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Abstract
Inherent anisotropy is a crucial aspect to consider to improve one’s understand-
ing of the behavior of granular materials, in particular, noncoaxial responses
under proportional and nonproportional loadings. This article investigates the
capability of a strain space multiple mechanism model to reproduce complex
responses of inherently anisotropic soils under various loading paths. The con-
stitutive model has been expanded upon to account for the effect of inherent
anisotropy by incorporating a new function along with three additional param-
eters; two of these parameters, 𝑎1 and 𝑎2, control the degree of anisotropy,
whereas the third parameter, 𝜃0, represents the principal direction of inher-
ent anisotropy. Laboratory experimental data regarding the complex anisotropic
responses of Toyoura sand under various loading paths are used to validate the
constitutive model. The model is found to successfully simulate the anisotropic
drained soil responses undermonotonic proportional and nonproportional load-
ings as well as those under loading involving the rotation of the principal stress
axis by considering the additional anisotropic parameters. Furthermore, the
simulated responses of inherently isotropic materials are compared with those
of anisotropic materials to numerically investigate the influence of inherent
anisotropy (ie, the anisotropic parameters) on soil behavior under such loading
conditions.
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1 INTRODUCTION

Noncoaxiality between the principal directions of stress and strain increment is a crucial aspect to consider for the devel-
opment of constitutive models of granular materials. Experimental methods have vigorously investigated the noncoaxial
behaviors of geomaterials caused by stress-induced anisotropy since the mid-1980s; Miura et al,1 Pradel et al,2 and Gutier-
rez et al3,4 perform hollow cylinder torsional shear tests on Toyoura sand to study the noncoaxial behavior subject to
proportional monotonic loading and the rotation of the principal stress axis. In a two-dimensional stress state shown in
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F IGURE 1 (A) Two-dimensional stress state; (B) proportional and nonproportional loading in two-dimensional Mohr’s circle; (C) pro-
portional loading and rotation of the principal stress axis in the deviatoric (or π-) plane

Figure 1A, the major principal stress direction, 𝛼𝜎, can be visually captured through a two-dimensional Mohr’s circle, as
shown in Figure 1B. During the proportional loading, the stress increments, of which principal direction, 𝛼𝑑𝜎, is identical
with the current principal stress direction (ie, 𝛼𝑑𝜎 = 𝛼𝜎); thus, the noncoaxial behavior of the stress increments and asso-
ciated strain increments, of which principal direction is given as 𝛼𝑑𝜀, is possible to investigate simply as the noncoaxiality
between 𝛼𝑑𝜀 and 𝛼𝜎. Meanwhile, the rotation of the principal stress axis can be categorized into nonproportional load-
ing (ie, 𝛼𝑑𝜎 ≠ 𝛼𝜎) shown in Figure 1B; in this case, the (incremental) noncoaxiality between 𝛼𝑑𝜎 and 𝛼𝑑𝜀 is also defined,
besides the noncoaxiality between 𝛼𝜎 and 𝛼𝑑𝜀. It should be noted that the two-dimensional analyses in this study corre-
spond to the pure shear in the deviatoric (or π–) plane, as shown in Figure 1C; the proportional loading in Figure 1B is
represented by the arrow, while the rotation of the principal stress axis is represented by a single fixed point in the plane
because the three principal stresses (ie, 𝜎1, 𝜎2, and 𝜎3) are all invariant (ie, keeping constant values) during the rotation
of the principal stress axis. Since the plastic strain increment becomes dominant as the material nonlinearity becomes
stronger compared to the elastic component, Gutierrez et al3,4 investigate the principal direction of plastic strain incre-
ment, 𝛼𝑑𝜀𝑝 , by assuming 𝛼𝑑𝜀𝑒 coaxial with 𝛼𝑑𝜎 (that is correct unless inherent anisotropy affects the elastic shear modulus
as described later in Equation 27); they conclude that the applied stress direction significantly affects 𝛼𝑑𝜀𝑝 , and the degree
of noncoaxiality between 𝛼𝜎 and 𝛼𝑑𝜀𝑝 decreases as the stress ratio increases.
For better understanding of the strength and deformation characteristics of granular materials, including their

noncoaxial behavior, inherent anisotropy (also referred to as initial fabric anisotropy) is also essential to consider.
Inherent anisotropy is thought to arise from the preferred particle arrangement and contact orientation of granular
material particles during sedimentation.5,6 The inherent anisotropy of granular materials has been a subject of intense
experimental investigation using a triaxial testing apparatus5–8 and a hollow-cylinder torsional-shear apparatus.9–12
These experimental outcomes have been used for the validation and verification of constitutive models, which can
account for the effect of inherent anisotropy13–20; a strain space multiple mechanism model21–24 has also been expanded
to represent the effect of inherent anisotropy, and its fundamental capability has been demonstrated.25 A numerical
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F IGURE 2 Mohr’s circle for two-dimensional: (A) applied stress components; (B) strain responses in isotropic linear elastic materials;
(C), (D) strain responses in orthotropic linear elastic materials

study using these constitutive models is useful to investigate the possibility that the inherent anisotropy due to the
deposition process and grain characteristics of granular materials contributes to macroscopic soil responses, including
noncoaxiality.14,15,18 Two-dimensional discrete element method simulations of granular materials26–31 also report that
noncoaxiality is dependent on the material’s inherent anisotropy as well as the loading history.
If we focus on the behavior in the elastic domain, the effect of inherent anisotropy on noncoaxiality can be intuitively

explained as follows. First, isotropic elastic materials show the coaxial behavior between the applied stress components in
Figure 2A and associated strain responses in Figure 2B (ie, 𝛼𝜎 = 𝛼𝜀𝑒 ) because their stiffness (eg, Young’s modulus) is direc-
tionally independent. However, in the case of orthogonal anisotropic elastic materials (as indicated by the bedding plane
in Figure 1A), the axial responses in the x- and y-directions are considered different. When normal stresses of the same
magnitude are applied in the two directions, one direction shows a hard response while the other a soft response, leading
to a more significant strain in the latter direction than in the former direction. Hence, a nonzero normal strain difference,
𝜀𝑒𝑦 − 𝜀

𝑒
𝑥, occurs even under the isotropic stress state (or under the condition of 𝜎𝑦 − 𝜎𝑥 = 0). When the stress difference is

nonzero, as shown in Figure 2A, this change in 𝜀𝑒𝑦 − 𝜀𝑒𝑥 induced by the isotropic stress complicates the (isotropic) strain
circle in Figure 2B, as shown in Figure 2C. Furthermore, the different stiffness in the two directions results in much dif-
ferent 𝜀𝑒𝑦 − 𝜀𝑒𝑥 responses to the same (nonzero) stress difference than in isotropic elastic materials; the inherent anisotropy
distorts the (isotropic) strain circle in Figure 2B into that shown in Figure 2D. It is noted that this figure ignores the shift
in 𝜀𝑒𝑦 − 𝜀𝑒𝑥 due to the isotropic stress state for simplicity. Comparison of the anisotropic strain circles in Figures 2C and 2D
with the isotropic ones demonstrates that the principal strain direction is also affected by the inherent anisotropy, result-
ing in noncoaxiality between the directions of principal stress and strain (ie,𝛼𝜎 ≠ 𝛼𝜀𝑒 ). For a more theoretical explanation
of orthotropic linear elastic materials,32,33 refer to the formulas in Appendix A.
The dependency of noncoaxiality on inherent anisotropy in the nonlinear (or plastic) domain is, of course, expected to

bemore complicated; this is because inherent anisotropy also exerts an influence on the failure surface of soils besides the
initial elastic modulus (as described later in Equation 28 and Figure 11). However, the strain space multiple mechanism
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F IGURE 3 Contact normal 𝐧, tangential direction 𝐭, and contact force 𝐏

model accounted for inherent anisotropy25 is one of the most promising examples for describing such behavior. This is
because the model idealizes the behavior of granular materials based on a multitude of virtual simple shear mechanisms,
each of which is oriented in an arbitrary direction,21–24 and can express the tendency for larger strain components to
appear in the soft and weak direction than in the hard and strong direction. Also, the mechanism has the potential to
describe the noncoaxial behavior of soil with induced fabric anisotropy under monotonic/cyclic and complicated loading
paths (eg, the rotation of the principal stress axis).34,35 It is also noted that themodel can be regarded as a natural extension
of the existing model for orthotropic linear elastic materials to the nonlinear domain, as explained in Appendix A.
The present study aims to demonstrate the capability of a strain space multiple mechanism model with a focus on

its ability to characterize the noncoaxial behavior of inherently anisotropic granular materials. As mentioned above, the
model has been expanded by incorporating a new function with additional parameters to represent the effect of inherent
anisotropy; its fundamental capability to evaluate the granular material behavior under monotonic proportional loading
has been demonstrated.25 However, the behavior of inherently anisotropic materials under more complex-loading con-
ditions (eg, nonproportional loading including the rotation of the principal stress axis) was not studied in the article;
rather, it was left for future work. Hence, the present study investigates the model’s capability by comparing laboratory
tests under various loading conditions (ie, monotonic proportional and nonproportional loadings including the rotation
of the principal stress axis) with its simulations considering inherent anisotropy. Furthermore, the influence of inherent
anisotropy (ie, the anisotropic parameters) on soil behavior under such loading conditions is numerically investigated. It
is noted that an unloading process, particularly in the plastic region, is an essential feature to understand the cyclic behav-
ior of anisotropic granular materials with unloading-reloading cycles20; however, this article focuses on the anisotropic
responses during loading processes (including the rotation of the principal stress axis), with the study on the unloading
process being left for future work.

2 STRAIN SPACEMULTIPLEMECHANISMMODEL ACCOUNTING FOR INHERENT
ANISOTROPY

For simplicity, the discussion in this article is limited to two dimensions, with a three-dimensional study being left for
future work. The macroscopic effective stress in granular materials defined for a continuum is represented by a certain
average of the contact forces between particles. As shown in Figure 3, the contact force between plane circular particles,
𝐏, can be partitioned into the contact normal direction, 𝐧, and the tangential direction, 𝐭, using the following equation:

𝐏 = 𝑓𝑛𝐧 + 𝑓𝑡𝐭, (1)
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where the direction vectors are given using the angle, 𝜃, measured relative to the x-axis:

𝐧𝑇 =
[
cos 𝜃 sin 𝜃

]
, 𝐭𝑇 =

[
sin 𝜃 − cos 𝜃

]
. (2)

Macroscopic effective stress is expressed by taking the average of the contact forces within a representative volume
element.36,37 Following Rothenburg and Bathurst,38 this average can be given in terms of the contact density (ie, the total
number of assembly contacts per unit volume) 𝑚𝑣, the average branch length 𝑙0, and the contact-distribution function
𝐸(𝜃):

𝝈′ = 𝑚𝑣𝑙0

[
∫

2𝜋

0

𝐹∗ (𝜃 − 𝜃0) 𝑓𝑛 (𝜃)𝐸 (𝜃) 𝐧 ⊗ 𝐧d𝜃 + ∫
2𝜋

0

𝐹∗ (𝜃 − 𝜃0) 𝑓𝑡 (𝜃)𝐸 (𝜃) 𝐭 ⊗ 𝐧d𝜃

]
, (3)

where

∫
2𝜋

0

𝐸 (𝜃) d𝜃 = 1, (4)

𝐹∗ (𝜃) = 1 + 𝑎1 cos 2𝜃 + 𝑎2 cos 4𝜃. (5)

The symbols for expressing the contact forces’ components, 𝑓𝑛 and 𝑓𝑡, in Equation (1) are redefined in Equation (3)
in terms of the average of the contacts in the direction 𝜃. The function 𝐹∗(𝜃) has been newly introduced to account for
the effect of inherent anisotropy using three additional parameters; 𝑎1 and 𝑎2 control the degree of inherent anisotropy,
whereas 𝜃0 expresses the principal direction of inherent anisotropy.25 To express the fabric of air-pluviated samples in
geotechnical laboratory tests, 𝜃0 should be set to 90◦ as the normal vector direction of the bedding plane relative to the
x-axis. When the anisotropic parameters are ignored, the second-order fabric tensor in Equation (3) is reduced to the
formulation for inherently isotropic materials.24
The equilibrium of momentum is as follows:

∫
2𝜋

0

𝑓𝑡 (𝜃)𝐸 (𝜃) (𝐭 ⊗ 𝐧 − 𝐧⊗ 𝐭) d𝜃 = 0. (6)

Considering this, Equation (3) can be simplified as a combination of the isotropic and deviator components with𝜔 = 2𝜃

as follows:

𝝈′ = −𝑝′𝐈 +
1

2 ∫
2𝜋

0

𝑞 ⟨𝐭 ⊗ 𝐧⟩ d𝜔, (7)

where

⟨𝐭 ⊗ 𝐧⟩ = [
cos 𝜔 sin𝜔

sin𝜔 − cos𝜔

]
, (8)

𝑝′ = −
1

2
𝑚𝑣𝑙0𝑓0, (9)

𝑓0 = ∫
2𝜋

0

𝑓𝑛 (𝜃)𝐸 (𝜃) d𝜃, (10)
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𝑞 = 𝐹∗
(𝜔
2
−
𝜔0
2

)
𝑞𝐼𝑠𝑜 (𝜔) + 𝑞𝐴𝑛𝑖𝑠𝑜 (𝜔) , (11)

𝑞𝐼𝑠𝑜 (𝜔) = 𝑚𝑣𝑙0

[{
𝑓𝑛

(𝜔
2

)
𝐸
(𝜔
2

)
− 𝑓0�̄�0

}
+ 𝑓𝑡

(𝜔
2
+
𝜋

4

)
𝐸
(𝜔
2
+
𝜋

4

)]
, (12)

𝑞𝐴𝑛𝑖𝑠𝑜 (𝜔) =
1

2𝜋

{
𝐹∗

(𝜔
2
−
𝜔0
2

)
− 1

}
𝑚𝑣𝑙0𝑓0 = −

1

𝜋
{𝑎1 cos (𝜔 − 𝜔0) + 𝑎2 cos 2 (𝜔 − 𝜔0)} 𝑝

′, (13)

and the average contact distribution, �̄�0, is given by

�̄�0 =
1

2𝜋
. (14)

As shown in Equation (11), in a multitude of virtual simple shear mechanisms oriented in an arbitrary direction, the
virtual simple shear stress 𝑞 depends on the normal and tangential components of interparticle contact forces 𝑓𝑛 and 𝑓𝑡 as
well as the contact distribution function 𝐸(𝜃); the contact forces evolve independently during various loading processes as
studied under inherently isotropic conditions by Iai et al.34 By introducing the anisotropic function𝐹∗(𝜃) in the expression,
the evolution of induced fabric in inherently anisotropic granular materials changes from the fabric evolution in isotropic
granularmaterials without inherent anisotropy, depending on the newly introduced parameters 𝑎1, 𝑎2, and 𝜃0. For a better
understanding of the performance of the strain space multiple mechanism model accounting for inherent anisotropy,
the anisotropic parameters’ influence on macroscopic stress/strain responses is discussed in this article; however, the
evolution of induced fabric, due to changes in the macroscopic stress and strain during a loading process, should be
further examined by future work, for example, through comparison with discrete element simulations.
In the integrated form (ie, the direct stress-strain relationship) of the strain space multiple mechanism model

(Equation 7), the macroscopic strain tensor, 𝜺, is related to the macroscopic effective stress tensor, 𝝈′, as follows: First,
the volumetric strain, ε (extension positive), and the virtual simple shear strain, γ, are defined as a projection of the
macroscopic strain to second-order tensors 𝐈 and ⟨𝐭 ⊗ 𝐧⟩, respectively, as given below:

𝜀 = 𝐈 ∶ 𝜺, (15)

𝛾 = ⟨𝐭 ⊗ 𝐧⟩ ∶ 𝜺. (16)

In addition, the effective volumetric strain, 𝜀′, is introduced as

𝜀′ = 𝜀 − 𝜀𝑑, (17)

to account for the effect of volumetric strain due to dilatancy, 𝜀𝑑, which is decomposed into contractive and dilative
components. The dilative component of dilatancy is expressed as the volumetric strain component of the energy-less
strain (ie, the strain that occurs due to nontouching particles)39 based on the relationship between microscopic and
macroscopic strain energies within the framework of the strain space multiple mechanism model. As explained by
Ueda and Iai,25 the dilative component is influenced by the additional anisotropic parameters; however, the contractive
component of dilatancy is assumed not to be directly affected by inherent anisotropy. The contractive component is given
based on the hypothesis that the micromechanical counterparts are associated with the virtual simple shear strain.24
The scalar variables in Equations (17) and (16) are used to define the isotropic stress, 𝑝′, in Equation (9) and the isotropic

component of the virtual simple shear stress, 𝑞𝐼𝑠𝑜, in Equation (12) as follows:

𝑝′ = 𝑝′
(
𝜀′
)
, (18)
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𝑞𝐼𝑠𝑜 = 𝑞𝐼𝑠𝑜 (𝛾 (𝜔)) . (19)

The virtual simple shear mechanism in the strain space multiple mechanism model is formulated as a nonlinear hys-
teretic function, where the backbone curve is expressed by a hyperbolic function40:

𝑞𝐼𝑠𝑜 (𝛾 (𝜔)) =
𝛾 (𝜔) ∕𝛾𝑣

1 + ||𝛾 (𝜔) ∕𝛾𝑣||𝑞𝑣, (20)

where the parameters 𝑞𝑣 and 𝛾𝑣 are the shear strength and the reference strain of the virtual simple shear mechanism,
respectively.22,24 These shear strength and reference strain of virtual simple shear mechanism are identified as functions
of the parameters representing inherent anisotropy.25 Therefore, out of the three transformation steps: (a) 𝛾 ↦ 𝛾∕𝛾𝑣, (b)
𝛾∕𝛾𝑣 ↦ 𝑞𝐼𝑠𝑜∕𝑞𝑣, and (c) 𝑞𝐼𝑠𝑜∕𝑞𝑣 ↦ 𝑞𝐼𝑠𝑜 in Equation (20), steps (a) and (c) are influenced by inherent anisotropy. However,
such anisotropy does not affect step (b), which represents the nonlinear evolution of stress-space fabric (ie, stress-induced
anisotropy).34,35 Thus, the inherent anisotropy and the stress-induced anisotropy are systematically incorporated in the
strain space multiple mechanism model in the simple transformation in Equation (20).
Equations (16) and (20) with Equation (8) yield the following equalities governing the virtual simple shear strain and

stress:

𝛾 (𝜔 + 𝜋) = −𝛾 (𝜔) , (21)

𝑞𝐼𝑠𝑜 (𝜔 + 𝜋) ∕𝑞𝑣 = −𝑞𝐼𝑠𝑜 (𝜔) ∕𝑞𝑣. (22)

By considering the above antisymmetric nature, Equation (7) can be finally rewritten as follows:

𝝈′ = −𝑝′𝐈 + ∫
𝜋

0

𝑞 ⟨𝐭 ⊗ 𝐧⟩ d𝜔, (23)

where

𝑞 = 𝐹 (𝜔 − 𝜔0) 𝑞𝐼𝑠𝑜 (𝜔) + 𝑞𝐴𝑛𝑖𝑠𝑜 (𝜔) , (24)

𝐹 (𝜔) = 1 + 𝑎2 cos 2𝜔, (25)

𝑞𝐴𝑛𝑖𝑠𝑜 (𝜔) = −
1

𝜋
𝑎1 cos (𝜔 − 𝜔0) 𝑝

′. (26)

The original anisotropic function, 𝐹∗, in Equation (5) is replaced by the different function, 𝐹, in Equation (25). As
shown in Equations (25) and (26), the anisotropic parameter 𝑎2 only affects the function 𝐹, which acts on the isotropic
fabric term 𝑞𝐼𝑠𝑜 as an anisotropic scaling factor to account for the effect of inherent anisotropy. However, the parameter
𝑎1 only influences the additional anisotropic term 𝑞𝐴𝑛𝑖𝑠𝑜.
As discussed in Ueda and Iai,25 the macroscopic elastic shear modulus, 𝐺𝐴𝑛𝑖𝑠𝑜𝑚 , and the macroscopic shear strength,

𝜏𝐴𝑛𝑖𝑠𝑜𝑚 , with the effect of inherent anisotropy under strain-controlled multidirectional shear loading (see Figure 4A) can
be analytically derived when the tensile strains are positive as follows:

𝐺𝐴𝑛𝑖𝑠𝑜𝑚 = 𝐺𝐼𝑠𝑜𝑚

{
1 +

1

2
𝑎2 cos 2 (𝜔0 + 2𝛼𝜀)

}
, (27)
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F IGURE 4 Schematic image of numerical simulation for strain-controlled multidirectional shear loading under a plane strain condition:
(A) extension positive; (B) compression positive

𝜏𝐴𝑛𝑖𝑠𝑜𝑚 =

{
1 +

1

3
𝑎2 cos 2 (𝜔0 + 2𝛼𝜀)

}
𝜏𝐼𝑠𝑜𝑚 +

1

2
𝑎1𝑝

′ cos (𝜔0 + 2𝛼𝜀) , (28)

where 𝛼𝜀 is the major principal strain direction relative to the vertical, and the macroscopic elastic shear modulus and the

macroscopic shear strength for inherently isotropic materials are given as follows22,24:

𝐺𝐼𝑠𝑜𝑚 =
𝑞𝑣
𝛾𝑣 ∫

𝜋

0

sin
2
𝜔𝑑𝜔 =

𝜋

2

𝑞𝑣
𝛾𝑣
, (29)

𝜏𝐼𝑠𝑜𝑚 = 𝑞𝑣 ∫
𝜋

0

sin𝜔𝑑𝜔 = 2𝑞𝑣. (30)

When the compression strains are defined positive as shown in Figure 4B and stresses are accordingly defined as com-
pression positive, the negative sign preceding the isotropic stress, 𝑝′, is replaced with a positive sign in Equations (23) and
(26) and the anisotropic macroscopic shear strength defined in Equation (28) is rewritten as

𝜏𝐴𝑛𝑖𝑠𝑜𝑚 =

{
1 +

1

3
𝑎2 cos 2 (𝜔0 + 2𝛼𝜀)

}
𝜏𝐼𝑠𝑜𝑚 −

1

2
𝑎1𝑝

′ cos (𝜔0 + 2𝛼𝜀) . (31)

The model parameters required for the complete description of the strain space multiple mechanismmodel accounting
for inherent anisotropy are listed in Table 1. As suggested by Equation (27), the anisotropy parameter 𝑎2 can be determined
from laboratory tests for a constant deposition angle of the bedding planes, generally 𝜃0 = 𝜔0∕2 = 90◦ in a hollow-cylinder
apparatus based on the anisotropic elastic-shear modulus 𝐺𝐴𝑛𝑖𝑠𝑜𝑚 obtained experimentally for two different principal
strain directions, 𝛼𝜀. Once 𝑎2 is established, another parameter, 𝑎1, can be determined from Equation (28) based on the
shear strength corresponding to the two different principal strain directions. The remaining 15 parameters are common to
the strain space multiple mechanism model without inherent anisotropy24; these parameters, in particular the dilatancy
parameters, can be calibrated by referring to laboratory test results (eg, stress-strain relationship, stress path) under
undrained monotonic and/or cyclic loading.
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TABLE 1 Model parameters of the strain space multiple mechanism model

Symbol Mechanism Parameter designation
𝐾𝐿∕𝑈𝑎 Volumetric Bulk modulus under the confining pressure 𝑝𝑎
𝑟𝐾 Volumetric Reduction factor of bulk modulus for liquefaction analysis ( = 0.5 in this study)
𝑙𝐾 Volumetric Power index of bulk modulus for liquefaction analysis ( = 2.0 in this study)
𝐺𝐼𝑠𝑜𝑚𝑎 Shear Isotropic shear modulus under the confining pressure 𝑝𝑎
𝜙𝐼𝑠𝑜
𝑓

Shear Isotropic internal friction angle

ℎmax Shear Upper bound for hysteretic damping factor ( = 0.24 in this study)
𝜙𝑝 Dilatancy Phase transformation angle ( = 28◦ in this study)
𝑟𝜀𝑑 Dilatancy Parameter controlling dilative and contractive components
𝑟𝜀𝑐

𝑑
Dilatancy Parameter controlling contractive component

𝑞1 Dilatancy Parameter controlling initial phase of contractive component
𝑞2 Dilatancy Parameter controlling final phase of contractive component
𝜀𝑐𝑚
𝑑

Dilatancy Limit of contractive component
𝑆1 Dilatancy Small positive number to avoid zero confining pressure ( = 0.005 in this study)
𝑐1 Dilatancy Parameter controlling elastic range for contractive component
𝑞𝑢𝑠 Dilatancy Undrained shear strength for steady-state analysis ( = ∞ in this study)
𝑎1 Fabric anisotropy Parameter controlling the degree of anisotropy
𝑎2 Fabric anisotropy Parameter controlling the degree of anisotropy
𝜃0 Fabric anisotropy Parameter controlling the direction of anisotropy

TABLE 2 Model parameters used for dry-pluviated Toyoura sand with a relative density of: (A) 90%, (B) 60%, and (C) 30%9

(A)
𝑲𝑳∕𝑼𝒂 (kPa) 𝑮𝒎𝒂 (kPa) 𝝓𝒇 (◦) 𝒓𝜺𝒅 𝒓𝜺𝒄

𝒅
𝒒𝟏 𝒒𝟐 𝜺𝒄𝒎

𝒅
𝒄𝟏 𝒂𝟏 𝒂𝟐 𝜽𝟎 (◦)

254,800 97,705 45.0 0.2 2.0 2.5 1.20 0.10 1.0 0.08 0.18 90
(𝑝𝑎 = 98kPa)
(B)
𝑲𝑳∕𝑼𝒂 (kPa) 𝑮𝒎𝒂 (kPa) 𝝓𝒇 (◦) 𝒓𝜺𝒅 𝒓𝜺𝒄

𝒅
𝒒𝟏 𝒒𝟐 𝜺𝒄𝒎

𝒅
𝒄𝟏 𝒂𝟏 𝒂𝟐 𝜽𝟎 (◦)

204,704 78,495 42.0 0.2 3.0 2.5 0.75 0.15 1.0 0.08 0.18 90
(𝑝a = 98kPa)
(C)
𝑲𝑳∕𝑼𝒂 (kPa) 𝑮𝒎𝒂 (kPa) 𝝓𝒇 (◦) 𝒓𝜺𝒅 𝒓𝜺𝒄

𝒅
𝒒𝟏 𝒒𝟐 𝜺𝒄𝒎

𝒅
𝒄𝟏 𝒂𝟏 𝒂𝟐 𝜽𝟎 (◦)

163,049 62,522 40.0 0.2 3.5 3.5 0.35 0.20 1.0 0.15 0.05 90
(𝑝𝑎 = 98kPa)

3 MONOTONIC PROPORTIONAL LOADING

3.1 Simulation of undrained behavior under strain-controlled multidirection shear

The noncoaxiality between the principal directions of the stress and strain tensors under monotonic proportional loading
was briefly overviewed within the framework of the strain space multiple mechanism model by simulating undrained
strain-controlled laboratory tests conducted by Nakata et al9 for dry-pluviated Toyoura sand (see appendix B in Ueda
and Iai25). In the present study, simulations without inherent anisotropy were performed in addition to those with inher-
ent anisotropy using the model parameters in Table 2 to shed light on the influence of inherent anisotropy on noncoax-
ial behavior. The (isotropic) small-strain shear modulus, 𝐺𝐼𝑠𝑜𝑚 , under an arbitrary confining pressure, 𝑝, was estimated
through an empirical relation41 as follows:

𝐺𝐼𝑠𝑜𝑚 = 𝐺𝑚𝑎

(
𝑝

𝑝𝑎

)0.5

, 𝐺𝑚𝑎 = 7000
(2.17 − 𝑒)

2

1 + 𝑒
𝑝0.5𝑎 , (32)
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F IGURE 5 Deviator strain path applied in simulations of undrained monotonic behavior under multidirectional shear loading

F IGURE 6 Experimental results9 and model simulations23 for undrained torsional shear tests of Toyoura sand with a relative density of
90%: (A) measured stress-strain relationship; (B) computed stress-strain relationship; (C) measured stress path; (D) computed stress path

where 𝐺𝑚𝑎 is the small-strain shear modulus under the reference confining pressure, 𝑝𝑎 ( = 98 kPa in this case).
Monotonic strain loadings were applied at different angles relative to the horizontal bedding plane as shown in Figure 5.

The measured stress-strain relationship and effective stress path for a relative density of 90%, 60%, and 30% are presented
in Figures 6-8, respectively, with those simulated considering inherent anisotropy. The model is capable of capturing the
essential features of laboratory test data undermonotonic proportional loading by introducing the anisotropic parameters:
the experimental trend that inherent anisotropy with a larger 𝛼ε value results in softer (ie, smaller shear stress at the same
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F IGURE 7 Experimental results9 and model simulations23 for undrained torsional shear tests of Toyoura sand with a relative density of
60%: (A) measured stress-strain relationship; (B) computed stress-strain relationship; (C) measured stress path; (D) computed stress path

shear strain) and more contractive responses is properly simulated. Shear failure envelop is accordingly affected by the
inherent anisotropy.
To analyze inmore detail the deviator stresses presented in terms of principal stress direction’s difference in Figures 6–8,

the deviator stresses are decomposed into stress components of (𝜎′𝑦 − 𝜎′𝑥)∕2 and 𝜏𝑥𝑦 as shown in Figure 9. In this figure, the
stress components are normalizedwith𝑝′ to study the direction of stress components in this deviator plane throughout the
undrained test; solid lines indicate the response with inherent anisotropy, while dotted lines indicate the response without
inherent anisotropy. In the figure, the anisotropic Mohr’s circle, which was calculated by normalizing Equation (31) with
the isotropic stress𝑝′, is also shown; comparedwith the isotropicMohr’s circle, the anisotropicMohr’s circle is distorted in
shape due to the anisotropic model parameters 𝑎1 and 𝑎2. Comparison of the isotropic stress path with the corresponding
applied strain path in Figure 5 reveals that the principal stress direction, 𝛼𝜎, which can be calculated from the stress
paths and is the same as the principal stress increment direction, 𝛼𝑑𝜎, under proportional loading, is found to be identical
(or coaxial) with the principal strain direction, 𝛼𝜀, regardless of the relative density as shown in Figure 10. However, by
employing the anisotropy parameters, 𝛼𝜎 becomes different from 𝛼𝜀 except when 𝛼𝜀 = 0◦ and 90◦. These simulations
demonstrate that the noncoaxiality between 𝛼𝜎 (or 𝛼𝑑𝜎) and 𝛼𝜀 under monotonic proportional shear loading becomes
prominent when the effect of inherent anisotropy is considered. It was also found that soil response becomes completely
coaxial irrespective of whether inherent anisotropy exists, when 𝛼𝜀 is coincident with or perpendicular to the direction of
the bedding plane (eg, 𝛼𝜀 = 90◦ or 0◦ with 𝜃0 = 90◦ as seen in Figure 4) even though the failure strength is influenced by
inherent anisotropy.

3.2 Simulation of drained behavior under stress-controlled multidirectional shear

Regarding the noncoaxiality between 𝛼𝜎 (or 𝛼𝑑𝜎) and 𝛼𝜀 under proportional multidirectional loading, laboratory
tests similar to those conducted by Nakata et al9 were also performed by Gutierrez et al3 but under a drained and
stress-controlled condition. They reported the experimental failure points by plotting the peak shear stress in each
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F IGURE 8 Experimental results9 and model simulations23 for the undrained torsional shear tests of Toyoura sand with a relative density
of 30%: (A) measured stress-strain relationship; (B) computed stress-strain relationship; (C) measured stress path; (D) computed stress path

test in deviator stress space as shown in Figure 11; the effect of the loading direction on the shear strength is clearly
observed. Hence, the model constants, in particular the anisotropic parameters 𝑎1 and 𝑎2 as well as the (isotropic)
internal friction angle 𝜙𝑓 , were calibrated to represent the experimental shear strength (Table 3) accurately. Among these
parameters, 𝑎1 primarily acts to shift the location of the model failure surface whereas 𝑎2 primarily acts to distort the
model failure surface as inferred from Equation (31). As shown in Figure 11, the anisotropic Mohr’s circle obtained from
Equation (31) almost satisfies the experimental trend. As for the small-strain shearmodulus in the table, Equation (32) was
used.
Figures 12B andC illustrate simulated strain responses alongwith the applied stress pathsA throughE,with andwithout

considering inherent anisotropy, respectively, using the parameters in Table 3. It is noted that the plastic strain increment
considering inherent anisotropy, expressed by solid arrows in Figure 12B, was calculated by subtracting the anisotropic
elastic strain increments, whichwere obtained from the applied stress increment using the anisotropic elastic shearmodu-
lus,𝐺𝐴𝑛𝑖𝑠𝑜𝑚 , in Equation (27), from the simulated total strain increments. Meanwhile, dotted arrows in Figure 12B were cal-
culated by subtracting the isotropic elastic strain increments, assuming the isotropic elastic shearmodulus,𝐺𝐼𝑠𝑜𝑚 , although
the shear modulus used in the simulation was anisotropic due to the anisotropic model parameter 𝑎2 (see Equation 27).
The purpose of this is to ensure the same condition as the experiment (Figure 12A) for model validation; Gutierrez et al3
simply used the isotropic Young’s modulus and Poisson’s ratio (ie, 𝐸 = 𝐸𝑥 = 𝐸𝑦 = 𝐸𝑧 and 𝜈 = 𝜈𝑦𝑧 = 𝜈𝑧𝑥 = 𝜈𝑥𝑦 in Equa-
tions 34–37) for calculating the elastic strains.
The simulated responses without inherent anisotropy in Figure 12C are found not to accurately capture the measured

noncoaxiality between 𝛼𝜎 (or 𝛼𝑑𝜎) and the principal direction of the plastic strain increment, 𝛼𝑑𝜀𝑝 , in the early stage of
loading, particularly for paths A and E. However, the anisotropic simulation using 𝐺𝐼𝑠𝑜𝑚 (dotted arrows in Figure 12B)
is capable of capturing the experimental (apparent) noncoaxial response. In fact, the experimental plastic responses in
Figure 12A are likely not to represent the actual behavior in the early stage of loading, where the elastic strain is dominant
compared to the plastic one; this is because the elastic strain should be inherently anisotropic (or 𝛼𝑑𝜀𝑒 is noncoaxial with
𝛼𝑑𝜎 shown in Figure 2C). Thus, the solid arrows using 𝐺𝐴𝑛𝑖𝑠𝑜𝑚 in Figure 12B may be more representative of the actual
plastic responses. As the stress path approaches the failure surface in Figure 12B, the directions of anisotropic plastic strain
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F IGURE 9 Deviator stress paths obtained from the undrained multidirectional-shear loading simulation of Toyoura sand with a relative
density of: (A) 90%; (B) 60%; and (C) 30%

increments become closer to each other, regardless of how the elastic strain is calculated. Also, the simulated direction of
plastic strain increment tends to approach the coaxiality with the applied principal stress (or stress increment) direction;
this tendency between 𝛼𝑑𝜀𝑝 and 𝛼𝜎 (or 𝛼𝑑𝜎) was also observed in the experiment, but different from the perfect coaxiality
in Figure 12C.
For better understanding, Figure 13 compares simulated 𝛼𝑑𝜀𝑝 changes in response to the applied deviator stress ratio

with the experimental plots; as described earlier,𝐺𝐼𝑠𝑜𝑚 is used for Figure 13A, instead of𝐺𝐴𝑛𝑖𝑠𝑜𝑚 , to calculate the elastic strain
increment in the sameway as in the experiment. The figure demonstrates that the simulation in Figure 13A can reasonably
capture the experimental change of 𝛼𝑑𝜀𝑝 along with each stress path by introducing the anisotropic model parameters (𝑎1,
𝑎2, and 𝜃0) in Table 3. However, both the simulated and measured 𝛼𝑑𝜀𝑝 may not represent the actual plastic behavior
because of 𝐺𝐼𝑠𝑜𝑚 being used for deriving the plastic strain increment. Note that a kink appeared in the early stage of the
loading paths A, B, and E in Figure 13A may be due to the inconsistency between the actual 𝐺𝐴𝑛𝑖𝑠𝑜𝑚 and the assumption of
𝐺𝐼𝑠𝑜𝑚 used to calculate𝛼𝑑𝜀𝑝 . Figure 14 illustrates the relationship of simulated𝛼𝑑𝜀𝑝 with the principal directions of simulated
total and elastic strain increments, 𝛼𝑑𝜀 and 𝛼𝑑𝜀𝑒 . Comparison of Figure 14A with Figure 14B demonstrates that 𝛼𝑑𝜀𝑝 in the
early stage of loading strongly depends on how to calculate the elastic strain (or elastic shear modulus). It is also found
that the introduction of the anisotropicmodel parameters is essential to consider, as the stress ratio increases (ie, the stress
path approaches the failure surface), for evaluating the plastic behavior of inherently anisotropic granular materials.
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F IGURE 10 Coaxiality between applied deviator strain paths and corresponding simulated deviator stress paths without inherent
anisotropy under the undrained multidirectional-shear loading of Toyoura sand with a relative density of 90%, 60%, and 30%

F IGURE 11 Experimental failure points3 and model failure surface (Mohr’s circle) considering inherent anisotropy

4 MONOTONIC NONPROPORTIONAL LOADING

Monotonic loading often involves a change in both the principal stress direction and the loading magnitude. Gutierrez
et al3 also performed laboratory tests under this type of nonproportional loading, as shown in Figure 15. Along loading
path A, the magnitude of stress vector monotonically increased with a change in the principal stress direction after the
initial biaxial shear loading reached 50 kPa; here, the principal stress direction indicates the direction of stress vector
represented by the angle 2𝛼𝜎. In the case of loading paths B and C, the magnitude initially decreased and then increased
with a change in the principal stress direction after the initial shear. Based on the measured plastic strain increment
directions in Figure 16A, 𝛼𝑑𝜀𝑝 changes in response to the applied deviator stress ratio are illustrated as triangle plots
along with 𝛼𝜎 (dotted lines) in Figure 17. The experimental plots demonstrate that 𝛼𝜎 and 𝛼𝑑𝜀𝑝 became more noncoaxial
compared with themonotonic proportional loading (see Figure 12A or the experimental plots in Figure 13) when a change
in the principal stress direction was involved. In particular, the plastic strain increment along loading path C, where the

TABLE 3 Model parameters used for dry-pluviated Toyoura sand with a relative density of 70%3

𝑲𝑳∕𝑼𝒂 (kPa) 𝑮𝒎𝒂 (kPa) 𝝓𝒇 (◦) 𝒂𝟏 𝒂𝟐 𝜽𝟎 (◦)
220,383 84,508 46.0 0.18 0.15 90

(𝑝𝑎 = 98kPa).
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F IGURE 1 2 The direction of plastic strain increments during drained monotonic proportional loading: (A) experimental results3; (B)
simulation with inherent anisotropy; (C) simulation without inherent anisotropy

F IGURE 13 Comparison of simulated and measured principal directions of plastic strain increments against the applied deviator stress
ratio during drainedmonotonic proportional loading: (A) with inherent anisotropy considering the isotropic elastic shearmodulus; (B) without
inherent anisotropy

principal stress direction rotates from 0 to (3/4)π relative to the horizontal axis, showed the most pronounced obliquity
in the principal stress direction. These loading paths were studied through simulations using the strain space multiple
mechanism model with inherent anisotropy using the same model parameters given in Table 3.
Figures 16B and 16C illustrate the simulated direction of plastic strain increment with and without the consideration

of inherent anisotropy, respectively; as described in Section 3.2, the plastic strain increment in Figure 16B was calcu-
lated by subtracting the anisotropic or isotropic elastic strain increment obtained using Equation (27) with or without
the anisotropic parameter 𝑎2, respectively, from the simulated total strain increment. For better understanding, Figure 17
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F IGURE 14 Simulated principal strain increment directions against the applied deviator stress ratio during drained monotonic propor-
tional loading: (A) with inherent anisotropy considering the anisotropic elastic shear modulus; (B) with inherent anisotropy considering the
isotropic elastic shear modulus; (C) without inherent anisotropy

F IGURE 15 Relationship between applied straight-line stress paths3 and the angle of principal stress direction, ασ during monotonic
nonproportional loading

compares the simulated direction, 𝛼𝑑𝜀𝑝 , with the experimental counterpart, while Figure 18 shows the relationship among
the simulated 𝛼𝑑𝜀, 𝛼𝑑𝜀𝑒 , and 𝛼𝑑𝜀𝑝 along with the applied 𝛼𝜎.
Along stress path A, how to calculate the elastic strain is found to exert no influence on 𝛼𝑑𝜀𝑝 from a comparison of solid

and dotted arrows in Figure 16B (or from a comparison of solid lines in Figures 18A and 18B); this is because 𝜏𝑥𝑦 simply
increases with no change in (𝜎′𝑦 − 𝜎′𝑥)∕2 along the path, as is the case with the loading path C in Figure 14, and as a result
𝛼𝑑𝜀𝑒 expressed by dotted lines in Figure 18A shows the same response as that in Figure 18B. Comparison of Figure 16B
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F IGURE 16 The direction of plastic strain increments during drained monotonic nonproportional loading along different straight-line
stress paths: (A) experimental results3; (B) simulation with inherent anisotropy; (C) simulation without inherent anisotropy

F IGURE 17 Comparison of simulated and measured principal directions of plastic strain increments during drained monotonic nonpro-
portional loading: (A) with inherent anisotropy considering the anisotropic elastic shear modulus; (B) with inherent anisotropy considering
the isotropic elastic shear modulus; (C) without inherent anisotropy

with Figure 16C demonstrates that the degree of inherent anisotropy’s influence on the plastic strain increment direction
seems path-independent; more specifically, the anisotropic response of 𝛼𝑑𝜀𝑝 (Figure 17A) always has an angle about 15◦
(in terms of 2𝛼𝑑𝜀𝑝 ) higher than the isotropic one (Figure 17B), and as a result is capable of capturing the experimental
noncoaxial behavior between 𝛼𝑑𝜀𝑝 and 𝛼𝜎. The constant difference in 𝛼𝑑𝜀𝑝 may be because the direction and magnitude
of the applied stress vector do not change drastically along path A compared to paths B and C, as shown in Figure 15.
In the case of stress path B, how to calculate the elastic strain does not make a noticeable difference in 𝛼𝑑𝜀𝑝 between

Figures 18A and 18B except the early stage of nonproportional loading, although 𝛼𝑑𝜀𝑒 in Figure 18A is always slightly less
than that in Figure 18B. It is also found that the anisotropic parameters (𝑎1, 𝑎2, and 𝜔0) exert nonnegligible effects on
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F IGURE 18 Simulated principal strain increment directions during drained monotonic nonproportional loading: (A) with inherent
anisotropy considering the anisotropic elastic shear modulus; (B) with inherent anisotropy considering the isotropic elastic shear modulus;
(C) without inherent anisotropy

𝛼𝑑𝜀𝑝 not only in the early stage but also near the failure surface, as shown in Figure 17. Consequently, the simulation
considering the inherent anisotropy can adequately capture the experimental plots: the noncoaxiality between 𝛼𝜎 and
𝛼𝑑𝜀𝑝 , which is more prominent in the early stage of loading, gradually decreases as the stress path becomes closer to the
failure surface (or the deviator stress ratio increases), but does not reach to a coaxial state.
As in the case of loading path B, the simulated 𝛼𝑑𝜀𝑝 along stress path C with no consideration for inherent anisotropy

differs from the measured 𝛼𝑑𝜀𝑝 in Figure 17B. However, the introduction of the anisotropic model parameters (𝑎1, 𝑎2, and
𝜃0) in Table 3 is found to reproduce the experimental 𝛼dεp plots with better accuracy as shown in Figure 17A. It must be
noted here that both the measured and simulated 𝛼𝑑𝜀𝑝 in Figure 17A are likely not to represent the actual behavior of the
inherently anisotropic sand; this is because the elastic strain should also be inherently anisotropic (or 𝛼𝑑𝜀𝑒 is noncoaxial
with 𝛼𝑑𝜎) as shown in Figure 18A. Hence, the solid line in Figure 18A can be considered to represent the actual plastic
behavior better than that in Figure 18B, in particular, in the process of unloading the deviator stress ratio (from the start
point to the reverse one under nonproportional loading).

5 ROTATION OF THE PRINCIPAL STRESS AXIS

After the pioneering study conducted by Arthur et al42 on soil behavior subject to the rotation of the principal stress axis
through laboratory tests, this kind of research has attracted much attention among geotechnical engineering researchers.
For example, Gutierres et al3 conducted an experimental study that focused on dry-pluviated medium-dense Toyoura
sand with a relative density of 70%. In their laboratory tests, the deviator stress path illustrated in Figure 19 was applied to
the soil specimen under a drained condition; the principal stress direction was rotated counterclockwise by maintaining
a constant deviator stress magnitude under the initial confining stress of 98 kPa. Here, we investigated the capability of
the strain space multiple mechanism model accounting for inherent anisotropy by comparing the PSR tests (Figure 20A)
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F IGURE 19 Deviator stress path for the
undrained principal stress rotation tests
performed by Gutierres et al3

F IGURE 20 The direction of plastic strain increments during the drained principal stress rotation tests for constant mobilized friction
angles of ϕ = 20◦, 25◦, and 30◦: (A) experimental results3; (B) simulation results with inherent anisotropy; (C) simulation results without
inherent anisotropy

under the constant mobilized friction angles, 𝜙 = (𝜎𝑧 − 𝜎𝜃)∕(𝜎𝑧 + 𝜎𝜃), between 20◦ and 35◦. In the simulation, the model
parameters given in Table 3 were used; for details regarding the setting of the parameters, refer to Section 3.2.
Figure 20B illustrates the simulated plastic strain increment direction considering inherent anisotropy, which was cal-

culated by subtracting the anisotropic or isotropic elastic strain increment from the simulated total strain increment (refer
to Section 3.2 for a reason for using the isotropic elastic strain increment), for ϕ = 20◦, 25◦, and 30◦. Of these simulation
results, the plastic strain increment vectors for ϕ = 20◦ and 30◦ are redrawn with their magnitude in Figures 21A and B,
including simulated total and elastic strain vectors. These figures demonstrate that how to calculate the elastic strain with
or without the anisotropic parameter 𝑎2 in Equation (27) exerts little influence on the plastic strain increment because the
elastic component does not contribute as much to the total strain compared to the plastic one. Comparing the simulated
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F IGURE 2 1 Magnitude and direction of simulated strain increments during the drained principal stress rotation tests for ϕ = 20◦: (A)
with inherent anisotropy considering the anisotropic elastic shearmodulus; (B) with inherent anisotropy considering the isotropic elastic shear
modulus; (C) without inherent anisotropy

results presented in Figures 20B and C with the experimental counterparts in Figure 20A, it is evident that employing
anisotropic parameters in the simulation improves the accuracy of prediction under drained PSR loading irrespective of
themobilized friction angle. The inherent anisotropy is also found to have a nonnegligible impact on not only the principal
direction of simulated plastic strain increment but also its magnitude, as shown in Figure 21.
Next, the simulated responses in Figure 21 are organized in the relationship of 𝛼𝑑𝜀𝑝 , 𝛼𝑑𝜀, and 𝛼𝑑𝜀𝑒 with the applied 𝛼𝜎

and 𝛼𝑑𝜎 in Figures 22 and 23; in these figures, 𝛼𝑑𝜀𝑝 obtained from the experiments is also plotted. Figures 22A and 23A
show that the simulated 𝛼𝑑𝜀𝑒 does not always behave coaxial with 𝛼𝑑𝜎, different from the coaxial response in Figures 22B
and 23B, because of the anisotropic elastic shear modulus, 𝐺𝐼𝑠𝑜𝑚 , in Equation (27). However, the simulated 𝛼𝑑𝜀𝑝 shows
almost the same response, for example, from a comparison of Figure 22A with 22B. In the early stage of PSR loading, the
experimental 𝛼𝑑𝜀𝑝 plots show more prominent noncoaxiality with 𝛼𝜎; the constitutive model can better reproduce the
measured response by taking into account the inherent anisotropy compared to the simulated responses in Figures 22C
and 23C. After 𝛼𝜎 exceeds 15◦, which corresponds to a counterclockwise angle of 30◦ relative to the x-axis (see Figure 19),
the inherent anisotropy is found to decrease the degree of noncoaxiality similar to the trend of the experimental plots.
Then, the degree of noncoaxiality in the experiment turns to an increase at around 𝛼𝜎 = 65◦ for ϕ = 20◦ (Figure 22)
or remains approximately the same for ϕ = 30◦ (Figure 23); the strain space multiple mechanism model can accurately
simulate such a complicated noncoaxial behavior by introducing the inherently anisotropic parameters.
Figure 24 compares the simulated developments of 𝜀𝑧, 𝜀𝜃, and 𝜀z𝜃 in response to 𝛼𝜎 with the corresponding experimental

results for ϕ = 25◦, 30◦, and 35◦. For each mobilized friction angle, the anisotropic simulation is found to capture the
experimental strain development than the isotropic simulationmore reasonably. These results demonstrate that the effect
of inherent anisotropy should be considered essential to accurately predict the behavior of soil subject to drained PSR
loading.
Miura et al1 also performed similar PSR tests on Toyoura sand with a relative density of 80% under a drained condi-

tion. In their tests, the soil samples were prepared using the multiple sieving pluviation method, which is considered to
produce soil fabric (or inherent anisotropy) different from that produced by the dry-pluviation method. Figure 25 shows
the four different PSR loadings applied in the experiment; after reaching the stress state of 𝑅 = (𝜎1 − 𝜎3)∕(𝜎1 + 𝜎3) = 0.5

along a proportional biaxial or simple shear loading path, 𝛼𝜎 was rotated counterclockwise while maintaining the stress
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F IGURE 22 Comparison of simulated and measured principal plastic strain increment directions during the drained principal stress
rotation tests for ϕ = 20◦ (Gutierrez et al4): (A) with inherent anisotropy considering the anisotropic elastic shear modulus; (B) with inherent
anisotropy considering the isotropic elastic shear modulus; (C) without inherent anisotropy

F IGURE 2 3 Comparison of simulated and measured principal plastic strain increment directions during the drained principal stress
rotation tests for ϕ = 30◦ (Gutierrez et al4): (A) with inherent anisotropy considering the anisotropic elastic shear modulus; (B) with inherent
anisotropy considering the isotropic elastic shear modulus; (C) without inherent anisotropy



836 UEDA and IAI

F IGURE 24 Comparison of simulated and measured strain developments during the drained principal stress rotation tests4 for constant
mobilized friction angles: (A) ϕ = 25◦; (B) ϕ = 30◦; (C) ϕ = 35◦

F IGURE 2 5 Deviator stress paths for
the drained principal stress rotation tests
performed by Miura et al1

ratio constant. In the simulation, the model parameters in Table 4 were used; after the small-strain shear modulus was
calculated from Equation (32), the strength and anisotropic parameters were calibrated.
Figure 26 illustrates simulated deviator strain paths under the four different loading paths along with the experimental

results. As shown in Figure 26B, the simulated paths are found to have the property of rotational symmetry (eg, the R1-
90◦ path becomes identical to the R1+180◦ path after a rotation of 90◦) if the soil fabric is assumed isotropic; these results
are entirely different from those of the experiment. However, the experimental strain paths are reasonably simulated by
employing the anisotropic parameters, as seen in Figure 26A.
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F IGURE 26 Deviator strain paths for the drained principal stress rotation tests with experimental results1: (A) simulation with inherent
anisotropy; (B) simulation without inherent anisotropy

TABLE 4 Model parameters used for multiple-sieving-pluviated Toyoura sand with a relative density of 80%1

𝑲𝑳∕𝑼𝒂 (kPa) 𝑮𝒎𝒂 (kPa) 𝝓𝒇 (◦) 𝒂𝟏 𝒂𝟐 𝜽𝟎 (◦)
237,059 90,902 47.0 0.18 0.15 90

(𝑝𝑎 = 98kPa).

Figure 27 illustrates the change in simulated 𝛼𝑑𝜀𝑝 , 𝛼𝑑𝜀, and 𝛼𝑑𝜀𝑒 during PSR loading in response to the applied 𝛼𝜎 and
𝛼𝑑𝜎. In this figure, 𝛼𝑑𝜀 in the experiments is also plotted as read from Figure 26 instead of measured 𝛼𝑑𝜀𝑝 ; this is because
Miura et al1 did not derive the plastic strain increment, different from Gutierres et al3 (see Figure 22). It is noted that 𝛼𝑑𝜀𝑝
in Figure 27 was calculated by subtracting the anisotropic elastic strain increment obtained using Equation (27) from the
simulated total strain increment. As shown in the figure, the simulated 𝛼𝑑𝜀𝑒 with inherent anisotropy does not always
behave coaxial with 𝛼𝑑𝜎 because of the anisotropic elastic shear modulus, 𝐺𝐴𝑛𝑖𝑠𝑜𝑚 , different from the coaxial response
without inherent anisotropy. Comparison of the simulated responses with inherent anisotropy under the four different
PSR loadings reveals that the noncoaxiality between𝛼𝑑𝜀𝑒 and𝛼𝑑𝜎 looks different among the cases, but is identical onlywith
a periodic difference; for example, the noncoaxial response of 𝛼𝑑𝜀𝑒 with 𝛼𝑑𝜎 = 180◦ − 225◦ does not change depending on
the start position of rotational shear (eg, refer to Figures 27A and C).
In the absence of inherent anisotropy, the changes in 𝛼𝑑𝜀𝑝 and 𝛼𝑑𝜀 in response to 𝛼𝜎 (or 𝛼𝑑𝜎) are found to be parallel

to that in 𝛼𝑑𝜀𝑒 , except for the initial stage of PSR loading (see Figure 27B, for example); the simulated responses of 𝛼𝑑𝜀
are somewhat different from the experimental plots. Meanwhile, the simulation considering the inherent anisotropy is
capable of properly capturing the measured 𝛼𝑑𝜀 changes in response to 𝛼𝜎 (or 𝛼𝑑𝜎), for example, as shown in Figure 27A.
Comparison of the simulated responses under the four different PSR loadings demonstrates that the noncoaxiality between
𝛼𝑑𝜀𝑝 and 𝛼𝜎 does not change only with a phase difference (eg, 45◦ between the R1+0◦ and R1+90◦ paths) in the absence of
inherent anisotropy, even though the start of rotational shear is different. In contrast, the noncoaxiality is found to become
different depending on the start position, in addition to the phase difference, by taking into account the effect of inherent
anisotropy.
Thus, it can be concluded that considering inherent anisotropy in numerical simulation is essential to accurately predict

the response of soil subject to PSR loading, particularly when different proportional loading paths are used.

6 CONCLUSIONS

This article discusses the capability of a strain spacemultiple mechanismmodel to reproduce complex responses of inher-
ently anisotropic soils under various kinds of loading paths. The constitutive model has been expanded upon to account
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F IGURE 27 Comparison of simulated and measured principal (total) strain increment directions during the drained principal stress
rotation tests1: (A), (B) R1+0◦ with or without inherent anisotropy; (C), (D) R1+90◦ with or without inherent anisotropy; (E), (F) R1+180◦ with
or without inherent anisotropy; (G), (H) R1-90◦ with or without inherent anisotropy
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for the effect of inherent anisotropy by incorporating a new function along with three additional parameters; two of these
parameters, 𝑎1 and 𝑎2, control the degree of anisotropy whereas the third parameter, 𝜃0, represents the principal direction
of inherent anisotropy. Laboratory experimental data regarding the complex anisotropic behavior of Toyoura sand under
various loading paths is used to validate the constitutive model. Major conclusions are summarized as follows:

1. By introducing the anisotropic model parameters 𝑎1 and 𝑎2, the constitutive model is capable of representing an exper-
imentally observed Mohr’s circle (ie, shear failure envelop in the deviator stress plane) for inherently anisotropic gran-
ular materials, which has a distorted shape compared with the isotropic Mohr’s circle.

2. The anisotropic elastic shear modulus depending on inherent anisotropy is essential to consider, particularly in the
early stages of loading where the elastic behavior is dominant, for correctly determining the elastic and plastic compo-
nents of a total strain increment in both experiments and simulations.

3. During undrainedmonotonic proportional loadingwith different principal strain directions, the noncoaxiality between
the directions of principal strain and stress is found to become prominent when the effect of inherent anisotropy is
considered. Furthermore, the soil behavior becomes completely coaxial irrespective of the inherent anisotropy’s effect
when the principal strain direction is parallel or perpendicular to the direction of the bedding plane.

4. During drained monotonic proportional loading with different principal stress directions, the anisotropic constitutive
model is capable of simulating the experimental noncoaxial response from the early stage of loading almost to the
failure surface. As the stress path approaches the failure surface, the direction of plastic strain increment gets closer to
the coaxial state with the applied principal stress direction, but does not reach the perfect coaxiality simulated with no
consideration for inherent anisotropy.

5. During drained monotonic nonproportional loading, the anisotropic constitutive model can reasonably capture the
experimental response along a stress path where both the principal stress direction and the loading magnitude drasti-
cally change; the noncoaxiality between the directions of principal stress and plastic strain increment is more promi-
nent in the early stage of loading and then gradually disappears as the stress path approaches the failure surface.

6. During the rotation of the principal stress axis with a constant deviator stress under a drained condition, employing
the anisotropic parameters can improve the accuracy with which deviator strain paths and the development of strains
are predicted. The noncoaxiality between the directions of principal stress and plastic strain increment is largely influ-
enced by the inherent anisotropy; the start position of rotational shear also affects the noncoaxiality. Hence, it can
be concluded that consideration of inherent anisotropy in numerical simulation is essential to accurately predict the
response of soil subject to principal stress rotation loading.

This article investigated the noncoaxial behavior of inherently anisotropic soils, focusing on macroscopic stress/strain
responses, through a comparison with laboratory test results. It is worth mentioning that the results of discrete element
simulations may also be beneficial to validate the applicability of the proposed model from amicroscopic perspective; this
is because the virtual simple shear stress within this modeling framework is an intermediate quantity in the upscaling
process from the microscopic level characterized by the contact distribution and interparticle contact forces.35
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APPENDIX A
The strain space multiple mechanism model accounting for inherent anisotropy is originally derived in consideration of
material nonlinearity as shown in Equation (23). Here, the constitutive equation is rewritten by ignoring the material
nonlinearity to compare with the stress-strain relationship below for orthotropic linear elastic materials.32,33
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⎫⎪⎬⎪⎭ , (33)

where 𝐸𝑖 is the Young’s modulus of the material in direction 𝑖 = 𝑥, 𝑦, 𝑧, and 𝜈𝑖𝑗 is the Poisson’s ratio representing the
ratio of a transverse strain to the applied strain in uniaxial tension or compression; for example, 𝜈𝑥𝑦 = −𝜀𝑒𝑦∕𝜀

𝑒
𝑥 for uniaxial

tension or compression in the x-direction. By applying the symmetric properties 𝜈𝑦𝑧𝐸𝑧 = 𝜈𝑧𝑦𝐸𝑦 and 𝜈𝑥𝑧𝐸𝑧 = 𝜈𝑧𝑥𝐸𝑥 to the
above equation, the normal strain difference, 𝜀𝑒𝑦 − 𝜀𝑒𝑥, and shear strain, 𝛾𝑒𝑥𝑦 , are given by
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)
. (37)

Since the nonlinear hysteretic function in Equation (20) can be simplified into a linear relationship as 𝑞Iso = (𝑞v∕𝛾v)𝛾
e,

where 𝛾e is the elastic virtual simple shear strain, the strain space multiple mechanism model is written as follows:

𝝈 = −𝑝𝐈 + ∫
𝜋

0

𝑞 ⟨𝐭 ⊗ 𝐧⟩ d𝜔, (38)

where
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𝛾e =
(
𝜀ex − 𝜀

e
y

)
cos 𝜔 + 𝛾exy sin𝜔. (41)

In Equation (38), the effective stress tensor, 𝝈′, is replaced with the total stress tensor, 𝝈, because there is no need to
distinguish between 𝝈′ and 𝝈 for the modeling of elastic materials. The relationship between the isotropic stress and vol-
umetric strain in Equation (39) is also assumed to be linear using the elastic bulk modulus,𝐾. By assuming the horizontal
bedding plane (ie, 𝜃0 = 𝜋∕2) corresponding to orthotropic linear elastic materials, Equation (38) can be rewritten using
Equation (29) as follows:
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The above equation in tensor form can be rewritten to vector-matrix form as
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Considering the inverse of the stiffness matrix, the normal strain difference, 𝜀𝑒𝑦 − 𝜀𝑒𝑥, and shear strain, 𝛾𝑒𝑥𝑦 , are given in
the (elastic) strain space multiple mechanism model accounting for inherent anisotropy as follows:
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When the parameter 𝑎2 is equal to zero, the relationship between the shear stress and shear strain does not depend
on the inherent anisotropy; however, a nonzero normal strain difference, 𝜀𝑒𝑦 − 𝜀𝑒𝑥, occurs due to 𝜎𝑥 + 𝜎𝑦 even under the
condition of 𝜎𝑦 − 𝜎𝑥 = 0 as shown in Equation (44). Hence, the principal direction of the elastic strain, 𝛼𝜀𝑒 , becomes
noncoaxial with the principal stress direction, 𝛼𝜎, as theMohr’s strain circle in Figure 2C demonstrates. Meanwhile, when
the parameter 𝑎1 is equal to zero, the normal strain difference does not depend on 𝜎𝑥 + 𝜎𝑦 , but both the strain difference
and shear strain are affected by the parameter 𝑎2. Thus, the Mohr’s strain circle is horizontally and vertically distorted by
the inherent anisotropy as shown in Figure 2D, resulting in the noncoaxiality between 𝛼𝜀𝑒 and 𝛼𝜎.
Comparison of Equations (44) and (45) with Equations (34) and (35) demonstrates that the strain spacemultiplemecha-

nismmodel accounting for inherent anisotropy given by Equation (23) is equivalent to the orthotropic linear elastic model
given by Equation (33) in the elastic domain; the parameters of both models are related as follows:

𝐺𝐼𝑠𝑜𝑚 =
1 + 2𝐴𝐺𝑥𝑦

4𝐴
, (46)

𝑎1 =
2𝐵

𝐴
, (47)

𝑎2 =
2
(
1 − 2𝐴𝐺𝑥𝑦

)
1 + 2𝐴𝐺𝑥𝑦

. (48)

Also, the proposed model can be regarded as a natural extension of the existing model for orthotropic linear elastic
materials to the nonlinear domain.
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