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Abstract:  

Uncertainty is inevitable in the real physical world, and it is necessary to take into account its 
effects on the structural design and optimization processes. In this study a reliability-based shape 
and topology optimization method is proposed for plane frames. The reliability constraint is 
expressed in terms of quantile which is estimated by using the maximum entropy method subject 
to constraints on the sample linear moments (L-moments) with small sample size.  An iterative 
scheme of sequential optimization and reliability assessment is employed to solve a series of 
deterministic optimization problems with shifted boundaries on the constraints. Derivative of the 
quantile function is obtained by solving a convex optimization problem, instead of solving a 
system of nonlinear equations. Force density method is applied to an auxiliary truss model for 
simultaneous shape and topology optimization of plane frames to alleviate the difficulties caused 
by melting nodes. It is demonstrated by the benchmark and numerical examples that the quantile 
function can be appropriately estimated by the proposed method, and the solution satisfying the 
required reliability constraint can also be achieved.   
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1 Introduction 

Due to the uncertain nature of the real world engineering design problems, it has been well 
recognized that structural optimization which takes uncertainties into consideration receives more 
and more attention and plays an important role in practical engineering [1][2][3]. Among them, 
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one of the popular methods to incorporate uncertainty in an optimization problem is reliability-
based design optimization (RBDO) which focuses on finding the best solution satisfying the target 
reliability constraints [4][5]. In this section the definitions of RBDO problem and some technical 
terms related to the problem are briefly given at first, and then the existing researches on solving 
the problem are discussed.  

 
1.1 Problem definition  

Let ( )d1 2, , , nd d d=d   and ( )u1 2, , , nθ θ θ=θ   denote the vectors of nd design variables and nu 

random variables with the specified distribution, respectively. The RBDO problem can be 
generally given as [5] 

( )
( ){ }

Miminize 

subject to Pr ; ,  1, 2, , ;  j j j

W

g g R j n≤ ≥ = ≤ ≤

d

d θ d d d

  (1) 

where ( )W d  is the objective function to be minimized; ( );jg d θ  is the jth performance function 

under uncertainty and n is the number of performance functions; jg is the prescribed upper bound 

of ( );jg d θ  and jR  is the target probability of ( );jg d θ  not to exceed jg ; d and d are the 
vectors of lower and upper bounds for d , respectively. Note that the vector of design variables d 
in problem (1) includes deterministic design variables and the mean values of random design 
variables. 

According to Refs. [6][7], the approaches for solving problem (1) can be classified into the 
following three categories in view of their strategies to incorporate probabilistic constraints in 
optimization procedure, and their corresponding schematic presentations are shown in Fig. 1:  

(1) Double-loop method directly solves problem (1) in which the probability constraints are 
evaluated at each iteration of the optimization procedure with the current values of design variables. 
Therefore, there are two nested cycles in the double-loop method: the inner cycle evaluates the 
probability constraints at each iteration of the outer cycle of optimization procedure.  

(2) Single-loop method: the single-loop method avoids the inner cycle in double-loop method 
by converting probability constraints into approximated deterministic constraints at the most 
probable point (MPP) [8]. In this way, it allows to avoid the inner cycle and reduces the 
computational cost. Another construction of single-loop method is to use the Karush-Kuhn-Tucker 
optimality conditions of the inner problem to convert the RBDO problem to a deterministic 
optimization problem [9][10]. 

(3) Decouple method: The decoupling method asymptotically solves problem (1) by a series 
of sub-deterministic optimization problems. The information from the reliability analysis is 
extracted and used to construct the sub-deterministic optimization problems such that it is not 
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necessary to implement a full reliability analysis each time when a new point of design variables 
is found by the optimization procedure. 

 

 

Fig. 1 Strategies for solving RBDO problem, from left to right: double-loop method, single-loop 
method and decouple method 

 
1.2 Literature review 

Although the double-loop method is easy to implement, it would become computationally 
infeasible because it consists of nested loops of design optimization and reliability analysis [11]. 
Therefore, great effort has been made in the past two decades to improve its efficiency by either 
facilitating the procedure of reliability analysis [12] or modifying the formulation of probability 
constraints [13]. Lee et al. [14] introduced the popular dimensional reduction method (DRM) into 
the double-loop RBDO with a new inverse reliability analysis to reduce the number of function 
evaluations in multidimensional probability integration; Rahman and Wei [15] also applied DRM 
to double-loop RBDO procedure where the sensitivity coefficients of probability with respect to 
design variables are derived. However, since the inner loop of reliability analysis is called at each 
time when the design variables are updated at the outer loop, the number of reliability analyses 
could be still very large which may lead to a high computational cost. On the other hand, single-
loop method provides an alternative to reduce the number of RBDO function calls. Chen et al. [8] 
firstly proposed the single-loop single vector method where the unit direction vector for searching 
MPP is assumed to be constant, and Liang et al. [10] further developed the method by adaptively 
calculating the unit direction vector during the optimization procedure. It is proven that the single-
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loop method is one of the most efficient approaches for solving RBDO problems [16], but its 
numerical stability is still a challenge when the limit state function is highly nonlinear [7]. 

The decoupling method improves the efficiency of double-loop method from another 
perspective where the inner cycle of reliability analysis is decoupled from the outer cycle of 
optimization and the evaluation of probabilistic constraints only need to be conducted at the end 
of each sub-deterministic optimization process. Early work of decoupling method approximates 
the probability constraint using sensitivity information of the previous iteration [17]. Du and Chen 
[18] proposed the sequential optimization and reliability assessment (SORA) method which 
decouples the reliability analysis from structural optimization using the shifting vector. Since then, 
SORA has gradually become one of the frequently used methods for solving RBDO problems 
because of its simplicity and stability [7], and many researches have been conducted to enhance 
its performance. Du [19] further improved the accuracy of SORA by using saddle point 
approximation to handle the nonlinearity in probability constraints caused by the transformation 
between non-normal and normal random variables. Chen et al. [20] searched the optimal shifting 
vector using the limit state functions to accurately adjust the boundaries of probability constraints 
when they are highly nonlinear. However, as most of the existing SORAs are MPP-based methods, 
one of the challenges is that the MPP-based SORA may not be able to converge if there are multiple 
MPPs [21]. To overcome this difficulty, recently Li et al. [22] proposed a quantile-based SORA 
method where the shifting vector is calculated in the probability space without relying on the MPP. 
The Kriging model is also applied instead of the crude Monte Carlo simulation (MCS) to reduce 
the computational cost for calculating the quantile. He et al. [23] further extended the quantile-
based SORA method by calculating the quantile corresponding to the target reliability using 
fractional moment-based maximum entropy method (MEM), and the two-level optimization 
problem to obtain the values of Lagrangian multipliers and the orders of fractional moments is 
reduced to a single-loop optimization problem by using Laplace transform [24]. However, the 
Laplace transform of unknown probability distribution function (PDF) needs to be carefully 
chosen otherwise it may spoil the result [24]. Do et al. calculate the desired quantile by using 
inverse saddlepoint approximation where the mixture of Gaussian process is exploited for 
modeling the performance function under uncertainty[25]. 

While the general framework of quantile-based SORA explores the possibility of using MPP-
free reliability analysis methods, another challenge is that in practice the exact probability 
information of uncertainty may be unavailable beforehand and one would need to calculate the 
structural reliability with a given set of random samples [26][27]. Moreover, the sample size and 
sampling variability have great effect on the accuracy of surrogate model used for structural 
simulation and the sample central moments used for probability estimation [28][29][30][31]. To 
overcome such difficulties, Pandey [32] estimated the quantile function of a non-negative random 
variable with unknown distribution using MEM subject to sample probability-weighted moments 
(PWM) obtained from random samples, and the results showed that this method is more reliable 
than the method using sample central moments when sample size is small. Deng and Pandey [33] 
further improved this method with fractional PWM, but the Lagrange multipliers and the orders of 
fractional moments are determined by the two-level nested optimization procedure which is 
computationally expensive. Besides, since the single-level method in Ref. [24] is constructed for 
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ordinary fractional moments, it cannot be directly applied to quantile-based MEM subject to 
fractional PWM constraints. On the other hand, Pandey [34][35] also presented an approach for 
quantile estimation of a non-negative random variable by using minimum cross-entropy principle 
(MCEP) subject to PWM constraints, and stated that if the prior distribution in MCEP is uniform, 
the cross-entropy minimization is equivalent to entropy maximization. However, since MCEP 
requires a prior distribution for quantile estimation, the MEM is more appropriate than MSEP 
when any prior information is absent. Hosking [36] found that the maximum entropy distribution 
of an unknown random variable having specified linear moments (L-moments) has a density-
quantile function in a polynomial form which is the derivative of the quantile function, and the 
quantile function can then be obtained by numerical integration, whereas the unknown coefficients 
in density-quantile function are derived by solving a system of nonlinear equations.  

Optimization of truss-like structures is one of the well investigated fields in structural 
optimization; see the review articles [37][38] and text books [39][40] for a comprehensive 
summary. However, there still remains some difficulties for simultaneous optimization of shape 
and topology optimization, and extensive and valuable contributions have been made in the past 
decades to the development of mathematical formulations and optimization methods. Although 
the ground structure method is widely used to find the optimal topology of the truss-like structures 
[41][42], it is necessary to work with as many nodes and members as possible because the nodal 
locations are unable to vary during the optimization process. On the other hand, since the 
adjustment of nodal locations can usually lead to effective improvement of objective function 
value [43][44], one can start from a sparse ground structure if the shape optimization is involved. 
However, when the nodes are allowed to move in a wide range of the design space, one of the 
main difficulties is the existence of melting nodes or coalescent nodes which results in extremely 
short members in the structure and makes the stiffness matrix singular [45][46]. To alleviate the 
problem caused by melting nodes, Ohsaki and Hayashi [47][48] explored the merit of force density 
method (FDM) to shape and topology optimization of pin-jointed trusses, in which the objective 
and constraint functions are expressed explicitly by force density only, and Shen and Ohsaki [49] 
extended the method to the optimization of rigidly-jointed frames.  

In this paper, we proposed a quantile-based SORA method for simultaneous shape and 
topology optimization of plane frames under reliability constraints. The uncertainties are assumed 
to exist in the nodal locations and the cross-sectional area and Young’s modulus of each member. 
The reliability constraint is expressed in terms of quantile which is estimated using MEM subject 
to the constraints on sample L-moments. Compared with Refs. [22][23], the main difference of the 
proposed method is that no assumptions on the distributions of uncertainties are made and the 
samples can be obtained by any randomization method without specifying the probability 
distribution. Besides, in order to avoid the extremely short members during shape optimization 
[45][47][48], the shape of frame structure is determined by a set of force densities of  the auxiliary 
truss that is irrelevant to the true loading and boundary conditions of the frame to be optimized 
[49]. 

The rest of the paper is organized as follows. In Section 2 the concept of quantile-based SORA 
is briefly introduced, and the estimation of quantile function using MEM subject to the constraints 
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on sample L-moments is given in Section 3. Section 4 presents the problem formulation of shape 
and topology optimization of a plane frame under uncertainty, which is mainly based on the 
framework discussed in Section 2. One benchmark example and four numerical examples are 
investigated in Section 5 to demonstrate the accuracy and effectiveness of the proposed method. 
Finally, some conclusions are drawn in Section 6. 

 

2 Quantile-based SORA  

In this section, the basic concept of quantile-based SORA is briefly introduced [22][23]. The 
main difference of the quantile-based SORA from traditional SORA is that the shifting vector is 
calculated using quantile instead of the MPP. Based on Eq. (1) and the equivalent description 
between the reliability constraint and the quantile of structural response [50], we define the 
following n quantiles 

( ) ( ){ }{ }; inf : Pr ; ,  1, 2, ,
jR j jQ Q g Q R j n= ≤ ≥ =d θ d θ    (2) 

as alternatives for the n reliability constraints in problem (1), where ( );
jRQ d θ  is the jth quantile 

corresponding to the jth performance function ( );jg d θ  and target probability jR . Then, we can 
rewrite the problem (1) in terms of quantile as follows: 

( )
( )

Miminize 

subject to ; ,  1, 2, , ;  
jR j

W

Q g j n≤ = ≤ ≤

d

d θ d d d

  (3) 

It can be observed that the target values of probability jR  (j=1,2,∙∙∙,n) are now implicitly 
incorporated in problem (3) by the corresponding quantiles defined in Eq. (2), bridging the 
equivalence between problems (1) and (3) [50]. The random variables in problem (3) are assumed 
to be mutually independent. For general cases where some or all the random variables are 
correlated, they can be transformed into independent random variables by various methods like 
the well-known Rosenblatt or Nataf transformations [51][52] or other transformation methods 
without requiring the marginal PDF of each random variable [53]. Therefore, for simplicity in this 
study the discussion of reliability-based optimization problem is limited to independent random 
variables. 

According to the quantile-based SORA [22][23], the optimal solution of problem (3) can be 
obtained by solving a series of deterministic optimization problems where the upper bounds for 
performance functions are shifted at each iteration to ensure that the quantile ( );

jRQ d θ  is on the 

boundary. Denote the shifting value of jg  at the (k+1)th iteration as 1k
jc + , the (k+1)th 

deterministic optimization problem of quantile-based SORA is then formulated as  
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( )
( ) 1

Miminize 

subject to ,  1, 2, , ;  k
j j j

W

g g c j n+≤ − = ≤ ≤

d

d d d d

  (4) 

and 1k
jc + is calculated by 

( ) ( )1 ; , 1, 2, ,
j

k k k
j R jc Q g j n+ = − =d θ d    (5) 

where kd  is the solution of problem (4) at the kth iteration and ( )k
jg d  is the value of jth 

performance function without uncertainty; ( );
j

k
RQ d θ  represents the quantile corresponding to the 

solution kd . Because the solution of problem (4) has not been found yet at the initial iteration (i.e., 
k=0) and there is no information about the corresponding quantile, the value of 1

jc  is set to 0 for 
the initial iteration [18].  

Eqs. (4) and (5) constitute one iteration of quantile-based SORA, and in order to prevent 
obtaining a conservative result, the optimization procedure is considered convergent at the kth 
iteration if all the reliability constraints are satisfied and at least one of them retain equality, namely: 

( ) ( ) { }; , 1, 2, ,  and ; ,  1, 2, ,
j j ee

k k
R j R j eQ g j n Q g j n≤ = = ∃ ∈d θ d θ   (6) 

 

3 Estimation of quantile   

As discussed in Section 2, one of the main steps in quantile-based SORA is to calculate the 
quantile ( );

j

k
RQ d θ  in Eq. (5) after solving problem (4) at each iteration. In this section a quantile 

estimation method is proposed for obtaining the desired quantile ( );
j

k
RQ d θ , which utilizes the 

MEM subject to constraints specified in terms of sample L-moments [29][31]. 

Suppose after the kth iteration the jth (j=1,2,∙∙∙,n) performance function under  uncertainty is a 
continuous random variable ( );k k

j jZ g= d θ  with cumulative distribution function (CDF) 

( )k k
j jF z  and PDF ( )k k

j jf z . Let ( )k
jQ q  and ( )k

jQ q′  denote the quantile function of k
jZ  and its 

corresponding derivative for 0 1q< < , respectively. It can be observed from Eqs. (2) and (5) that 
the value of ( );

j

k
RQ d θ  in Eq. (5) can be calculated by ( )k

j jQ R .  

Since ( )k
jQ q  is the inverse function of ( )k k

j jF z , ( )k k
j jf z  and ( )k

jQ q′  are reciprocal with 

each other, and the entropy of k
jZ , denote by k

jH , can be written in terms of ( )k
jQ q′  as follows 

[36]: 
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( ){ } ( ) ( )
1

0
ln lnk k k k k k k

j j j j j j jH f z f z dz Q q dq
+∞

−∞
′= − =∫ ∫  (7) 

According to MEM, the most unbiased estimate of ( )k
jQ q′  maximizes the entropy in Eq. (7) 

subject to available statistical information such as central moments. Assuming the exact 
distribution of k

jZ  is unknown beforehand and the central moments can only be inferred from 
limited data of samples, it is recognized that the estimation of higher order central moment from a 
set of random samples tends to be biased when the sample size is small [29][32]. Therefore, instead 
of using central moments, L-moments are used as alternatives of the available statistical 
information in MEM. Let ,

k
j rL  denote the rth (r≥1) order L-moment of k

jZ  which is given as [54] 

( ) ( )
1 *

, 10

k k
j r r jL P q Q q dq−= ∫  (8) 

where ( )*
1rP q− is the (r-1)th order shifted Legendre polynomial. Define the indefinite integral as  

( ) ( )
1 *

1r rq
K q P v dv−= ∫   (9) 

Then the integration in Eq. (8) can be further rewritten in terms of ( )k
jQ q′  using Eq. (9) and the 

technique of integration by parts as follows [36]: 

( ) ( ) ( ) ( )
1 1

, 00

k k k
j r r j r jL K q Q q dq K q Q q′  = −  ∫  (10) 

where ( ) ( ) 1

0

k
r jK q Q q    represents the difference of ( ) ( )k

r jK q Q q  at q equal to 0 and 1. When 

only a set of random samples are available, ,
k
j rL  can be estimated by sample L-moments which are 

calculated using order statistics [54]. Let 1 2, , , mθ θ θ  denote the m independent and identically 

distributed (i.i.d.) vectors of uncertainties, and the corresponding m values of ( );k k
j jZ g= d θ  are 

denoted by ( ),1 1;k k
j jZ g= d θ , ( ),2 2;k k

j jZ g= d θ ,  , ( ),1 ;k k
j j mZ g= d θ . We further define 

,1: ,2: , :, , ,k k k
j m j m j m mZ Z Z as the permutation of ,1 ,2 ,, , ,k k k

j j j mZ Z Z  in an ascending order, i.e., 

,1: , : , :
k k k
j m j i m j m mZ Z Z≤ ≤ ≤ ≤  , and , :

k
j i mZ  is called the ith order statistic. The rth order sample L-

moment of k
jZ , denoted by ,

k
j rl , can be obtained by [36] 

  ( )
1

1
,

0

1 1
1

r
r sk

j r s
s

r r s
l b

s s

−
− −

=

− − +  
= −   

  
∑  (11) 

where sb  is one kind of the sample probability weighted moments (PWMs) of 1k
jZ +  calculated as 

follows 
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   ( )( ) ( )
( )( ) ( )

1
, :

1

1 2
1 2

m
k

s j i m
i

i i i s
b m Z

n n n s
−

=

− − −
=

− − −∑




 (12) 

According to Ref. [36], the MEM estimates ( )k
jQ q′  by maximizing the entropy defined in Eq. (7) 

subject to the first nL L-moments, and the problem reads 

( )

( ) ( ) ( ) ( )

1

0
1 1

, L00

Maximize ln

subject to ,  1, 2, ,

k
j

k k k
j r r j r j

Q q dq

l K q Q q dq K q Q q r n

′

′  = − = 

∫
∫ 

 (13) 

Note that in Eq. (13) the value of ,
k
j rl  is calculated by Eqs. (11) and (12) from a set of available 

data. Let ( ) ( ) 1

, , 0

k k k
j r j r r jh l K q Q q = +    and rewrite problem (13) as  

( )

( ) ( )

1

0
1

, L0

Maximize ln

subject to ,  1, 2, ,

k
j

k k
j r r j

Q q dq

h K q Q q dq r n

′

′= =

∫
∫ 

 (14) 

From the definition of ( )rK q  in Eq. (9), it can be observed that the value of ( )rK q  at q=1 is 0 

with any arbitrary order r due to the integration range, and for q=0 the value of ( )rK q  is also 0 

for order 2r ≥  and ( )0 1rK =  for 1r =  due to the form of shifted Legendre polynomial. Therefore, 

,
k
j rh  can be reduced to ,

k
j rl  for 2r ≥  and ( ), 0k k

j r jl Q−  for 1r = .  

Instead of directly solving problem (14), we seek to maximize the following Lagrangian 
functional of the entropy  

( ) ( ) ( ) ( )( )L1 1

, ,0 0
1

ln
n

k k k k
j j j r r j j r

r
H q Q q dq K q Q q dq hλ

=

′ ′= − −∑∫ ∫  (15) 

where ( ), L1, 2, ,j r r nλ =  represent the unknown Lagrangian multipliers. The optimality 

condition (Euler-Lagrangian equation) for maximizing ( )k
jH q  with respect to ( )k

jQ q′  yields the 

estimated ( )k
jQ q′  as 

( ) ( )
L

,
1

1
n

k
j j r r

r
Q q K qλ

=

′ = ∑  (16) 

and the Lagrangian multipliers in Eq. (16) are determined by finding the stationary point of the 
following functional: 

( ) ( )
L L1

, , ,0
1 1

ln
n n

k
j j r r j r j r

r r
K q dq hλ λ

= =

 
Γ = − + 

 
∑ ∑∫λ  (17) 
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where ( )L,1 ,2 ,, , ,j j j j nλ λ λ=λ  . It can be observed that the stationary point of Eq. (17) satisfies the 

equality constraints given in problem (13), and it can be found efficiently using numerical 
algorithms since Eq. (17) is a convex function. A brief proof for the convexity of Eq. (17) is given 
in Appendix A. Once the values of jλ  and ( )k

jQ q′  are determined, the quantile function ( )k
jQ q  

can be obtained by integral 

( ) ( ) ( )
0

0
uk k k

j j jQ q Q Q q dq′= + ∫  (18) 

Because in practical the exact value of ( )0k
jQ  is usually unknown beforehand, one can estimate 

( )0k
jQ  by the corresponding smallest order statistic ,1:

k
j mZ , and ( )k

jQ q in Eq. (18) is obtained by  

( ) ( ),1: 0

uk k k
j j m jQ q Z Q q du′≈ + ∫  (19) 

and the quantile ( );
j

k
RQ d θ  in Eq. (5) can then be estimated as ( ) ( ),1: 0

jRk k k
j j j m jQ R Z Q q dq′≈ + ∫ .  

Remark 1 In this study the quantile function is obtained by integrating the corresponding 
derivative which is estimated using MEM subject to sample L-moment constraints. The original 
constrained MEM problem is first transformed to Lagrangian functional, and then the values of 
unknown Lagrangian multipliers are found by solving another unconstrained convex optimization 
problem which is similar to the traditional MEM in PDF estimation [55]. Therefore, different from 
the method in Ref. [23], the proposed method does not depend on the initial guess of the 
Lagrangian multipliers.  

Remark 2 Since the value of ( )rK q  at q=1 is 0 for any arbitrary order r, it can be expected that 

the estimated derivative of quantile function ( ) ( )
L

,
1

1
n

k
j j r r

r
Q q K qλ

=

′ = ∑  will tend to be infinite as q 

approaches 1. Therefore, in the following numerical examples Eq. (19) is only integrated to 
q=0.9999 to avoid numerical difficulty for obtaining the quantile function.   

 

4 Shape and topology optimization of plane frames under uncertainty 

Once the quantile in Eq. (5) is estimated using the proposed method in Section 3, problem (4) 
can be iteratively solved until the stopping condition Eq. (6) is reached. This section integrates the 
framework of quantile-based SORA with the shape and topology optimization of plane frames 
under uncertainty, and the details will be explained as follows. 

Generally, in shape and topology optimization of plane frames the design variables are x- and 
y-coordinates x and y of nodes and cross-sectional areas A. As for random variables, since in 
practical engineering the joint locations and cross-sectional areas of members in the frame 
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structure may deviate from their corresponding nominal values due to manufacturing or on-site 
construction error, and uncertainty in the material property should also be considered. Therefore, 
in this study uncertainties are assumed to be random perturbations on x, y, A and the vector of 
Young’s modulus E which are denoted by ∆x ,∆y ,∆A and∆E , respectively, and the vector of 

random variables is written as ( ), , ,= ∆ ∆ ∆ ∆θ x y A E . Based on Eq. (4), the (k+1)th deterministic 
shape and topology optimization of plane frames of quantile-based SORA can be written as 

( )
( ) 1

Miminize , ,

subject to , , , 1, 2, , ;  ;  ;  k
j j j

W

g g c j n+≤ − = ≤ ≤ ≤ ≤ ≤ ≤

x y A

x y A x x x y y y A A A

  (20) 

with ( ) ( )1 , , ; , , ,  1, 2, ,
j

k k k k k k k
j R jc Q g j n+ = − =x y A θ x y A  . In order to prevent the existence of 

extremely short members during shape optimization, the method in [49] is introduced in which the 
FDM is applied on an auxiliary truss structure to optimize the shape of plane frame. Let xfree, yfree 

and xfix, yfix denote the x- and y-coordinates of free nodes and fixed nodes, respectively, and t be 
the force density vector applied on the members of auxiliary truss, problem (20) is rewritten as  

( ) ( )( )
( ) ( )( )

free free

1
free free

Miminize , ,

subject to , , , 1, 2, , ;  ;  k
j j j

W

g g c j n+≤ − = ≤ ≤ ≤ ≤

x t y t A

x t y t A t t t A A A

  (21) 

with ( ) ( )( ) ( ) ( )( )1
free free free free, , ; , , , 1, 2, ,

j

k k k k k k k
j R jc Q g j n+ = − =x t y t A θ x t y t A  . Note that in 

problem (21) the design variables are the force density t and the cross-sectional areas A, and xfree 
and yfree can be determined by solving the equilibrium equations with a given t [49]. 

Remark 3 The force density method is applied on an auxiliary truss structure for determining the 
shape of plane frame, and it is irrelevant to the true loading and boundary conditions of the frame 
to be optimized in the quantile-based SORA procedure.   

Remark 4 Unlike the conventional formulation of force density method [40], in this study the 
fixed nodes consist of the supported nodes and loaded nodes, as well as the nodes for specific 
reason, e.g., requirement of structural shape that are not allowed to move in any directions during 
the optimization process[33][35].  

 

5 Benchmark and numerical examples 

In this section one benchmark example and four numerical examples are presented to 
investigate the effectiveness of the proposed method. In the benchmark example the accuracy of 
the quantile estimation given in Sec.3 is verified by approximating the quantile function of a 
random variable, where the first three L-moments are used in MEM as constraints, and the results 
in Refs. [32,33] are also given for comparison purpose. For the four numerical examples the 
deterministic optimization problem (4) of quantile-based SORA is solved by sequential quadratic 
programming (SQP) using fmincon with default settings in the Optimization Toolbox of MATLAB 
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2018a [56], and the first four sample L-moments (i.e., nL = 4) are used in MEM to estimate the 
derivative of quantile function in Eq. (14) with sample size m=50. The first numerical example is 
to compare the proposed method with other existing methods on efficiency and accuracy, which 
has been studied in Ref.[23]. The second numerical example is an optimization of cantilever frame 
structure to investigate the effectiveness of proposed method for shape and topology optimization, 
as well as the introduction of FDM to prevent melting nodes during optimization procedure. To 
explore how the stopping criterion Eq. (6) works to avoid obtaining conservative result, a bridge 
frame structure is optimized with five displacement constraints in numerical example 3, and in the 
final numerical example, an L-shaped structure with 72 members is optimized to demonstrate the 
validity of the proposed method on handling problem with relatively large number of uncertainties. 
The calculations of the first four sample L-moments are given in Appendix B for convenient 
reference. The MCS with sample size 5

MCS 1 10m = ×  is implemented in the numerical examples to 
investigate the accuracy of quantile estimation by MEM using sample L-moments, and the solution 
at the initial iteration is also presented in order to compare it with the solution at the final iteration. 

 

Table 1 Parameter settings of the shape and topology optimization of plane frames 

Parameters Numerical example 2, 3 and 4 
Lower bound free,lower∆x  (m) 0.02− I   
Upper bound free,upper∆x  (m) 0.02I  

Lower bound free,lower∆y  (m) 0.02− I   
Upper bound free,upper∆y  (m) 0.02I  

Lower bound lower∆A  (m2) 0.02− A  
Upper bound upper∆A  (m2) 0.02A  
Lower bound lower∆E  (m2) 0.05− E  
Upper bound upper∆E  (m2) 0.05E  
Nominal value of E  (Pa) 113 10× I   

Sample size m of sample L-moments 50 
Sample size MCSm of MCS 51 10×  

Upper bound A  (m2) 0.02I  
Lower bound A  (m2) 71 10−× I  
Upper bound t  (N/m) 1000I  
Lower bound t  (N/m) 1000− I  

Assuming that the fixed nodes are precisely located for simplicity, the uncertainties in x- and y-
coordinates are only considered in the free nodes and denoted as free∆x  and free∆y , respectively, and 
therefore the vector of random variables is given as ( )free free, , ,= ∆ ∆ ∆ ∆θ x y A E . However, it is also 
possible to add uncertainties to the x- and y-coordinates of fixed nodes to simulate the variations 
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such as installation error at the support in practical engineering. The random variables are 
characterized by uniformly distributed random variables, i.e., free free,lower free,upper, ∆ ∈ ∆ ∆ x x x  ,

free free,lower free,upper, ∆ ∈ ∆ ∆ y y y , lower upper, ∆ ∈ ∆ ∆ A A A  and lower upper, ∆ ∈ ∆ ∆ E E E  , and the 

subscripts of lower and upper represent the lower and upper bounds, respectively, for the 
corresponding uncertainties. Moreover, each member is modeled by one Euler-Bernoulli beam 
element which has a solid circular cross-section, and thereby the second moment of inertia can be 
expressed by its cross-sectional area only. The parameter values listed in Table 1 are used for the 
three numerical examples of shape and topology optimization of plane frames if not specified 
explicitly, where I  is the vector with all entries equal to 1. Flowchart of the proposed quantile-
based SORA is given in Fig. 2.  

 

 

Fig. 2 Flowchart of quantile-based sequential reliability optimization 

 
5.1 Benchmark example  

In this example the accuracy of the quantile estimation using the proposed method is examined 
with known distribution information. Consider a random variable Z with generalized Pareto 
distribution (GPD) whose CDF ( ) ( ), ,F zµ σ ξ  and quantile function ( ) ( ), ,Q qµ σ ξ  are given as [54] 



14 

 

( ) ( )

( )
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F z
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µ σ ξ

ξ µ
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σ
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σ

 − 
− + ≠  
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  (22) 
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, ,

1 1
for 0

log 1 for 0
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Q q

q

ξ

µ σ ξ

σ
µ ξ

ξ
µ σ ξ

 − −
 + ≠= 


− − =

  (23) 

where μ, σ and ξ are the location parameter, scale parameter and shape parameter, respectively. 
Given that μ=0, ξ=0.2 and σ=1, the exact quantile function of GPD is plotted in Fig. 3 in which a 
semi-log plot of probability of exceedance versus the quantile is presented., along with the 
approximation results obtained in Refs. [32,33] with first three integer PWM (IPWM) and 
fractional PWM (FPWM), which are denoted as IPWMQ  and FPWMQ , respectively, and explicitly 
expressed as follows   

( ) ( )2
IPWM exp 2.0011 2.2061 1.5813Q q q q= − + +   (24) 

( ) ( ) ( )( )1.9947 0.2162
FPWM 1.25exp 3.1778 2.1351 1 3.7477 1Q q q q= − − − −   (25) 

By using the proposed method in Section 3, the derivative of quantile function ( )MEMQ q′  is 
estimated by using the first three L-moments as 

( ) ( ) ( ) ( )( )MEM
1

0.9397 1 0.0870 1 0.3836 1 2 1
Q q

q u q u q q
′ =

− − − − − −
  (26) 

and the corresponding quantile function ( )MEMQ q  is obtained by integration using Eq. (19) with 

( )MEM 0 0Q =  and the result is also plotted in Fig. 3 denoted as MEMQ . It can be seen that the IPWMQ  
is unable to appropriate the tail of GPD when the probability of exceedance is smaller than 10-1, 
while FPWMQ  and MEMQ  have similar accuracy and can accurately estimate the tail of GPD till 
exceedance probability equals to 210− . However, since the Lagrangian multipliers and orders of 
fractional moments in FPWMQ  are obtained by solving a two-level nested optimization problem in 
Ref.[33], the result obtained by FPWMQ  may be sensitive to the initial guess of orders of fractional 
moments [23]. By contrast, the proposed method only need to solve a single convex optimization 
problem to obtain the unknown Lagragian multipliers which is easy to implement and can be 
solved efficiently by a nonlinear programming methods without sacrificing the accuracy. 
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Fig. 3 Estimation of quantile function of GPD 
5.2 Numerical example 1 

A roof truss example with six random variables and one nonlinear constraint in Ref. [23] is 
investigated. The RBDO problem is given as follows: 

[ ]
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d

 (27) 

where Ac and As are the cross-sectional areas of reinforced concrete bars and the steel bars, 
respectively, and the superscript 0 in  [ ]0c s,A A  represents the initial values of Ac and As; Ec and Es 
are Young’s modulus of concrete and steel, respectively; q is the uniformly distributed load, and l 
is the length of span of the roof truss; β  is the Hasofer-Lind and Rackwitz-Fiessle (HL-RF) 
reliability index and Φ  is the CDF of standard normal variable. The statistical properties of the 
random variables are tabulated in Table 2, in which DV means design variable. 

  
Table 2 Statistical information of random variables 

Variable q (N/m) l (m) Ac (m2) As (m2) Ec (Pa) Es (Pa) 
Distribution Normal Normal Normal Normal Normal Normal 

Mean 20000 12 DV DV 2×1010 1×1011 
Standard deviation 1400 0.12 4.8×10-3 5.892×10-5 1.2×109 6×109 
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Table 3 Results of different methods 

Method H-PMA H-SORA Ref. [23] Proposed 
Number of function calls 1495 1321 458 423 

Optimal value of 
design variable 

Ac (m2) 3.8358×10-2 3.8312×10-2 3.5702×10-2 3.5724×10-2 
As (m2) 1.0866×10-3 1.0893×10-3 1.1666×10-3 1.1672×10-3 

Optimal objective value 35.9785 35.9765 36.5889 36.6103 
MCSβ   2.90 2.90 2.99 3.00 

FORMβ  3.0105 3.0230 3.1558 3.1623 

  

According to Eq. (27) the failure probability of constraint function is 0.0013, and therefore the 
corresponding target probability for the quantile of constraint function is 0.9987. The results 
obtained by various methods in Ref. [23] and the proposed method are listed in Table 3, including 
the number of function calls. As can be seen from Table 3, because both H-PMA and H-SORA 
use first-order reliability method (FORM) for searching the most probable target point (MPTP), 
the constraint function is approximated by the first-order Taylor expansion to calculate the 
structural reliability and HF-RL reliability index which overestimates the real structural reliability 
index obtained by MCS in this example. Therefore, H-PMA and H-SORA converge to the similar 
result with MCS 2.90β =  which is less than the requirement in problem (27). On the other hand, the 
result obtained by the proposed method is close to the one obtained by Ref. [23] with slightly larger 
objective function value, and both of them have larger FORMβ  than the requirement. 

 
Fig. 4 Iteration history of objective function and 0.9987th quantile of constraint function 

 

The iteration histories of the objective function value and the quantile of the constraint function 
obtained by the proposed method are also shown in Fig. 4. It can be observed that the proposed 
method converges at iteration 5 and the total number of function evaluations is123 6 50 423+ × =  
with sample size 50 for evaluating the sample L-moments at iteration, where 123 is the number of 
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function evaluations in all processes of deterministic optimization. Compared to the results in Ref. 
[23], the total number of function evaluations of the proposed method is a little smaller than that 
in Ref. [23], while the method in Ref. [23] needs only 4 iterations for solving the optimization 
problem. The main reason would be that the method in Ref. [23] calculates the fractional moments 
using sparse grid numerical integration (SGNI) or univariate dimension-reduction method (UDRM) 
in which the number of sample points needed in the calculation is positively related to the number 
of random variables. For this example 97 samples are needed in each iteration to calculate the 
Laplace transform of PDF of constraint function with 6 random variables. On the other hand, in 
the proposed method, since the L-moments are calculated from observed samples, the number of 
sample points for each iteration is predefined and independent of the number of random variables. 
Therefore, although for problem (27) the proposed method needs more iterations to converge to 
the final result than that in Ref. [23], the total number of function evaluations are slightly smaller 
than that in Ref. [23], and this tendency is expected to become stronger when the number of 
random variables increases. 

 
5.3 Numerical example 2 

This example includes a 3×2 grid cantilever frame with 12 nodes and 27 members, and the 
initial structure is shown in Fig. 5. The structure is pin-supported at nodes 1, 2 and 3 and a 
downward vertical load F = 1000 kN is applied at node 11; therefore the fixed nodes for FDM are 
selected as nodes 1, 2, 3 and 11. Based on Eq. (3), the optimization problem is formulated to 
minimize the structural volume subject to reliability constraint on the downward vertical 
displacement of node 11. The optimization problem is formulated as 

( ) ( )( )
( ) ( )( )

11

free free

3
free free

Miminize , ,

subject to , , ; 3 10 m;  ;   R

W

Q −≤ × ≤ ≤ ≤ ≤

x t y t A

x t y t A θ t t t A A A
 (28) 

where W is the structural volume;
11RQ is the quantile of vertical displacement of node 11 with 

target probability R11=0.99. According to Eq. (21), the quantile-based SORA of problem (28) can 
be written as 

( ) ( )( )
( ) ( )( )

free free

3 1
11 free free 11

Miminize , ,

subject to , , 3 10 ;  ;  k

W

g c− +≤ × − ≤ ≤ ≤ ≤

x t y t A

x t y t A t t t A A A
 (29) 

where 11g  is the vertical displacement of node 11 without considering uncertainty, and 1
11
kc + is the 

shifting value on the upper bound of 11g  at the (k+1)th iteration. The optimization procedure 
converged at k=3, and the results at initial and final iterations are presented in Fig. 6. The structural 
volumes and quantiles 

11RQ of the results at initial and final iterations are listed in Table 4 in which 

the quantiles obtained by MCS with sample size MCSm  are listed in the parentheses, and the 
corresponding nodal locations, force densities, cross-sectional areas and member lengths are also 
given in Tables 5 and 6, respectively. As can be seen from Fig. 7 and Tables 4 -6, the results at the 
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initial and final iterations have similar shapes, however, the cross-sectional area of each member 
has increased before reaching the final iteration to satisfy the displacement constraint on node 11, 
leading to a larger structural volume and a smaller 

11RQ compared to the result at initial iteration.   

 

Fig. 5 Initial structure of example 2 

Moreover, the quantile functions of vertical displacement of node 11 obtained by MCS and 
MEM with sample L-moments are also given in Fig. 7 for both results at initial and final iterations. 
It can be observed from Fig. 7(a) and Table 4 that when uncertainty is taken into consideration for 
the result at the initial iteration, the probability of the vertical displacement of node 11 exceeding 
the upper bound 3×10-3m is about 0.8, which means the structure has low reliability. On the other 
hand, although the structural volume of result at final iteration increased about 7%, the reliability 
constraint on the vertical displacement of node 11 is satisfied, and the estimated quantile 

11RQ
using the proposed MEM is close to the one obtained by MCS where the relative error is around 
2% as shown in Fig. 7(b), indicating that the proposed method is able to estimate the quantile 
function with satisfactory accuracy. 

 

   (a)       (b) 

Fig. 6 Results of example 2 at: (a) initial iteration; (b) final iteration 
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    (a)       (b) 

Fig. 7 Quantile functions of vertical displacement of node 11 of example 2 at the results of: (a) 
initial iteration; (b) final iteration 

Table 4 Structural volumes and quantiles 
11RQ  of the results of numerical example 2 at the initial 

and final iterations 

Result Initial iteration Final iteration 
Structural volume (m3) 9.2167×10-2 9.8017×10-2 

11RQ  (m) 3.199×10-3 (3.175×10-3) 3.0×10-3 (2.973×10-3) 

 
Table 5 Location of nodes of the results of numerical example 2 at the initial and final iteration  

Node Initial iteration Final iteration 
x-coordinate (m) y-coordinate (m) x-coordinate (m) y-coordinate (m) 

1 0 0 0 0 
2 0 1 0 1 
3 0 2 0 2 
4 1.8857 0.3067 1.8852 0.3068 
5 1.5154 1.0144 1.5149 1.0144 
6 1.9414 1.6754 1.9409 1.6753 
7 2.2633 0.4784 2.2625 0.4787 
8 2.0518 0.3718 2.0511 0.3718 
9 2.9785 1.0144 2.9776 1.0148 
10 2.4708 0.6290 2.4701 0.6291 
11 3 1 3 1 
12 2.9785 0.9886 2.9777 0.9882 
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Table 6 Force densities, cross-sectional areas and member lengths of the results of numerical 
example 2 at the initial and final iterations  

Member  

Initial iteration Final iteration 
Force density 

(N/m) 
Cross-

sectional area 
(m2) 

Member 
length (m) 

Force density 
(N/m) 

Cross-
sectional area 

(m2) 

Member 
length (m) 

1 0.7491 0.0102 1.9104 0.7489 0.0109 1.9101 
2 1.3772 1.00×10-7 0.4148 1.3774 1.00×10-7 0.4146 
3 0.7021 3.59×10-7 0.2563 0.7021 1.00×10-7 0.2563 
4 0.3807 1.00×10-7 1.5155 0.3809 1.00×10-7 1.5150 
5 0.1951 0.00207 0.8370 0.1951 0.00218 0.8368 
6 0.7478 1.00×10-7 1.1373 0.7484 1.00×10-7 1.1379 
7 -0.7517 0.0100 1.9683 -0.7516 0.0107 1.9678 
8 -0.6716 0.00921 1.2298 -0.6720 0.00982 1.2293 
9 -0.2787 0.00452 0.0257 -0.2788 0.00484 0.0266 
10 0.2944 0.00218 0.7987 0.2942 0.00230 0.7986 
11 1.0208 3.93×10-7 0.2368 1.0210 3.95×10-7 0.2368 
12 0.3521 4.54×10-7 0.6462 0.3521 1.00×10-7 0.6467 
13 0.2404 0.00392 0.7864 0.2402 0.00417 0.7863 
14 -0.6716 1.00×10-7 1.1276 -0.6710 1.00×10-7 1.1277 
15 -2.4518 0.00517 0.0243 -2.4517 0.00555 0.0252 
16 0.2554 0.00609 1.8236 0.2553 0.00645 1.8232 
17 -0.4243 1.00×10-7 2.0091 -0.4243 1.00×10-7 2.0086 
18 1.2129 0.00977 0.1784 1.21291 0.0105 0.1782 
19 -0.1673 1.00×10-7 0.9201 -0.1657 1.00×10-7 0.9196 
20 0.6315 1.00×10-7 0.9026 0.6315 1.00×10-7 0.9031 
21 0.0970 1.00×10-7 0.4916 0.0973 1.00×10-7 0.4917 
22 0.3322 1.00×10-7 2.0555 0.3319 1.00×10-7 2.0550 
23 0.3549 0.00629 1.8077 0.3553 0.00667 1.8073 
24 0.8960 1.00×10-7 1.4630 0.8957 1.00×10-7 1.4627 
25 -0.1406 1.00×10-7 1.3083 -0.1404 1.00×10-7 1.3082 
26 -0.0568 0.00933 1.1132 -0.0589 0.00996 1.1128 
27 -0.3659 0.00506 0.02588 -0.3659 0.00542 0.0268 

 

To further investigate the effectiveness of introducing FDM into quantile-based SORA for 
shape and topology optimization of plane frame, the three nodes 9, 11 and 12 are combined to a 
single node, and members 2, 3, 4, 6, 11, 12, 14, 17, 19, 20, 21, 22, 24 and 25, which have very 
small cross-sectional areas, are removed from the structure to obtain a distinct structural shape and 
topology as shown in Fig. 8(a). The quantile functions of vertical displacement of node 7 obtained 
by MCS and MEM with sample L-moments are given in Fig. 8(b). The locations of nodes, cross-
sectional areas and member lengths after further modifications are listed in Tables 7 and 8, and the 
structural volumes, nominal values and quantiles of the displacement constraint functions before 
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and after further modification are also given in Table 10 for comparison, in which the quantiles 
obtained by MCS are listed in the parentheses. 

 

     

   (a)       (b) 

Fig. 8 Result of example 2 after further modification: (a) Optimal shape; (b) Quantile 
functions of vertical displacement of node 7 

Table 7 Location of nodes of optimal result of example 2 after further modification 

Node 1 2 3 4 5 6 7 
x-coordinate (m) 0 0 1.8852 1.5149 1.9409 2.0511 3 
y-coordinate (m) 0 2 0.3068 1.0144 1.6753 0.3718 1 

 

Table 8 Cross-sectional areas and member lengths of optimal result of example 2 after further 
modification 

Element Cross-sectional area (m2) Member length (m) Node 1 Node 2 
1 3 0.0109 1.9100 
4 6 0.00218 0.8368 
2 5 0.0107 1.9678 
5 7 0.00982 1.2293 
3 4 0.00230 0.7986 
4 5 0.00417 0.7863 
1 4 0.00645 1.8232 
3 6 0.0105 0.1782 
2 4 0.00667 1.8073 
6 7 0.00996 1.1128 
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Table 9 Structural volumes, quantiles and nominal values of constraints of example 2 before and 
after further modification 

Result Before modification After modification 
Structural volume (m3) 9.8017×10-2 9.8016×10-2 

Nominal value of constraint (m) 2.820×10-3 2.828×10-3 
Quantile of constraint (m) 3.0×10-3 (2.973×10-3) 2.932×10-3 (2.933 ×10-3) 

 

It can be observed from Table 9 that due to regularity of the stiffness matrix, the nominal value 
of the displacement constraint after modification is only slightly smaller than that before 
modification. This is because the removal of thin members from the structure results in a small 
decrease in structural volume and stiffness. However, the quantile after modification is smaller 
than that before modification, resulting in a structure with a little higher reliability than the 
requirement. The main reason for this result is that since the closely spaced nodes are merged to a 
single node and thin members are removed, only 7 nodes and 10 members are left in the distinct 
result as displayed in Fig. 8 (a) and Tables 3 and 4. Accordingly, the quantile of the stochastic 
displacement decreases a little after modification due to less uncertainty involved in the structure, 
indicating that by introducing the FDM into quantile-based SORA a feasible result can be obtained 
without melting nodes, and the feasibility still remains in the final distinct structure with no 
extremely thin members or closely space nodes. This way, an optimal shape with small numbers 
of nodes and members satisfying reliability constraint can easily be obtained by combining FDM 
and SORA method. 

 
5.4 Numerical example 3 

In the third numerical example, we investigate the optimal shape and topology of a bridge-
frame with a 6×1 grid where the 14 nodes are connected by 31 members, and the initial structure 
is shown in Fig. 9. The structure is pin-supported at node 1 and roller-supported at node 13. At 
each of the nodes 3, 5, 7, 9 and 11, a downward vertical load with magnitude 1000 kN is applied. 
Accordingly, these 7 nodes are considered as fixed nodes for shape optimization using FDM. 

 

Fig. 9 Initial structure of example 3 
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The optimization problem is to minimize the structural volume subject to constraints on the 
downward vertical displacements of nodes 3, 5, 7, 9 and 11, which should not exceed 3×10-3 m 
with target probability. Based on Eqs. (3) and (21), the original optimization problem and quantile-
based SORA problem can be formulated as 

( ) ( )( )
( ) ( )( )

free free

3
free free

Miminize , ,

subject to , , ; 3 10 m,  3,5,7,9,11;

                ;   
jR

W

Q j−≤ × =

≤ ≤ ≤ ≤

x t y t A

x t y t A θ

A A A t t t

 (30) 

( ) ( )( )
( ) ( )( )

free free

3 1
free free

Miminize , ,

subject to , , 3 10 ,  3,5,7,9,11;

                ;   

k
j j

W

g c j− +≤ × − =

≤ ≤ ≤ ≤

x t y t A

x t y t A

t t t A A A

 (31) 

where W is the structural volume; 
jRQ is the quantile of vertical displacement of node j with target 

probability Rj=0.99 (j=3, 5, 7, 9, 11); jg is the vertical displacement of node j without uncertainty, 

and 1k
jc +  is the shifting value on the upper bound of jg  at the (k+1)th iteration.  

 

        

(a)             (b) 

Fig. 10 Results of example 3 at: (a) initial iteration; (b) final iteration 

The optimization procedure converged at k=34, and the results at the initial and final iterations 
are shown in Fig. 10. Table 10 shows the structural volumes and quantiles of the results at initial 
and final iterations where the quantiles obtained by MCS are listed in the parentheses, and the 
corresponding locations of nodes, force densities, cross-sectional areas and member lengths of the 
results at initial and final iterations are listed in Tables 11 and 12, respectively. We can see from 
Fig. 10(a) and Tables 11 and 12 that the structure obtained at the initial iteration is unstable in 
horizontal direction if the bending stiffness is small, and therefore the quantiles of displacements 
of nodes 3, 5, 7, 9 and 11 are significantly larger than 3×10-3 m as shown in Table 10. The quantile 
functions of the displacements of these five nodes obtained by the proposed MEM and MCS are 
presented in Fig. 11(a) for the result at initial iteration, and it can be observed that the upper bound 
of the displacements 3×10-3 m only corresponds to the probability about 0.4 for these five quantile 
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functions, while the quantile functions obtained by the proposed MEM approximately fit those 
obtained by MCS. Moreover, the quantile 

7RQ  of node 7 is smaller than other quantiles 
jRQ of the 

other four nodes 3, 5, 9 and 11, which are indicated by the vertical line in Fig. 11(a). The main 
reason for this would be that node 7 is symmetrically connected by two thick horizontal members 
12 and 17 and one vertical member 16, making the nodal stiffness less sensitive to the asymmetric 
uncertainties.  

 
Table 10 Structural volumes and quantiles 

jRQ  of the results of numerical example 3 at the initial 

and final iterations  

Result Initial iteration Final iteration 
Structural volume (m3) 0.2728 0.3861 

3RQ  (m) 4.490×10-3 (4.516×10-3) 2.926×10-3 (2.840×10-3) 

5RQ  (m) 4.962×10-3 (4.625×10-3) 3.0×10-3 (2.954×10-3) 

7RQ  (m) 3.866×10-3 (3.988×10-3) 2.992×10-3 (2.908×10-3) 

9RQ  (m) 4.883×10-3 (4.606×10-3) 2.994×10-3 (2.936×10-3) 

11RQ  (m) 4.866×10-3 (4.502×10-3) 2.993×10-3 (2.974×10-3) 
 

Table 11 Location of nodes of the results of numerical example 3 at initial and final iterations 

Node Initial iteration Final iteration 
x-coordinate (m) y-coordinate (m) x-coordinate (m) y-coordinate (m) 

1 0 0 0 0 
2 0.00161 0.8611 0.0817 0.9028 
3 1 0 1 0 
4 0.7276 1.8660 1.0733 2.1766 
5 2 0 2 0 
6 1.3225 2.2903 2.6415 2.6477 
7 3 0 3 0 
8 3.0000 2.8149 3.4190 2.6472 
9 4 0 4 0 
10 4.6772 2.2904 5.0011 2.1695 
11 5 0 5 0 
12 5.2722 1.8662 5.9590 0.8813 
13 6 0 6 0 
14 5.9984 0.8611 5.7428 0.7927 

On the contrary, the result at the final iteration is stable in both vertical and horizontal 
directions due to the increase of cross-sectional areas of members 2 and 27 as shown in Fig. 10(b) 
and Tables 11 and 12, and its shape and topology are also changed rather than simply increasing 
the cross-sectional areas of the result at initial iteration as in example 1. Fig. 11(b) displays the 
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quantile functions of vertical displacements of nodes 3, 5, 7, 9 and 11 of the result at final iteration. 
We can see from Table 10 and Fig. 11(b) that the quantile functions obtained by the proposed 
MEM with sample L-moments are close to those obtained by MCS where the relative error is 
around 3%. The equality holds for the displacement constraint of node 5, while the constraints of 
other four nodes are also satisfied with slightly higher reliability than the requirement. 

 

Table 12 Force densities, cross-sectional areas and member lengths of the results of numerical 
example 3 at initial and final iterations 

Member  

Initial iteration Final iteration 
Force density 

(N/m) 
Cross-

sectional area 
(m2) 

Member 
length (m) 

Force density 
(N/m) 

Cross-
sectional area 

(m2) 

Member 
length (m) 

1 -4.2451 0.01950 0.8611 -8.0102 0.0200 0.9065 
2 -0.4437 1.00×10-7 1 -1.6791 0.005013 1 
3 0.6192 1.00×10-7 2.0029 2.1740 1.00×10-7 2.4269 
4 0.4073 0.01138 1.3184 -2.1750 0.01529 1.2878 
5 0.30179 0.01476 1.2397 0.3018 0.02 1.6143 
6 1.4748 1.00×10-7 1.8858 6.1282 1.00×10-7 2.1779 
7 0.6607 0.00854 1 2.3062 0.01335 1 
8 -0.9181 1.00×10-7 2.3129 -3.9185 1.00×10-7 3.1153 
9 1.5906 0.004665 2.2585 0.78232 0.01277 2.3657 
10 -0.1634 0.01388 0.7306 -0.1635 0.01931 1.6374 
11 -0.4086 0.00433 2.3884 4.0304 1.00×10-7 2.7243 
12 2.7744 0.01255 1 6.5428 0.01847 1 
13 -0.3667 1.00×10-7 2.9873 -4.2966 1.00×10-7 3.0036 
14 -0.0961 1.00×10-7 2.8389 2.1693 0.005614 2.6719 
15 -0.0376 0.01315 1.7576 -0.0375 0.01925 0.7775 
16 -0.06201 0.007858 2.8149 -4.9602 0.005586 2.6802 
17 1.5919 0.01255 1 1.6626 0.01834 1 
18 0.6089 1.00×10-7 2.8388 3.8661 1.00×10-7 2.9515 
19 -0.2899 1.00×10-7 2.9873 0.8785 1.00×10-7 2.7103 
20 0.2262 0.01314 1.7573 0.2263 0.01919 1.6526 
21 -0.7517 0.004327 2.3884 -2.6384 0.01302 2.3894 
22 -0.6006 0.008546 1 -4.9624 0.01254 1 
23 1.8957 0.004668 2.2586 4.9905 1.00×10-7 2.1482 
24 0.6664 1.00×10-7 2.3131 3.3449 1.00×10-7 2.1695 
25 -0.02156 0.01388 0.7307 -0.0215 0.0200 1.6053 
26 0.01296 1.00×10-7 1.8859 -1.2331 1.00×10-7 1.3025 
27 0.2494 1.00×10-7 1 1.0612 0.005001 1 
28 -0.6394 0.01138 1.3184 -6.5217 0.01441 1.0864 
29 -0.3378 1.00×10-7 2.0031 1.0221 0.0200 0.8823 
30 0.1868 0.01476 1.23999 0.1868 0.01251 0.2336 
31 -2.1711 0.01950 0.86109 -4.2898 0.006430 0.8334 
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       (a)               (b) 

Fig. 11 Quantile functions of vertical displacement of nodes 3, 5, 7, 9 and 11 of example 3 at the 
results of: (a) initial iteration; (b) final iteration 

Furthermore, Fig. 12 displays the iteration histories of the total structural volume, which is the 
objective function, and the maximum value of the five quantiles 

jRQ of the vertical displacements 

of nodes 3, 5, 7, 9 and 11 to illustrate how Eq. (6) prevents obtaining the conservative result. As 
shown in Figs. 10 and 12, since the result at initial iteration is unstable in y-direction when the 
bending stiffness is small, the maximum value of the five quantiles 

jRQ  at k=0 is about 0.49 and 

large shifting values would be applied to the upper bounds of constraints for the next iteration 
where an extremely narrow feasible domain is constructed. Therefore, it can be expected that the 
result at k=1 would have large structural volume to satisfy the constraints, and as displayed in Fig. 
12 the maximum value of the five quantiles 

jRQ  for k=1 is far less than 3×10-3m which indicates 

the result is highly reliable. In order to prevent obtaining such conservative result, the upper bounds 
of the constraints for the next iteration are relaxed by shifting values using Eq. (5), and we can see 
from Fig. 12 that the structural volume of the result at k=2 is reduced compared to that at k=1, but 
the maximum value of the five quantiles 

jRQ  also increases and exceeds 3×10-3m. Hence, the 

quantile-based SORA optimization procedure keeps going until Eq. (6) is reached, where the 
structural volume and the maximum value of the five quantiles 

jRQ increases and decreases 

alternatively. In this example the proposed method converged to the final result at k=34 with all 
the constraints are satisfied and at least one of them holds equality, however, the structural volume 
is significantly reduced compared to the result at k=1, showing that instead of obtaining a 
conservative result, a result with smaller objective value which satisfies all the reliability 
constraints can be found by using Eq. (6) as stopping criteria.   
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Fig. 12 Iteration histories of objective and maximum 0.99th quantile of constraints 

 
5.5 Numerical example 4 

The last example is an L-shape frame with 27 nodes and 72 members, and the initial shape is 
shown in Fig. 13(a). The structure is pin-supported at nodes 1, 2 and 3 and a downward vertical 
load F with magnitude 1000 kN is applied at node 25. Because the optimal result is expected to be 
an L-shape frame, node 15, as well as nodes 1, 2, 3 and 25, are classified as fixed nodes, and the 
remaining 22 nodes are free nodes in the process of shape optimization using FDM. Similarly, the 
optimization problem is to minimize the structural volume subject to displacement constraint on 
node 25. According to Eqs. (3) and (21), the original and SORA quantile-based optimization 
problems can be written as 
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where 
25RQ is the quantile of the vertical displacement of node 25 with target probability R25=0.99; 

25g  is the vertical displacement of node 25 without uncertainty; 1
25
kc +  is the shifting value on upper 

bound of 25g  at (k+1)th iteration. The quantile-based SORA optimization procedure converged at 
k=16, and the results of problem (34) at the initial and final iterations are displayed in Figs. 13(b) 
and (c), respectively. The structural volumes and quantiles 

25RQ at the results of initial and final 
iterations are listed in Table 13 where those obtained by MCS are shown within the parentheses, 
and the corresponding quantile functions are also shown in Fig. 14. The location of nodes of the 
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results at the initial and final iterations are listed in Table 14, and for simplicity the corresponding 
force densities, cross-sectional areas and member lengths of each member are not given for this 
example. 

Compared to the result at initial iteration, the shape of the result at final iteration has been 
changed a little and some of the members have increased their cross-sectional areas. It can be seen 
from Fig. 14 that the result at initial iteration is very unreliable since the probability of 
displacement of node 25 less than 3×10-3m is less than 0.1, indicating that the constraint would not 
be satisfied at most of the cases when uncertainty is considered. By contrast, for the result at final 
iteration the quantile 

25RQ  is equal to 3×10-3m, providing a more reliable structure with a slightly 
larger structural volume as listed in Table 13.  

 

     

        (a)            (b)             (c) 

Fig. 13 Initial structure and results of example 4; (a) initial structure, (b) result at initial iteration; 
(c) result at final iteration 
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           (a)                (b) 

Fig. 14 Quantile functions of vertical displacement of node 25 of example 4 at the results of: (a) 
initial iteration; (b) final iteration 

 

It should be noted that since the uncertainties in Eq. (34) involve randomness in x- and y-
coordinates of free nodes free∆x  and free∆y , and randomness in cross-sectional area ∆A  and Young’s 
modulus ∆E of each member, the total number of uncertainties is 22+22+72+72=188. However, 
in this example the number of samples for calculating sample L-moments are still limited to 50 
which is the same as in numerical examples 1-3, and the accuracy of quantile estimation is not 
influenced by the increase of total number of uncertainties. The main reason would be that in the 
proposed method the random structural response is regarded as one random variable, and its 
distribution is estimated using the sample L-moments which is less sensitive to the sample size, 
thus the estimation accuracy is not related to the number of uncertainties, whereas for surrogate 
model aided method one need to characterize the complicated relationship between input 
uncertainty and output random structural response, and the number of training samples will 
increase as the number of uncertainties increases in order to ensure the approximation accuracy[57]. 

 
Table 13 Structural volumes and quantiles 

25RQ  of the results of numerical example 4 at the 
initial and final iterations 

Result Initial iteration Final iteration 
Structural volume (m3) 0.6349 0.6957 

25RQ  (m) 3.187×10-3 (3.184×10-3) 3.0×10-3 (2.9×10-3) 
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Table 14 Location of nodes of the results of numerical example 4 at initial and final iterations 

Node Initial iteration Final iteration  
x-coordinate (m) y-coordinate (m) x-coordinate (m) y-coordinate (m) 

1 0 6 0 6 
2 1 6 1 6 
3 2 6 2 6 
4 0 5.2462 0 4.9501 
5 2 5.9986 1.9999 5.9999 
6 2 2.0829 2 2.1036 
7 0.00287 1.4283 0.000913 1.5532 
8 0.01077 1.4370 0.007133 1.5422 
9 2 2.0283 1.9999 2.0130 
10 0.6297 0.5246 0.2467 0.9546 
11 0.6291 0.5290 0.2512 0.9536 
12 2 2.0242 1.9999 2.0129 
13 1.1939 0.1333 0.8588 0.4783 
14 1.0796 0.1890 0.8413 0.3831 
15 2 2 2 2 
16 1.2319 0.1196 1.4423 0.0732 
17 1.1663 0.1487 1.2181 0.1557 
18 1.6500 0 1.9445 0 
19 1.2407 0.1189 1.4847 0.0971 
20 1.2395 0.1196 1.5026 0.0874 
21 1.5651 0.01673 1.9999 0 
22 2.8256 0.05215 2.8916 1.2369 
23 3.9923 0.9971 3.8782 0.9479 
24 2.0112 2 2.0186 2 
25 4 1 4 1 
26 3.1442 0.1853 3.2835 0.2584 
27 2.1322 2 2.1240 1.9999 

 

6 Conclusions 

In this paper a new quantile-based SORA method has been proposed for shape and topology 
optimization of plane frames. The shifting value on the upper bound of response is calculated in 
terms of quantile. The MEM is integrated to estimate the derivative of quantile function of the 
performance function in which the sample L-moments are used due to its less variability to the 
sample size. An unconstrained convex optimization problem is formulated and solved to determine 
the unknown Lagrangian multipliers. The quantile function can then be obtained by integrating the 
corresponding derivative. Because the derivative of quantile function will become infinity as the 
probability approaches 1, the quantile function is only obtained up to the probability of 0.9999 in 
order to avoid numerical difficulty in integration. Besides, the FDM is also introduced for shape 
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optimization to alleviate the difficulty caused by the existence of extremely short member. In order 
to prevent obtaining conservative result, the quantile-based SORA is considered convergent and 
stopped if all the constraints are satisfied and at least one of them holds equality. 

One benchmark example and four numerical examples have been presented to investigate and 
illustrate the effectiveness of the proposed method. In the benchmark example the quantile 
function of generalized Pareto distribution is estimated by the proposed MEM with L-moments, 
and other two estimation methods using integer and fractional PWM are also applied for 
comparison purpose. The result shows that the proposed MEM is more accurate than the method 
using integer PWM at the tail of distribution. Although the proposed method and the method using 
fractional PWM have similar estimation accuracy, the proposed method is easier to implement 
because it does not need to solve a double-loop optimization problem where the initial guess of 
the order of fractional moments has a great influence on the quantile approximation. 

Four numerical examples, including one mathematical problem and three structural 
optimization problems, have been presented to investigate the effectiveness of the proposed 
quantile-based SORA. The sample size for calculating the sample L-moments are all set to 50. In 
the mathematical problem, it is shown that the result obtained by the proposed method is close to 
the result in previous study with a slightly larger objective values, and the quantile function 
calculated by MCS can be estimated by the proposed MEM subject to the constraints on the first 
four sample L-moments without difficulty. It is interested to note that for traditional reliability-
based optimization using HL-RF index the transformation from non-normal random space to 
standard normal space will increase the nonlinearity in performance function. 

For the other three numerical examples of shape and topology optimization of plane frames, 
the optimization problem is formulated to minimize the structural volume subject to single or 
multiple displacement constraints. The uncertainty is considered in the x- and y-coordinates of free 
nodes and the cross-sectional area and Young’s modulus of each member, and the result satisfying 
the reliability constraint can be found by the proposed method. It is demonstrated in numerical 
example 3 that although the reliability constraints are all satisfied after the second iteration, the 
result is too reliable due to the large shifting value on the upper bounds of response. By contrast, 
for the result at the final iteration, one of the reliability constraints is satisfied with equality and 
the others with inequality and the structural volume is further reduced, indicating the effectiveness 
of the stopping criteria to prevent obtaining a conservative result. Moreover, in the example of L-
shape frame structure, the quantile function of the constraint can be also appropriately estimated 
by the proposed MEM with small sample size, while the total number of uncertainties has been 
significantly increased, indicating that the proposed method has the potential to deal with a high 
dimensional RBDO problem. 
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Appendix A: Proof for convexity of ( )Γ λ  

Consider the following function 
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( ) ( )
1

0
1 1

ln
n n

r r r r
r r

K u du hλ λ
= =

 Γ = − + 
 
∑ ∑∫λ  (A1) 

where the n variables are ( )1 2, , , nλ λ λ=λ 
; rh and rK ( )1, 2, ,r n= 

are n constants and 

polynomials with arbitrary orders, respectively. Obviously, the part 
1

n

r r
r

hλ
=
∑ is convex since it is a 

linear combination of variables, and the other part ( )
1

0
1

ln
n

r r
r

K u duλ
=

 −  
 
∑∫ is also convex which 

can be proven by using the following two operations [58].  

Operation 1: Suppose ( ),f uλ  is convex in λ  for each u∈Ω , and ( ) 0uω ≥  for each u∈Ω , 
then the function g defined as  

( ) ( ) ( ),g u f u duω
Ω

= ∫λ λ  (A2) 

is convex in λ . 

Operation 2: Suppose : ,n n mf R R A R ×→ ∈  , and nb R∈ . Define : mg R R→  by 

( ) ( )g f A b= +λ λ  (A3) 

with { }domain domain g A b f= + ∈λ λ  . Then if f is convex, so is g; if f is concave, so is g. 

Because the negative logarithmic function is convex, ( )
1

ln
n

r r
r

K uλ
=

 −  
 
∑  is convex for a 

specific value of u according to operation 2, and the integration ( )
1

0
1

ln
n

r r
r

K u duλ
=

 −  
 
∑∫ to u is also 

convex according to operation 1 as ( ) 1uω =  for [ ]0,1u∈ . Thus, Eq. (A1) is convex. 

 

Appendix B: Expressions of first four sample L-moments 

Let 1 2, , , mX X X  be the m samples of random variable X and 1: 2: :m m m mX X X≤ ≤ ≤  be the 
corresponding order statistics. The first four sample L-moments of X, denoted as 1l , 2l , 3l  and 

4l , respectively, can be calculated as 

1 :
1

1 m

i m
i

l X
m =

= ∑   (B-1) 
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2 : :
1 1

1 12
1

m m

i m i m
i i

il X X
m m= =

− = − − 
∑ ∑   (B-2) 

 

( )( )
( )( )3 : : :

1 1 1

1 21 16 6
1 2 1

m m m

i m i m i m
i i i

i i il X X X
m m m m= = =

 − − −
= − +  − − − 

∑ ∑ ∑  (B-3) 

( )( )( )
( )( )( )

( )( )
( )( )4 : : : :

1 1 1 1

1 2 3 1 21 120 30 12
1 2 3 1 2 1

m m m m

i m i m i m i m
i i i i

i i i i i il X X X X
m m m m m m m= = = =

 − − − − − −
= − + −  − − − − − − 

∑ ∑ ∑ ∑  

(B-4) 
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