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Abstract 11 

 Dynamic mode decomposition (DMD) is applied to assess the dominance ratio (the ratio of 12 

the second-largest to the largest k-eigenvalue) from the fission source convergence during Monte 13 

Carlo power iterations. The fission source transition in each discretized tally region toward 14 

convergence is viewed as snapshots for DMD analysis. DMD is found to yield satisfactory results 15 

for the dominance ratio when various arbitrary parameters are selected, even for systems that have 16 

a dominance ratio that is very close to unity (~0.999). The accuracy of the method depends on the 17 

parameters, especially in a system that has a low dominance ratio due to a reduced number of 18 

cycles before convergence. The spatial discretization of tally regions where fission sources 19 

accumulate can be coarse, in contrast to that in the fission matrix method, which is an advantage 20 

of the proposed method. 21 

 22 
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1. Introduction 26 

 The power iteration method is a commonly used technique for calculating the neutron 27 

effective multiplication factor, 𝑘𝑒𝑓𝑓 , in both deterministic and stochastic (Monte Carlo) 28 

calculation methods. A guessed initial fission source distribution eventually reaches the 29 

fundamental mode distribution through successive fission generations (cycles). The number of 30 

power iterations that are necessary for fission source convergence is dominated by the dominance 31 
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ratio. The dominance ratio is defined as the ratio of the second-largest to the largest k-eigenvalue. 1 

The dominance ratio is an important index for the stability of the neutron flux distribution in a 2 

power reactor. Neither the second-largest k-eigenvalue nor the dominance ratio can be 3 

straightforwardly calculated with the Monte Carlo method. 4 

Many studies have been conducted to calculate the second eigenvalue or the dominance ratio 5 

with the Monte Carlo method. As a method for calculating the second and higher mode eigenvalues, 6 

the modified power method (MPM) was proposed by Booth (2003, 2006). The method calculates 7 

higher eigenmodes by keeping the positive and negative components growing at the same rate. 8 

The MPM was further studied by Yamamoto (2009) and was extended by introducing the “transfer 9 

matrix” method (Zhang, et al., 2016, 2018). One of the difficulties in the MPM is that the method 10 

requires that the positive and negative particle weights cancel out in finely discretized regions. The 11 

cancellation cannot be performed without an intentionally designed Monte Carlo technique. The 12 

currently available technique for cancellation is an approximate way requiring that the entire 13 

fission region be finely discretized. 14 

 The fission matrix method (FMM) is a method for calculating higher eigenmodes without 15 

introducing negative particle weights (Dufek and Gudowski, 2009; Carney et al., 2014; Terlizzi 16 

and Kotlyar, 2019). The fission matrix can be estimated before the fission source distribution has 17 

fully converged, which is one of the advantages over other techniques for dominance ratio 18 

assessment. However, the spatial discretization for the FMM needs to be fine enough to obtain a 19 

sufficiently accurate dominance ratio. The requirement for the fine resolution of the fission matrix 20 

increases the computational burden, thereby limiting the applicability of FMM to a subset of 21 

problems. 22 

 In a different dominance ratio assessment approach, the time series analysis technique is 23 

applied to the correlation of fission sources between successive fission cycles because the degree 24 

of the correlation is closely related to the dominance ratio (Ueki et al., 2003; Ueki et al., 2004; 25 

Nease and Ueki, 2007; Nease and Ueki, 2009). This method, which is named the coarse mesh 26 

projection method (CMPM), uses autoregressive-moving average fitting. In contrast to the FMM, 27 
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the CMPM enables the eigenvalue ratios to be extracted even with very coarse mesh schemes. The 1 

disadvantage of the CMPM is that the time series data cannot be accumulated until the fission 2 

source has fully converged. A method for circumventing this difficulty in the CMPM was 3 

developed, which is called the noise propagation matrix method (NPMM) (Sutton et al., 2011). 4 

While the NPMM has the same coarse-mesh accuracy as the CMPM, the NPMM can estimate the 5 

dominance ratio using the time series data before fission source convergence. 6 

 A simple method that was proposed by Gorodkov (2011) calculates the dominance ratio by 7 

imposing a black boundary condition on a symmetry plane where the flux of the 1st eigenmode is 8 

zero. If a core geometry is symmetric, the zero-flux plane can be easily found. A strategy for 9 

estimating the dominance ratio for some nonsymmetrical systems was also proposed. 10 

 In a previous work on dominance ratio assessment (Dumonteil and Courau, 2010), which is 11 

highly similar to this study, the convergence process of the fission source is fitted to 𝑎 ∙12 

exp(−𝑏𝑛) + 𝑐, where a and c are the fitting constants, n is the cycle number, and b is the natural 13 

logarithm of the dominance ratio. The disadvantage of this method is contamination by 14 

eigenmodes that are higher than the 1st mode. Similar problems are encountered in the fitting 15 

process of subcriticality measurement in the pulsed neutron method or Rossi- method. Recently, 16 

dynamic mode decomposition (DMD) (Schmid, 2010; Kutz et al., 2016) was introduced to extract 17 

the fundamental mode and major higher eigenmodes from measured data in the pulsed neutron 18 

method (McClarren, 2019; Hardy et al., 2019) and the Rossi-𝛼 method (Yamamoto and Sakamoto, 19 

2022). 20 

 DMD is a technique for decomposing a complex system. DMD was originally developed for 21 

fluid dynamics analyses and is now gradually becoming a popular technique in the nuclear 22 

engineering field. Examples of DMD applications in the nuclear engineering field include the 23 

evolution of spatially varying nuclide compositions in a reactor (Abdo et al., 2019), acceleration 24 

of discrete ordinates radiative transfer calculations (McClarren and Haut, 2020), reactor stability 25 

analysis of a coupling system between neutronics and thermal hydraulics (Di Ronco et al., 2020), 26 

and eigenmode analyses in subcriticality measurements (McClarren, 2019; Hardy et al., 2019; 27 
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Yamamoto and Sakamoto, 2021). 1 

Roberts et al. (2019) applied DMD to accelerate the power iteration method for k-eigenvalue 2 

calculations by viewing successive power iterations as snapshots of a time-varying system. 3 

Roberts et al. addressed the acceleration of deterministic k-eigenvalue calculations that used the 4 

finite-volume approximation. The objective of the present study is to extend the approach of 5 

Dumonteil and Courau (2010) and Roberts et al. (2019) by applying DMD to dominance ratio 6 

assessment in Monte Carlo k-eigenvalue calculations, thereby suppressing the influence of 7 

eigenmodes that are higher than the 1st mode. 8 

The remainder of this paper is organized as follows. In Section 2, the fundamentals of the 9 

power iteration method and the preparation of snapshots of the fission source distribution for DMD 10 

analysis are presented. In Section 3, a brief overview of DMD and its application in this study is 11 

presented. In Section 4, numerical examples in which dominance ratios are calculated using DMD 12 

are presented. The final section presents the conclusions and recommendations for future work. 13 

 14 

2. Dominance ratio in the Monte Carlo power iteration method 15 

 The theory and procedure for dominance ratio assessment in the Monte Carlo power iteration 16 

method are presented in this section. In this study, the power iteration method follows a standard 17 

procedure that is adopted in widely available Monte Carlo calculation codes. The procedure is 18 

fundamentally the same as that in the deterministic approach that was published in (Roberts et al., 19 

2019). 20 

 At the beginning of a Monte Carlo k-eigenvalue calculation, an initial fission source 21 

distribution 𝐹0(𝒓) is assigned to the calculation domain. The volume integral of 𝐹0(𝒓) over the 22 

entire domain is expressed as follows: 23 

𝑁 = ∫ 𝐹0(𝒓)𝑑𝒓
𝑉

,                                                                          (1) 24 

where N is the nominal number of fission neutrons (total source weight) in each cycle, which is 25 

constant throughout the calculation. The initial fission source distribution 𝐹0(𝒓) can be expressed 26 

as a linear combination of the eigenfunctions as follows: 27 
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𝐹0(𝒓) = ∑ 𝑎𝑖𝜑𝑖(𝒓),

∞

𝑖=0

                                                                  (2) 1 

where 𝜑𝑖(𝒓) is the ith mode eigenfunction and 𝑎𝑖 is the expansion coefficient of the ith mode. 2 

Using this initial fission source distribution, the fission source distribution in the next cycle is 3 

obtained by applying operator A, which corresponds to one cycle of power iteration, to drive the 4 

fission source distribution to the next cycle as follows: 5 

𝐹1(𝒓) = 𝐀𝐹0(𝒓) = ∑ 𝑎𝑖𝐀𝜑𝑖(𝒓)

∞

𝑖=0

= ∑ 𝑎𝑖𝑘𝑖𝜑𝑖(𝒓)

∞

𝑖=0

,                                       (3) 6 

where 𝑘𝑖 is the ith mode eigenvalue. The eigenvalues are ordered in a descending sequence as 7 

𝑘0 > 𝑘1 ≥ 𝑘2, … , > 0 , and thus, the largest eigenvalue 𝑘0 is equal to 𝑘𝑒𝑓𝑓. After this procedure 8 

is repeated n times, the fission source distribution is expressed as follows: 9 

𝐹n(𝒓) = 𝐀n𝐹0(𝒓) = 𝑘0
𝑛𝑎0𝜑0(𝒓) + 𝑘0

𝑛 ∑ 𝑎𝑖𝜌𝑖
𝑛𝜑𝑖(𝒓)

∞

𝑖=1

,                            (4) 10 

where 𝜌𝑖 = (𝑘𝑖/𝑘0). 𝜌𝑖(< 1) in Eq. (4) represents the attenuation rate of the ith eigenmode.  11 

The largest attenuation rate is the dominance ratio 𝜌1 = (𝑘1 /𝑘0) , which dominates the 12 

convergence rate and stability of the fission source distribution. Assuming that 𝑘0 has already 13 

been determined by performing the k-eigenvalue calculation, we obtain the following by dividing 14 

𝐹n(𝒓) by 𝑘0
𝑛: 15 

𝐺𝑛(𝒓) ≡
1

𝑘0
𝑛 𝐹n(𝒓) = 𝑎0𝜌0

𝑛𝜑0(𝒓) + ∑ 𝑎𝑖𝜌𝑖
𝑛𝜑𝑖(𝒓)

∞

𝑖=1

,                                 (5) 16 

where 17 

𝜌0
𝑛 = (

𝑘0

𝑘0
)

𝑛

= 1.                                                                     (6) 18 

Thus, the first term on the right-hand side of Eq. (5) has a constant value throughout the cycles. 19 

After the power iteration is performed many times, 𝐺𝑛(𝒓) eventually converges to a constant 20 

value as follows: 21 

lim
𝑛→∞

𝐺𝑛(𝒓) = 𝑎0𝜑0(𝒓),                                                             (7) 22 

because 𝜌𝑖 < 1 for 𝑖 ≥ 1. Applying an appropriate numerical reduction algorithm such as DMD 23 

to the transient state of 𝐺𝑛(𝒓) before convergence yields 𝜌𝑖 and 𝜑𝑖(𝒓) for several lower-order 24 

eigenmodes. 25 
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 In deterministic power iteration methods such as the finite difference method, a pointwise 1 

fission source is assigned to each mesh point. In contrast, in the Monte Carlo power iteration 2 

method, the fission source is averaged over a tally region that has a finite volume, and statistical 3 

noise is involved. Hence, the fission source that is calculated with the Monte Carlo method does 4 

not truly represent the pointwise fission source distribution 𝐺𝑛(𝒓). With the Monte Carlo method, 5 

a dilemma is encountered: the finer the tally region is, the larger the statistical noise of each tally 6 

becomes. 7 

 This section presents a Monte Carlo algorithm for calculating samples of the fission source 8 

distribution in each cycle for use as snapshots for DMD analysis. The Monte Carlo k-eigenvalue 9 

calculation for dominance ratio assessment is performed via the following steps. 10 

1) Before starting the Monte Carlo power iterations for snapshots of DMD, a k-eigenvalue 11 

calculation is performed to obtain 𝑘𝑒𝑓𝑓  (𝑘0) . This should be calculated precisely using a 12 

sufficient number of histories because it will be used in the following steps. The accuracy of 13 

𝑘𝑒𝑓𝑓  directly affects the dominance ratio that is calculated with the DMD method. How 14 

precisely 𝑘𝑒𝑓𝑓 should be calculated depends on the target accuracy of the dominance ratio. If 15 

the dominance ratio needs to be calculated up to four digits, the statistical uncertainty of 𝑘𝑒𝑓𝑓 16 

should be much less than 10 pcm. 17 

2) A k-eigenvalue calculation is initiated for the snapshots. In the first cycle, N initial fission 18 

sources are allocated within the calculation domain. The fission source distribution can be 19 

arbitrarily determined; however, the distribution needs to include the first eigenmode, 𝜑1(𝒓), 20 

to assess the dominance ratio. For instance, a point source that is located at the node of the first 21 

eigenmode should be avoided. 22 

3) The fissioning region is discretized into tally regions where fission sources accumulate. The 23 

number of tally regions and their sizes can be arbitrarily determined. Suitable determination of 24 

the tally regions will be discussed in the numerical tests in Section 4. 25 

4) The standard random walk process for k-eigenvalue calculation, where forced fission and 26 

implicit capture are used, is performed until all initial N fission sources are killed by Russian 27 
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roulette or escape from the external boundary. The fission source is calculated in the ith tally 1 

region as follows: 2 

𝑥𝑖,1 =
1

𝑘𝑒𝑓𝑓
∑

𝜈𝛴𝑓

𝛴𝑡
𝑤𝑘

𝑘

,                                                               (8) 3 

where the summation is performed over all collisions in the ith tally region during the first 4 

cycle; k denotes the kth collision; 𝑤𝑘 is the particle weight at the kth collision; 𝜈𝛴𝑓 and 𝛴𝑡 5 

are the production cross section and total cross section, respectively, in the ith tally region; 6 

and 𝑘𝑒𝑓𝑓 is the value that was calculated in Step 1. This fission source is not used as the 7 

fission source in the next cycle. The fission sources for the next cycle are separately 8 

determined by following the manner widely used in Monte Carlo codes. The fission source 9 

can also be calculated with the track length estimator as follows: 10 

𝑥𝑖,1 =
1

𝑘𝑒𝑓𝑓
∑ 𝜈𝛴𝑓𝑠𝑘𝑤𝑘

𝑘

,                                                        (9) 11 

where the summation is performed over tracks in the ith tally region during the first cycle, k 12 

denotes the kth track, and 𝑠𝑘 is the kth track length. 13 

5) In the next cycle, the fission sources start from the fission source sites that were determined in 14 

the previous cycle. Usually, Monte Carlo k-eigenvalue calculations are performed with an 15 

almost constant number of fission neutrons in each cycle. For this purpose, the weight of each 16 

starting particle is 𝑁/𝑀 , where M (which varies among cycles) is the number of source 17 

particles that was determined in the previous cycle. This normalization needs to be canceled 18 

out when calculating the fission source, 𝐺𝑛(𝒓), which is defined in Eq. (5). Thus, the fission 19 

source in the ith tally region in the jth cycle (𝑗 ≥ 2) is calculated as follows: 20 

𝑥𝑖,𝑗 =
1

𝑘𝑒𝑓𝑓

𝑀

𝑁
∑

𝜈𝛴𝑓

𝛴𝑡
𝑤𝑘

𝑘

   for the collision estimator,                   (10) 21 

𝑥𝑖,𝑗 =
1

𝑘𝑒𝑓𝑓

𝑀

𝑁
∑ 𝜈𝛴𝑓𝑠𝑘𝑤𝑘

𝑘

  for the track length estimator.        (11) 22 

6) In an ordinary Monte Carlo calculation for the k-eigenvalue, the power iteration is continued 23 

to calculate 𝑘𝑒𝑓𝑓 with a desired level of confidence even after the fission source distribution 24 
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has fully converged to the fundamental mode. However, the number of times that the power 1 

iteration for dominance ratio assessment should be performed is one of the subjects of this 2 

study, and it is discussed in Section 4. 3 

 4 

3. DMD for dominance ratio assessment 5 

 This section describes the DMD method for assessing the dominance ratio using the transition 6 

state of the fission source toward the fundamental mode distribution. DMD has been presented in 7 

detail in many studies. An outline of DMD that focuses on its application to dominance ratio 8 

assessment is briefly presented here. The DMD algorithm that is used in this study is based on the 9 

description in Chapter 1 in (Kutz et al., 2016), which is partially the same as that used in 10 

(Yamamoto and Sakamoto, 2021) and (Yamamoto and Sakamoto, 2022). For more details, readers 11 

can refer to previous publications such as (Kutz et al., 2016). However, to facilitate reading, the 12 

concise overview of the DMD based on the presentation in (Kutz et al., 2016) is given here. 13 

 Let us assume that fission sources are obtained in n tally regions from the 1st to the Jth cycle 14 

according to the procedure that is presented in Section 2. An n-dimensional column vector that is 15 

composed of the set of n fission sources in the kth cycle (1 ≤ 𝑘 ≤ 𝐽) is constructed as follows: 16 

𝐱𝑘 = [𝑥1,𝑘  𝑥2,𝑘 …  𝑥𝑖,𝑘 … 𝑥𝑛,𝑘 ]
𝑇

,                                                 (12) 17 

where  𝑥𝑖,𝑘 is the fission source of the ith tally region in the kth cycle. Each 𝐱𝑘 corresponds to a 18 

snapshot in the dynamic mode. Using 𝐱𝑘  for 𝑘 = 1, … , 𝐽 , two matrices, 𝐗  and 𝐗′ , are 19 

constructed as follows: 20 

𝐗 = [𝐱1  𝐱2 …  𝐱𝑗 … 𝐱𝐽−1] ,                                                   (13) 21 

𝐗′ = [𝐱2  𝐱3 … 𝐱𝑗 … 𝐱𝐽] .                                                      (14) 22 

The dimensions of 𝐗 and 𝐗′ are both 𝑛 × (𝐽 − 1). The two matrices are related as follows: 23 

𝐗i,j+1 = 𝐗′i,j for 𝑖 = 1, … , 𝑛 and 𝑗 = 1, … , 𝐽 − 1.  24 

By assuming a locally linear approximation and introducing a linear operator matrix 𝐀′, 𝐗 25 

is approximately forward iterated to 𝐗′ by one cycle as follows: 26 

𝐗′ ≈ 𝐀′𝐗.                                                                           (15) 27 

The matrix 𝐀′ is a discrete form of the operator 𝐀 used in Eq. (3). The best-fit matrix for 𝐀′ is 28 
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expressed as follows: 1 

𝐀′ = 𝐗′𝐗†,                                                                         (16) 2 

where † denotes the Moore−Penrose pseudoinverse (Penrose, 1955) and the dimensions of 𝐀′ 3 

are 𝑛 × 𝑛.  4 

First, singular value decomposition of 𝐗 is performed as follows: 5 

𝐗 = 𝐔𝚺𝐕∗,                                                                       (17) 6 

where the asterisk ∗ denotes the conjugate transpose. The dimensions of 𝐔, 𝚺, and 𝐕 are 𝑛 × 𝑛, 7 

𝑛 × 𝑛, and (𝐽 − 1) × 𝑛, respectively. The columns of 𝐔 and 𝐕 are called the left and right 8 

singular vectors, respectively, of 𝐗. The matrix 𝚺 consists of singular values on its diagonal. 9 

Since the fission sources are calculated with the Monte Carlo method, each component of the 10 

matrix 𝐗 involves statistical noise. A contentious issue in the DMD algorithm is the sensitivity 11 

of the results to the noise in each element  𝑥𝑖,𝑘 of the data matrix 𝐗. DMD results are biased by 12 

including too many modes that correspond to small singular values. A simple way to denoise or 13 

debias is to truncate low-energy modes. An appropriate low-rank truncation to 𝐔, 𝚺, and 𝐕 14 

could yield optimal solutions. However, it is challenging to decide how many singular values are 15 

retained. This issue has been discussed in many publications (e.g., Chapter 8 in (Kutz et al., 2016), 16 

(Dawson et al., 2016)).  17 

Once a low rank 𝑟 (≤ min(𝑛, 𝐽 − 1)) has been determined via a reasonable strategy, 𝐗 is 18 

approximated by the truncated matrices: 19 

𝐗 ≈ 𝐔r𝚺r𝐕r
∗,                                                                    (18) 20 

where 𝐔r ∈ ℂn×r, 𝚺r ∈ ℂr×r, and  𝐕r ∈ ℂ(J−1)×r . The pseudoinverse of 𝐗  is expressed as 21 

follows: 22 

𝐗† = 𝐕r𝚺r
−𝟏𝐔r

∗.                                                               (19) 23 

Rank reduction of matrix 𝐀′ from 𝑛 × 𝑛 to 𝑟 × 𝑟 is performed as follows: 24 

𝐀′̃ = 𝐔𝐫
∗𝐀′ 𝐔r = 𝐔𝐫

∗𝐗′𝐗†𝐔r = 𝐔𝐫
∗𝐗′𝐕𝐫𝚺−𝟏.                                        (20) 25 

The transformation from 𝐀′ to 𝐀′̃ is a similarity transformation, and the two matrices share the 26 

same eigenvalues. Applying the eigendecomposition to 𝐀′̃ yields 27 

𝐀′̃𝐖 = 𝐖𝚸,                                                                 (21) 28 

where the columns of 𝐖  are eigenvectors and 𝚸  is a diagonal matrix that contains the 29 
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corresponding eigenvalues 𝜌𝑚 (0 ≤ 𝑚 ≤ 𝑟 − 1). 1 

The largest real-valued eigenvalue 𝜌0 corresponds to 𝜌0 in Eq. (5) and it is supposed to be 2 

unity. The dominance ratio is equal to the second-largest real-valued eigenvalue 𝜌1. The diagonal 3 

components of 𝚸 are also the eigenvalues of 𝐀′. The eigenvectors of 𝐀′ are expressed by the 4 

columns of 𝚽: 5 

𝚽 = 𝐗′𝐕r𝚺r
−𝟏𝐖.                                                            (22) 6 

Using the eigenvalues and eigenvectors of 𝐀′, snapshots of the fission source as a function of the 7 

cycle k are reconstructed as follows: 8 

𝐱(𝑘) ≈ 𝚽𝚸𝑘−1𝐛,                                                            (23) 9 

where 10 

𝐛 = [𝑏0 𝑏1 …  𝑏𝑚 …  𝑏𝑟−1 ]𝑇 ,                                                    (24) 11 

𝑏𝑚  is the amplitude of the mth mode for the first cycle 𝑘 = 1. Since 𝐱1 = 𝐱(1) = 𝚽𝐛, the 12 

amplitude vector of the first cycle is expressed as follows: 13 

𝐛 = 𝚽†𝐱1,                                                                  (25) 14 

where 𝚽† is the Moore−Penrose pseudoinverse of 𝚽. 15 

 16 

4. Application of DMD to dominance ratio assessment 17 

4.1 Model description 18 

As numerical tests of the proposed Monte Carlo method, k-eigenvalue calculations for 19 

dominance ratio assessment using DMD were performed for a three-dimensional rectangular 20 

geometry in which two fuel slabs were separated by a 700 ppm borated light-water isolator. Each 21 

fuel slab was composed of a homogenized low-enriched UO2 fuel rod array. The calculation model 22 

that was used for the numerical tests is illustrated in Fig. 1. The dimensions in Fig. 1 are listed in 23 

Table 1.  24 

The calculations were performed using the 3-energy group constants, as presented in Tables 25 

2 and 3. The group constants were prepared using the standard reactor analysis code (SRAC) 26 

(Okumura et al., 2007). Anisotropic scattering was considered up to the P1 order. The scattering 27 

cross sections that are not listed in the tables were all zero.  28 

In Cases 1 and 3, each calculation model was symmetric with respect to the y-z plane at the 29 
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center of the light-water isolator. Cases 2 and 4 were composed of the left fuel slab only, namely, 1 

they corresponded to a single fissioning material. Vacuum boundary conditions were imposed on 2 

the external boundaries.  3 

The calculations were performed using an in-house Monte Carlo code that was developed by 4 

the authors. For reference solutions of the dominance ratios, the fundamental mode k-eigenvalue 5 

𝑘𝑒𝑓𝑓 and the 1st mode k-eigenvalue were calculated for each case. A Monte Carlo method (MPM) 6 

that was proposed by Booth (2003) and Yamamoto (2009) was used to calculate the 1st mode k-7 

eigenvalue. The criticality calculations for 𝑘𝑒𝑓𝑓 and the 1st mode k-eigenvalue were performed 8 

with 1,200 active cycles, 500,000 neutrons per cycle, and 40 inactive cycles. The inactive cycles 9 

were enough for the eigenvalue convergence even though they were not enough for the fission 10 

source convergence. 11 

Case 1, in which the dominance ratio was 0.907, was a moderate example in terms of fission 12 

source convergence, which may often occur in k-eigenvalue calculations.  13 

Case 2, in which the dominance ratio was 0.721, was a tightly coupled system due to its small 14 

size (45 cm × 40 cm × 35 cm). The dominance ratio of Case 2 was relatively low, which caused 15 

the fission source to converge rapidly.  16 

Case 3, in which the two fuel slabs were separated by a 28 cm-thick isolator, was a loosely 17 

coupled system. The dominance ratio in Case 3 was 0.9992, and the fission source distribution 18 

changed very slightly in each power iteration.  19 

Case 4 also had a high dominance ratio of 0.996, which was caused by the large dimensions 20 

(600 cm × 500 cm × 450 cm). Cases 3 and 4 were extreme examples of slow fission source 21 

convergence. 22 

 23 

 24 

 25 

 26 

 27 
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Table 1 Dimensions and dominance ratios of the numerical tests 1 

Case 
X1  

(cm) 

W  

(cm) 

X2  

(cm) 

Y 

(cm) 

Z 

(cm) 
Dominance ratio 𝜌 

1 30 6 30 60 50 0.90673 ± 0.00005 

2 45 0 0 40 35 0.72128 ± 0.00005 

3 30 28 30 60 50 0.99915 ± 0.00004 

4 600 0 0 500 450 0.99588 ± 0.00002 

 2 

Table 2 Three group constants of the homogenized UO2 fuel rod array 3 

 
1st group 

(10 MeV∼67 keV) 

2nd group 

(67 keV∼0.993 eV) 

3rd group 

(0.993 eV∼) 

t  (cm−1) 3.22058E-1* 1.01682 1.72854 

c  (cm−1) 5.75842E-4 1.350145E-2 3.067833E-2 

𝜈Σ𝑓(cm−1) 5.25926E-3 7.81332E-3 7.36280E-2 

ggs →0  (cm−1)** 2.61779E-1 9.39127E-1 2.5313E+0 

ggs →1  (cm−1) *** 1.93300E-1 5.05296E-1 7.99853E-1 

10 +→ggs  (cm−1) ** 5.75119E-2 6.09358E-2 ― 

11 +→ggs  (cm−1) *** 1.25967E-2 2.54734E-2 ― 

𝜒𝑔 0.993338 6.662E-3 0 

 4 

 *Read as 3.22058×10-1, **P0 component, ***P1 component 5 

 6 

Table 3 Three group constants of 700 ppm borated water 7 
 8 

 
1st group 

(10 MeV∼67 keV) 

2nd group 

(67 keV∼0.993 eV) 

3rd group 

(0.993 eV∼) 

t  (cm−1) 4.07673E-1* 1.38975 2.67852 

c  (cm−1) 2.25214E-4 1.47193E-3 4.13576E-2 

ggs →0  (cm−1)** 3.13425E-1 1.26381 2.63724 

ggs →1  (cm−1) *** 2.41867E-1 8.47353E-1 1.12044 

10 +→ggs  (cm−1) ** 9.40222E-2 1.24472E-1 ― 

11 +→ggs  (cm−1) *** 2.57208E-2 4.32277E-2 ― 
 9 

 *Read as 4.07673×10-1, **P0 component, ***P1 component 10 

 11 

 12 
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 1 

Fig. 1 Geometry for the numerical tests for Cases 1 and 3 2 

An isotropic point fission source was positioned at 𝑥 = (𝑋1 + 𝑋2)/5, 𝑦 = 𝑌/5, and 𝑧 =3 

𝑧/5 as an initial fission source, namely, the initial source neutrons were emitted from the left slab 4 

only. This position was intentionally chosen to excite higher eigenmodes, including the 1st 5 

eigenmode. The entire fissioning region was equally divided into 12 × 12 × 12 regions, each of 6 

which was a tally region of fission sources, as defined by Eq. (10). In Cases 1 and 3, the left and 7 

right slabs were equally divided into 6 × 12 × 12 tally regions each. By combining the results of 8 

adjacent 2 × 2 × 2 regions, 3 × 3 × 3 regions, and 6 × 6 × 6 regions, we obtained the results of the 9 

fission source for 6 × 6 × 6 regions, 4 × 4 × 4 regions, and 2 × 2 × 2 regions, respectively. The 10 

number of initial fission source neutrons was 𝑁 =12,000,000. Throughout the subsequent cycles, 11 

the product of the number of fission source neutrons and the particles’ initial weight was 12 

maintained at N by adjusting the weight of the starting particles. 13 

 14 

4.2 Results for Case 1 (𝝆 ≈ 𝟎. 𝟗𝟎𝟕) 15 

 The initial fission source was positioned at 𝑥 = 12 cm, 𝑦 = 12 cm, and 𝑧 = 10 cm. Power 16 

iterations were performed up to the 100th cycle. The fission source convergence at two positions 17 

is shown in Fig. 2. One is the initial source position, where the fission source decreased very 18 

sharply with the iterations. The other is the upper-rightmost position in Fig. 1, namely, the most 19 

remote position from the initial source, where the fission source converged the most slowly. As 20 

X1 W       X2

Y

Z

Fuel      Water         Fuel

Initial fission 

source

0 x

y

z



 14 

shown in Fig. 2, the fission source converged far before the last cycle, namely, the 100th cycle. 1 

 2 

Fig. 2 Fission source convergence in Case 1 3 

 4 

 During the course of the power iterations, a data matrix that was composed of 1728 (= 12 × 5 

12 × 12) rows and 100 snapshots (100 columns) was calculated for application to DMD analyses. 6 

However, it was not necessary to use all snapshots for the dominance ratio assessment. Since the 7 

first several snapshots may have been largely influenced by higher eigenmodes beyond the 1st 8 

mode, truncating them in the DMD analyses was expected to yield a better result.  9 

Fig. 2 suggests that using the snapshots after convergence (beyond the ~40th cycle) would not 10 

contribute to further improvement. As stated in Section 3, the rank r needs to be suitably chosen 11 

to truncate small unnecessary singular values. The DMD performance was evaluated by varying 12 

the three parameters: the rank r, initial snapshot (or cycle) I, and last snapshot (or cycle) L. 13 

 Fig. 3 shows the dominance ratio  vs. rank r for several initial cycles I, where the last cycle 14 

was fixed at L=100. As shown in Fig. 3, the dominance ratio  depended significantly on the rank 15 

r and initial cycle I. By increasing r and I gradually, the dominance ratio converged. By taking the 16 

convergence status in Fig. 3 into consideration, r = 15 and I = 4 were identified as an optimal 17 
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combination. The dependences of the dominance ratio on the initial cycle I and last cycle L are 1 

shown in Figs. 4 and 5, respectively, for r =15. The initial cycle I should not be too large to avoid 2 

missing the decay of the 1st eigenmode before convergence. In this case, the initial cycle I should 3 

be less than 10. Fig. 5 indicates that the dominance ratio was almost independent of the last cycle 4 

L beyond the 40th cycle. 5 

 6 

Fig. 3 Dominance ratio vs. rank r in Case 1 7 
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 1 

Fig. 4 Dominance ratio vs. initial cycle I in Case 1 (r = 15) 2 

 3 

Fig. 5 Dominance ratio vs. last cycle L in Case 1 (r = 15) 4 
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 The dominance ratios that were calculated for 12 × 12 × 12 regions, 6 × 6 × 6 regions, 4 × 4 1 

× 4 regions, and 2 × 2 × 2 regions with I = 4 and L = 100 are listed in Table 4. The rank was r = 2 

15 for the 12 × 12 × 12, 6 × 6 × 6 and 4 × 4 × 4 regions and r = 8 for the 2 × 2 × 2 regions.  3 

The calculations for dominance ratio assessment were also performed with the FMM, and the 4 

FMM results are listed in Table 4. In general, the FMM requires sufficiently resolved spatial 5 

discretization to obtain accurate results. The finest discretization in Table 4, namely, 12 × 12 × 12, 6 

yielded an underestimated dominance ratio; hence, the discretization for the FMM was not fine 7 

enough. As easily anticipated, the dominance ratio was further underestimated as the discretization 8 

became coarser. 9 

 10 

Table 4 Dominance ratios by DMD and the FMM 11 

Case Tally region r I L 
Dominance ratio 𝜌 

DMD Reference FMM 

1 

12 × 12 × 12 15 4 100 0.90689 

0.90673 

± 0.00005 

0.90280 

6 × 6 × 6 15 4 100 0.90768 0.89182 

4 × 4 × 4 15 4 100 0.90703 0.88090 

2 × 2 ×2 8 4 100 0.90616 0.87634 

2 

12 × 12 × 12 16 3 100 0.72450 

0.72128 

± 0.00005 

0.71461 

6 × 6 × 6 16 3 100 0.72999 0.69459 

4 × 4 × 4 16 3 100 0.72430 0.66577 

2 × 2 ×2 8 3 100 0.73270 0.61867 

3 

12 × 12 × 12 30 35 700 0.99918 

0.99915 

± 0.00004 

0.99928 

6 × 6 × 6 30 35 700 0.99920 0.99922 

4 × 4 × 4 30 35 700 0.99920 0.99918 

2 × 2 ×2 8 25 700 0.99920 0.99921 

4 

12 × 12 × 12 30 30 700 0.99587 

0.99588 

± 0.00002 

0.98833 

6 × 6 × 6 30 30 700 0.99634 0.97805 

4 × 4 × 4 30 30 700 0.99655 0.96880 

2 × 2 ×2 8 30 700 0.99680 0.95431 

 12 

In contrast, the dominance ratio that was obtained from DMD was insensitive to the number 13 

of tally regions, as presented in Table 4. The smaller the number of tally regions was, the smaller 14 

the statistical uncertainty of the fission source in each tally region was for the same particle 15 

histories because of the enlargement of each tally region. This is a favorable property for Monte 16 



 18 

Carlo calculation for dominance ratio assessment because a coarse spatial discretization requires 1 

fewer computational resources. 2 

The normalized fission source distributions of the fundamental mode (0th) and 1st mode in 3 

the x direction are shown in Fig. 6, where the results from DMD and k-eigenvalue calculation 4 

(reference) for 12 × 12 × 12 tally regions are compared. As shown in Fig. 6, the DMD method 5 

well reproduced the reference distributions. 6 

 7 

 8 

Fig.6 Normalized fission source distributions of fundamental and 1st eigenmode by DMD and 9 

eigenvalue calculation in the innermost tally region 10 

 11 

4.3 Results for Case 2 (𝝆 ≈ 𝟎. 𝟕𝟐𝟏) (Small system) 12 

 The calculations for this tightly coupled system were performed in the same manner as in the 13 

previous case. The fission source convergence at two positions is shown in Fig. 7 for 12 × 12 × 12 14 

tally regions. The convergence was much faster than in Case 1 because of the low dominance ratio 15 

(~ 0.721). The transition state toward convergence was only observed before the 15th cycle, 16 

beyond which the fission source maintained an almost stationary state. Thus, the number of 17 

snapshots (cycles) that were available for the DMD analyses was very limited for this low 18 
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dominance ratio system, thereby suggesting that the initial cycle number I should be as low as 1 

possible so as not to miss the transition state.  2 

Fig. 8 shows the dominance ratio  vs. rank r for several values of the initial cycle number I, 3 

where the last cycle was fixed at L=100. According to Fig. 8, r = 16, I = 3, and L =100 were 4 

identified as an optimal combination of the parameters. Figs. 9 and 10 show the dependence of the 5 

dominance ratio on the initial cycle I and last cycle L, respectively, for r = 16. As shown in these 6 

two figures, the dominance ratio was more sensitive to the parameters compared with the previous 7 

case. In particular, the dominance ratio was still sensitive to the last cycle L even after the fission 8 

source reached convergence (~15th cycle). 9 

 If a deceleration method that increases the number of cycles before convergence was 10 

introduced, the sensitivities of the dominance ratio with respect to the parameters for DMD 11 

analyses could be reduced, as in Case 1. The Monte Carlo Wielandt deceleration method was 12 

proposed for -eigenvalue mode calculations (Yamamoto and Sakamoto, 2020). However, the 13 

Monte Carlo Wielandt method (Yamamoto and Miyoshi, 2004) cannot be used as a deceleration 14 

method for k-eigenvalue calculations. This is because fission sources with negative particle 15 

weights are generated and cannot be straightforwardly handled without special techniques. In 16 

conclusion, due to the reduced number of cycles before convergence in a low dominance ratio 17 

system, the dominance ratio that is obtained from the DMD method is more sensitive to the 18 

parameters. The parameters need to be suitably chosen in cases in which the fission source 19 

convergence is very fast. 20 

 The dominance ratios that were calculated for 12 × 12 × 12 regions, 6 × 6 × 6 regions, 4 × 4 21 

× 4 regions, and 2 × 2 × 2 regions with I = 4 and L = 100 are listed in Table 4. The rank was r = 22 

16 for the 6 × 6 × 6 and 4 × 4 × 4 regions and r = 8 for the 2 × 2 × 2 regions. Again, in contrast to 23 

the FMM, the DMD method yielded almost identical dominance ratios regardless of the number 24 

of tally regions. 25 



 20 

 1 

Fig. 7 Fission source convergence in Case 2 2 

 3 

Fig. 8 Dominance ratio vs. rank r in Case 2 4 
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 1 

Fig. 9 Dominance ratio vs. initial cycle I in Case 2 (r = 16) 2 

 3 

Fig. 10 Dominance ratio vs. last cycle L in Case 2 (r = 16) 4 
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4.4 Results for Case 3 (𝝆 ≈ 𝟎. 𝟗𝟗𝟗𝟐) (Loosely coupled two-slab system) 1 

 This example was a very loosely coupled system that was composed of two fuel slabs and a 2 

light-water isolator. The calculations were performed in the same manner as in the previous cases 3 

except that the power iterations were continued up to the 700th cycle.  4 

The fission source convergence at two positions is shown in Fig. 11 for 12 × 12 × 12 tally 5 

regions. As shown in Fig. 11, the fission source transition at the initial source position exhibited 6 

an “elbow” around the 20th cycle and decreased very slowly beyond the elbow. The decay of the 7 

fission source beyond the elbow was mostly dominated by the 1st eigenmode. The fission source 8 

in the most remote tally region from the initial source continued to increase even after the last 9 

cycle, namely, the 700th cycle. Thus, in this high dominance ratio system, the fission source did 10 

not reach convergence by the end of the last cycle.  11 

Fig. 12 shows the dominance ratio  vs. rank r for several initial cycles I, where the last cycle 12 

was fixed at L = 700. In this high dominance ratio system, the initial cycle I could be chosen to 13 

exclude higher eigenmodes than the 1st mode because 𝑘1(≈ 𝑘0) was significantly larger than 𝑘2. 14 

The initial cycle was chosen to be I = 25, which was beyond the elbow. According to Fig. 12, r = 15 

30, I = 25, and L = 700 were identified as an optimal combination of the parameters.  16 

Figs. 13 and 14 show the dependence of the dominance ratio on the initial cycle I and last cycle 17 

L, respectively, for r = 30. As shown in these two figures, the dominance ratio was almost 18 

independent of the parameters unless an extremely large initial cycle I (> ~200th cycle) and small 19 

last cycle L (< 100th cycle) were chosen. The dominance ratios that were obtained from the DMD 20 

method for several tally regions (12 × 12 × 12, 6 × 6 × 6, 4 × 4 × 4, and 2 × 2 × 2) are listed in 21 

Table 4. The dominance ratios were almost constant regardless of the number of tally regions for 22 

this high dominance ratio system.  23 

The dominance ratios that were obtained from the FMM precisely reproduced the reference 24 

value even for the smallest number of tally regions, 2 × 2 × 2. This is because each fuel slab was 25 

almost isolated and the fission source distribution in each fuel slab was not affected by the neutron 26 

interaction between the two fuel slabs. 27 



 23 

  Using Eq. (23), snapshots of the fission source were reconstructed for 6 × 6 × 6 tally regions. 1 

Figs. 15 and 16 show the fission source transitions that were obtained using the DMD method 2 

and k-eigenvalue calculation at the initial source position and the most remote position from the 3 

initial source, respectively. While the fission source that was obtained via the k-eigenvalue 4 

calculation fluctuated due to statistical noise, the DMD method produced good agreement with 5 

the mean value of the fluctuation. 6 

 7 
Fig. 11 Fission source convergence in Case 3 8 

 9 

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

0 100 200 300 400 500 600 700

F
is

si
o

n
 s

o
u

rc
es

Cycle

Initial source position

The most remote from initial source

106

105

104

103

102

10

1

0.1



 24 

 1 

Fig. 12 Dominance ratio vs. rank r in Case 3 2 

 3 

Fig. 13 Dominance ratio vs. initial cycle I in Case 3 (r = 30) 4 
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 1 

Fig. 14 Dominance ratio vs. last cycle L in Case 3 (r = 30) 2 

 3 

Fig. 15 Fission source transition that was reconstructed by the DMD method in Case 3 at the 4 

fission source position 5 
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 1 

Fig. 16 Fission source transition that was reconstructed by the DMD method in Case 3 at the 2 

most remote position from the initial fission source 3 

 4 

4.5 Results for Case 4 (𝝆 ≈ 𝟎. 𝟗𝟗𝟔) (Very large system of a single material) 5 

 This example had very large dimensions. In this large system, not only the dominance ratio 6 

(𝑘1/𝑘0) but also various other eigenvalue ratios (𝑘𝑖/𝑘0, 𝑖 = 2, 3, …) were close to unity. The 7 

fission source convergence was dominated by the decay of several eigenmodes, including the 1st 8 

mode. The power iteration was performed in the same manner as in Case 3 up to the 700th cycle. 9 

The fission source convergence at two positions is shown in Fig. 17 for 12 × 12 × 12 tally 10 

regions. The system dimensions were much larger than the neutron’s mean free path. Thus, as 11 

shown in Fig. 17, very few neutrons reached the most remote position from the initial source 12 

position until the 200th cycle. Since several eigenmodes survived for many cycles in this large 13 

system, the elbow that was observed in Case 3 (see Fig. 11) was not observed in this large system. 14 

Fig. 18 shows the dominance ratio  vs. rank r for several initial cycles I, where the last cycle 15 

was fixed at L = 700. According to Fig. 18, r = 30, I = 30, and L = 700 were identified as an optimal 16 
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combination of the parameters. Figs. 19 and 20 show the dependence of the dominance ratio on 1 

the initial cycle I and last cycle L, respectively, for r = 30.  2 

The dominance ratios that were obtained using the DMD method for several segmentations 3 

of tally regions (12 × 12 × 12, 6 × 6 × 6, 4 × 4 × 4, and 2 × 2 × 2) are listed in Table 4. Whereas 4 

the high dominance ratio system in Case 3 was insensitive to the parameters r, I, and L, the 5 

dominance ratio in Case 4 was more sensitive to these parameters. In particular, as shown in Fig. 6 

20, the last cycle L should be larger in this type of large system, where the convergence is very 7 

slow. In contrast to Case 3, FMM did not produce satisfactory results even with 12 × 12 × 12 tally 8 

regions, thereby suggesting that further refinement of the tally regions was needed for the FMM. 9 

 10 

Fig. 17 Fission source convergence in Case 4 11 
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 1 

Fig. 18 Dominance ratio vs. rank r in Case 4 2 

 3 

Fig. 19 Dominance ratio vs. initial cycle I in Case 4 (r = 30) 4 
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 1 

Fig. 20 Dominance ratio vs. last cycle L in Case 4 (r = 30) 2 
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4.6 Dominance ratio with a realistic number of neutrons per cycle 4 

 In the calculations in Sections 4.2~4.5, the number of fission source neutrons per cycle was 5 
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standard deviations of DMD-obtained dominance ratio between Tables 4 and 5 shows that, as the 14 

number of neutrons per cycle decreases, the fluctuation of the dominance ratio around the mean 15 

value increases significantly. As shown in Table 5, when the dominance ratio was nearly unity, 16 

the mean value was close to the reference value. However, in a low dominance system such as 17 

0.992

0.993

0.994

0.995

0.996

0.997

0.998

300 400 500 600 700

D
o

m
in

an
ce

 r
at

io
 

Last cycle L

Reference =0.99588



 30 

Case 2 (𝜌 ≈ 0.721), the mean value significantly deviated from the reference value and the 1 

standard deviation was especially great. As pointed out in (Yamamoto and Sakamoto, 2021), DMD 2 

method yields a biased result if the snapshot data used for a DMD analysis include the statistical 3 

fluctuation. For assessing an accurate unbiased dominance ratio, the number of source neutrons 4 

per cycle should be as large as possible. The Monte Carlo calculation for dominance ratio 5 

assessment need not be performed for many cycles after the fission source convergence. In some 6 

cases, the calculation can be terminated before convergence. Hence, dominance ratio assessment 7 

using a large number of source neutrons per cycle would not be so computationally expensive as 8 

k-eigenvalue calculations where many cycles need to be performed after the fission source 9 

convergence. 10 

 11 

Table 5 Mean value and standard deviation of dominance ratios by DMD with 200,000 neutrons 12 

per cycle 13 

 14 

Case Tally region r I L 
Dominance ratio 𝜌 

DMD Reference 

1 

12 × 12 × 12 15 4 100 0.90722 ± 0.00437 

0.90673 

± 0.00005 

6 × 6 × 6 15 4 100 0.90773 ± 0.00407 

4 × 4 × 4 15 4 100 0.90689 ± 0.00524 

2 × 2 ×2 8 4 100 0.90917 ± 0.00430 

2 

12 × 12 × 12 16 3 100 0.70227 ± 0.03000 

0.72128 

± 0.00005 

6 × 6 × 6 16 3 100 0.70301 ± 0.03757 

4 × 4 × 4 16 3 100 0.70819 ± 0.03398 

2 × 2 ×2 8 3 100 0.69870 ± 0.03564 

3 

12 × 12 × 12 30 35 700 0.99907 ± 0.00040 

0.99915 

± 0.00004 

6 × 6 × 6 30 35 700 0.99909 ± 0.00042 

4 × 4 × 4 30 35 700 0.99911 ± 0.00045 

2 × 2 ×2 8 25 700 0.99917 ± 0.00044 

4 

12 × 12 × 12 30 30 700 0.99505 ± 0.00180 

0.99588 

± 0.00002 

6 × 6 × 6 30 30 700 0.99506 ± 0.00178 

4 × 4 × 4 30 30 700 0.99535 ± 0.00189 

2 × 2 ×2 8 30 700 0.99704 ± 0.00118 

 15 

4.7 How to select parameters I, L, and r 16 

  In this section, how to select the initial cycle I, last cycle L, and rank r is discussed and their 17 

recommendations are made. The initial cycle I should be larger than the cycle where the second 18 
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and higher modes almost vanish. The last cycle L should be larger than the cycle where the fission 1 

source distribution reaches the convergence. The rank r should be determined by increasing r one 2 

by one from 𝑟 = 1  until the dominance ratio becomes stable. These recommendations are 3 

preliminary ways and needs to be further investigated in the future. 4 

 For accurate assessment of dominance ratio, the initial cycle I, last cycle L, and rank r should 5 

be suitably determined. The determination of these parameters depends on the dominance ratio, 6 

which means that an approximate dominance ratio needs to be known beforehand. The dominance 7 

ratio can be approximately estimated by performing a criticality calculation and subsequent DMD 8 

analysis with roughly determined values of the parameters, I, L, and r. For example, 𝐼 = 1, 9 

𝑟 = min(𝑛, 𝐽 − 1) , and 𝐿 = approximate cycles for source convergence can be candidates to 10 

obtain a roughly estimated dominance ratio. 11 

 12 

5. Conclusions 13 

 The transition state of the fission source distribution toward convergence in a Monte Carlo k-14 

eigenvalue calculation can be used for DMD analyses for dominance ratio assessment. The 15 

proposed method for dominance ratio assessment can be applied with a general-purpose Monte 16 

Carlo code if the code has a function to output fission sources for each cycle in discretized regions. 17 

The dominance ratio that is obtained from the DMD method depends on the following 18 

parameters: the initial and last cycles that are used for the snapshots, the rank, and the spatial 19 

discretization of fission source tally regions. Using suitably chosen parameters (the initial and last 20 

cycles and the rank), the DMD method yields a reliable result for the dominance ratio. Compared 21 

to the FMM, the spatial discretization of the fission source tally regions for DMD analyses need 22 

not be fine. The dominance ratio that is obtained from the DMD method is insensitive to the 23 

number of tally regions, as with the CMPM and NPMM.  24 

 In a very high dominance ratio system in which two fissioning regions are separated from 25 

each other and many cycles are required for convergence, the dominance ratio that is obtained 26 

from the DMD method is insensitive to the initial and last cycles and the rank. Almost consistent 27 
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results can be obtained from the DMD analyses regardless of these parameters. In contrast, in a 1 

low dominance ratio system in which the fission source converges rapidly in a very small number 2 

of cycles, the result for the dominance ratio depends significantly on these parameters. Hence, they 3 

should be suitably determined when DMD is used for dominance ratio assessment. The difficulty 4 

in a low dominance ratio system is caused by the reduced number of cycles before convergence 5 

that are used for DMD analyses. The development of decelerating fission source convergence, 6 

which increases the number of cycles before convergence, would effectively overcome this 7 

difficulty. 8 

 9 
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