7.4422 50.0000 50.0000 6.2228

4 40.0000 32.3327 14.2857 46.2684 50.0000 8.1381

5 40.0000 40.0000 10.9126 50.0000 11.3319 13.6342

6 40.0000 40.0000 7.0731 21.1182 14.1451 11.3380

7 40.0000 39.7786 40.0000 34.2966 23.9030 50.0000

8 17.3203 32.3755 0.0000 8.3701 21.9299 25.2091

9 12.6809 39.7769 40.0000 7.9463 49.2106 26.4698

10 39.1963 28.4857 31.7535 16.6086 43.5232 44.6211

11 40.0000 32.5705 40.0000 26.7399 13.1501 32.1896

12 40.0000 38.8833 0.0000 42.6460 17.1515 50.0000

13 35.5555 25.2261 40.0000 50.0000 9.1816 29.9167

14 40.0000 22.7660 0.0000 22.9564 39.1471 16.3895

15 40.0000 38.8350 40.0000 0.0924 50.0000 50.0000

16 10.0372 28.9499 0.0000 50.0000 37.3468 1.1488

Table 4: Mean, maximum, and minimum values of discrete Gaussian curvatures at the target

nodes (×10−3 (1/m2)).

RH 1 RH 2 RH 3 RT 1 RT 2 RT 3

Mean 15.4336 6.8785 5.8467 6.1106 2.0966 4.1352

Max. 16.0029 9.6618 7.5583 6.7981 4.6344 5.8518

Min. 15.0946 5.7211 4.9573 5.6182 1.4762 4.1352
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Figure 10: Optimal surface and the distribution of discrete Gaussian curvature of RH 1; (a)

discrete Gaussian curvature and target nodes (grey area), (b) cross-sectional heights of chevron

rods, (c) surface projected onto xz-plane, (d) surface projected onto yz-plane.
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Figure 11: Shape of RH 1 after forced deformation (contour: axial stress (Pa)).

at the iteration 30.

5.2 Examples of Type RT

The initial flat grid of Type RT is composed of 345 reentrant triangles with m = 16 chevron

rods that have ni = 24 (i = 1, . . . , 15) and nm = 22 elements, as illustrated in Fig. 9(b). The

outer connections of the 1st and mth chevron rods are supported by roller that can move in
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Figure 12: Comparison of the distribution of discrete Gaussian curvature and optimal shape

of RHs 2 and 3. Distribution of discrete Gaussian curvature at internal nodes including the

target nodes in grey area in the upper figure. Optimal shape after forced deformation in the

lower figure with contour of z-directional displacement. (a) RH 2, (b) RH 3.

y-direction. Forced displacements 0.30 m are given at all supports on the 1st and mth chevron

rods. The arrows in Fig. 9(b) represent the directions of the forced displacements.

The sizes in x-directions of the optimal initial flat grids are 7.2000 m for all cases, and those

in y-directions of RTs 1, 2, and 3 are8.1518 m, 8.0232 m, and 7.8002 mMicropolar Modeling

of Auxetic Chiral Lattices with Tunable Internal Rotation, respectively. The results of RTs

1–3 are shown in Figs. 15–17. Figure 15(a) and the upper figures in Fig. 17 show the discrete

Gaussian curvatures at nodes on the curved surfaces, where the target nodes are indicated

by the grey area. Figures 15(b), (c) and (d) show distributions of cross-sectional heights

of elements of chevron rod, and the projection of the curved surface onto xz- and yz-planes,

respectively. As can be seen from these figures, the distributions of discrete Gaussian curvature

are almost symmetric with respect to a plane parallel to yz-plane. The distributions of discrete
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Figure 13: Distribution of discrete Gaussian curvature Kj at target nodes, (a) RH 1 , (b) RH

2, (c) RH 3, (d) RT 1, (e) RT 2, (f) RT 3.
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Figure 14: Iteration histories of objective function of RHs 1–3 and RTs 1–3.

Gaussian curvature of RTs 1 and 2, which have symmetric arrangements of target nodes, are

obviously antisymmetric with respect to a plane parallel to xz-plane. Various ABAGs with

reentrant triangles are obtained by changing distribution of the target nodes. Table 3 shows

the optimal angles (180/2π)θ (deg.) of RTs 1, 2, and 3.

Figures 13(d), (e), and (f) show the values of Kj of RTs 1, 2, and 3, respectively. The

numbers of the chevron rods, which have target nodes, are 2, 12, and 4 for RTs 1, 2, and 3,

respectively. These figures show that all values of Kj of RTs 1–3 are positive. The mean,

maximum, and minimum values of Kj of RTs 1, 2, and 3 are shown in Table 4. These results

show that the optimal shape of RT 2 has smaller discrete Gaussian curvatures at target nodes

than the other examples of Type RT, because the target nodes are distributed widely in y-

direction. By contrast, RT 1 has comparatively large discrete Gaussian curvatures at the

target nodes distributed widely in x-direction. The histories of objective function values of

RTs 1, 2, and 3 are shown in Fig. 14. Approximate solutions are found within about 2/3 of

the total iterations. The optimal solutions of RTs 1–3 are obtained at the final iteration 30.

5.3 Validation for optimal solution for RH 1

To validate the result of optimal surface of RH 1 obtained by PSO, the result is compared with

those obtained by two other metaheuristic methods, namely, GA and SA. In the following
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Figure 15: Optimal surface and the distribution of discrete Gaussian curvature of RT 1; (a)

discrete Gaussian curvature and target nodes (grey area), (b) cross-sectional heights of chevron

rods, (c) surface projected onto xz-plane, (d) surface projected onto yz-plane.
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Figure 16: Shape of RT 1 after forced deformation (contour: axial stress (Pa)).
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Figure 17: Comparison of the distribution of discrete Gaussian curvature and optimal shape

of RTs 2 and 3. Distribution of discrete Gaussian curvature at internal nodes including the

target nodes in grey area in the upper figure. Optimal shape after forced deformation in the

lower figure with contour of z-directional displacement. (a) RT 2, (b) RT 3.

examples, we use DEAP [38] and dual annealing [40], which are libraries of GA and SA,

respectively, for Python. Parameters of GA and SA are shown in Table 5. Computation is

carried out on a PC with Intel Core i7-8700 CPU 3.20 GHz, 16.0GB RAM and six cores.

Table 6 shows the optimal objective function values and computation time of RH 1. When

PSO is used, the computation time is the smallest, and the objective function value is close

to that of SA, which is the largest among three methods. The objective function obtained by

using GA is the smallest, and the computation time is about twice that of PSO. Although SA

has the best objective function value, SA is not a practical method because the computation

time of 277.0 h is too large. Figure 18 compares the surface shapes and distributions of discrete

Gaussian curvature of the optimal surfaces of RH 1 obtained by the three methods.

Shapes of deformed surfaces are close to each other, because the design variables θ8 and

θ9 are smaller than those for the other chevron rods for all the results by the three methods.
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Table 5: Parameters of GA and SA.

Method Parameters Values

GA

Population size 300

Probability of mutation 20%

Probability of crossover 50%

Maximum number of generations 50

SA

Maximum number of steps 1000

Initial temperature 5230

Temperature at starting re-annealing 0.1046

Table 6: Comparison of objective functions of optimal surfaces of RH 1 and computation time.

PSO GA SA

Objective function 0.0151 0.0113 0.0172

Computation time (h) 9.9 20.6 277.0

Therefore, a favorable solution can be obtained no matter which of the three methods is used

for solving the problem.
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Figure 18: Distributions of discrete Gaussian curvature and deformed surfaces of RH 1 ob-

tained by the three different metaheuristics; (a) PSO, (b) GA, (c) SA.
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6 Conclusions

An optimization method has been proposed for design of ABAG, which is a curved surface

generated by assigning forced displacements to the initially planar grid with negative Poisson’s

ratio for in-plane deformation. Since ABAG is one of the auxetic structures, positive values of

Gaussian curvature are mainly distributed on the obtained surfaces through large-deformation

analysis. We formulate the optimization problem using discrete Gaussian curvature and dis-

crete mean curvature vector, which are invariants defined in discrete differential geometry.

An ABAG is discretized into triangles for computing discrete curvatures. Triangular mesh

is generated using the nodes on the connections between members. An initial flat grid of ABAG

is composed of reentrant honeycomb or reentrant triangle composed of two types of members:

the chevron rods and the tie rods. A chevron rod that has a zigzag shape generates convexity

and concavity on a curved surface utilizing its bending and torsional deformation. On the

other hand, a tie rod connects the neighboring chevron rods. Discrete Gaussian curvature,

which is defined by the angle defect from a flat shape, can evaluate the norm of convexity

and concavity from surrounding nodes on ABAG. Discrete mean curvature vector, which is

formulated by cotangent formula, is used as constraints for direction of convexity at each node.

The optimization problem has been formulated for obtaining the surface with specified

convex region where partly maximized value of discrete Gaussian curvature. The objective

function is the minimum value of discrete Gaussian curvatures of the target nodes. The

design variables are the angles between x-axis and the left ends of the chevron rods, and the

Bernstein coefficients designing distributions of the cross-sectional heights of chevron rods.

To reduce the number of design variables while keeping the smoothness of the solution, we

formulate the distribution of cross-sectional heights by cubic Bernstein polynomials. The

optimization problem is solved using the PSO which is a population-based derivative-free

method. Dependence of the results on the parameter values of the PSO has been investigated,

and it has been shown by comparing the results with those by GA and SA that a good

approximate optimal solution can be found with a reasonable computational cost using PSO.

Optimization results have been shown for the six numerical examples, which are designed

by reentrant honeycomb or reentrant triangle. By using the proposed method, the designer

can obtain surfaces with different shapes under the same boundary conditions and forced dis-
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placements by changing the assignment of the target nodes on an ABAG. The results show

that the norm of discrete Gaussian curvature depends on the loading conditions and distribu-

tions of the target nodes. Although the optimal cross-sectional heights and angle θ of chevron

rods have complex distributions depending on the loading conditions and the assignments of

the target nodes, this fact verifies that the proposed optimization method is useful to obtain

unexpected optimal solutions of ABAGs, which have the different mechanical properties from

those expected by our intuition. The proposed method using discrete differential geometry

can be effectively applied to design of ABAG for dome-like architectural roof.
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Appendix: Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a metaheuristic method that mimics foraging behavior

patterns by a group of organisms such as birds and fish, and was proposed by Kennedy and

Eberhart [39]. In the PSO method, a large number of solutions x, called particles, search

the optimal solution globally in a multidimensional space. Since the update of the solutions

does not depend on the gradient of the objective function F (x), the method is effective for

problems where the objective function F (x) is not differentiable. Each particle has its position

and velocity, and particles exchange information with each other and determine the search

directions based on the velocities defined as the sum of the vectors of position and velocity.

The algorithm of PSO is shown below.

Algorithm of PSO:

Step 1: Initialize randomly the positions x0
J = {x0

J1
, . . . , x0

JD
} and vectors v0

J = {v0J1 , . . . , v
0
JD
}

(J = 1, . . . ,M ;D = 1, . . . , 3m) based on the upper and lower bounds of design vari-

ables. Here, 3m is the total number of design variables representing θ, β0, and β1,

as shown in Sec. 4.2, and M is the number of solutions (particles).
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Step 2: Let xγ
p,J and xγ

g denote the personal best position of the Jth particle and the global

best position of all particles, respectively, at iteration γ. Initialize as γ = 0 and

x0
p,J = x0

J for J = 1, . . . ,M . Set x0
g as the particle that has the maximum objective

function value among all particles, and J = 1.

Step 3: Velocities and positions of the Jth particle at iteration γ are updated as:

vγ+1
J = ωvγ

J + c1r1
(
xγ
g − xγ

J

)
+ c2r2

(
xγ
p,J − xγ

J

)
xγ+1
J = xγ

J + vγ+1
J

The inertia weight ω tunes the contribution of velocity vγ
J . We use the parameters

c1 and c2 as the ratios of the particles which do not move toward the global and

personal best ones, and r1 and r2 as random numbers in the range of 0 ≤ r1 ≤ 1

and 0 ≤ r2 ≤ 1, respectively.

Step 4: Compute the objective function F (xγ+1
J ).

Step 5: If F (xγ+1
J ) > F (xγ

p,J), update as xγ
p,J ← xγ+1

J and go to Step 6; otherwise, update

J ← J + 1 and go to Step 3.

Step 6: If F (xγ+1
p,J ) > F (xγ

g), update xγ
g ← xγ+1

p,J . If J < M , update J ← J + 1 and go to

Step 3. If the convergence criterion is satisfied or γ is equal to the iteration limit,

go to Step 7; otherwise, set J = 1 and go to Step 3.

Step 7: Terminate the algorithm and output xγ+1
g as the optimal solution.

Table 7 shows 36 sets of parameters of PSO and the corresponding objective functions of RH

1. The inertia weight ω can be set as a value larger than 1.00; however, infeasible solutions

are obtained when ω ≥ 1.25. Therefore, we compared the objective function values obtained

by using parameters ω ∈ {0.25, 0.50, 0.75, 1.00}, ci ∈ {0.25, 0.50, 0.75} (i = 1, 2), and found

that the set of parameters ω = 0.75, c1 = 0.75, c2 = 0.50 leads to the largest objective function

value.
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Table 7: Parameters of PSO and objective functions of RH 1.

ω c1 c2 objective function F

0.25

0.25

0.25 0.0073

0.50 0.0066

0.75 0.0063

0.50

0.25 0.0093

0.50 0.0077

0.75 0.0068

0.75

0.25 0.0083

0.50 0.0089

0.75 infeasible

0.50

0.25

0.25 0.0082

0.50 0.0086

0.75 0.0080

0.50

0.25 0.0093

0.50 0.0102

0.75 0.0106

0.75

0.25 0.0137

0.50 0.0124

0.75 0.0130

ω c1 c2 objective function F

0.75

0.25

0.25 0.0117

0.50 0.0130

0.75 0.0114

0.50

0.25 0.0139

0.50 0.0146

0.75 0.0137

0.75

0.25 0.0151

0.50 0.0151

0.75 0.0139

1.00

0.25

0.25 0.0114

0.50 0.0099

0.75 0.0109

0.50

0.25 0.0141

0.50 0.0125

0.75 0.0109

0.75

0.25 0.0114

0.50 0.0123

0.75 0.0132

References

[1] Evans KE. Auxetic polymers: A new range of materials. Endeavour 1991;15(4):170-174.

[2] Lakes R. Foam structures with a negative Poisson’s ratio. Science 1987;235(4792):1038-

1040.

[3] Liu Y, Hu H. A review on auxetic structures and polymeric materials. Scientific Research

and Essays 2010;5(10):1052-1063.

[4] Ju J, Summers JD. Compliant hexagonal periodic lattice structures having both high

shear strength and high shear strain. Material Design 2011;32(2):512-524.

30



[5] Grima JN, Caruana-Gauci R, Attard D, Gatt R. Three-dimensional cellular structures

with negative Poisson’s ratio and negative compressibility properties. Physical and Engi-

neering Science 2012;468:3121-3138.

[6] Gibson LJ, Ashby MF. Cellular solids: structure and properties. Cambridge: Cambridge

University Press; 1999.

[7] Hou Y, Tai YH, Lira C, Scarpa F, Yates JR, Gu B. The bending and failure of sandwich

structures with auxetic gradient cellular cores. Composites: Part A 2013;49:119-131.

[8] Evans KE, Alderson A. Auxetic materials: Functional materials and structures from

lateral thinking!. Adv Mater 2000;12(9):617-628.

[9] Anurag C, Anvesh CK, Harsha AS. Auxetic materials. International Journal for Trends

in Engineering & Technology 2015;5(2):156-160.

[10] Saxena KK, Das R, Calius EP. Three decades of auxetics research - Materials with neg-

ative Poisson’s ratio: A review. Adv Eng Mater 2016;18(11):1847-1870.

[11] Larsen UD, Sigmund O, Bouwstra S. Design and fabrication of compliant micromecha-

nisms and structures with negative Poisson’s ratio. Journal of Micro electromechanical

Systems 1997;6(2):99-106.

[12] Bendsøe MP, Sigmund O. Topology optimization 2nd edn. Berlin: Springer; 2003.

[13] Schwerdtfeger J, Wein F, Leugering G, Singer RF, Koner CK. Design of auxetic structures

via mathematical optimization. Adv Mater 2011;23:2650-2654.

[14] Kureta R, Kanno Y. A mixed integer programming approach to designing periodic frame

structures with negative Poisson’ s ratio. Material Design 2014;15(3):773-800.

[15] Ou J, Ma Zhao, Peters J, Dai S, Vlavianos N, Ishii H. KinetiX - designing auxetic-inspired

deformable material structures. Computers & Graphics 2018;75:72-81.
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