
Bayesian optimization for inverse identification of cyclic constitutive
law of structural steels from cyclic structural tests
Bach Doa,∗, Makoto Ohsakia

aDepartment of Architecture and Architectural Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo, Kyoto
615-8540, Japan

A R T I C L E I N F O
Keywords:
Elastoplastic consititutive law
Parameter identification
Structural steels
Bayesian optimization
Noise-free and noisy observations
Cyclic loading

Abstract
Properly modeling cyclic elastoplastic behavior of structural steels is essential for establishing accu-
rate analyses of structures subjected to earthquake excitation. However, identifying the underlying
parameters to simulate such behavior is commonly hindered by the computational burden of carrying
out many nonlinear analyses. This work proposes using Bayesian optimization (BO) for solving an
inverse problem by which certain parameters for the nonlinear combined isotropic/kinematic harden-
ing model are inferred from cyclic responses of a specimen or a structural component. BO minimizes
an error function that represents the difference between the simulated responses and those measured
experimentally while providing a global optimization framework for parameter identification, reduc-
ing the number of simulations, and addressing observational noise. It is found that BO has higher
robustness as compared with some population-based optimization algorithms when expending the
same number of simulations. Identification results for a specimen and a cantilever show a good abil-
ity of identified parameters to capture the behavior of structural steels under different cyclic loadings.
They also suggest a possibility of identifying the parameters for multiple materials from cyclic tests
of a structural component that is remarkable because cyclic material tests are difficult and usually
not carried out before structural tests. Experimental measures from various loading histories should
be simultaneously used for identification as they can mitigate the bias toward a specific loading his-
tory, which may lead the parameters to inaccurate prediction of material behavior under other loading
histories.

1. Introduction
Cyclic elastoplastic behavior of steel structures under earth-
quake excitation has been extensively studied using detailed
finite element (FE) models [1, 2]. These models require con-
struction of an accurate cyclic constitutive law for structural
steels to establish reliable analyses. Solid mechanics has
provided linear isotropic and kinematic hardening models
to quantify elastoplastic deformations of structural steels as
well as various nonlinear models to simulate the cyclic be-
havior of metallic materials [3, 4]. Each of these hardening
models is characterized by certain parameters that should be
identified based on available experimental measures before
being used as input to future analyses. The problem formu-
lated for finding these material parameters is known as an
inverse problem. This problem is computationally too ex-
pensive to solve as it requires carrying out many nonlinear
analyses. Therefore, it is desirable to find a new parameter
identification method that can reduce the number of simula-
tion calls considerably.

Methods for inverse identification of material parameters
can be categorized into deterministic [5–9] and probabilis-
tic approaches [10–12]. By penalizing the errors in numeri-
cal predictions, the deterministic approach minimizes an er-
ror function that represents the difference between the sim-
ulated and actual structural responses, and produces a deter-
ministic estimate for each parameter. This approach is often
applied to identifying parameters from uniaxial cyclic tests
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with few loading cycles because the calculation of numeri-
cal responses for these tests does not arise a major compu-
tational issue that, in turn, facilitates the use of conventional
optimization algorithms for minimizing the associated er-
ror functions. Meanwhile, the probabilistic approach adopts
Bayesian inference to handle uncertainty in the material pa-
rameters as well as noise involved in the experimental mea-
sures [12, 13]. It specifies a prior probability density func-
tion (PDF) of parameters and constructs a likelihood PDF
that describes the information on observations for a given
set of parameter values. Uncertainty in the parameters and
observational noise are flexibly incorporated into the prior
and likelihood PDFs, respectively. Bayes’ rule then uses
the prior and likelihood PDFs for finding a posterior PDF
and requires support from a sampling technique, e.g., the
Metropolis algorithm [14] or Monte-Carlo simulation [15],
for generating posterior samples of each parameter. With
these samples, statistical estimates of each parameter can be
found for use of future analyses. A shortcoming of the prob-
abilistic approach is that it may lead parameter identification
to a wrong direction because it does not provide a rigorous
method for specifying a proper prior PDF. Moreover, struc-
tural engineers are still hesitant to adopt this approach as it
requires sophisticated probabilistic computations. By taking
the advantages of the two aforementioned approaches, this
work focuses on the deterministic approach, while consider-
ing observational noise in parameter identification, which is
handled by the probabilistic approach.

Research on identification of cyclic elastoplastic param-
eters for structural steels using the deterministic approach
has evolved in two directions. The first direction proposes
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new hardening models by modifying the current models to
describe the yield plateau [6, 16, 17] or a decrease of the
yield stress for structural steels [9]. Material parameters un-
derpinning the new hardening models are identified by solv-
ing the associated inverse problems using conventional opti-
mization algorithms, e.g., population-based [5, 7, 18], gradient-
based [9], or hybrid algorithms [19, 20]. Although its math-
ematical foundation is solid, this direction does not account
for the computational complexity arising from calculation of
the error function as well as its derivatives. Thus, it may be
inefficient to simply apply the methods in this direction to
complicated problems, for example, where multiaxial cyclic
behavior of the material or a large number of loading cycles
is of interest. The second direction incorporates advanced
machine learning in solving the inverse problem [21, 22]. It
conducts validated computer experiments [22] that generate
synthetic training datasets for different sets of parameters.
The generated datasets are used for training a neural net-
work, where the synthetic responses are considered as input.
The trained neural network inputs the available experimen-
tal measures and produces the parameters as its output. By
doing so, this direction faces the following two issues: (1)
obtaining a useful neural network needs a large number of
training points, or equivalently, a large number of costly sim-
ulations, and (2) validating a computer experiment by tuning
its parameters is intrinsically equivalent to solving an inverse
problem.

In addition to the computational complexity, observa-
tional noise [23] and dataset-specific bias [24] have not been
fully addressed by the current methods of the determinis-
tic approach. The former issue leads to uncertain calcula-
tion of the error function for a particular set of parameters.
This is inevitable because noise contaminating the experi-
mental measures cannot be ignored. The latter issue may
bias the parameters toward a set of experimental results from
a specific loading history used for parameter identification.
Consequently, the parameters may inaccurately predict the
material behavior under other loading histories as the cyclic
hardening behavior depends on loading conditions [25].

Bayesian optimization (BO) [26–28] is a sequential de-
sign strategy for solving optimization problems that have an
expensive-to-evaluate objective function. BO evaluates the
objective function values for a small number of design points
and uses them as input to construction of a Gaussian pro-
cess (GP) model [29] that probabilistically describes the de-
pendence of the objective function on the design variables
or parameters. The GP model without considering noise
gives exact values or Gaussian distributions of the objec-
tive function at the observed or unobserved design points,
respectively. Nevertheless, it can incorporate noise involved
in the objective function into every prediction [29]. BO uses
the GP model to formulate an acquisition function that as-
sists the algorithm in selection of a new, good design point
in the next iteration without calling any simulation, thereby
considerably reducing the number of simulations needed to
find a good solution. Specifically, the new design point from
maximizing the acquisition function is likely to be ideal in

the design space as it balances exploitation, i.e., improving
the best-observed objective value in its neighborhood, and
exploration, i.e., searching in regions where uncertainty in
the GP prediction is large. This represents a key advantage
of BO as compared with other surrogate-based optimization
algorithms using deterministic surrogate models, e.g., ra-
dial basis functions, polynomial basis functions, or support
vector regression, which are commonly limited to exploita-
tion. Recently, BO has been successfully applied to design-
ing materials [30], solving structural optimization problems
[31, 32], and identifying material parameters for multiscale
crystal plasticity models [33].

The primary objective of this study is to present the ap-
plications of BO to inverse identification of cyclic elasto-
plastic parameters for structural steels while addressing the
computational issue arising from using conventional opti-
mization algorithms of the deterministic approach. The sec-
ondary objective is to demonstrate the possibility of identify-
ing the elastoplastic parameters for multiple materials from
cyclic structural tests that is remarkable because cyclic mate-
rial tests are difficult and usually not carried out before struc-
tural tests. The parameters are within the scope of the non-
linear combined isotropic/kinematic hardening model and
the modeling error is not considered within the scope of this
study. An inverse problem is formulated for either noise-
free or noisy experimental measures. BO sequentially solves
the inverse problem by maximizing the acquisition function
formulated in each iteration with and without observational
noise. To investigate the effect of dataset-specific bias on
the identification results, different experimental datasets are
used for parameter identification. The parameters obtained
from BO as well as their prediction ability are compared with
those from some well-known population-based optimization
algorithms.

The remainder of this paper progresses as follows. Sec-
tion 2 describes the nonlinear combined isotropic/kinematic
hardening model. Section 3 details the BO framework for
parameter identification with and without considering ob-
servational noise. Section 4 provides two identification ex-
amples of a steel specimen and a bi-material cantilever. Sec-
tion 5 summarizes and concludes this paper. Mathematical
foundation of the GP model is provided in Appendix.

2. Nonlinear combined isotropic/kinematic
hardening material model

For completeness of the paper, this section briefly describes
the nonlinear combined isotropic/kinematic hardening model
used throughout this study for simulating the cyclic elasto-
plastic behavior of structural steels.

Let 𝝈 and 𝝐 denote the stress and strain tensors at a point
of a steel body. With the infinitesimal strain theory, 𝝐 and its
rate can be decomposed into elastic part 𝝐e and plastic part
𝝐p as

𝝐 = 𝝐e + 𝝐p, 𝝐̇ = 𝝐̇e + 𝝐̇p (1)
where the overdot denotes the time derivative of the quantity.
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The elastic stress-strain relation and its rate form are for-
mulated using the plastic strain tensor as

𝝈 = D ∶ (𝝐 − 𝝐p), 𝝈̇ = D ∶ (𝝐̇ − 𝝐̇p) (2)
where D is the isotropic tensor of elastic moduli. The stress
rate 𝝈̇ corresponding to a strain rate 𝝐̇ is determined once 𝝐̇p
has been specified. This can be done by using the following
von Mises yield criterion, in combination with an associative
flow rule:

𝐹 = ‖𝝃‖ −
√

2
3
𝜎y ≤ 0 (3)

where 𝝃 = dev[𝝈] − dev[𝜶] the shifted-stress tensor; dev[⋅]
the deviatoric part of [⋅]; ‖ ⋅‖ the 2-norm of the tensor; 𝜶 the
back-stress tensor; and 𝜎y the yield stress. The associative
flow rule governing the evolution of 𝝐p gives

𝝐̇p = 𝜆
𝝃

‖𝝃‖
= 𝜆n (4)

where 𝜆 is the non-negative plastic consistency parameter
and n = 𝝃∕‖𝝃‖ is a unit normal vector of the yield surface
in the deviatoric stress space. 𝜆 can be found based on the
consistency condition 𝐹 = 𝐹̇ = 0 [4].

Isotropic and kinematic hardening models are commonly
used for describing the strain hardening process of structural
steels. In the isotropic hardening model, the yield surface
increases its size during the evolution of plastic deformation
without changing its shape and the location of its center. The
back-stress tensor 𝜶, therefore, does not appear in Eq. (3),
leading the yield surface to be an isotropic function of the
stress that cannot capture the Bauschinger effect [34].

As structural steels exhibit a saturation point of stress at
large deformation, the increment of the yield surface can be
described by the following monotonically increasing nonlin-
ear function of isotropic hardening model [35]:

𝜎y = 𝜎y,0 +𝑄∞[1 − exp(−𝑏𝜖p
eq)] (5)

where 𝜎y,0 denotes the initial yield stress; 𝑄∞ the difference
of the stress saturation and 𝜎y,0; 𝑏 the isotropic saturation
rate; and 𝜖p

eq the current equivalent plastic strain.
The equivalent plastic strain 𝜖p

eq in Eq. (5) is determined
using its previous state and the current rate 𝜖̇p

eq that reads

𝜖̇p
eq =

√

2
3
𝝐̇p ∶ 𝝐̇p =

√

2
3
𝜆 (6)

In contrast to the isotropic hardening model, the kine-
matic hardening model does not change the size and shape
of the yield surface during the evolution of plastic strain. In-
stead, the center of the yield surface changes its location by
performing a rigid translation in the evolution direction of
the plastic strain. Thus, this hardening model can capture
the Bauschinger effect. The simplest linear kinematic hard-
ening [36] models the evolution of 𝜶 by

𝜶̇ =
√

2
3
𝐶𝜖̇p

eqn (7)

where 𝐶 is the hardening ratio.
Armstrong and Frederick [37] proposed a nonlinear kine-

matic hardening rule for modeling 𝜶̇ by introducing a recall
term, such that

𝜶̇ =
√

2
3
𝐶𝜖̇p

eqn − 𝛾𝜖̇p
eq𝜶 (8)

where 𝛾 is the rate of 𝜶.
For a better approximation, 𝜶 can be defined as a super-

position of 𝑛k components as [38]

𝜶 =
𝑛k
∑

𝑘=1
𝜶𝑘 (9)

The evolution of𝜶𝑘 can be modeled using the nonlinear kine-
matic hardening rule in Eq. (8).

The nonlinear combined isotropic/kinematic model was
developed for simultaneous use of the isotropic and nonlin-
ear kinematic hardening models. Let x = [𝑥1,… , 𝑥𝑛] ∈
ℝ+𝑛 denote the vector of 𝑛 positive material parameters for
this hardening model. Thus, x = [𝐸,𝑄∞, 𝑏, 𝜎y,0, 𝐶1, 𝛾1] if
we use one back-stress component and a fixed Poisson’s ra-
tio, where 𝐸 denotes Young’s modulus of the material incor-
porated in the isotropic elastic tensor D.

Generate initial training 

dataset   

Start

Find the best x among 

available candidates

Termination?

End

Find xk+1 by solving 

problem (19) or (22) 

Add xk+1 and y(xk+1) to 

the training dataset

Construct GP model for 

y(x)

Call FE analysis to 

evaluate y(xk+1)

no

yes

  
Figure 1: BO for parameter identi�cation.

3. Bayesian optimization for inverse
parameter identification

3.1. Inverse problem for parameter identification
The inverse problem in this study is to identify the vector of
material parameters x based on experimental measures from
cyclic loading tests of a structural steel or a structural com-
ponent. We minimize an error function 𝑓 (x): ℝ+𝑛 → ℝ that
represents the difference between the structural responses
simulated from a numerical model of the experiment, char-
acterized by x, and the corresponding responses measured
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  Figure 2: Steel specimen and three loading histories for cyclic
tests [39].

experimentally. The optimal x is identified by solving the
following minimization problem:

minimize
x

𝑓 (x)

subject to x ∈ [xl, xu]
(10)

where xl and xu are the pre-specified lower and upper bounds
of x, respectively.

Let 𝑑s
𝑖 and 𝑑m

𝑖 denote the simulated and measured values
of the response of interest at the 𝑖th time step of a cyclic
loading history of 𝑁1 steps. Following Ohsaki et al. [6], the
error function for this loading history reads

𝑓 (x) =

√

√

√

√
1
𝑁1

𝑁1
∑

𝑖=1

(

𝑑s
𝑖 − 𝑑m

𝑖
)2 (11)

If the material or structural component is tested under a
total of 𝑇 different cyclic loading histories, 𝑓 (x) is formu-
lated to incorporate the experimental results with 𝑁𝑡 (𝑡 =
1,… , 𝑇 ) steps from these loading histories, such that

𝑓 (x) =
𝑇
∑

𝑡=1

√

√

√

√
1
𝑁𝑡

𝑁𝑡
∑

𝑖=1

(

𝑑s
𝑖,𝑡 − 𝑑m

𝑖,𝑡

)2 (12)

where 𝑑s
𝑖,𝑡 and 𝑑m

𝑖,𝑡 represent 𝑑s
𝑖 and 𝑑m

𝑖 associated with the
𝑡th loading history, respectively.

As previously mentioned, the parameters identified from
a single loading history may inaccurately predict the material
behavior under other loading histories. The error function
in Eq. (12) is expected to reduce the bias toward a set of
parameters that offers the best fit to a specific experimental
dataset.

It is also important to take into account the effect of un-
certainty in the experimental measures on the identified pa-
rameters because a reliable x solely relies on the quality of

experimental datasets. In addition to noise-free measures,
we consider another case in which the experimental datasets
are contaminated by noise. In this case, the real value of
𝑑m
𝑖 for a single loading history is fluctuated around a noisy

measure ℎm
𝑖 as

ℎm
𝑖 = 𝑑m

𝑖 + 𝜔𝑖, 𝜔𝑖 ∼ 
(

0, 𝜏2𝑑
) (13)

where𝜔𝑖 is additive Gaussian noise with zero mean and stan-
dard deviation 𝜏𝑑 that is specified or calibrated for each ex-
periment by the user. Consequently, the actual value 𝑓 (x) of
the error function is contaminated by noise 𝜔𝑓 as

𝑦(x) = 𝑓 (x) + 𝜔𝑓 , 𝜔𝑓 ∼ 
(

0, 𝜏2𝑓
)

(14)

where 𝑦(x) is the noisy value of 𝑓 (x). 𝜔𝑓 is assumed to be a
Gaussian with zero mean and standard deviation 𝜏𝑓 , which
is empirically found by generating random samples of 𝑑m

𝑖 for
the specified value of 𝜏𝑑 .

It is difficult to solve problem (10) effectively since the
calculation of 𝑓 (x) requires an expensive simulation. This
makes the common use of population-based optimization al-
gorithms [5, 7, 18, 40–42] practically infeasible because a
large number of simulations is needed for obtaining a good
solution. The use of gradient-based algorithms [19, 43] is
also hindered by the requirement of calculating the gradient
of the error function. Moreover, the problem considering
noisy experimental measures has not been fully explored by
the conventional optimization algorithms. Thus, BO is used
for solving problem (10) with replacing 𝑓 (x) by 𝑦(x) as it can
provide a global-optimization framework and address obser-
vational noise while keeping the number of simulations as
low as possible.
3.2. Bayesian optimization for inverse problem

with noise-free experimental measures
BO constructs a GP model to approximate the error func-
tion from a training dataset  = {X, y} = {x𝑖, 𝑦𝑖}𝑁𝑖=1, where
x𝑖 ∈ ℝ+𝑛 represents a set of the parameters and 𝑦𝑖 ∈ ℝ
the observed value of the error function at x𝑖. The samples
x𝑖 are randomly generated using Latin-hypercube sampling.
The number of initial sample points𝑁 is problem-dependent
and only serves as a guide. As a recommendation, 𝑁 = 15𝑛
for a fixed training dataset [44]. By adopting the adaptive
sampling strategy of BO, we use 𝑁 = 10𝑛 in this work. For
each sample x𝑖 and a specific loading history, the nonlinear
combined isotropic/kinematic hardening incorporated in the
FE model of the experiment evaluates 𝑑s

𝑖 in Eq. (11) or 𝑑s
𝑖,𝑡in Eq. (12), and 𝑦𝑖 can be found accordingly. The GP model

describing the relationship between 𝑦 and x, denoted as 𝑦̂(x),
is developed by conditioning a Gaussian probability distri-
bution over possible regression functions on , thereby pro-
ducing a probabilistic regression model that is a conditional
Gaussian, for which the detailed derivations are provided in
Appendix. The GP model at a particular x reads

𝑦̂(x) ∼ 
(

𝜇𝑦(x), 𝜏2𝑦 (x)
)

(15)
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Figure 3: Empirical relations between 𝜏𝑓 and 𝜏𝑑 corresponding to three loading histories for cyclic tests of the specimen. (a) SS1;
(b) SS2; (c) SS3.

(d) (e) (f)

(a) (b) (c)

 

  
Figure 4: Histories of BO for di�erent noise-free experimental datasets from cyclic tests of the specimen. (a)�(f) obtained from
groups 1�6, respectively.
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Figure 5: Comparison of test data and model predictions for cyclic tests of the specimen with parameters identi�ed from a
speci�c noise-free experimental dataset. (a), (b), (c) Parameters from group 1; (d), (e), (f) Parameters from group 2; (g), (h),
(i) Parameters from group 3.

where 𝜇𝑦(x) and 𝜏𝑦(x) denote the mean and standard devia-
tion of the Gaussian 𝑦̂(x), respectively.

With Eq. (15), the remainder of this section goes over
the remaining steps of using the conventional BO for solving
problem (10) without observational noise, i.e., 𝜏𝑑 = 0 and
𝑦(x) = 𝑓 (x). A modification of the conventional BO to solve
the problem with observational noise, i.e., 𝜏𝑑 > 0 and 𝑦(x) =
𝑓 (x) + 𝜔𝑓 , is the subject of the next section.

Suppose BO has completed its 𝑘th iteration at which the
training dataset 𝑘 =

{

X𝑘, y𝑘
} has a total of 𝐾 samples

and the corresponding GP model 𝑦̂𝑘(x) has been constructed
from 𝑘. The next step is to specify a new sampling point
x𝑘+1 as input to a new simulation that evaluates y(x𝑘+1) for
updating 𝑘 and 𝑦̂𝑘(x). Since we wish to reduce the number
of simulations as much as possible, x𝑘+1 is likely to be ideal
in the parameter space and should be specified based on the
information we have so far, i.e., 𝑘 and 𝑦̂𝑘(x). In the conven-
tional BO, how promising each point in the parameter space
is can be transformed to a measure of our belief about an im-
provement in the best-observed solution to problem (10) by

means of the acquisition function. Thus, the new sampling
point x𝑘+1 is the maximizer of the acquisition function. A
popular acquisition function proposed by Jones et al. [26]
reads

𝐼(x) =
[

𝑓min − 𝑓 (x)
]+ (16)

where [⋅]+ = max(0, ⋅) and 𝑓min = min
(

f(X𝑘)
)with f(X𝑘) =

[

𝑓 (x1),… , 𝑓 (x𝐾 )
]. Maximizing 𝐼(x) gives a value of x𝑘+1at which the error function is equal to or less than the best-

observed error function value 𝑓min. By further conditioning
𝐼(x) on 𝑘, the expectation of 𝐼(x) reads

𝐸𝐼(x) = 𝔼
[

𝐼(x)|f(X𝑘)
] (17)

Without observational noise, 𝑓min and f(X𝑘) are identical to
𝑦min and y(X𝑘), respectively, which enables the derivation of
an analytical form for 𝐸𝐼(x) using integration by parts [26].
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Figure 6: Comparison of test data and model predictions for cyclic tests of the specimen with parameters identi�ed from a pair
of two noise-free experimental datasets. (a), (b), (c) Parameters from group 4; (d), (e), (f) Parameters from group 5; (g), (h),
(i) Parameters from group 6.

The resulting expression reads

𝐸𝐼(x) =
(

𝑓min − 𝜇𝑓 (x)
)

Φ
(𝑓min − 𝜇𝑓 (x)

𝜏𝑓 (x)

)

+ 𝜏𝑓 (x)𝜙
(𝑓min − 𝜇𝑓 (x)

𝜏𝑓 (x)

)
(18)

where Φ(⋅) and 𝜙(⋅) denote the standard normal cumulative
distribution and probability density functions, respectively;
𝜇𝑓 (x) = 𝜇𝑦(x); and 𝜏𝑓 (x) = 𝜏𝑦(x).The first and second terms of 𝐸𝐼(x) are responsible for
exploitation and exploration, respectively. In other words,
𝐸𝐼(x) simultaneously incorporates the best error function
value 𝑓min observed so far (exploitation) and large amount of
prediction uncertainty 𝜏𝑓 (x) (exploration) into finding x𝑘+1.
Moreover, as values of 𝐸𝐼(x) associated with the members
of 𝑘 are always non-positive, maximizing 𝐸𝐼(x) does not
reselect the members of 𝑘.

Without observational noise, x𝑘+1 is found by solving
Find x𝑘+1 = argmax

x
𝐸𝐼(x)

subject to x ∈ [xl, xu]
(19)

3.3. Bayesian optimization for inverse problem
with noisy experimental measures

Maximizing 𝐸𝐼(x) is more difficult in the presence of ob-
servational noise as 𝑓min in Eq. (16) is not known if 𝜏𝑑 > 0
and the closed form in Eq. (18) is no longer available. This
issue has been addressed by various BO variants [45]. The
idea is to replace 𝑓min by an evaluable and efficient repre-
sentative so that BO is still able to use Eq. (18) for guiding
the optimization process, termed "plug-in" method.

Let 𝑐min denote the representative of 𝑓min, the expected
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(a) (b) (c)

(d) (e) (f)
 

  
Figure 7: Histories of BO for di�erent noisy experimental datasets from cyclic tests of the specimen. (a)�(f) obtained from
groups 1�6, respectively.

improvement in the presence of noise reads

𝐸𝐼n(x) =
(

𝑐min − 𝜇𝑦(x)
)

Φ
(𝑐min − 𝜇𝑦(x)

𝜏𝑦(x)

)

+ 𝜏𝑦(x)𝜙
(𝑐min − 𝜇𝑦(x)

𝜏𝑦(x)

)
(20)

Huang et al. [46] used the GP mean in Eq. (A.8) at a so-
called effective best solution x∗ for 𝑐min, i.e., 𝑐min = 𝜇𝑦(x∗).
x∗ is selected from X𝑘 so that it minimizes 𝜇𝑦(x) + 𝛼𝜏𝑦(x),where 𝛼 = 1 is recommended by Huang et al. [46].

To further enhance exploration, an augmented 𝐸𝐼 [46],
denoted as 𝐴𝐸𝐼 , is formulated by adding a heuristic multi-
plier to 𝐸𝐼n(x), such that

𝐴𝐸𝐼(x) = 𝐸𝐼n(x)
⎛

⎜

⎜

⎜

⎝

1 −
𝜏𝑓

√

𝜏2𝑦 (x) + 𝜏2𝑓

⎞

⎟

⎟

⎟

⎠

(21)

𝐴𝐸𝐼(x) strengthens exploration by penalizing points with
small standard deviation 𝜏𝑦(x). It also returns to 𝐸𝐼n(x) if
𝜏𝑓 = 0. As the use of 𝐴𝐸𝐼(x) has been justified by empir-
ical performance [45, 46], we exclusively use it as the BO
guide to solving problem (10) when considering observa-
tional noise. Thus, the next sampling point x𝑘+1 is found by
solving

Find x𝑘+1 = argmax
x

𝐴𝐸𝐼(x)

subject to x ∈ [xl, xu]
(22)

3.4. Identification procedure
Fig. 1 summarizes the identification procedure using BO.
The following five steps are sequentially implemented:

• Step 1: Specify 𝜏𝑑 , determine 𝜏𝑓 based on 𝜏𝑑 , and
randomly generate initial samples of x using Latin-
hypercube sampling. Then, create the training dataset
 by performing FE analyses for the generated sam-
ples.

• Step 2: Construct GP model for 𝑦(x) from ; see Ap-
pendix.

• Step 3: Find 𝑓min or 𝑐min and the associated param-
eter vector among the members of . Terminate the
identification process and output the parameters if the
number of BO iterations reaches a pre-specified upper
limit. Otherwise, proceed to Step 4.

• Step 4: Find x𝑘+1 by solving problem (19) or (22) cor-
responding to 𝜏𝑑 = 0 or 𝜏𝑑 > 0, respectively.

• Step 5: Evaluate 𝑦(x𝑘+1) using the FE analysis, up-
date and the current GP model for 𝑦(x), and reiterate
from Step 3.

4. Illustrative examples
4.1. Parameters for a steel specimen
This section identifies the elastoplastic parameters to model
the uniaxial cyclic behavior of a steel specimen as shown in
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Figure 8: Comparison of test data and model predictions for cyclic tests of the specimen with parameters identi�ed from a speci�c
noisy experimental dataset. (a), (b), (c) Parameters from group 1; (d), (e), (f) Parameters from group 2; (g), (h), (i) Parameters
from group 3.

Fig. 2. The specimen was tested under three different static
cyclic loading histories SS1, SS2, and SS3 by Yamada and
Jiao [39]. The pseudo time durations considered as load path
parameters for SS1, SS2, and SS3 are 22.72, 18.20, and 6.20
s, respectively.

The test results were three experimental datasets of the
true stress 𝜎 and true strain 𝜖 corresponding to the three load-
ing histories. The values of 𝜎 and 𝜖 were derived from the
engineering stress 𝜎e and engineering strain 𝜖e as

𝜎 = (1 + 𝜖e)𝜎e (23)
𝜖 = ln (1 + 𝜖e) (24)

where 𝜎e at a specific increment was obtained by dividing
the measured axial force by the initial cross-sectional area
of the specimen, and 𝜖e calculated by dividing the axial de-
formation of the specimen by its initial length.

We fix Young’s modulus of the steel at 𝐸 = 205.94 GPa
as it can be directly determined from the experimental re-

sults [39]. Therefore, a total of five parameters are identified
for the specimen, i.e., x = [𝑄∞, 𝑏, 𝜎y,0, 𝐶1, 𝛾1]. The inter-
vals associated with the material parameters are provided in
Table 1. Poisson’s ratio of the steel is 0.3.

Table 1

Material parameter intervals for the specimen.

Parameter Lower bound Upper bound

𝐸 [GPa] 205.94 −
𝜎
y,0 [MPa] 250 260

𝑄∞ [MPa] 10 100
𝑏 5 25
𝐶1 [MPa] 2000 8000
𝛾1 10 100

We set 𝜏𝑑 = 0 and 20 MPa as the standard deviation
values for noise-free and noisy true stress measures, respec-
tively. Exact observational noise can be calibrated experi-
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Figure 9: Comparison of test data and model predictions for cyclic tests of the specimen with parameters identi�ed from a pair
of two noisy experimental datasets. (a), (b), (c) Parameters from group 4; (d), (e), (f) Parameters from group 5; (g), (h), (i)
Parameters from group 6.

Table 2

Parameters for GA.

Parameter Value

Population size 4000
Maximum number of generations 100
Crossover fraction 65%
Elite transfer 2
Fitness function tolerance 10−6
Constraint tolerance 10−6
Parallel computing 'false'

mentally by obtaining measurement data without use of the
specimen [12]. However, this is not the focus of the present
study. The value of 𝜏𝑓 associated with 𝜏𝑑 = 20 MPa is
empirically determined for each loading history by the fol-
lowing three steps. First, we select three arbitrary sets of
parameters within their bounds, and perform FE analysis to

obtain the simulated 𝜎 − 𝜖 curve for each set. Second, a to-
tal of 104 samples are randomly generated surrounding each
of the measured true stresses with 𝜏𝑑 = 20 MPa, thereby
producing a total of 104 values of the error function for each
simulated 𝜎−𝜖 curve. These values are then used to evaluate
the sampled standard deviation 𝜏𝑓 for each 𝜎 − 𝜖 curve. 𝜏𝑓is further represented by the ratio 𝜏𝑑∕𝜏𝑓 . Thus, three values
of 𝜏𝑑∕𝜏𝑓 are found for each loading history. Finally, 𝜏𝑓 is
derived from the mean value of the three values of 𝜏𝑑∕𝜏𝑓 .
The empirical relation between 𝜏𝑓 and 𝜏𝑑 for each loading
history is established and illustrated in Fig. 3. With 𝜏𝑑 = 20
MPa, the values of 𝜏𝑓 associated with SS1, SS2, and SS3 are
0.40, 0.45, and 0.78 MPa, respectively.

To investigate how experimental datasets used for pa-
rameter identification affect the resulting parameters as well
as their prediction ability, we classify the experimental datasets
obtained from the three loading histories into a total of six
groups indexed as 1, 2, 3, 4, 5, and 6, which correspond to
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Table 3

Comparison of identi�cation results obtained from di�erent noise-free datasets of the specimen.

Group 𝜎
y,0 [MPa] 𝑄∞ [MPa] 𝑏 𝐶1 [MPa] 𝛾1 𝑓1 [MPa] 𝑓2 [MPa] 𝑓3 [MPa]

1 250.004 42.105 5.001 7999.997 69.188 𝟑𝟎.𝟑𝟕𝟐 36.370 42.499
2 250.010 11.939 5.015 7999.769 70.308 37.898 𝟐𝟖.𝟖𝟒𝟎 48.692
3 250.008 11.596 5.000 8000.000 72.634 38.635 54.834 𝟑𝟗.𝟗𝟖𝟔
4 250.011 56.630 5.005 7999.996 69.096 𝟑𝟐.𝟔𝟐𝟕 𝟑𝟎.𝟕𝟑𝟐 45.261
5 250.056 57.661 5.000 8000.000 67.594 33.092 𝟑𝟎.𝟑𝟗𝟕 𝟒𝟓.𝟒𝟗𝟕
6 250.002 34.289 5.003 8000.000 67.985 𝟑𝟎.𝟖𝟐𝟕 40.150 𝟒𝟏.𝟑𝟖𝟗

Table 4

Comparison of identi�cation results for the specimen obtained from BO, GA, and PSO.

Group 𝜎
y,0 [MPa] 𝑄∞ [MPa] 𝑏 𝐶1 [MPa] 𝛾1 𝑓1 [MPa] 𝑓2 [MPa] 𝑓3 [MPa] Simulation calls

1 [BO] 250.004 42.105 5.001 7999.997 69.188 𝟑𝟎.𝟑𝟕𝟐 36.370 42.499 100
1 [GA-1] 250.123 29.700 12.616 7397.003 61.045 𝟑𝟒.𝟎𝟐𝟏 43.787 43.110 100
1 [GA-2] 256.562 32.546 6.265 7409.248 65.632 𝟑𝟐.𝟐𝟓𝟑 44.282 39.747 200
1 [PSO-1] 251.419 41.499 7.598 6940.747 54.853 𝟑𝟑.𝟎𝟏𝟎 39.311 43.911 100
1 [PSO-2] 251.540 37.018 6.139 8000.000 64.631 𝟑𝟏.𝟐𝟔𝟎 37.088 43.217 200
4 [BO] 250.011 56.630 5.005 7999.996 69.096 𝟑𝟐.𝟔𝟐𝟕 𝟑𝟎.𝟕𝟑𝟐 45.261 200
4 [GA-1] 250.815 63.098 8.169 6440.088 59.086 𝟑𝟓.𝟔𝟒𝟎 𝟑𝟐.𝟕𝟖𝟖 49.728 200
4 [GA-2] 252.821 51.212 6.885 7536.697 65.882 𝟑𝟑.𝟑𝟐𝟒 𝟑𝟐.𝟒𝟏𝟗 47.323 400
4 [PSO-1] 250.000 55.367 6.836 7979.444 64.027 𝟑𝟒.𝟒𝟗𝟏 𝟑𝟎.𝟗𝟏𝟖 47.514 200
4 [PSO-2] 250.000 55.113 5.000 8000.000 72.489 𝟑𝟐.𝟎𝟔𝟖 𝟑𝟏.𝟔𝟎𝟖 44.957 400

SS1, SS2, SS3, SS1 & SS2, SS2 & SS3, and SS3 & SS1,
respectively. The training dataset for each group is created
by randomly generating 50 samples of the parameters and
performing FE analysis for these samples to evaluate the
corresponding error functions. As the specimen was axi-
ally loaded during the cyclic tests, we simply model it using
one Abaqus linear hexahedral element of type C3D8 [47].
The maximum increment size for each loading history is set
as 0.01 s. For each value of 𝜏𝑑 , each of groups 1, 2, and 3
is sequentially used as the training dataset and Eq. (11) as
the error function. We do so for each of groups 4, 5, and
6 with Eq. (12). Note that the standard deviation values for
groups 4, 5, and 6 are evaluated based on the fact that the er-
ror function values for SS1, SS2, and SS3 are independent.
The identified parameters from each group are then used to
predict 𝜎 − 𝜖 curves corresponding to the loading histories
that are not used for parameter identification.

To examine the robustness of BO, we randomly generate
three different training datasets for each group. Thus, three

sets of parameters are found from each group correspond-
ing to the three BO attempts. The limit of number of BO
iterations is set as 50. Therefore, the total number of simu-
lations required for BO working on one of groups 1, 2, and
3 is 100 and for that working on one of groups 4, 5, and 6 is
200. In each iteration, BO uses genetic algorithm (GA) for
maximizing 𝐸𝐼(x) or 𝐴𝐸𝐼(x). The parameters characteriz-
ing GA are given in Table 2. A large population size of 4000
is to increase the chance of finding the global optimizer of
the acquisition function in each BO iteration, which can mit-
igate the effect of the randomness of GA on the performance
of BO, and this value has a minor effect on the computational
cost of 50 BO iterations because the acquisition function is
given analytically. Alternatively, any global optimization or
multi-start local search algorithms can be used.

Fig. 4 shows the histories of BO for three different train-
ing datasets from each group with 𝜏𝑑 = 0. The three BO at-
tempts from each group tend to converge to an error function
value after 50 iterations even though they start from different

Table 5

Comparison of identi�cation results obtained from di�erent noisy datasets of the specimen.

Group 𝜎
y,0 [MPa] 𝑄∞ [MPa] 𝑏 𝐶1 [MPa] 𝛾1 𝑓1 [MPa] 𝑓2 [MPa] 𝑓3 [MPa]

1 250.000 40.133 5.000 8000.000 70.221 𝟑𝟔.𝟑𝟕𝟔 42.513 48.665
2 250.000 64.899 5.000 8000.000 72.468 40.577 𝟑𝟓.𝟒𝟗𝟑 51.314
3 250.000 10.000 5.000 8000.000 73.057 44.443 59.697 𝟒𝟒.𝟔𝟗𝟓
4 250.000 52.343 5.000 8000.000 68.855 𝟑𝟕.𝟑𝟓𝟏 𝟑𝟕.𝟕𝟕𝟖 48.611
5 250.000 46.445 5.000 8000.000 64.642 36.884 𝟑𝟗.𝟓𝟐𝟔 𝟒𝟕.𝟔𝟏𝟓
6 250.000 31.653 5.000 8000.000 69.114 𝟑𝟕.𝟏𝟎𝟕 46.342 𝟒𝟓.𝟔𝟔𝟕

B. Do & M. Ohsaki: Preprint submitted to Structures Page 11 of 21



Bayesian optimization for inverse identi�cation of cyclic constitutive law. . .

Table 6

Statistical estimates of identi�ed parameters for the specimen.

Parameter
Noise-free case Noisy case

mean std mean std

𝜎
y,0 [MPa] 250.059 0.192 251.714 3.824

𝑄∞ [MPa] 45.687 19.277 39.036 16.465
𝑏 5.023 0.057 5.003 0.015
𝐶1 [MPa] 7997.540 7.595 7999.120 5.026
𝛾1 69.447 1.835 71.099 3.4362

initial training datasets.
Figs. 5 and 6 compare the predicted 𝜎 − 𝜖 curves asso-

ciated with the best set of identified parameters from each
group and the experimental ones, where 𝑓1, 𝑓2, and 𝑓3 de-
note the error function values at the identified parameters
corresponding to SS1, SS2, and SS3, respectively, and the
arrow at the lower right corner of the figure indicates the
experimental dataset used for identification. All identified
parameters well reproduce the 𝜎 − 𝜖 curves from the load-
ing histories not used for identification. Fig. 5 (see along
each column) indicates the bias toward a specific loading his-
tory as the error function corresponding to the loading his-
tory used for identification is smaller than those predicted by
the parameters identified from other loading histories. The
parameters identified from a specific loading history (e.g.,
SS3) may lead to large errors in prediction of the 𝜎 − 𝜖
curves associated with other loading histories (e.g., SS1 and
SS2). These errors can be reduced by using the experimen-
tal datasets from two loading histories for identification as
observed in Fig. 6.

Table 3 lists the identified parameters from each group
without observational noise, where the boldface value in-
dicates the error function corresponding to the experimen-
tal dataset used for identification. There is no major dif-
ference in values of 𝜎y,0, 𝑏, 𝐶1, and 𝛾1 among the groups.
However, 𝑄∞ is affected by the group. We also compare
the identification results by BO working on groups 1 and
4 with those by minimizing the corresponding error func-
tions using GA and particle swarm optimization (PSO) al-
gorithm. For each group (i.e., 1 and 4), we perform GA and
PSO two times, namely, GA-1, GA-2, PSO-1, and PSO-2.
Each algorithm has a population of 20 individuals (or parti-
cles). Other parameters for PSO are set as default using the
MATLAB Global Optimization Toolbox. The numbers of
iterations for GA(PSO)-1 and GA(PSO)-2 are limited at five
and ten, respectively. Thus, the numbers of simulations for
GA(PSO)-1 and GA(PSO)-2 are 100 and 200, which are the
same as those for BO when working on group 1, and 200 and
400 when working on group 4, respectively. Comparison re-
sults in Table 4 show that BO outperforms GA and PSO in
terms of the optimized error function value as well as the
prediction ability of identified parameters when expending
the same number of simulation calls. Interestingly, GA and
PSO should double the number of simulations to offer per-
formance approaching that of BO.

Fig. 7 shows the histories of BO for three different train-
ing datasets from each group with 𝜏𝑑 = 20 MPa. In the
presence of observational noise, BO attempts from different
datasets result in different error function values after 50 iter-
ations. Still, there is a good agreement between the predicted
𝜎 − 𝜖 curves at the best set of the parameters identified from
each group and the experimental ones, as shown in Figs. 8
and 9, where 𝑓1, 𝑓2, and 𝑓3 are the mean values of the error
function at the identified parameters corresponding to SS1,
SS2, and SS3, respectively. Each of these mean values is
evaluated from a total of 104 samples generated surround-
ing each of the corresponding experimental measures using
𝜏𝑑 = 20 MPa (i.e., possible real observations in Figs. 8 and
9). Observational noise does not affect the bias toward a
set of experimental measures even though it considerably in-
creases the minimized error function as compared with that
from the noise-free case. Table 5 reports the best identified
material parameters from each group for 𝜏𝑑 = 20 MPa. The
values of 𝜎y,0, 𝑏, 𝐶1, and 𝛾1 among the groups are similar,
while 𝑄∞ varies across the groups as it plays an important
role in mitigating the bias toward a set of experimental re-
sults.

To provide statistical estimates of each identified param-
eter, additional three BO trials are carried out for each group
of both noise-free and noisy cases. Six groups of experi-
mental datasets, therefore, provide a total of 36 sets of pa-
rameters, which are used to estimate the mean and standard
deviation (std) of each parameter, as listed in Table 6. There
is a major difference in the std values of 𝜎y,0 obtained from
the noise-free and noisy cases. The std of𝑄∞ is very large in
both cases, which again confirms that𝑄∞ is group-dependent.

Table 7

Material parameter intervals for the cantilever.

Parameter Lower bound Upper bound

Web

𝐸 [GPa] 175.05 −
𝜎
y,0 [MPa] 300 340

𝑄∞ [MPa] 10 100
𝑏 5 25
𝐶1 [MPa] 2000 8000
𝛾1 10 100

Flange

𝐸 [GPa] 175.05 −
𝜎
y,0 [MPa] 270 290

𝑄∞ [MPa] 10 100
𝑏 5 25
𝐶1 [MPa] 2000 8000
𝛾1 10 100

4.2. Parameters for a bi-material cantilever
This section applies BO to identification of the parameters
for a steel cantilever tested under three different cyclic load-
ing histories RH1, RH2, and RH3, as shown in Fig. 10. The
pseudo time durations considered as load path parameters for
RH1, RH2, and RH3 are 5.55, 3.62, and 4.43 s, respectively.
The cantilever is a built-up wide-flange beam H-244×175×
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  Figure 10: The cantilever, its FE mesh, and three loading histories for cyclic tests [6, 39].
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Figure 11: Histories of BO for di�erent noise-free experimental datasets from cyclic tests of the cantilever. (a)�(f) obtained from
groups 1�6, respectively.

7 × 11 in Japanese specification. The web and flange have
the same Young’s modulus but different plastic material pa-
rameters. Thus, the cantilever can be viewed as a structural
component of two different materials. During the cyclic tests
conducted by Yamada and Jiao [39], the left end of the can-
tilever was fixed, while forced vertical displacement was ap-

plied at the right end. The deflection angle 𝜃 of the cantilever
is defined as the ratio of the vertical tip displacement Δ mm
to the cantilever length 𝐿 = 800 mm, i.e., 𝜃 = Δ∕𝐿.

The test results associated with the three loading histo-
ries consist of three datasets of the bending moment𝑀 at the
cantilever support and the deflection angle 𝜃 [39]. Young’s
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Table 8

Comparison of identi�cation results obtained from di�erent noise-free datasets of the cantilever.

Parameter
Group

1 2 3 4 5 6

Web

𝜎
y,0 [MPa] 339.957 300.049 339.924 336.672 330.990 339.880

𝑄∞ [MPa] 99.890 99.827 99.923 99.874 99.972 99.974
𝑏 24.946 24.910 24.952 24.761 24.809 24.869
𝐶1 [MPa] 7160.521 7968.280 3596.024 7766.642 7999.973 7682.000
𝛾1 99.622 10.178 99.967 99.999 69.775 99.577

Flange

𝜎
y,0 [MPa] 271.262 270.004 270.047 270.008 270.001 270.061

𝑄∞ [MPa] 10.065 10.135 10.000 10.140 10.107 10.001
𝑏 5.008 5.120 5.047 5.534 5.092 5.041
𝐶1 [MPa] 7999.840 5170.983 6636.794 6537.440 5140.712 7998.996
𝛾1 66.632 62.092 71.565 60.903 69.258 84.763

Error

𝑓1 [kNm] 𝟏𝟎.𝟎𝟖𝟑 14.166 11.469 𝟏𝟎.𝟕𝟖𝟏 12.760 𝟏𝟎.𝟏𝟎𝟕
𝑓2 [kNm] 12.836 𝟏𝟎.𝟒𝟐𝟐 11.377 𝟏𝟏.𝟒𝟗𝟏 𝟏𝟎.𝟕𝟗𝟒 12.380
𝑓3 [kNm] 13.601 14.060 𝟏𝟐.𝟓𝟗𝟎 12.959 𝟏𝟐.𝟖𝟖𝟏 𝟏𝟐.𝟗𝟔𝟏

modulus and Poisson’s ratio for the web and flange are fixed
at 𝐸 = 175.05 GPa and 0.3, respectively. Thus, a total of ten
parameters (i.e., five for the web and five for the flange) are
identified for the cantilever. The interval for each parameter
is provided in Table 7.

The cantilever is modeled using Abaqus [47]. A fine
mesh, as shown in Fig. 10, consisting of 4960 nodes and
3510 linear hexahedral elements of type C3D8 is generated.
The maximum increment size for each loading history is set
as 0.01 s.

We set 𝜏𝑑 = 0 and 15 kNm as the standard deviation
values for noise-free and noisy moment measures, respec-
tively. For 𝜏𝑑 = 15 kNm, the same procedure as described
in Section 4.1 is carried out to determine 𝜏𝑓 corresponding
to 𝜏𝑑 for each loading history. As a result, values of 𝜏𝑓 as-
sociated with RH1, RH2, and RH3 are 0.55, 0.81, and 0.65
kNm, respectively.

We also classify the experimental datasets from the three
loading histories into a total of six groups indexed as 1, 2,
3, 4, 5, and 6, corresponding to RH1, RH2, RH3, RH1 &
RH2, RH2 & RH3, and RH3 & RH1, respectively. For each
value of 𝜏𝑑 , there different training datasets are created for
each group to investigate the performance of BO. Each train-
ing dataset is constructed by randomly generating 100 sam-
ples of the material parameters and performing elastoplac-
tic analysis for each generated sample to evaluate the corre-
sponding error function. The remaining steps of the identi-
fication process using the training datasets from each group
are identical to those performed in Section 4.1.

Fig. 11 shows the histories of BO attempts for three dif-
ferent training datasets from each group with 𝜏𝑑 = 0. Al-
though BO with different initial training datasets cannot pro-
vide a unique set of the parameters after 50 iterations, it con-
siderably reduces the error function as it terminates.

Table 8 provides the best set of identified parameters that
gives the smallest error function value among three values
obtained from each group. Figs. 12 and 13 compare the pre-

dicted 𝑀 − 𝜃 curves at the parameters identified from each
group listed in Table 8 and the experimental ones, where
𝑓1, 𝑓2, and 𝑓3 are the error function values corresponding
to RH1, RH2, and RH3, respectively. As expected, all pre-
dicted 𝑀−𝜃 curves associated with the loading histories not
used for identification are in good agreement with the exper-
imental ones. Results in Table 8 and Fig. 12 show that the
dataset-specific bias is considerable when the experimental
dataset from a single loading history is used for identifica-
tion. This bias can be mitigated when using the experimental
datasets from two loading histories; see Fig. 13.

Fig. 14 shows the histories of BO attempts for three dif-
ferent training datasets from each group with 𝜏𝑑 = 15 kNm.
Under the effect of observational noise, 𝑐min considerably
fluctuates in the very first iterations of BO and becomes sta-
ble when approaching the 50th iteration. Regardless of the
difference in BO histories from each group, the identified
parameters from all groups still arrive at a good agreement
between the predicted 𝑀 − 𝜃 curves and the experimental
ones, as shown in Figs. 15 and 16, where 𝑓1, 𝑓2, and 𝑓3 de-
note the mean values of the error function (estimated from
a total of 104 samples generated surrounding each of mo-
ment measures with 𝜏𝑑 = 15 kNm) corresponding to RH1,
RH2, and RH3, respectively. Table 9 lists the best set of ma-
terial parameters from each group with 𝜏𝑑 = 15 kNm. It
is observed that 𝜎y,0, 𝑄∞, and 𝑏 tend to concentrate to their
bounds under the effect of observational noise.

The identified parameters in Tables 8 and 9 are further
used to reproduce the true stress-true strain relation obtained
from a monotonic tensile coupon test of the cantilever’s flange
[39]. This is feasible because the flange is deemed to be sub-
jected to cyclic axial stress during the cyclic tests. This also
suggests a potential approach to identification of material pa-
rameters from structural tests, which is different from the
conventional way of parameter identification from material
tests. It would be more interesting if cyclic axial behavior
of the flange can be simulated using the parameters identi-
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  Figure 12: Comparison of test data and model predictions for cyclic tests of the cantilever with parameters identi�ed from a
speci�c noise-free experimental dataset. (a), (b), (c) Parameters from group 1; (d), (e), (f) Parameters from group 2; (g), (h),
(i) Parameters from group 3.

Table 9

Comparison of identi�cation results obtained from di�erent noisy datasets of the cantilever.

Parameter
Group

1 2 3 4 5 6

Web

𝜎
y,0 [MPa] 339.966 300.000 339.998 339.993 339.985 339.999

𝑄∞ [MPa] 99.945 10.000 100.000 10.082 10.013 99.995
𝑏 24.999 5.000 5.003 5.198 5.013 24.997
𝐶1 [MPa] 6813.514 7999.978 2000.006 7382.899 7999.971 7999.997
𝛾1 10.026 10.000 99.999 43.900 99.999 99.999

Flange

𝜎
y,0 [MPa] 271.518 270.000 270.001 270.008 270.013 270.001

𝑄∞ [MPa] 10.002 10.000 10.003 23.168 10.007 10.002
𝑏 19.290 5.000 5.000 5.077 12.427 5.003
𝐶1 [MPa] 7999.942 7041.196 7999.997 7999.855 5017.701 7999.999
𝛾1 86.961 99.988 99.997 86.555 74.038 99.997

Error

𝑓1 [kNm] 𝟏𝟖.𝟏𝟕𝟒 21.549 18.935 𝟏𝟖.𝟕𝟑𝟒 21.389 𝟏𝟖.𝟐𝟔𝟑
𝑓2 [kNm] 19.815 𝟏𝟖.𝟐𝟖𝟔 19.201 𝟏𝟗.𝟎𝟓𝟐 𝟏𝟖.𝟓𝟕𝟖 19.060
𝑓3 [kNm] 20.442 21.016 𝟏𝟗.𝟗𝟐𝟐 20.281 𝟐𝟎.𝟓𝟑𝟓 𝟏𝟗.𝟕𝟎𝟖
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Figure 13: Comparison of test data and model predictions for cyclic tests of the cantilever with parameters identi�ed from a pair
of two noise-free experimental datasets. (a), (b), (c) Parameters from group 4; (d), (e), (f) Parameters from group 5; (g), (h),
(i) Parameters from group 6.

fied from structural tests. However, cyclic material tests are
not available for the flange. Figs. 17(a) and (b) compare the
true stress-strain relations simulated by the identified param-
eters for the flange from noise-free and noisy experimental
datasets with the experimental one, respectively. All sets of
the identified parameters of the flange can capture the mono-
tonic hardening process of the material. The yield plateau
cannot be simulated because of the nature of the nonlinear
combined isotropic/kinematic hardening model in Eqs. (5)
and (8).

5. Conclusions
The cyclic response of a structure depends on the consti-
tutive laws of its materials. If this response can be mea-
sured experimentally, an inverse problem can be formulated
for identification of the underlying material parameters. We
have successfully applied BO to solving such an inverse prob-
lem considering noise-free and noisy experimental measures.

Starting at a small number of material parameter sets, a con-
structed GP model probabilistically describes the relation-
ship between the parameters and the error function. An ac-
quisition function addressing the trade-off between exploita-
tion and exploration of BO is formulated in each BO iteration
for intelligently selecting a new promising parameter vector.
The acquisition function allows BO to select a good parame-
ter vector in the next iteration without calling any numerical
simulation. The parameters are found as BO terminates and
their prediction ability is confirmed through reproducing the
material behavior under different cyclic loadings.

Through two identification examples of a steel specimen
and a bi-material cantilever, BO demonstrates its good abil-
ity to identify the parameters for the nonlinear combined
isotropic/kinematic hardening model for structural steels. The
material parameters obtained by BO with and without con-
sidering observational noise can reliably predict the cyclic
behavior of steel subjected to different loading conditions.
It is also found that BO outperforms GA and PSO in terms
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(a) (b) (c)

(d) (e) (f)
 

  
Figure 14: Histories of BO for di�erent noisy experimental datasets from cyclic tests of the cantilever. (a)�(f) obtained from
groups 1�6, respectively.

of the prediction performance of identified parameters when
expending the same number of simulation calls. Moreover,
the identification results for the cantilever suggest a possi-
bility of identifying the material parameters from structural
tests even for the structure with two different materials. This
is remarkable because cyclic material tests are difficult and
usually not carried out before structural tests.

The dataset-specific bias in both noise-free and noisy
cases is notable if only one experimental dataset obtained
from a specific loading history is used for parameter identi-
fication. Such bias can be mitigated when using the exper-
imental datasets from different loading histories. As a rec-
ommendation, experimental measures from various loading
histories should be used for parameter identification simul-
taneously.

A nontrivial extension of this work is to apply the BO ap-
proach to identifying the parameters for steel structural sys-
tems under cyclic loading where different responses, such as
story drifts, accelerations, and stresses, can be experimen-
tally measured. These responses and their correlation may
be used for formulation of a multi-objective parameter iden-
tification problem. The BO should be modified accordingly,
and this is under our investigation. Another extension of this
work is to handle modeling errors and uncertainty in mate-
rial parameters. The former may combine a sophisticated
isotropic hardening model with a kinematic hardening model
of more back-stress components. The latter may find a pos-
terior PDF describing the parameters using the probabilistic
approach with a constant prior PDF obtained from BO.
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Appendix: Gaussian process (GP)
Consider the training dataset  = {X, y} = {x𝑖, 𝑦𝑖}𝑁𝑖=1,
where x𝑖 ∈ ℝ+𝑛 are 𝑛-dimensional vectors of the material
parameters and 𝑦𝑖 ∈ ℝ are the corresponding (noise-free
or noisy) error function values. We establish the relation-
ship between the input vector x and output variable 𝑦 using
the mapping 𝑦 = 𝑔̂(x) + 𝜔𝑓 ∶ ℝ+𝑛 → ℝ, where 𝑔̂(x) is a
Gaussian conditioned on  and 𝜔𝑓 ∼ 

(

0, 𝜏2𝑓
)

is additive
Gaussian noise.

A GP assumes that any finite subset of an infinite set of
the error function values has a joint Gaussian distribution
[29]. For the set of 𝑁 parameter vectors {x1,… , x𝑁}, the
corresponding error function values {𝑦1,… , 𝑦𝑁} are dis-
tributed according to

⎡

⎢

⎢

⎣

𝑦1
⋮
𝑦𝑁

⎤

⎥

⎥

⎦

∼ 𝑁

⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

𝑚(x1)
⋮

𝑚(x𝑁 )

⎤

⎥

⎥

⎦

,
⎡

⎢

⎢

⎣

𝑘(x1, x1) ⋯ 𝑘(x1, x𝑁 )
⋮ ⋱ ⋮

𝑘(x𝑁 , x1) ⋯ 𝑘(x𝑁 , x𝑁 )

⎤

⎥

⎥

⎦

+ 𝜏2𝑓 I𝑁
⎞

⎟

⎟

⎠

(A.1)
where 𝑁 denotes an 𝑁-variate Gaussian; I𝑁 the 𝑁-by-𝑁
identity matrix; and 𝑚(x) = 𝔼[𝑔̂(x)] and 𝑘(x, x′) the mean
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Figure 15: Comparison of test data and model predictions for cyclic tests of the cantilever with parameters identi�ed from a
speci�c noisy experimental dataset. (a), (b), (c) Parameters from group 1; (d), (e), (f) Parameters from group 2; (g), (h), (i)
Parameters from group 3.

and covariance kernel functions, respectively. The mean func-
tion in this study is set as 𝑚(x) = 0 because the covariance
kernel function is flexible enough to handle the role of 𝑚(x)
[29]. The covariance kernel function is defined for any pair
of the parameter vectors x and x′ to measure the similarity
between two corresponding error function values 𝑦 = 𝑔̂(x)
and 𝑦 = 𝑔̂(x′), such that

𝑘(x, x′) = 𝔼
[(

𝑔̂(x) − 𝑚(x)
)(

𝑔̂(x′) − 𝑚(x′)
)] (A.2)

In this work, we use Gaussian kernel as

𝑘(x, x′) = exp
(

−
(x − x′)𝑇 (x − x′)

2𝑙2

)

(A.3)

where 𝑙 denotes the characteristic length-scale parameter de-
termined by maximizing the likelihood estimation of . A
5-fold cross-validation strategy incorporated in the built-in
MATLAB function fitrgp is used to tune the kernel parame-
ter.

Once 𝑙 has been determined, the information in Eq. (A.1)
is used for predicting the error function value 𝑦∗ at a new
parameter vector x∗, i.e., 𝑦∗|y = 𝑔̂(x∗). Because of the GP
nature, the joint PDF of 𝑦∗ and y is also a Gaussian. Let
m(X) = [𝑚(x1),… , 𝑚(x𝑁 )]𝑇 , we have
[

𝑦∗
y

]

∼ 𝑁+1

([

𝑚(x∗)
m(X)

]

,
[

𝑘(x∗, x∗) K(x∗,X)
K(x∗,X)𝑇 K(X,X)

])

(A.4)

where
K(x∗,X) =

[

𝑘(x∗, x1),… , 𝑘(x∗, x𝑁 )
] (A.5)

K(X,X) =
⎡

⎢

⎢

⎣

𝑘(x1, x1) ⋯ 𝑘(x1, x𝑁 )
⋮ ⋱ ⋮

𝑘(x𝑁 , x1) ⋯ 𝑘(x𝑁 , x𝑁 )

⎤

⎥

⎥

⎦

+ 𝜏2𝑓 I𝑁 (A.6)

The conditional Gaussian 𝑦∗|y = 𝑔̂(x∗) can be derived
from Eq. (A.4) using the standard conditioning rule [29],
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Figure 16: Comparison of test data and model predictions for cyclic tests of the cantilever with parameters identi�ed from a pair
of two noisy experimental datasets. (a), (b), (c) Parameters from group 4; (d), (e), (f) Parameters from group 5; (g), (h), (i)
Parameters from group 6.

such that
𝑦∗|y ∼ 

(

𝜇𝑦∗ (x∗), 𝜏2𝑦∗ (x
∗)
)

(A.7)
where

𝜇𝑦∗ (x∗) = 𝑚(x∗)+K(x∗,X)K(X,X)−1 (y − m(X)) (A.8)

𝜏2𝑦∗ (x
∗) = 𝑘(x∗, x∗)−K(x∗,X)K(X,X)−1K(x∗,X)𝑇 (A.9)
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Figure 17: Comparison of test data and model predictions for coupon test of the cantilever's �ange. (a) Parameters from noise-
free experimental datasets; (b) Parameters from noisy experimental datasets.

04019205. doi:10.1061/(ASCE)ST.1943-541X.0002505.
[9] R. Hartloper Alexander, de Castro e Sousa Albano, G. Lig-

nos Dimitrios, Constitutive modeling of structural steels: nonlin-
ear isotropic/kinematic hardening material model and its calibration,
Journal of Structural Engineering 147 (4) (2021) 04021031. doi:

10.1061/(ASCE)ST.1943-541X.0002964.
[10] T. Marwala, S. Sibisi, Finite element model updating using Bayesian

framework and modal properties, Journal of Aircraft 42 (1) (2005)
275–278. doi:10.2514/1.11841.

[11] B. V. Rosić, A. Kučerová, J. Sýkora, O. Pajonk, A. Litvinenko, H. G.
Matthies, Parameter identification in a probabilistic setting, Engineer-
ing Structures 50 (2013) 179–196. doi:10.1016/j.engstruct.2012.12.
029.

[12] H. Rappel, L. A. A. Beex, L. Noels, S. P. A. Bordas, Identifying elasto-
plastic parameters with Bayes’ theorem considering output error, in-
put error and model uncertainty, Probabilistic Engineering Mechanics
55 (2019) 28–41. doi:10.1016/j.probengmech.2018.08.004.

[13] J. L. Beck, L. S. Katafygiotis, Updating models and their uncertain-
ties. I: Bayesian statistical framework, Journal of Engineering Me-
chanics 124 (4) (1998) 455–461. doi:10.1061/(ASCE)0733-9399(1998)

124:4(455).
[14] A. Tarantola, Inverse problem theory and methods for model param-

eter estimation, SIAM, 2005. doi:10.1137/1.9780898717921.
[15] H. Wang, Y. Zeng, X. Yu, G. Li, E. Li, Surrogate-assisted Bayesian

inference inverse material identification method and application to ad-
vanced high strength steel, Inverse Problems in Science and Engineer-
ing 24 (7) (2016) 1133–1161. doi:10.1080/17415977.2015.1113960.

[16] U. Alper, T. Panos, Constitutive model for cyclic response of struc-
tural steels with yield plateau, Journal of Structural Engineering
137 (2) (2011) 195–206. doi:10.1061/(ASCE)ST.1943-541X.0000287.

[17] F. Hu, G. Shi, Y. Shi, Constitutive model for full-range elasto-plastic
behavior of structural steels with yield plateau: Formulation and im-
plementation, Engineering Structures 171 (2018) 1059–1070. doi:

10.1016/j.engstruct.2016.02.037.
[18] S. Talatahari, A. Kaveh, N. Mohajer Rahbari, Parameter identifica-

tion of Bouc-Wen model for MR fluid dampers using adaptive charged
system search optimization, Journal of Mechanical Science and Tech-
nology 26 (8) (2012) 2523–2534. doi:10.1007/s12206-012-0625-y.

[19] B. M. Chaparro, S. Thuillier, L. F. Menezes, P. Y. Manach, J. V. Fer-
nandes, Material parameters identification: Gradient-based, genetic
and hybrid optimization algorithms, Computational Materials Sci-
ence 44 (2) (2008) 339–346. doi:10.1016/j.commatsci.2008.03.028.

[20] S. Shirgir, B. F. Azar, A. Hadidi, Reliability-based simplification of
Bouc-Wen model and parameter identification using a new hybrid al-
gorithm, Structures 27 (2020) 297–308. doi:10.1016/j.istruc.2020.

05.024.
[21] R. Ghajar, N. Naserifar, H. Sadati, J. Alizadeh K., A neural net-

work approach for predicting steel properties characterizing cyclic

ramberg-osgood equation, Fatigue & Fracture of Engineering Mate-
rials & Structures 34 (7) (2011) 534–544. doi:10.1111/j.1460-2695.

2010.01545.x.
[22] T. A. Horton, I. Hajirasouliha, B. Davison, Z. Ozdemir, Accurate pre-

diction of cyclic hysteresis behaviour of rbs connections using deep
learning neural networks, Engineering Structures 247 (2021) 113156.
doi:10.1016/j.engstruct.2021.113156.

[23] M. C. Kennedy, A. O’Hagan, Bayesian calibration of computer mod-
els, Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 63 (3) (2001) 425–464. doi:10.1111/1467-9868.00294.

[24] S. Arridge, P. Maass, O. Öktem, C.-B. Schönlieb, Solving inverse
problems using data-driven models, Acta Numerica 28 (2019) 1–174.
doi:10.1017/S0962492919000059.

[25] S. K. Paul, S. Sivaprasad, S. Dhar, S. Tarafder, Key issues in
cyclic plastic deformation: Experimentation, Mechanics of Materi-
als 43 (11) (2011) 705–720. doi:10.1016/j.mechmat.2011.07.011.

[26] D. R. Jones, M. Schonlau, W. J. Welch, Efficient global optimiza-
tion of expensive black-box functions, Journal of Global Optimization
13 (4) (1998) 455–492. doi:10.1023/A:1008306431147.

[27] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, N. de Freitas, Taking
the human out of the loop: A review of Bayesian optimization, Pro-
ceedings of the IEEE 104 (1) (2016) 148–175. doi:10.1109/JPROC.

2015.2494218.
[28] P. Feliot, J. Bect, E. Vazquez, A Bayesian approach to constrained

single- and multi-objective optimization, Journal of Global Optimiza-
tion 67 (1) (2017) 97–133. doi:10.1007/s10898-016-0427-3.

[29] C. E. Rasmussen, C. K. I. Williams, Gaussian processes for machine
learning, The MIT Press, Cambridge, Massachusetts, 2006. doi:10.

7551/mitpress/3206.001.0001.
[30] Y. Zhang, D. W. Apley, W. Chen, Bayesian optimization for materials

design with mixed quantitative and qualitative variables, Scientific
Reports 10 (1) (2020) 4924. doi:10.1038/s41598-020-60652-9.

[31] A. Mathern, O. S. Steinholtz, A. Sjöberg, M. Önnheim, K. Ek,
R. Rempling, E. Gustavsson, M. Jirstrand, Multi-objective con-
strained Bayesian optimization for structural design, Structural and
Multidisciplinary Optimization 63 (2) (2021) 689–701. doi:10.1007/

s00158-020-02720-2.
[32] B. Do, M. Ohsaki, M. Yamakawa, Bayesian optimization for robust

design of steel frames with joint and individual probabilistic con-
straints, Engineering Structures 245 (2021) 112859. doi:10.1016/j.

engstruct.2021.112859.
[33] J. Kuhn, J. Spitz, P. Sonnweber-Ribic, M. Schneider, T. Böhlke,

Identifying material parameters in crystal plasticity by Bayesian
optimization, Optimization and Engineering (2021). doi:10.1007/

s11081-021-09663-7.
[34] J. Lemaitre, J. L. Chaboche, Mechanics of solid materials, Cambridge

University Press, 1994.
[35] E. Voce, The relationship between stress and strain for homogeneous

B. Do & M. Ohsaki: Preprint submitted to Structures Page 20 of 21

https://doi.org/10.1061/(ASCE)ST.1943-541X.0002505
https://doi.org/10.1061/(ASCE)ST.1943-541X.0002964
https://doi.org/10.1061/(ASCE)ST.1943-541X.0002964
https://doi.org/10.1061/(ASCE)ST.1943-541X.0002964
https://doi.org/10.1061/(ASCE)ST.1943-541X.0002964
https://doi.org/10.2514/1.11841
https://doi.org/10.2514/1.11841
https://doi.org/10.2514/1.11841
https://www.sciencedirect.com/science/article/pii/S0141029612006426
https://doi.org/10.1016/j.engstruct.2012.12.029
https://doi.org/10.1016/j.engstruct.2012.12.029
https://www.sciencedirect.com/science/article/pii/S0266892018300547
https://www.sciencedirect.com/science/article/pii/S0266892018300547
https://www.sciencedirect.com/science/article/pii/S0266892018300547
https://doi.org/10.1016/j.probengmech.2018.08.004
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9399%281998%29124%3A4%28455%29
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9399%281998%29124%3A4%28455%29
https://doi.org/10.1061/(ASCE)0733-9399(1998)124:4(455)
https://doi.org/10.1061/(ASCE)0733-9399(1998)124:4(455)
https://doi.org/10.1137/1.9780898717921
https://doi.org/10.1080/17415977.2015.1113960
https://doi.org/10.1080/17415977.2015.1113960
https://doi.org/10.1080/17415977.2015.1113960
https://doi.org/10.1080/17415977.2015.1113960
https://doi.org/10.1061/(ASCE)ST.1943-541X.0000287
https://doi.org/10.1061/(ASCE)ST.1943-541X.0000287
https://doi.org/10.1061/(ASCE)ST.1943-541X.0000287
https://www.sciencedirect.com/science/article/pii/S0141029616001255
https://www.sciencedirect.com/science/article/pii/S0141029616001255
https://www.sciencedirect.com/science/article/pii/S0141029616001255
https://doi.org/10.1016/j.engstruct.2016.02.037
https://doi.org/10.1016/j.engstruct.2016.02.037
https://doi.org/10.1007/s12206-012-0625-y
https://doi.org/10.1007/s12206-012-0625-y
https://doi.org/10.1007/s12206-012-0625-y
https://doi.org/10.1007/s12206-012-0625-y
https://www.sciencedirect.com/science/article/pii/S0927025608001766
https://www.sciencedirect.com/science/article/pii/S0927025608001766
https://doi.org/10.1016/j.commatsci.2008.03.028
https://www.sciencedirect.com/science/article/pii/S235201242030237X
https://www.sciencedirect.com/science/article/pii/S235201242030237X
https://www.sciencedirect.com/science/article/pii/S235201242030237X
https://doi.org/10.1016/j.istruc.2020.05.024
https://doi.org/10.1016/j.istruc.2020.05.024
https://doi.org/10.1111/j.1460-2695.2010.01545.x
https://doi.org/10.1111/j.1460-2695.2010.01545.x
https://doi.org/10.1111/j.1460-2695.2010.01545.x
https://doi.org/10.1111/j.1460-2695.2010.01545.x
https://doi.org/10.1111/j.1460-2695.2010.01545.x
https://www.sciencedirect.com/science/article/pii/S0141029621012876
https://www.sciencedirect.com/science/article/pii/S0141029621012876
https://www.sciencedirect.com/science/article/pii/S0141029621012876
https://doi.org/10.1016/j.engstruct.2021.113156
https://doi.org/10.1111/1467-9868.00294
https://doi.org/10.1111/1467-9868.00294
https://doi.org/10.1111/1467-9868.00294
https://www.cambridge.org/core/article/solving-inverse-problems-using-datadriven-models/CE5B3725869AEAF46E04874115B0AB15
https://www.cambridge.org/core/article/solving-inverse-problems-using-datadriven-models/CE5B3725869AEAF46E04874115B0AB15
https://doi.org/10.1017/S0962492919000059
https://www.sciencedirect.com/science/article/pii/S0167663611001347
https://www.sciencedirect.com/science/article/pii/S0167663611001347
https://doi.org/10.1016/j.mechmat.2011.07.011
https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1109/JPROC.2015.2494218
https://doi.org/10.1109/JPROC.2015.2494218
https://doi.org/10.1109/JPROC.2015.2494218
https://doi.org/10.1109/JPROC.2015.2494218
https://doi.org/10.1007/s10898-016-0427-3
https://doi.org/10.1007/s10898-016-0427-3
https://doi.org/10.1007/s10898-016-0427-3
https://doi.org/10.7551/mitpress/3206.001.0001
https://doi.org/10.7551/mitpress/3206.001.0001
https://doi.org/10.1038/s41598-020-60652-9
https://doi.org/10.1038/s41598-020-60652-9
https://doi.org/10.1038/s41598-020-60652-9
https://doi.org/10.1007/s00158-020-02720-2
https://doi.org/10.1007/s00158-020-02720-2
https://doi.org/10.1007/s00158-020-02720-2
https://doi.org/10.1007/s00158-020-02720-2
https://www.sciencedirect.com/science/article/pii/S0141029621010099
https://www.sciencedirect.com/science/article/pii/S0141029621010099
https://www.sciencedirect.com/science/article/pii/S0141029621010099
https://doi.org/10.1016/j.engstruct.2021.112859
https://doi.org/10.1016/j.engstruct.2021.112859
https://doi.org/10.1007/s11081-021-09663-7
https://doi.org/10.1007/s11081-021-09663-7
https://doi.org/10.1007/s11081-021-09663-7
https://doi.org/10.1007/s11081-021-09663-7


Bayesian optimization for inverse identi�cation of cyclic constitutive law. . .

deformation, Journal of the Institute of Metals 74 (1948) 537–562.
[36] W. Prager, Recent developments in the mathematical theory of plas-

ticity, Journal of Applied Physics 20 (3) (1949) 235–241. doi:10.

1063/1.1698348.
[37] P. J. Armstrong, C. O. Frederick, A mathematical representation of

the multiaxial Bauschinger effect, Report RD/B/N731, Berkeley, UK
(1966).

[38] J. L. Chaboche, G. Rousselier, On the plastic and viscoplastic consti-
tutive equations–Part I: Rules developed with internal variable con-
cept, Journal of Pressure Vessel Technology 105 (2) (1983) 153–158.
doi:10.1115/1.3264257.

[39] S. Yamada, Y. Jiao, A concise hysteretic model of structural steel con-
sidering the Bauschinger effect, International Journal of Steel Struc-
tures 16 (3) (2016) 671–683. doi:10.1007/s13296-015-0134-9.

[40] S. K. Azad, O. Hasançebi, An elitist self-adaptive step-size search
for structural design optimization, Applied Soft Computing 19 (2014)
226–235. doi:10.1016/j.asoc.2014.02.017.

[41] A. Kaveh, A. Dadras, Structural damage identification using an en-
hanced thermal exchange optimization algorithm, Engineering Opti-
mization 50 (3) (2018) 430–451. doi:10.1080/0305215X.2017.1318872.

[42] S. K. Azad, Monitored convergence curve: a new framework for
metaheuristic structural optimization algorithms, Structural and Mul-
tidisciplinary Optimization 60 (2) (2019) 481–499. doi:10.1007/

s00158-019-02219-5.
[43] A. Andrade-Campos, S. Thuillier, P. Pilvin, F. Teixeira-Dias,

On the determination of material parameters for internal variable
thermoelastic-viscoplastic constitutive models, International Journal
of Plasticity 23 (8) (2007) 1349–1379. doi:10.1016/j.ijplas.2006.

09.002.
[44] A. Afzal, K.-Y. Kim, J.-W. Seo, Effects of Latin hypercube sam-

pling on surrogate modeling and optimization, International Jour-
nal of Fluid Machinery and Systems 10 (3) (2017) 240–253. doi:

10.5293/IJFMS.2017.10.3.240.
[45] V. Picheny, T. Wagner, D. Ginsbourger, A benchmark of Kriging-

based infill criteria for noisy optimization, Structural and Multi-
disciplinary Optimization 48 (3) (2013) 607–626. doi:10.1007/

s00158-013-0919-4.
[46] D. Huang, T. T. Allen, W. I. Notz, N. Zeng, Global optimization

of stochastic black-box systems via sequential Kriging meta-models,
Journal of Global Optimization 34 (3) (2006) 441–466. doi:10.1007/
s10898-005-2454-3.

[47] D. Systèmes, Abaqus user’s manual ver. 2017 (2017).

B. Do & M. Ohsaki: Preprint submitted to Structures Page 21 of 21

https://doi.org/10.1063/1.1698348
https://doi.org/10.1063/1.1698348
https://doi.org/10.1063/1.1698348
https://doi.org/10.1063/1.1698348
https://doi.org/10.1115/1.3264257
https://doi.org/10.1115/1.3264257
https://doi.org/10.1115/1.3264257
https://doi.org/10.1115/1.3264257
https://doi.org/10.1007/s13296-015-0134-9
https://doi.org/10.1007/s13296-015-0134-9
https://doi.org/10.1007/s13296-015-0134-9
https://www.sciencedirect.com/science/article/pii/S1568494614000878
https://www.sciencedirect.com/science/article/pii/S1568494614000878
https://doi.org/10.1016/j.asoc.2014.02.017
https://doi.org/10.1080/0305215X.2017.1318872
https://doi.org/10.1080/0305215X.2017.1318872
https://doi.org/10.1080/0305215X.2017.1318872
https://doi.org/10.1007/s00158-019-02219-5
https://doi.org/10.1007/s00158-019-02219-5
https://doi.org/10.1007/s00158-019-02219-5
https://doi.org/10.1007/s00158-019-02219-5
https://www.sciencedirect.com/science/article/pii/S0749641906001628
https://www.sciencedirect.com/science/article/pii/S0749641906001628
https://doi.org/10.1016/j.ijplas.2006.09.002
https://doi.org/10.1016/j.ijplas.2006.09.002
https://doi.org/10.5293/IJFMS.2017.10.3.240
https://doi.org/10.5293/IJFMS.2017.10.3.240
https://doi.org/10.1007/s00158-013-0919-4
https://doi.org/10.1007/s00158-013-0919-4
https://doi.org/10.1007/s00158-013-0919-4
https://doi.org/10.1007/s00158-013-0919-4
https://doi.org/10.1007/s10898-005-2454-3
https://doi.org/10.1007/s10898-005-2454-3
https://doi.org/10.1007/s10898-005-2454-3
https://doi.org/10.1007/s10898-005-2454-3



