
Received: Added at production Revised: Added at production Accepted: Added at production
DOI: xxx/xxxx

RESEARCH ARTICLE

Sequential sampling approach to energy-based multi-objective
design optimization of steel frames with correlated random
parameters

Bach Do* | Makoto Ohsaki

Department of Architecture and
Architectural Engineering, Graduate School
of Engineering, Kyoto University, Kyoto,
Japan
Correspondence
*Bach Do, Department of Architecture and
Architectural Engineering, Graduate School
of Engineering, Kyoto University, Kyoto-
Daigaku Katsura, Nishikyo, Kyoto 615-8540,
Japan. Email: se.do@archi.kyoto-u.ac.jp

Abstract

This work presents a novel sequential sampling approach to the multi-objective
reliability-based design optimization of moment-resisting steel frames subjected to
earthquake excitation. The optimization problem is formulated with two objective
functions, namely, the total mass and the energy dissipated by beam members of the
frame, and subject to uncorrelated probabilistic constraints on dynamic responses
under the effects of correlated random parameters of floor masses, external loads, and
material properties. The dynamic responses for a small number of designs are found
by nonlinear response history analysis and further approximated by Gaussian process
(GP) models to mitigate the computational burden during the optimization process.
Approximate solutions sorted among existing candidate solutions are updated after
each optimization iteration using discrete random local and global searches. The GP
models are also refined after each optimization iteration by specifying new sam-
pling points that lie on the Pareto front of a bi-objective deterministic maximization
problem formulated for the improvement in the current approximate solutions and
the feasibility of the new sampling points. As demonstrated in a test problem, the
new sampling points tend to distribute in the neighborhood of the exact solutions,
thereby underpinning a quick termination as well as the robustness of the proposed
method. Optimization results from the test problem and a design example show that
good approximate solutions are always obtained as the solution quality converges.
KEYWORDS:
sequential optimization, energy dissipation, probabilistic constraints, correlated random parameters,
multi-objective optimization, steel frames

1 INTRODUCTION

Inherent uncertainty in external loads and material properties has important effects on structural performance.1,2 Addressing
these effects to ensure structural safety is one of the main subjects of structural design codes.3,4 Each design code uses deter-
ministic safety measures of partial load and resistance factors for simultaneously amplifying the effects of uncertain external
loads on structural behavior and reducing the resistance capacity of structural members subjected to uncertain material proper-
ties. The goal is to produce a conservative design that is associated with a safety margin of the reduced resistance capacity and
the sum of amplified load effects. This design approach is particularly appealing because it allows practicing engineers to adopt
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a simple way for addressing the two ingredients of a safety measure simultaneously. However, it may suffer from lack of invari-
ability as different sets of partial factors can be found for a particular limit state.5 The design approach may also not address the
cost issues of a structure properly as it only manages the trade-off between safety and cost aspects in a general context for similar
structures6 rather than a rigorous reliability calculation for a particular structure. Thus, it is desirable to use a unified approach
integrating probabilistic safety measures and optimization algorithms for handling both the safety and cost issues of structures.

The literature provides three different methods for such a unified approach, namely, robust design optimization (RDO),7–12
reliability-based design optimization (RBDO),13–16 and risk-based optimization (RBO).17 These methods differs in how unfa-
vorable effects of uncertainty can be managed. The RDO commonly evaluates the sensitivity of uncertain structural responses
and uses this information for finding a design that is less sensitive at an acceptable cost. The RBDO seeks a minimum-cost design
that, under uncertainty, guarantees an allowable probability of occurring structural failures while ignoring the expected cost due
to these failures. Meanwhile, the RBO minimizes a total cost of structural and expected-failure costs. Although their formulations
are different, the three methods encounter the same difficulty in finding a good compromise between processing optimization
and propagating uncertainty. By focusing on solving a bi-objective RBDO problem of elastic-plastic moment-resisting steel
frames subjected to earthquake excitation, this study presents an efficient approach to resolving the aforementioned issue.

The RBDO problem is formulated with two objective functions, namely, the total mass and energy dissipated by beam mem-
bers of the frame. The goal is to find a minimum-cost design for maximum energy dissipation of the beams during earthquake
excitation.18 The problem is subject to uncorrelated probabilistic constraints on dynamic responses of the frame under the effects
of correlated random parameters of floor masses, external loads, and material properties. The dynamic responses of interest
are evaluated using nonlinear response history analysis (NRHA),19,20 thereby enabling an accurate simulation of the plastic
mechanism of the structure. To the authors’ knowledge, this is the first time the NRHA is used for seismic design considering
uncertainty as previous studies for such a design have only adopted nonlinear static pushover analysis.21–23 The NRHA, however,
increases the complexity of the RBDO problem. Thus, it a pressing need for devising a new optimization strategy that keeps the
advantages of the NRHA while reducing the computational cost due to incorporating uncertainty propagation into optimization.

Solving the bi-objective RBDO problem encounters the following five difficulties. First, the dynamic responses for evaluat-
ing the uncertain energy dissipation of the beams and the probabilistic constraints are highly nonlinear and implicit within the
NRHA program. Therefore, it is computationally intractable to guide the optimization process by direct evaluations of these
responses. Second, it is very difficult to find exact solutions to the RBDO problem considered in this study because its fea-
sible space defined by the probability function is intrinsically nonconvex. Existing approaches, such as scenario and convex
approximation approaches, can solve the problem approximately with special forms of the probabilistic constraint functions.24
Third, calculating the failure probabilities of the probabilistic constraints suffers from inherent drawbacks of conventional reli-
ability analysis methods, for example, poor performance of the first- and second-order reliability methods25 when handling
highly nonlinear limit state functions (LSFs) or the curse of dimensionality when using the Monte-Carlo simulation (MCS)
for high-dimensional problems. Fourth, it is computationally expensive to evaluate the expected value of the uncertain energy
dissipation of the beams. Although the MCS, polynomial chaos expansion,26 and Monte-Carlo integration27 can carry out this
task, they are all subject to the curse of dimensionality that requires many calls of the NRHA for a reliable expected value. The
Bayes-Hermite quadrature28 and Taylor series approximation29 can also be used with respective restrictions that the random
parameters are independent and normally distributed and the energy dissipation function should be differentiable with respect
to the random parameters. Finally, even though adaptive approaches using surrogate models have solved complex RBDO prob-
lems effectively,30 the discrete and multi-objective nature of the RBDO problem in this study may hinder the application of
these approaches.

To address the above difficulties, this work proposes a sequential sampling approach whose main features are as follows:
1. The dynamic responses for a small number of designs are evaluated using the NRHA. The corresponding uncertain LSFs

are then approximated by Gaussian process (GP) models for carrying out the optimization process. These GP models
make easy use of the MCS for evaluating expected value of the uncertain dissipation energy of the beams as well as the
probabilistic constraints of the RBDO problem.

2. Approximate solutions to the bi-objective RBDO problem sorted from existing candidate solutions are strategically
updated after each optimization iteration. The updated candidate solutions consist of the available candidates and new
candidates generated by performing discrete random local and global searches.

3. The GP models for the uncertain LSFs are refined after each optimization iteration by specifying a batch of new sampling
points that lie on the Pareto front of a bi-objective deterministic maximization problem formulated for addressing the
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FIGURE 1 Modified IK deterioration model for semi-rigid rotational springs: (a) monotonic curve; (b) basic modes for cyclic
deterioration (Adapted from Ref.31).

improvement in the current solutions and the feasibility of the new sampling points simultaneously. This refinement
scheme differs from those of other sequential optimization methods, such as Bayesian optimization12 or a sequential
method by the authors,16 where only one new sampling point is specified after each optimization iteration. As will be
demonstrated in a test problem, the new sampling points tend to distribute in the neighborhood of exact solutions, leading
to the robustness of the refinement scheme as well as a quick termination of the optimization process.

The remainder of this paper progresses as follows. Section 2 formulates the bi-objective RBDO problem, followed by the
selection of recorded ground motions in Section 3. Section 4 details the proposed optimization method. Its performance is care-
fully verified against a simple bi-objective RBDO problem of a two-bar truss in Section 5. Section 6 uses the proposed method
for solving the RBDO problem of a planar moment-resisting steel frame. Finally, Section 7 concludes this paper. Appendix
provides the mathematical foundation of the GP model.

2 ENERGY-BASED DESIGN OPTIMIZATION PROBLEM OF MOMENT-RESISTING
STEEL FRAMES

Consider a moment-resisting steel frame subjected to vertical and earthquake loads. The frame is designed according to the
capacity-design principle, by which the structural components are classified into dissipative and non-dissipative members. The
dissipative members, through their inelastic deformations, are primarily responsible for dissipating seismic energy. The failure
of these members must occur prior to that of the non-dissipative members to prevent brittle collapse of the whole structure. As
beam members of the frame serve as the dissipative members,20 they are expected to experience large inelastic deformations
during the earthquake.

This section first describes the evaluation of energy dissipated by the beams using their internal force-deformation histories
from the NRHA. It then formulates the bi-objective RBDO problem for the frame based on the evaluated energy.

2.1 Dissipation energy of beam members
The energy balance equation of the multi-degree-of-freedom system for the frame during the earthquake excitation gives32

𝐸𝑡
k + 𝐸𝑡

d + 𝐸𝑡
p = 𝐸𝑡

i (1)
where 𝐸𝑡

k, 𝐸𝑡
d, 𝐸𝑡

p, and 𝐸𝑡
i represent the kinetic, damping, dissipation, and input energies at a time instant 𝑡, respectively.

𝐸𝑡
p including recoverable-elastic strain and irrecoverable-plastic energies of all structural members can be evaluated based on

the force-deformation histories of these members. When the elastoplastic behavior of each member is simulated using an elastic
beam-column element in the middle and two semi-rigid rotational springs with hysteretic properties at the member ends,33 𝐸𝑡

pcan be directly derived from moment-rotation histories of these springs.
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The cyclic behavior of the rotational springs may follow a bilinear hysteretic response incorporated in the modified Ibarra
Krawinkler (IK) deterioration model, as depicted in Figure 1.31 This model provides strength bounds for the spring using a
monotonic curve and a cyclic damage rule that captures the deterioration of the bounds as the cyclic excursion accumulates.
The monotonic curve is characterized by three strength parameters and four deformation parameters. Three strength parameters
include (1) the effective yield moment 𝑀y, equal to 1.1 times the plastic moment of the section obtained from plastic section
modulus and the material yield strength 𝜎y;31 (2) the capping moment strength 𝑀c, described by a post-yield strength ratio
𝑀c∕𝑀y; and (3) the residual moment 𝑀r, defined by a residual strength ratio 𝜅, i.e., 𝑀r = 𝜅𝑀y. Four deformation parameters
consist of (1) the yield rotation 𝜃y; (2) the pre-capping plastic rotation for monotonic loading 𝜃p; (3) the post-capping plastic
rotation 𝜃pc; and (4) the ultimate rotation capacity 𝜃u, assigned as 0.06 rad.23,31

Let 𝐸r = 𝜆𝑀y denote a reference hysteretic energy dissipation capacity of each spring, where 𝜆 is the so-called reference
cumulative rotation capacity. The rate of cyclic deterioration of the spring in the current excursion can be expressed as a function
of 𝐸r, the hysteretic energy dissipated in the current excursion, and the total energy dissipated in past excursions. Detailed
expression for such a cyclic deterioration rate can be found in the seminal work by Lignos and Krawinkler.31

As the energy dissipated by the mentioned beam-column element is primarily due to flexure, the dissipation energy of the 𝑖th
beam and that of the 𝑖th column at time 𝑡, denoted as 𝐸𝑡

pb,𝑖 and 𝐸𝑡
pc,𝑖, can be evaluated using the following discrete expressions.

𝐸𝑡
pb,𝑖 = 𝐸𝑡−Δ𝑡

pb,𝑖 +
𝑀 𝑡

b1,𝑖 +𝑀 𝑡−Δ𝑡
b1,𝑖

2
Δ𝜃b1,𝑖 +

𝑀 𝑡
b2,𝑖 +𝑀 𝑡−Δ𝑡

b2,𝑖
2

Δ𝜃b2,𝑖 (2)

𝐸𝑡
pc,𝑖 = 𝐸𝑡−Δ𝑡

pc,𝑖 +
𝑀 𝑡

c1,𝑖 +𝑀 𝑡−Δ𝑡
c1,𝑖

2
Δ𝜃c1,𝑖 +

𝑀 𝑡
c2,𝑖 +𝑀 𝑡−Δ𝑡

c2,𝑖
2

Δ𝜃c2,𝑖 (3)
where 𝑡−Δ𝑡 and 𝑡 denote two consecutive time instants; 𝑀b(c)1 and 𝑀b(c)2 stand for internal moments of the first (1) and second
(2) semi-rigid rotational springs of the beam (column) element, respectively; and Δ𝜃b(c)1(2),𝑖 = 𝜃𝑡b(c)1(2),𝑖 − 𝜃𝑡−Δ𝑡b(c)1(2),𝑖 with 𝜃b(c)1
and 𝜃b(c)2 represent rotation angles of the first (1) and second (2) rotational springs of the beam (column) element, respectively.

Let 𝐸pb and 𝐸pc represent the energies dissipated by 𝑛b beams and 𝑛c columns of the frame at the end of the earthquake,
respectively. The dissipation energy ratio of the beams reads

𝛽 = 𝐸pb∕
(

𝐸pb + 𝐸pc
)

=
𝑛b
∑

𝑖=1
𝐸pb,𝑖∕

( 𝑛b
∑

𝑖=1
𝐸pb,𝑖 +

𝑛c
∑

𝑗=1
𝐸pc,𝑗

)

(4)

2.2 Formulation of the RBDO problem
Let s = [𝑠1, ..., 𝑠𝑑1]

𝑇 ⊂ ℕ𝑑1 be a 𝑑1-dimensional vector of discrete design variables of the frame, and r = [𝑟1, ..., 𝑟𝑑2]
𝑇 ⊂ ℝ𝑑2

be a 𝑑2-dimensional vector of continuous random parameters of floor masses, vertical loads, and material properties. Each
element of s corresponds to a section number in a list of American wide-flange steel sections, i.e., 𝑠𝑘 ∈ 𝑘 (𝑘 = 1,… , 𝑑1),
while probabilistic characteristics of r are described by the marginal probability density functions (PDFs), or equivalently, the
cumulative distribution functions (CDFs) of its elements. The elements of r correlate with each other according to a given
correlation matrix.

The RBDO problem is formulated for the frame to optimize the steel section of its members considering its total mass and
the dissipation energy of the beams. The first objective function associated with the total mass of the frame reads

𝑓1(s) =
𝑛e
∑

𝑖=1
𝜌𝑖𝐿𝑖∕𝑚max (5)

where 𝐿𝑖, 𝜌𝑖, and 𝑛e denote the length of the 𝑖th member, nominal mass [kg/m] of the steel section of the 𝑖th member, and the
number of members, respectively; and 𝑚max is the maximum value of the total mass. Possible values of 𝑓1(s) range from 0 to 1.

The second objective function corresponds to the expected dissipation energy ratio of all beam members as given in
Equation (4). For a minimization problem, this objective function is formulated with the minus sign as

𝑓2(s) = −𝔼[𝛽(s, r)] (6)
where 𝔼[⋅] represents the mean of [⋅] with respect to r. As 0 < 𝛽(s, r) < 1, 𝑓2(s) ranges from −1 to 0. When using a total
of 𝑛g ground motions for the design, which are assumed to have the same duration, 𝛽(s, r) is defined as the mean value of the
dissipation energy ratios for these motions.
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To ensure the frame remains intact during the earthquake, the maximum inter-story drift and maximum plastic rotation of
the member ends are limited by some thresholds. Conventionally, plastic deformations are not allowed for the columns. This
study, however, allows the columns to have minor plastifications because minimizing their dissipation energy is consistent with
maximizing the dissipation energy of the beams. Let 𝛿(s, r), 𝜑(s, r), and 𝜔(s, r) denote uncertain LSFs corresponding to the
absolute maximum of the inter-story drift ratios, absolute maximum of the beam-end plastic rotations, and absolute maximum of
the column-end plastic rotations during the earthquake, respectively; and 𝛿a, 𝜑a, and 𝜔a be the respective allowable thresholds.
Accordingly, the LSFs corresponding to the inter-story drift and member-end plastic rotations read

𝛿(s, r) = max
(

|𝛿1|,… , |𝛿𝑛s |
)

∕𝛿a − 1 (7)
𝜑(s, r) = max

(

|𝜑1|,… , |𝜑2𝑛b |
)

∕𝜑a − 1 (8)
𝜔(s, r) = max

(

|𝜔1|,… , |𝜔2𝑛c |
)

∕𝜔a − 1 (9)
where 𝛿𝑖 is the inter-story drift ratio of the 𝑖th story, defined as the ratio of the story drift to the corresponding story height; and
𝑛s represents the number of stories. The inter-story drift ratio, beam-end rotation, and column-end rotation at a particular time
instant are evaluated as the mean value of the corresponding responses for 𝑛g ground motions.

To ensure a column or a beam member can sustain the plastic moment without exhibiting local buckling, the width-thickness
ratio of all plates composing the steel section of that member should be constrained. In accordance with Chapter B of AISC
360-16,3 the following two constraints are applied to the web and flange plates of the section of each member, respectively.

𝑔1(s) =
𝑑 − 2𝑡f
𝑡w

− 3.76

√

𝔼[𝐸]
𝔼[𝜎y]

≤ 0 (10)

𝑔2(s) =
𝑏
2𝑡f

− 0.38

√

𝔼[𝐸]
𝔼[𝜎y]

≤ 0 (11)

where 𝑑, 𝑏, 𝑡f, and 𝑡w are the height, flange width, flange thickness, and web thickness, respectively; and 𝐸 and 𝜎y are Young’s
modulus and initial yield stress of the steel material, respectively.

Furthermore, a total of 𝐽 constructional constraints 𝑙𝑗(s) ≤ 0, 𝑗 = 1,… , 𝐽 , are imposed at beam-column connections and
column-column joints. The goal is to ensure (1) the flange width of a beam connected to a column is less than or equal to the
flange width of the column and (2) the depth of the column section in the upper story should not exceed that in the lower story.

Using the above objective and constraint functions, the bi-objective RBDO problem formulated for the frame to optimize its
total mass and the dissipation energy of its beams can be stated as follows:

min
s

.
[

𝑓1(s), 𝑓2(s)
]

subject to ℙ [𝛿(s, r) ≤ 0] ≥ 1 − 𝜖1
ℙ [𝜑(s, r) ≤ 0] ≥ 1 − 𝜖2
ℙ [𝜔(s, r) ≤ 0] ≥ 1 − 𝜖3
𝑔𝑖(s) ≤ 0, 𝑖 = 1, ..2𝑑1
𝑙𝑗(s) ≤ 0, 𝑗 = 1, ..𝐽
𝑠𝑖 ∈ 𝑖, 𝑖 = 1, ..𝑑1

(12)

where ℙ[⋅] denotes the probability of occurring [⋅] with respect to r; and 𝜖1, 𝜖2, and 𝜖3 are acceptable risk levels, supported on
(0, 1) and specified by the designer. As a connection to current design codes, these risk levels can be derived from corresponding
target reliability values specified in each design code. The problem is limited to element reliability as the frame is not functional
if one of the individual probabilistic constraints is violated.

Moving the left-side terms of the probabilistic constraints in problem (12) to the right side and let
𝛿(s) = 1 − 𝜖1 − ℙ [𝛿(s, r) ≤ 0)] (13)
𝜑(s) = 1 − 𝜖2 − ℙ [𝜑(s, r) ≤ 0)] (14)
𝜔(s) = 1 − 𝜖3 − ℙ [𝜔(s, r) ≤ 0)] (15)
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Thus, problem (12) can be rewritten as
min

s
.

[

𝑓1(s), 𝑓2(s)
]

subject to 𝛿(s) ≤ 0, 𝜑(s) ≤ 0, 𝜔(s) ≤ 0
𝑔𝑖(s) ≤ 0, 𝑖 = 1, ..2𝑑1
𝑙𝑗(s) ≤ 0, 𝑗 = 1, ..𝐽
𝑠𝑖 ∈ 𝑖, 𝑖 = 1, ..𝑑1

(16)

Exact Pareto-optimal solutions to problem (16) are difficult to obtain because 𝑓2(s), 𝛿(s), 𝜑(s), and 𝜔(s) are nonlinear, non-
convex, and implicit within the NRHA program. A new optimization strategy, therefore, is proposed for solving the problem
approximately.

3 DESIGN RESPONSE SPECTRUM AND SCALING RECORDED GROUND MOTIONS

According to ASCE 7-16,4 the design spectral response acceleration 𝑆a can be evaluated using the risk-targeted maximum
considered earthquake (MCER). The MCER is constructed based on the uniform-hazard (2% in 50-year) ground motions, which
underline the ASCE 7-16 MCER ground motion maps. Let 𝑆S and 𝑆1 denote the mapped MCER, 5%-damped, spectral response
acceleration parameters at short periods and at a period of 1 s, respectively. Design values of 𝑆S and 𝑆1, denoted as 𝑆DS and
𝑆D1, are determined as4

𝑆DS = 2
3
𝐹a𝑆S, 𝑆D1 = 2

3
𝐹v𝑆1 (17)

where 𝐹a and 𝐹v are two coefficients considering the site soil properties.
Once 𝑆DS and 𝑆D1 are obtained, 𝑆a reads4

𝑆a =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑆DS
(

0.4 + 0.6𝑇 ∕𝑇0
) if 𝑇 ≤ 𝑇0

𝑆DS if 𝑇0 < 𝑇 ≤ 𝑇s
𝑆D1∕𝑇 if 𝑇s < 𝑇 ≤ 𝑇L
𝑆D1𝑇L∕𝑇 2 if 𝑇 > 𝑇L

(18)

where 𝑇 denotes the fundamental natural period of the structure; 𝑇0 = 0.2𝑆D1∕𝑆DS; 𝑇s = 𝑆D1∕𝑆DS; and 𝑇L is the long-period
transition period.4

When different recorded earthquake ground motions are used for the design, they should be scaled such that the mean of 5%-
damped response spectra for the scaled motions is not less than the design MCER spectrum over the period range of 0.2𝑇−1.5𝑇 .4
For the frame design in this study, a total of six recorded earthquake ground motions are selected from the Pacific Earthquake
Engineering Research Center (PEERC) database,34 as listed in Table 1. The acceleration spectra of the selected ground motions
are scaled to simulate the target MCER acceleration spectrum using a scaling procedure by Reyes and Kalkan.35 The design
acceleration time histories of the selected motions are then evaluated by multiplying the recorded acceleration time histories by
the corresponding scale factors.

4 SOLUTION APPROACH

4.1 Generating correlated random parameters
The vector of random parameters r = [𝑟1, ..., 𝑟𝑑2]

𝑇 is described by the marginal PDFs or CDFs of its elements, i.e., 𝑝𝑟𝑖(𝑟𝑖)or 𝐹𝑟𝑖(𝑟𝑖), respectively. The correlations between these elements are characterized by the correlation matrix 𝚺r. The goal is to
generate a finite number of r samples for processing the optimization.

Let c = [𝑐1, ..., 𝑐𝑑2]
𝑇 ∼  (𝟎,𝚺r) denote a 𝑑2-variate Gaussian vector in a standardized space, respectively. Samples of c can

be generated using the built-in MATLAB function normrnd.36 It is also trivial to evaluate the CDF for each sample 𝑐𝑖, denoted
as 𝐹𝑐𝑖(𝑐𝑖), because 𝑐𝑖 follows a standard Gaussian, i.e., 𝑐𝑖 ∼  (0, 1).

Suppose there exists an iso-probabilistic mapping that transforms the physical space of r into the standardized space of c.
This mapping preserves the CDFs at two corresponding points 𝑟𝑖 and 𝑐𝑖, i.e., 𝐹𝑟𝑖(𝑟𝑖) = 𝐹𝑐𝑖(𝑐𝑖). Thus, the random samples of 𝑟𝑖
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TABLE 1 Six selected ground motions.34

ID Event Year Station Magnitude Fault normal component
PGA [g] PGV [cm/s] PGD [cm]

1 Imperial Valley-06 1979 Delta 6.53 0.6 63.6 30.8
2 Loma Prieta 1989 Gilroy Array ≠ 4 6.93 1.0 100.8 32.5
3 Northridge-01 1994 Canoga Park 6.69 0.8 132.2 56.7
4 Kobe Japan 1995 Kakogawa 6.90 0.5 39.2 12.8
5 Kobe Japan 1995 Shin-Osaka 6.90 0.6 89.9 26.3
6 Chi-Chi Taiwan 1991 CHY036 7.62 0.9 101.0 47.8

PGA = peak ground acceleration, PGV = peak ground velocity, PGD = peak ground displacement

can be generated by
𝑟𝑖 = 𝐹 −1

𝑟𝑖

(

𝐹𝑐𝑖(𝑐𝑖)
) (19)

where 𝐹 −1
𝑟𝑖

(⋅) denotes the inverse CDF function with respect to 𝑟𝑖. It is worth noting that Equation (19) is applicable to any
distributions of r and can also be used for generating samples of uncorrelated random parameters.

4.2 Proposed sequential optimization approach
4.2.1 Approximate uncertain objective and probabilistic constraint functions
As the first step of solving problem (16), 𝛽(s, r), 𝛿(s, r), 𝜑(s, r), and 𝜔(s, r) are approximated by the corresponding GP models
trained based upon a finite number of sampling points. To do so, a training dataset  = {X, y} = {x𝑖, 𝑦𝑖}𝑁𝑖=1 is generated, where
x𝑖 = [s𝑇𝑖 , r

𝑇
𝑖 ]

𝑇 ∈ ℝ𝑑 (𝑑 = 𝑑1 + 𝑑2) are 𝑑-dimensional vectors of uncertain input variables, and 𝑦𝑖 ∈ ℝ are the corresponding
outputs (𝛽𝑖, 𝛿𝑖, 𝜑𝑖, or 𝜔𝑖). The number of initial training samples 𝑁 depends on the number of input variables 𝑑, for example,
𝑁 ≥ 15𝑑.12 Samples of s and r are generated using Latin-hypercube sampling (LHS) and Equation (19), respectively. Integer
samples of s are determined by rounding the corresponding real samples by LHS to the nearest integers. Each sample x𝑖 then
serves as an input to the NRHA for evaluating the corresponding dynamic responses of interest. The samples that provide non-
positive values of the LSFs 𝛿(s, r), 𝜑(s, r), and 𝜔(s, r) are retained in  as 𝑁 feasible training samples, which are used for
constructing the GP models.

A GP model establishes the relationship between the uncertain input variables x = [s𝑇 , r𝑇 ]𝑇 and the corresponding uncertain
output 𝑦 using the mapping 𝑦 = �̂�(x) ∶ ℝ𝑑 → ℝ, where �̂�(x) is a Gaussian conditioned on . Therefore, the GP models for
𝛽(s, r), 𝛿(s, r), 𝜑(s, r), and 𝜔(s, r) at each realization of the input variable vector are the Gaussians 𝛽(s, r), 𝛿(s, r), �̂�(s, r), and
�̂�(s, r), respectively. The mean and variance characterizing each of these GP models, for example, 𝜇𝛿(s,r) and 𝜎2

𝛿(s,r)
of 𝛿(s, r),

follow Equations (A8) and (A9), respectively.

4.2.2 Sorting approximate Pareto-optimal solutions
Let Ωa denote the existing candidate solutions that are the samples of  at the beginning of the optimization process and
are enriched after each optimization iteration, which is discussed later. Among the members of Ωa, a non-dominated sorting
approach37 seeks a set of approximate Pareto-optimal solutions to problem (16) once 𝛽(s, r), 𝛿(s, r), �̂�(s, r), and �̂�(s, r) have
been developed. In this way, 𝑓2(s), 𝛿(s), 𝜑(s), and 𝜔(s) for each member of Ωa can be evaluated through the MCS using the
mean functions of the corresponding GP models, such that

𝑓2(s) = −𝔼 [𝛽(s, r)] ≈ − 1
𝑛r

𝑛r
∑

𝑖=1
𝜇𝛽(s,r𝑖) (20)

𝑔(s) = 1 − 𝜖1(2,3) − ℙ [𝑔(s, r) ≤ 0] ≈ 1 − 𝜖1(2,3) −
1
𝑛r

𝑛r
∑

𝑖=1
𝕀[𝜇�̂�(s,r𝑖) ≤ 0] (21)

where 𝑔(s) is either 𝛿(s), 𝜑(s), or 𝜔(s); 𝑛r is the number of r realizations; and 𝕀[⋅] = 1 if [⋅] is true and 𝕀[⋅] = 0 otherwise. Parallel
computing is also carried out to speed up the solution-sorting process.
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FIGURE 2 Examples of the HV and HVI with two objective functions: (a) HV; (b) HVI.

4.2.3 Next sampling points of discrete design variables
As the current approximate solutions to problem (16) are found based on the GP models 𝛽(s, r), 𝛿(s, r), �̂�(s, r), and �̂�(s, r), it is
desirable to update these solutions by sequentially specifying a promising region of the input variables in which the current solu-
tions and the accuracy of the current GP models are deemed to be improved. It follows that the input variable vectors belonging
to such a promising region should have the following three properties: (1) they improve the current solutions considerably; (2)
they have a high chance for being feasible solutions to problem (16); and (3) they do not appear in the current training dataset.
As the input variable space consists of the spaces of the discrete design variables s and continuous random parameters r, it is
natural to divide the exploration of the promising region into two phases.12 The first phase, discussed in this section, specifies
new sampling vectors of s, denoted as sn, which are responsible for the three aforementioned properties. The second phase,
discussed in the next section, determines new sampling vectors of r, denoted as rn, for addressing the third property.

To improve the current solutions, a hypervolume-based approach by Do et al.12 is adopted in this study. LetΩ =
{

f1, ..., f𝑀
}

∈
ℝ𝑘 and fR ∈ ℝ𝑘 denote the current set of 𝑀 approximate Pareto-optimal solutions in a space of 𝑘 objective functions and a
fixed reference point dominated by all elements of Ω, respectively. Each element of fR may be assigned as the maximum of
the corresponding objective function. Ω and fR together define a confined space surrounded by them called hypervolume (HV)
indicator measure,38 which is depicted in Figure 2(a) as an area between a set of four solutions to a bi-objective minimization
problem and a reference point dominated by these solutions. In essence, the HV is a Lebesgue measure of the 𝑘-dimensional
subspace dominated by Ω and bounded above by fR, as

HV(Ω, fR) = Λ
({

f ∈ ℝ𝑘 ∣ ∃f𝑚 ∈ Ω ∶ f𝑚 ⪯ f and f ⪯ fR
}) (22)

where Λ(⋅) denotes the Lebesgue measure; f is a point in the 𝑘-dimensional space of the objective functions; and f𝑚 ⪯ f
indicates f𝑚 dominates f. The HV in this study is evaluated using a sampling technique incorporated in the MATLAB function
hypervolume.39

The field of multi-objective design commonly uses the HV to compare different sets of candidate solutions to a multi-objective
optimization problem. For two arbitrary sets of solutions, the set with larger HV is better than the other one. Therefore, if each
of the new sampling points sn improves the current approximate solutions, the union of the corresponding objective function
vector f and Ω should form a new HV greater than that of the current Ω. This improvement is incorporated in the following
hypervolume improvement indicator (HVI).12

HVI(f ∣ Ω, fR) = HV(f ∪ Ω, fR) − HV(Ω, fR) (23)
where f ∪ Ω denotes the union of f and Ω. Figure 2(b) shows an example of the HVI for an objective function vector f and a set
of four solutions to a bi-objective minimization problem. The HVI should be maximized for a major improvement in the current
HV.

Another important requirement for the vectors sn is that they should have a high chance to become feasible solutions to
the problem (16). Accordingly, sn must satisfy the deterministic constraints of problem (12) and belong to a region in which
𝛿(s), 𝜑(s), and 𝜔(s) are minimized simultaneously. In other words, ℙ [𝛿(s, r) ≤ 0], ℙ [𝜑(s, r) ≤ 0], and ℙ [𝜔(s, r) ≤ 0] should be



B. Do & M. Ohsaki 9

simultaneously maximized, which is further transformed to maximizing the following feasibility indicator (FI).
FI(s) = ℙ [𝛿(s, r) ≤ 0]ℙ [𝜑(s, r) ≤ 0]ℙ [𝜔(s, r) ≤ 0] (24)

where FI is formulated from the fact that 𝛿(s), 𝜑(s), and 𝜔(s) are uncorrelated, and ℙ [𝛿(s, r) ≤ 0], ℙ [𝜑(s, r) ≤ 0], and
ℙ [𝜔(s, r) ≤ 0] always take positive values. The FI conflicts with the HVI as its maximizer tends to minimize the HV. It, therefore,
is rational to formulate a bi-objective deterministic maximization problem for managing these conflicting criteria.

The last property of the promising region requires that the vectors sn do not belong to the current training dataset . Thus, sn
can be specified after each optimization iteration by solving the following bi-objective deterministic maximization problem.

sn = argmax
s∉

[HVI(f ∣ Ω, fR),FI(s)]

subject to 𝑔𝑖(s) ≤ 0, 𝑖 = 1, ..2𝑑1
𝑙𝑗(s) ≤ 0, 𝑗 = 1, ..𝐽
𝑠𝑖 ∈ 𝑖, 𝑖 = 1, ..𝑑1

(25)

Problem (25) is solved using a non-dominated sorting genetic algorithm (NSGA-II).37 Parameters characterizing NSGA-II
including the population size, maximum number of generations, crossover fraction, tolerance for the objective and constraint
functions are 2000, 100, 80%, and 10−6, respectively. Since exact values of FI at sn are not important for solving problem (16),
problem (25) can be solved quickly by using a saddlepoint approximation16 for reasonable estimations of the probabilities
incorporated in the FI rather than using the MCS. Solutions to problem (25) are then added to the current training dataset  and
the set Ωa for updating the current GP models and for sorting the solutions in the next optimization iteration, respectively.

4.2.4 Next sampling points of correlated random parameters
Once sn have been found, the new sampling points rn of the correlated random parameters are specified accordingly. As pre-
viously mentioned, the vectors rn address the last property of the promising region. Thus, they are randomly generated using
Equation (19) so that they do not belong to the current training dataset . The number of rn equals that of sn.

4.2.5 Enrichment of the existing candidate solutions
The set Ωa of the existing candidate solutions is enriched before starting a new optimization iteration. The enriched Ωa consists
of three different groups of the discrete candidate solutions s. The first group includes the samples of the updated training dataset
 because it is rational to expect that the new sampling points sn, which improve the solution quality, become the solutions
to problem (16). The second group consists of the new candidates generated by performing a total of 𝑘1 random perturbations
(in the design variable space) surrounding each of the current approximate Pareto-optimal solutions of the set Ω, which can
be regarded as performing discrete local searches. Each perturbation randomly increases or decreases each integer element of
every approximate Pareto-optimal solution by an integer value, such as 1, 2, 3, or 4.12 Therefore, the random perturbations set an
expectation that some improvement in the solutions may be achieved through the discrete local searches in the design variable
space of the current solutions even though the neighborhood in this space differs from that in the objective function space. With
the same expectation for the solution improvement, the third group consists of a total of 𝑘2 new candidates generated uniformly
over the design domain, which can be regarded as performing discrete global searches.

4.3 Optimization procedure
Figure 3 summarizes the proposed optimization procedure for solving problem (16). Accordingly, the following six steps are
executed sequentially and incorporated into an in-house MATLAB function.

• Step 1: Generate samples of s and r. Then, create the training dataset  by performing the NRHA for each sample.
• Step 2: Construct GP models to approximate 𝛽(s, r), 𝛿(s, r), 𝜑(s, r), and 𝜔(s, r).
• Step 3: Sort the approximate Pareto-optimal solutions among the existing candidate solutions of the set Ωa.
• Step 4: Terminate the optimization process and output the approximate Pareto-optimal solutions if one of the following

stopping criteria is satisfied: (1) the number of optimization iterations reaches an upper limit 𝑡u specified the designer and
(2) the relative difference of the HVs at the current and previous iterations is less than or equal to a small positive value
𝛼. Otherwise, proceed to Step 5.
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FIGURE 3 Proposed optimization procedure.
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FIGURE 4 Two-bar truss.

• Step 5: Find new sampling points sn and rn. If no new sampling point is found, i.e., problem (25) has no solution, terminate
the optimization process. Otherwise, enrich Ωa and go to Step 6.

• Step 6: Evaluate the LSFs of interest for sn and rn found in Step 5 using the NRHA; update  and the current GP models
for 𝛽(s, r), 𝛿(s, r), 𝜑(s, r), and 𝜔(s, r); and reiterate from Step 3.

5 TEST PROBLEM

To carefully assess its performance, the proposed optimization method is used for optimizing a two-bar truss as shown in
Figure 4, which is taken from Do et al.12. Two design variables of the truss are the cross-sectional area 𝑠1 of its members and
the horizontal span 𝑠2, i.e., s = [𝑠1, 𝑠2]𝑇 . The random parameters consist of the magnitude of the external load 𝑃 , the mass
density 𝜌 and yield stress 𝜎y of the truss material, i.e., r = [𝜌, 𝑃 , 𝜎y]𝑇 . They are assumed to be uncorrelated in this case as
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TABLE 2 Random parameters for the two-bar truss.12

Parameter Description Mean COV Distribution
𝜌 Mass density [kg/m3] 104 0.20 Lognormal
𝑃 External load [kN] 800 0.25 Lognormal
𝜎y Yield stress [MPa] 1050 0.24 Normal

(a) (b)
 

  FIGURE 5 Histories of the optimization process for solving the two-bar truss with 𝜖𝑖 = 0.1: (a) HV; (b) objective functions.

(a) (b)
 

  FIGURE 6 Histories of the optimization process for solving the two-bar truss with 𝜖𝑖 = 0.05: (a) HV; (b) objective functions.

their correlation coefficients are set as 0. Probabilistic characteristics of r are provided in Table 2, where COV stands for the
coefficient of variation of the parameter.

A bi-objective RBDO problem whose formulation is similar to that of problem (12) or (16) is formulated for the truss. The
mean and standard deviation of the total mass of the truss are considered as two objective functions, while the probabilistic
constraints are associated with the axial stress in the truss members.12 Let 𝑓1(s, r) indicate the total mass of the truss, 𝑓11(s) =
𝔼
[

𝑓1(s, r)
] and 𝑓12(s) =

√

var[𝑓1(s, r)
] represent the mean and standard deviation of 𝑓1(s, r), respectively. Also, let 𝑔1(s, r) and

𝑔2(s, r) denote the LSFs corresponding to the axial stress in the truss members. For simplification, 𝑔1(s, r) and 𝑔2(s, r) do not
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(a) (b)

(c)
 

  FIGURE 7 Histories of specifying new sampling points of the design variables for the two-bar truss with 𝜖𝑖 = 0.1: (a) 1st
attempt; (b) 2nd attempt; (c) 3rd attempt.

account for the self-weight of the truss. Thus, the bi-objective RBDO problem of the truss is stated as follows:
min

s
.

[

𝑓11(s), 𝑓12(s)
]

subject to ℙ
[

𝑔1(s, r) ≤ 0
]

≥ 1 − 𝜖1
ℙ
[

𝑔2(s, r) ≤ 0
]

≥ 1 − 𝜖2
𝑠1 ∈ 1 = {1.0, 1.5,… , 20.0}cm2

𝑠2 ∈ 2 = {0.1, 0.15,… , 2.0}m

(26)

where 1 and 2 are design sets for selecting 𝑠1 and 𝑠2, respectively, and

𝑓1(s, r) =
10−4𝜌𝑠1

√

1 + 𝑠22
𝑚max

(27)

𝑔1(s, r) =
5𝑃

√

65𝑠1𝜎y

√

1 + 𝑠22

(

8 + 1
𝑠2

)

− 1 (28)

𝑔2(s, r) =
5𝑃

√

65𝑠1𝜎y

√

1 + 𝑠22

(

8 − 1
𝑠2

)

− 1 (29)

Here 𝑚max = 45 kg is the maximum nominal mass of the truss.
As 𝑓1(s, r) is a linear function of 𝜌, 𝑓11(s) can be derived as 𝑓11(s) =

(

𝔼[𝜌]∕
√var[𝜌]

)

𝑓12(s) = 5𝑓12(s). Therefore, the set of
Pareto-optimal solutions to problem (26) has only one solution.
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(a) (b)

(c)
 

  FIGURE 8 Histories of specifying new sampling points of the design variables for the two-bar truss with 𝜖𝑖 = 0.05: (a) 1st
attempt; (b) 2nd attempt; (c) 3rd attempt.

To examine the robustness of the proposed method, three different training datasets are generated for processing optimization
of the truss. The first, second, and third training datasets having 50, 100, and 200 samples of the input variables, respectively, are
used for calculating 𝑓1(s, r), 𝑔1(s, r), and 𝑔2(s, r). However, only 34, 69, and 143 samples offering non-positive values of 𝑓1(s, r),
𝑔1(s, r), and 𝑔2(s, r) serve as the feasible training samples. To develop the GP models for 𝑓1(s, r), 𝑔1(s, r), and 𝑔2(s, r), the DACE
toolbox40 is used together with a first-degree-polynomial mean function; see Appendix. It is desirable to validate the accuracy
of the GP models against a test dataset if only one set of the models is used throughout the optimization process. However,
it is not necessary to do so in this study because the GP models are updated sequentially during the optimization process. In
the proposed optimization method, the accuracy of the GP models is refined intelligently in the promising region of the input
variable space and therefore, the improvement in the solutions indicates the improvement in the GP models in such a region.

Problem (26) is solved for two risk levels 𝜖𝑖 = 0.1 and 0.05 (𝑖 = 1, 2). For each risk level, the optimization process is carried
out three times corresponding to the three training datasets. In each optimization iteration, the MCS uses 𝑛r = 4 × 104 samples
of r for evaluating the objective and probabilistic constraint functions. To update Ωa, set 𝑘1 = 100 and 𝑘2 = 500. The reference
point is specified as fR = [1, 0.2]𝑇 . The stopping criteria include 𝑡u = 20 iterations and 𝛼 = 10−9.

Figures 5 and 6 show histories of the optimization process for 𝜖𝑖 = 0.1 and 0.05, respectively. Although the evolution of the
HV and that of the objective functions for the three optimization trials of each risk level follow different patterns due to the use of
different training datasets, the optimization process is still able to quickly terminate and provides a unique solution. The designs
of the truss for 𝜖𝑖 = 0.1 and 0.05 are s = [8.5, 0.4]𝑇 and [10.0, 0.4]𝑇 , respectively. The maximum computational times required
for 𝜖𝑖 = 0.1 and 0.05 are 5257 and 4058 s using an Intel(R) i7-1165G7 2.80 GHz CPU and 8.0 GB memory, respectively.
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(a) (b)
 

FIGURE 9 Comparison of optimization results for the two-bar truss by the proposed method and by Bayesian optimization: (a)
𝜖𝑖 = 0.1; (b) 𝜖𝑖 = 0.05.

TABLE 3 Comparison of optimization results for the two-bar truss.

Variable/objective 𝜖1 = 𝜖2 = 0.1 𝜖1 = 𝜖2 = 0.05

1st 2nd 3rd Exact 1st 2nd 3rd Exact
𝑠1 [cm2] 8.5 8.5 8.5 8.5 10.0 10.0 10.0 10.0
𝑠2 [m] 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40
𝑓11 0.2034 0.2001 0.2034 0.2033 0.2393 0.2393 0.2394 0.2397
𝑓12 0.0407 0.0400 0.0407 0.0407 0.0479 0.0479 0.0479 0.0480

Figures 7 and 8 provide histories of specifying the new sampling points sn during the optimization process for 𝜖𝑖 = 0.1
and 0.05, respectively. As is clear, the new sampling points sn tend to distribute in the neighborhood of the exact solution to
problem (27), leading to quick termination of the optimization process as observed.

To further verify the obtained designs, exact solution to problem (26) is found for each risk level. Since both 1 and 1 have 39
elements, a total of 39×39 = 1521 possible designs can be specified for the truss. A total of 105 samples of r are also generated
for evaluating 𝑓11(s), 𝑓12(s), ℙ

[

𝑔1(s, r) ≤ 0
], and ℙ

[

𝑔2(s, r) ≤ 0
] associated with each design. In this way, the exact solution can

be sorted for each risk level. Table 3 indicates a good agreement between the designs by the proposed method and the exact ones.
Furthermore, the performance of the proposed method is compared with that of a Bayesian optimization method.12 Figure 9
shows that the proposed method outperforms the Bayesian optimization in terms of the numbers of optimization iterations and
generated feasible solutions.

6 DESIGN EXAMPLE

This section investigates a six-story two-bay frame as shown in Figure 10(a). The frame is considered as a lateral load resisting
system for a residential building. The site soil is assumed to be stiff as the property of site class D according to ASCE 7-
16.4 Parameters for the mapped MCER, 5%-damped, spectral response acceleration involve 𝑇S = 1.250g and 𝑆1 = 0.4g. The
long-period transition period is 𝑇L = 10 s.

The design ground motions are evaluated using an upper bound value of the fundamental natural period of the frame 𝑇 = 1.2
s, which is derived from equation (12.8-7) of ASCE 7-16.4 Once the preliminary design of the frame is specified, the nominal
value of its fundamental natural period can be evaluated and that should not exceed 1.2 s.
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  FIGURE 10 Six-story two-bay frame (a) and its finite element model (b).

ID  Event Scale factor

1  Imperial Valley-06 1.187

2  Loma Prieta 0.930

3  Northridge-01 0.921

4  Kobe Japan (Kakogawa) 0.859

5  Kobe Japan (Shin-Osaka) 0.879

6  Chi-Chi Taiwan 1.108

 

FIGURE 11 Comparison of the mean, 5%-damped response spectrum of scaled ground motions with ASCE 7-MCER spectrum.
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TABLE 4 List of sections of columns and beams for the frame.

ID Column 1,…,6 𝜌1,…,6 Beam 7,8,9 𝜌7,8,9
[kg/m] [kg/m]

1 W16×77 114.0 W24×55 82.0
2 W16×67 100.0 W21×57 85.0
3 W14×82 122.0 W21×55 82.0
4 W14×74 110.0 W21×50 74.0
5 W14×68 101.0 W18×65 97.0
6 W14×61 91.0 W18×60 89.0
7 W14×53 79.0 W18×40 60.0
8 W14×48 72.0 W18×35 52.0
9 W12×58 86.0 W16×57 85.0
10 W12×53 79.0 W16×50 75.0
11 W12×50 74.0 W16×45 67.0
12 W12×45 67.0 W16×40 60.0
13 W10×54 80.0 W14×61 91.0
14 W10×49 73.0 W14×53 79.0
15 W10×45 67.0 W14×48 72.0
16 W8×40 59.0 W14×38 57.8
17 W8×35 52.0 W14×34 51.0
18 W8×31 46.1 W14×30 44.0

TABLE 5 Random parameters for the frame.

Parameter Description Mean COV Distribution
𝑞 Distributed mass [t/m] 3.06 0.20 Normal
𝐹 Gravity load [kN] 500 0.10 Normal
𝐸 Young’s modulus [GPa] 200 0.04 Normal
𝜎y Yield stress [MPa] 262.50 0.06 Normal
𝜃p Pre-capping plastic rotation [rad] 0.022 0.27 Lognormal∗
𝜃pc Post-capping plastic rotation [rad] 0.17 0.35 Lognormal∗
𝜃u Ultimate rotation capacity [rad] 0.06 − −
𝜆 Reference cumulative rotation capacity [rad] 1.10 0.44 Lognormal∗
𝑀c∕𝑀y Post-yield strength ratio 1.11 0.05 Normal
𝜅 Residual strength ratio 0.40 0.10 Normal

* Mean and standard deviation of logarithmic value

The scale factor for each selected ground motion in Table 1 and the associated scaled acceleration spectrum are given in
Figure 11. The design acceleration history of each ground motion is determined by multiplying the recorded acceleration history
by the corresponding scale factor.

6.1 Numerical model
The frame has 30 members classified into six column groups, i.e., groups (1) to (6), and three beam groups, i.e., groups (7), (8),
and (9). Possible steel sections for the members in each group are given in Table 4.

The OpenSees41 is used to develop a numerical model for the frame, as shown in Figure 10(b). In this model, a leaning
column with gravity load 𝐹 is linked to the frame at each floor by a rigid truss element to account for P-Δ effects, where 𝐹
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TABLE 6 Correlation coefficients for the random parameters23.

𝐸 𝜎y 𝜃p 𝜃pc 𝜆

𝐸 1.00 0.71 0 0 0
𝜎y 0.71 1.00 0 0 0
𝜃p 0 0 1.00 0.69 0.44
𝜃pc 0 0 0.69 1.00 0.67
𝜆 0 0 0.44 0.67 1.00

(a) (b)
 

FIGURE 12 Histories of the HVs by different optimization trials for the frame with two risk levels: (a) 𝜖𝑖 = 0.1; (b) 𝜖𝑖 = 0.05.

TABLE 7 Comparisons of the energy dissipation ratios of beam members and the uncertain constraints between different
selected designs of the frame.

Design Objective or constraint 𝜖1 = 𝜖2 = 𝜖3 = 0.1 𝜖1 = 𝜖2 = 𝜖3 = 0.05

Proposed method NRHA Proposed method NRHA
s1

𝑓2(s1) 0.808 0.819 0.806 0.808
𝛿(s1), 𝜑(s1), 𝜔(s1) −0.1 −0.1 −0.05 −0.05

s2
𝑓2(s2) 0.847 0.854 0.844 0.859

𝛿(s2), 𝜑(s2), 𝜔(s2) −0.1 −0.1 −0.05 −0.05

vertically acts on a generic floor of the building for producing overturning action and secondary internal forces to the frame
members through the inter-story drift. The leaning column is modeled using a rigid elastic beam-column element connected by
two rotational springs with very small rotational stiffness. Also, geometric nonlinearity is considered in structural analysis.

The distributed mass 𝑞 from the floor acting on each beam member is divided into two equal parts assigned to the end nodes
of the element; see Figure 10(b). The mass of each structural member is also assigned to the end nodes of the corresponding
element. Thus, the lumped masses 𝑚1 and 𝑚2 in the earthquake direction, as depicted in Figure 10(b), are derived from the
masses of the connecting structural members, 𝑞, and 𝐹 . The probabilistic characteristics of 𝑞 and 𝐹 are assumed as provided
in Table 5. Furthermore, the Rayleigh damping matrix is formulated based on a linear combination of the mass and stiffness
matrices. The damping coefficients are calculated by using 5% damping ratio for the first two modes of the frame. The stiffness
damping coefficient due to the use of the elastic beam-column element with rotational springs at both ends is also modified
according to Equation (9) of the work by Zareian and Medina.33 The time increment for the NRHA is 0.01 s.
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(a) (b)

(c)
 

  FIGURE 13 Histories of approximate Pareto-optimal solutions for the frame with 𝜖𝑖 = 0.1: (a) 1st attempt; (b) 2nd attempt; (c)
Comparison of solutions by the two attempts and the reference ones.

6.2 Random parameters for deterioration model
As described in Section 2.1, the material properties for the modified IK deterioration model include the Young’s modulus 𝐸;
the yield stress 𝜎y; the rotation capacities 𝜃p, 𝜃pc, and 𝜃u ; the reference cumulative rotation capacity 𝜆; and the strength ratios
𝑀c∕𝑀y and 𝜅. The yield rotation 𝜃y is directly evaluated from 𝐸, 𝜎y, and the section modulus. The probabilistic characteristics
of these material parameters and their correlations are taken from the works by Lignos and Krawinkler31 and Liu et al.23, as
listed in Tables 5 and 6, respectively.

6.3 Optimization results
Problem (16) is formulated for the frame with two risk levels 𝜖𝑖 = 0.1 and 0.05 (𝑖 = 1, 2, 3). The limit of the inter-story drift ratios
is 𝛿a = 2%. The allowable plastic rotation angles for the columns and beams are assigned as 𝜑a = 0.002 rad and 𝜔a = 0.015
rad, respectively. The objective function 𝑓1 for the frame is

𝑓1(s) =
15𝜌1 + 14(𝜌2 + 𝜌3) + 7.5𝜌4 + 7(𝜌5 + 𝜌6) + 18(𝜌7 + 𝜌8 + 𝜌9)

𝑚max
(30)

where 𝜌𝑖 (𝑖 = 1,… , 9) and 𝑚max = 13107 kg are selected and derived from the list of sections in Table 4, respectively.
Two different training datasets are generated for performing the optimization process. The first and second datasets having

500 and 1000 feasible sampling points of the input variables, respectively, are used as inputs of the NRHA for evaluating 𝛽(s, r),
𝛿(s, r), 𝜑(s, r), and 𝜔(s, r).

For each risk level, the optimization process is performed two times corresponding to the two training datasets using a PC
with an Intel(R) Xeon(R) E5-2643V4 3.40 GHz CPU and 64 GB memory. 𝑓2(s), 𝛿(s), 𝜑(s), and 𝜔(s) are evaluated for each
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(a) (b)

(c)
 

  FIGURE 14 Histories of approximate Pareto-optimal solutions for the frame with 𝜖𝑖 = 0.05: (a) 1st attempt; (b) 2nd attempt;
(c) Comparison of solutions by the two attempts and the reference ones.

candidate solution using a total of 𝑛r = 4 × 104 samples of r. To update Ωa, 𝑘1 and 𝑘2 are set as 200 and 1000, respectively.
The reference point and stopping criteria for the optimization process are fR = [1, 0]𝑇 , 𝑡u = 20 iterations, and 𝛼 = 10−9,
respectively. Furthermore, the obtained solutions are compared with reference solutions that are found by performing NSGA-II
without sequential framework and with the GP models for 𝛽(s, r), 𝛿(s, r), 𝜑(s, r), and 𝜔(s, r) constructed based upon a total of
1000 training samples and the probabilistic constraints evaluated using the saddlepoint approximation.16

Figures 12(a) and (b) show the HV histories by the two optimization trials for 𝜖𝑖 = 0.1 and 0.05, respectively. The HVs are
considerably improved in the very first optimization iterations and gradually increased in the later ones. For each risk level,
the final HV corresponding to the second training dataset is slightly greater than that associated with the first one. Notably, the
approximate Pareto-optimal solutions are always found for each risk level as the corresponding HV converges.

Figures 13 and 14 compare the obtained solutions by the two optimization trials for 𝜖𝑖 = 0.1 and 0.05, respectively. It is
clear that the solution quality is guaranteed to improve after each optimization iteration. The Pareto fronts for each risk level by
the two optimization trials are different due to the use of different initial training datasets and the randomness of the proposed
optimization method. However, the Pareto front can be improved by taking the union of solutions by both trials, as shown in
Figures 13(c) and 14(c). More interestingly, the obtained solutions for each risk level completely dominate the corresponding
reference solutions, which highlights the importance of the proposed refinement scheme. For 𝜖𝑖 = 0.1, the numbers of solutions
by the first and second optimization trials are 45 and 69, respectively, and those for 𝜖𝑖 = 0.05 are 43 and 82, respectively. The
computational times required for the first and second trials with 𝜖𝑖 = 0.1 are 8.22 and 12.03 hours, respectively, and those with
𝜖𝑖 = 0.05 are 9.88 and 16.52 hours, respectively.

As it is impossible to find the global solutions to problem (16), it is not known whether the solutions obtained by the proposed
method are the best optimal ones. Here, the proposed method can only provide the best solutions for a particular setting of
the initial training dataset and tuning parameters because the solutions are always found when their quality can no longer be
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improved. This is analogous with gradient-based algorithms in the field of structural optimization, which are always guaranteed
to converge to a local solution. It, therefore, is desirable to perform optimization several times with different settings of the
algorithm so that the best solutions among those from the attempts can be found.

6.4 Selection of preliminary design
From the Pareto front for each risk level, the solution with maximum energy dissipation ratio of the beams is assigned as the
preliminary design of the frame. In this way, the designs corresponding to the first and second optimization trials for 𝜖𝑖 =
0.1 are s1 = [2, 6, 6, 1, 2, 4, 18, 8, 18]𝑇 and s2 = [2, 2, 3, 3, 5, 12, 15, 17, 18]𝑇 , respectively, and those for 𝜖𝑖 = 0.05 are s1 =
[2, 9, 9, 3, 6, 6, 18, 8, 18]𝑇 and s2 = [2, 2, 3, 4, 4, 11, 15, 18, 18]𝑇 , respectively.

To verify the feasibility of these designs, the nominal fundamental natural period, mean of the energy dissipation of the
beams, and uncertain LSFs corresponding to each design are evaluated using the NRHA with 1000 samples of r. As a result, the
nominal fundamental natural period values corresponding to s1 and s2 for 𝜖𝑖 = 0.1 are 1.04 and 1.08 s, respectively, and those for
𝜖𝑖 = 0.05 are 1.09 and 1.09 s, respectively, which are all less than 1.2 s. The expected energy dissipation ratio of the beams and
uncertain constraint functions associated with each design by the proposed method agree with those evaluated by the NRHA,
as shown in Table 7. The preliminary designs are feasible as the corresponding probabilistic constraints provide safety margins.

7 CONCLUSIONS

A novel sequential sampling approach has been presented for solving a discrete bi-objective RBDO problem of moment-resisting
steel frames subjected to earthquake excitation. The problem is formulated to optimize the total mass of the frame and energy
dissipation of the beam members under unfavorable effects of correlated random parameters of floor masses, external loads, and
material properties. The probabilities of exceeding allowable values of both the maximum inter-story drift and the rotational
angles of the structural members are constrained, while the compactness of the steel sections is required for fully sustaining
plastic deformations. Main conclusions of this work are summarized as follows:

1. Approximations of the dynamic responses using the corresponding GP models facilitate solving the bi-objective RBDO
problem of the frame, which may be computationally intractable if the NRHA is directly used for uncertainty propagation.

2. A quick termination and the robustness of the proposed method arise from the fact that the new sampling points of the
design variables to refine the accuracy of the GP models tend to distribute in the neighborhood of the exact solutions to
the RBDO problem. In other words, the bi-objective deterministic maximization problem formulated for specifying the
new sampling points of the proposed refinement scheme is suitable for sequentially solving the RBDO problem.

3. The approximate solutions to the RBDO problem are always found once their quality can no longer be improved, regardless
of using a very small number of 10−9 as the termination condition on the change in the solution quality and considering
the maximum number of optimization iterations as another stopping criterion for the proposed method.

A nontrivial extension to this study is to incorporate uncertainty in the earthquake ground motions and damping ratio into the
design optimization process. The serviceability, repairability, and ultimate limit state verifications should be carried out for the
frame under different seismic intensities. An optimization problem formulated for both correlated and uncorrelated probabilistic
constraints on different collapse mechanisms may also be the focus of future work so that system reliability of the structure can
be assessed.

The proposed optimization method can be extended to solving either continuous multi-objective or discrete/continuous single-
objective RBDO problems. For continuous multi-objective RBDO problems, Gaussian local searches42 may be employed for
enrichment of the existing candidate solutions instead of the random perturbations as presented in this study. For discrete/con-
tinuous single-objective RBDO problems, the so-called expected improvement criterion43 may be a viable choice to replace the
HVI in problem (25).
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APPENDIX

A GAUSSIAN PROCESS

Consider the training dataset  = {X, y} = {x𝑖, 𝑦𝑖}𝑁𝑖=1, where x𝑖 = [s𝑇𝑖 , r
𝑇
𝑖 ]

𝑇 ∈ ℝ𝑑 (𝑑 = 𝑑1 + 𝑑2) and 𝑦𝑖 ∈ ℝ. The relationship
between x and 𝑦 is described by 𝑦 = �̂�(x) ∶ ℝ𝑑 → ℝ, where �̂�(x) is a Gaussian conditioned on .

A GP assumes that any finite subset of an infinite set of the output variables 𝑦𝑖 has a joint Gaussian distribution.44 Thus, for
𝑁 input variable vectors X = {x1,… , x𝑁}, the distribution of the corresponding output variables y = {𝑦1,… , 𝑦𝑁} follows

⎡

⎢

⎢

⎣

𝑦1
⋮
𝑦𝑁

⎤

⎥
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⎦

∼ 𝑁
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⎝

⎡
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𝑚(x1)
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𝑚(x𝑁 )

⎤

⎥

⎥

⎦

,
⎡

⎢

⎢

⎣

𝑘(x1, x1) ⋯ 𝑘(x1, x𝑁 )
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𝑘(x𝑁 , x1) ⋯ 𝑘(x𝑁 , x𝑁 )

⎤

⎥

⎥
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⎞

⎟

⎟

⎠

(A1)

where 𝑁 denotes an 𝑁-variate Gaussian, and 𝑚(x) and 𝑘(x, x′) are the mean and covariance kernel functions, respectively.
𝑘(x, x′) defined for any pair of x and x′ measures the similarity between 𝑦 = �̂�(x) and 𝑦 = �̂�(x′), such that

𝑘(x, x′) = 𝔼
[(

�̂�(x) − 𝑚(x)
)(

�̂�(x′) − 𝑚(x′)
)] (A2)

The following Gaussian kernel function is used in this study.
𝑘(x, x′) = exp

(

−
(x − x′)𝑇 (x − x′)

2𝑙2

)

(A3)
where 𝑙 denotes the characteristic length-scale parameter, determined by using the maximum likelihood estimation of .44

Once 𝑙 has been found, one wishes to predict the output value 𝑦∗ for a new input variable vector x∗, i.e., 𝑦∗|y = �̂�(x∗), using
the information in Equation (A1). As the GP’s nature, the joint PDF of 𝑦∗ and y also follows a Gaussian, as

[

𝑦∗

y

]

∼ 𝑁+1

([

𝑚(x∗)
m(X)

]

,
[

𝑘(x∗, x∗) K(x∗,X)
K(x∗,X)𝑇 K(X,X)

])

(A4)
where m(X) = [𝑚(x1),… , 𝑚(x𝑁 )]𝑇 and

K(x∗,X) =
[

𝑘(x∗, x1),… , 𝑘(x∗, x𝑁 )
] (A5)

K(X,X) =
⎡

⎢

⎢

⎣

𝑘(x1, x1) ⋯ 𝑘(x1, x𝑁 )
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𝑘(x𝑁 , x1) ⋯ 𝑘(x𝑁 , x𝑁 )

⎤

⎥

⎥

⎦

(A6)

Therefore, the PDF of the conditional Gaussian 𝑦∗|y = �̂�(x∗) can be derived from Equation (A4) using the standard conditioning
rule, such that

𝑦∗|y = �̂�(x∗) ∼ 
(

𝜇𝑦∗(x∗), 𝜎2
𝑦∗(x

∗)
)

(A7)
where

𝜇𝑦∗(x∗) = 𝑚(x∗) + K(x∗,X)K(X,X)−1 (y − m(X)) (A8)
𝜎2
𝑦∗(x

∗) = 𝑘(x∗, x∗) − K(x∗,X)K(X,X)−1K(x∗,X)𝑇 (A9)
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