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Abstract: Cyclic undrained triaxial tests are commonly used in research and practical design to evaluate the liquefaction resistance of sandy
soils. This paper aims to propose a methodology to evaluate liquefaction resistance by considering the variability or uncertainty associated
with experimentation, using Bayesian statistics with a Markov chain Monte Carlo technique. In addition to conventional nonhierarchical
Bayesian modeling, hierarchical Bayesian modeling is adopted to properly incorporate the factor of variability caused by individual differ-
ences (e.g., difference between experimenters) into the liquefaction resistance evaluation. Findings show that the regression curves of the
cyclic resistance ratio estimated by a nonhierarchical model for all experimenters’ results in a cooperative triaxial test program are too generic
and poorly applicable. In contrast, the curves estimated by a nonhierarchical model for each experimenter’s results sometimes deviate from
the overall trend, dragged by the individual characteristics. The hierarchical Bayesian modeling demonstrates that both the overall trend and
each experimenter’s individuality can be rationally considered in the regression results (e.g., posterior distributions of model input param-
eters) by referring to the other experimenters’ results, even though the number of test cases is limited for the focal experimenter. Another
advantage of the modeling is that, when a different experimenter newly performs similar laboratory tests, the posterior distribution based on
the existing dataset can be used as a prior distribution to estimate model input parameters specific to the experimenter. The proposed meth-
odology may also be used to estimate the variability of liquefaction resistance considering individual differences in laboratory tests that are
difficult to quantify, e.g., differences in testing apparatus and specimen size.DOI: 10.1061/(ASCE)GT.1943-5606.0002749. This work is made
available under the terms of the Creative Commons Attribution 4.0 International license, https://creativecommons.org/licenses/by/4.0/.

Author keywords: Liquefaction resistance; Undrained cyclic triaxial test; Individual difference; Bayesian estimation; Markov chain Monte
Carlo method; Hierarchical model.

Introduction

In the organization of observation and experiment results, both
the median trend and the variability due to uncertainty should be
evaluated, for example, to derive an empirical equation. According
to Ching and Phoon (2019), the uncertainty encountered in geo-
technical engineering can be classified into four categories: spatial
variability, transformation uncertainty, statistical uncertainty, and
measurement uncertainty. Because boring and sounding are gener-
ally performed at certain intervals, the spatial distribution of soil
properties is unknown at unexplored locations; this kind of un-
certainty is called spatial variability (Phoon and Kulhawy 1999a;
Vanmarcke 1977). The spatial variability should be considered
when laboratory tests are performed using in-situ sampled speci-
mens but can be ignored when tests are done using industrial soil
materials (e.g., standard sand, such as Toyoura sand in Japan).
Transformation uncertainty arises in the correlation equation (or
transformation model) for designing soil parameters (e.g., friction
angle of sand) based on test indexes [e.g., standard penetration test
(SPT) blow count or cone penetration test (CPT) results] (Phoon
and Kulhawy 1999b). Statistical uncertainty is due to the lack of

quantity of observations and experiments. Measurement uncertainty
comes from the precision and accuracy of measuring instruments,
along with any other factor that might affect an experimenter’s abil-
ity to measure.

The preceding variabilities and uncertainties are also inevitable
when investigating the liquefaction strength and potential of the
ground during earthquakes. In studies based on field observations,
Liao et al. (1988) and Hwang et al. (2004) evaluated the reliability-
based liquefaction potential considering the variability of SPT
results. In addition, research has been conducted on liquefaction
assessment considering the variability of CPT results (e.g., Juang
et al. 1999; Moss et al. 2006).

While there have been many studies on the variability of lique-
faction characteristics based on field observations, few studies have
attempted to quantify statistically the liquefaction strength and
potential in the laboratory. For example, Haldar and Miller (1984)
proposed a statistical model for determining the cyclic shear
strength of sand deposits based on large-scale laboratory shaking
table tests. Similarly, Liu and Chang (1994) developed a statistical
model for estimating the liquefaction resistance of fine sand based
on cyclic triaxial tests. Polito (2009, 2011) also proposed a statis-
tical model for estimating the cyclic shear resistance against the
number of cyclic loads to liquefaction by regression analysis using
the fines content, median grain size, and void ratio as parameters;
the regression analysis was performed for three specimen prepara-
tion methods on a large database of cyclic triaxial tests to reduce the
statistical uncertainty. The proposed model could evaluate the gen-
eral trend (mean and variation coefficient of the liquefaction resis-
tance) of the experimental results for each preparation method,
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including the various specimen sizes used by multiple laboratories
and experimenters. However, the method cannot consider the effect
of the individual differences between specimen sizes or experi-
menters on the liquefaction resistance. Therefore, if individual dif-
ferences between experimenters cannot be ignored, the use of the
general trend for individual experimental results may not be ideal.
A regression model can be developed for individual experimental
results, but this can lead to a statistical uncertainty problem due to
the insufficient number of laboratory tests. Another drawback of
the proposed model is that, when a new but similar laboratory test
is performed, it is difficult to use the model coupled with the test
results directly. This means that the regression analysis has to be
repeated to include the new test results. Furthermore, the model
input parameters estimated in the regression analysis may be un-
certain due to the presence of statistical and measurement uncer-
tainties, even if the transformation (or model) uncertainty could
be minimized.

The variability involved in the transformation process of build-
ing a statistical model from experimental results can be modeled
as random variables and estimated by applying the concept of
Bayesian statistics in order to consider the aforementioned uncer-
tainties (e.g., Gelman et al. 2013). The advantage of this process is
that the distributions of both the model input parameters and model
uncertainty variables are provided with the help of Markov chain
Monte Carlo (MCMC) methods. This concept is Bayesian estima-
tion using MCMC, which has been gaining recognition in the realm
of geotechnical engineering (Ching et al. 2011; Park et al. 2012;
Santoso et al. 2011; Wang et al. 2010; Zhang et al. 2014, 2012,
2009, 2010). While most of these studies employ nonhierarchical
modeling, Zhang et al. (2014) propose a hierarchical probabilistic
model to calibrate the cross-site variability (i.e., variability from site
to site) for the reliability-based design of pile foundations.

However, to the best of the author’s knowledge, hierarchical
Bayesian modeling (e.g., Gelman et al. 2013) is not considered to
be widely used in geotechnical engineering. In particular, no re-
searcher has applied hierarchical or even nonhierarchical Bayesian
modeling to assess liquefaction resistance via laboratory tests. Thus,
the objective of this paper is to propose a methodology to evaluate
liquefaction resistance (or estimate the distribution of model input
parameters for defining the resistance) by considering the afore-
mentioned uncertainties using the concept of Bayesian modeling.
This work takes as an example the results of cyclic undrained tri-
axial tests conducted by multiple experimenters using Toyoura
standard sand (Toki et al. 1986). In addition to conventional non-
hierarchical Bayesian modeling, this study implements Bayesian
estimation using a hierarchical model to properly incorporate the

factor of variability caused by individual differences (e.g., due to
participation of different experimenters) into the liquefaction resis-
tance evaluation.

Cooperative Test Program of Cyclic Undrained
Triaxial Tests

As explained by Toki et al. (1986), five organizations (or experi-
menters) participated in a cooperative test program of cyclic un-
drained triaxial tests using saturated Toyoura sand with relative
densities (Dr) of 50% and 80%. As described in an accompanying
paper (Tatsuoka et al. 1986), various factors affected the test re-
sults, but effort was exerted to reduce the experimental variability
of this cooperative campaign using common specifications as much
as possible. The specimen preparation method used to achieve the
target Dr, frequency of cyclic loading, and isotropic compression
stage before cyclic loading were common among the experiments,
and some specifications were different, as shown in Table 1. Results
showed that the effect of the height-diameter ratio (H=D) was not
excessively large, and the variation observed in the experiments
could be attributed to the difference in membrane penetration due
to the discrepancy in specimen diameter. In addition to theH=D and
specimen diameter, the individual differences between experiment-
ers were regarded as a factor, but they have not been quantitatively
analyzed. However, because it is difficult for even the most skilled
technicians to eliminate individual differences completely, laboratory
test results should be discussed quantitatively considering individual
differences. Therefore, this study attempts to analyze individual dif-
ferences by applying the hierarchical Bayesian modeling described
in the next section. Note that not all experimenters used exactly
the same triaxial testing device, which may affect the experimental
protocol and accuracy. However, this paper does not explicitly deal
with the device difference, assuming that individual differences
mainly arise from the experimenter’s skill difference.

Hierarchical Bayesian Model Using MCMC Methods

Nonhierarchical Bayesian Model

In general, there exists variability or uncertainty in the results of ob-
servations and experiments. According to Ching and Phoon (2019),
the four sources of uncertainty are spatial variability, transforma-
tion uncertainty, statistical uncertainty, and measurement error. The
ast three are likely to be included in the interpretation of experimen-
tal results. Hence, when high levels of skill and experience are

Table 1. Equipment and specimen characteristics used by each laboratory

Test item

Laboratory (or experimenter) number

1

2

3 4

5

2a 2b 5a 5b 5c

Specimen height, H (cm) 12.5 10 15 12.5 17 10 15 20
Specimen diameter, D (cm) 5 5 7.5 5 7 5 7.5 10
H=D 2.5 2.0 2.0 2.5 2.4 2.0 2.0 2.0
Thickness of latex rubber membrane (mm) 0.25 0.25 0.3 0.25 0.2 0.3 0.2 0.2
Diameter of loading piston (mm) 19.7 15 15 16 10 13 13 13
Load cell inside or outside the triaxial cell In In Out In In Out Out Out
Piston friction (in single amplitude, gf) — — ≈400 — ≈15 ≈15 ≈15 ≈15

Correction for piston friction Not needed Not needed Yes Not needed No, because piston friction is negligible
Volume change of drainage line (cm3=kgf=cm2) ≈0.05 ≈0.0 ≈0.0 ≈0.0 ≈0.0 <0.01 <0.01 <0.01

Source: Data from Toki et al. (1986).
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required in an experiment, e.g., cyclic undrained triaxial test
of sand, obtaining an average trend (e.g., average values of lique-
faction strength) is often insufficient. In addition to the average,
the uncertainty should be precisely considered in result interpreta-
tion. Therefore, this study uses the concept of Bayesian statistics
(e.g., Gelman et al. 2013), which expresses the model parameter to
be estimated as a probability distribution.

Bayesian statistics is the statistical science of making inferences
in the form of the Bayesian formula

pðθijxÞ ¼
pðxjθiÞpðθiÞP
n
i¼1 pðxjθiÞpðθiÞ

∝ pðxjθiÞpðθiÞ ð1Þ

where pðθijxÞ = probability distribution that the uncertain input
parameter θi follows when the data x is obtained; pðθijxÞ = pos-
terior distribution in Bayesian statistics; pðxjθiÞ = probability that
the data x will be observed when the values of θi are fixed [or
pðxjθiÞ is called the likelihood function when regarded as a func-
tion of θi for fixed x]; pðθiÞ = probability distribution of θi when
there is no data x (called the prior distribution in the Bayesian stat-
istical model); the denominator of the right-hand side pðxÞ ¼P

n
i¼1 pðxjθiÞpðθiÞ = marginal probability density function of x

and can be regarded as a constant for normalization.
In Eq. (1), the likelihood and prior distribution are easy to cal-

culate, but the calculation of the posterior distribution, pðθijxÞ, is
generally challenging, particularly when there are many variables
to be updated. Therefore, the posterior distribution is estimated by
generating a large number of random samples using MCMC meth-
ods from a distribution proportional to the target posterior distribu-
tion, while ignoring the normalization constant, pðxÞ (e.g., Gelman
et al. 2013). When the Markov chain reaches a state of equilibrium,
the samples drawn from the Markov chain are the same as those of
the target distribution; thus, the Markov chain samples can be used
to investigate the target distribution properties. This concept is
Bayesian estimation using MCMC, which has been gaining recog-
nition in the field of geotechnical engineering (Ching et al. 2011;
Santoso et al. 2011; Wang et al. 2010; Zhang et al. 2014, 2012,
2010). In this study, the No-U-Turn Sampler (NUTS) (Hoffman
and Gelman 2011), an implementation of the hybrid (or also known
as Hamiltonian) Monte Carlo (HMC) method (Betancourt and
Girolami 2013; Duane et al. 1987), was used as the MCMC sam-
pling method. NUTS is efficient, even when the number of param-
eters is large.

The other advantages of Bayesian statistics are as follows:
(1) they provide not only the posterior distribution of the model
uncertainty variables but also the posterior distributions of the
model input parameters; and (2) the posterior distribution estimated
from existing datasets can be used as a prior distribution to update
the posterior distribution when similar laboratory test results be-
come newly available. The use of hierarchical Bayesian modeling,
described in the next subsection, enables the estimation of the pos-
terior distribution by considering the influence of different exper-
imenters on the test results.

In this study, the likelihood of observing a measured cyclic re-
sistance ratio (CRR) in the triaxial tests was assumed to follow a
normal (or Gaussian) distribution as follows:

fðxijμCRR;σCRRÞ ¼
1ffiffiffiffiffiffi

2π
p

σCRR

exp

�
− ðxi − μCRRÞ2

2σ2
CRR

�
ð2Þ

where μCRR and σCRR = mean and standard deviation, respectively,
of the normal distribution. Assuming that these observations are stat-
istically independent, the chance to observe x ¼ fx1; x1; : : : ; xng,
in which n is the number of data (i.e., CRR), is given as the product
of the likelihoods of the following observations

fðxjμCRR;σCRRÞ ¼
Yn
i¼1

1ffiffiffiffiffiffi
2π

p
σCRR

exp

�
− ðxi − μCRRÞ2

2σ2
CRR

�
ð3Þ

A normal distribution is assumed for the following reasons:
(1) the distribution of errors resulting from the addition of many
random numbers is a normal (or Gaussian) random number, regard-
less of the details of the causes according to the central limit theo-
rem (Taylor 1997); and (2) the distribution of errors can be regarded
as normal if there are at least a few error factors in actual measure-
ments (Taylor 1997). No individual differences (e.g., between
experimenters) were assumed to exist in the derivation of Eq. (3).
Thus, the methods can be categorized in nonhierarchical modeling.

According to the empirical equation proposed by Tatsuoka et al.
(1980) for estimating CRR, the mean was modeled as follows:

μCRR ¼ CRR20

�
Nc

20

�
b

ð4Þ

where Nc = number of cyclic loads; CRR20 represents the CRR at
Nc ¼ 20; and b = model input parameter. CRR20 was assumed
to have a linear relationship with the relative density, Dr (%), as
follows:

CRR20 ¼ a
Dr

100
ð5Þ

where a = model input parameter. Although a higher-order equa-
tion (e.g., a second-order equation) can be used for Dr in place
of Eq. (5), this simple type of modeling was selected because it
can be regarded as linear in a limited range of relative densities.
The parameters a and b in Eqs. (4) and (5) are the parameters
to be estimated by MCMC-based Bayesian modeling. The model
equations in this study are relatively simple, but the methods illus-
trated in this study can be applied to calibrate more complex mod-
els incorporating other quantitative indicators as parameters. For
example, the saturation degree (or B-value) may influence the test
results in addition to Dr; however, the effect was not considered in
this study because the B-value was 0.96 or higher in all experiments.

Given that there is no prior knowledge about the model input
parameters (i.e., a and b) and the model uncertainty variable σCRR,
the following noninformative prior distributions were adopted

fðaÞ ∝ 1; −∞ < a < þ∞ ð6Þ

fðbÞ ∝ 1; −∞ < b < þ∞ ð7Þ

fðσCRRÞ ∝ 1; 0 < σCRR < þ∞ ð8Þ

Eq. (8) indicates that σCRR has an equal chance to be any positive
number. With the substitution of these prior distributions and the
laboratory test data (i.e., CRR, Nc, Dr) into Eq. (3), the Bayesian
formulation for calculating the posterior probability density function
(PDF) of all the uncertain parameters can be given as follows:

fðμCRR;σCRRjxÞ ¼ fða; b;σCRRjxÞ

¼ kfðaÞfðbÞfðσCRRÞ
Yn
i¼1

fðxija; b;σCRRÞ ð9Þ

where k = normalization constant intended to make the integration of
the posterior PDF equal to unit. As mentioned earlier, the posterior
samples were collected via hybrid MCMC simulation; the sample
length of a Markov chain was set as 30,000 in this study according
to preliminary sensitivity analyses, showing that the length is ad-
equate for robust estimation of the posterior statistics. In practice,
the number of samples to be discarded is determined by monitoring

© ASCE 04021188-3 J. Geotech. Geoenviron. Eng.
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a trace plot of samples. In this study, according to Driscoll and Maki
(2007), the second half of the samples in each chain was used for
estimating the posterior of model input parameters by discarding the
first-half samples.

Hierarchical Bayesian Model

The nonhierarchical Bayesian modeling in the previous subsection
can quantitatively consider the effect of differences in Dr on the
laboratory test results, as the mean value of CRR is a function of
Dr, as shown in Eqs. (4) and (5). In the modeling, the parameters a
and b in the equations were common across all the experimental
results; this implies that all the experimental results were assumed
to be independent replications (i.e., the results from different facili-
ties or experimenters followed a common probability distribution).
However, the cooperative test program of the cyclic undrained tri-
axial tests described earlier was considered a pseudoreplication,
although all the participants followed common specifications as
much as possible. Individual differences were believed to exist due
to the differences between the experimenters (or facilities); the lab-
oratory tests required high levels of skill and experience, and it may
have been challenging to keep the experimenters’ practices at the
same level. In this case, taking an overall average while ignoring
the individual characteristics may lead to an over or underestima-
tion of the variation range for each experimenter; i.e., the range of
one experimenter might be influenced considerably by the other
experimenters’ data. Likewise, the (nonhierarchical) Bayesian es-
timation based only on the results from an individual experimenter
(ignores other experimenters’ data) may be too sensitive to the indi-
vidual characteristics. Typically, the data obtained from one experi-
menter are insufficient for statistical processing with a sufficient
degree of accuracy, partly due to time and cost constraints. This
trade-off between the poor applicability of a generic model and
the imprecision of an individual-specific model has been noted
(Ching et al. 2018, 2017).

Therefore, we introduce the concept of a hierarchical model
(e.g., Gelman et al. 2013) to the MCMC-based Bayesian estimation
in this study. In the hierarchical Bayesian model, the model input
parameters that vary from experimenter (or bin) to experimenter are
assumed to follow a hierarchical prior distribution instead of a non-
informative prior distribution; overall trends (include the results
from other experimenters) are considered to construct a more real-
istic statistical model that incorporates individual differences. The
hierarchical prior distribution here means that a further prior dis-
tribution is set to the parameters of the prior distribution, and this
further prior distribution is called a superprior distribution.

The formulation of the hierarchical Bayesian modeling is de-
scribed subsequently. First, let xi ¼ fxi1; xi2; : : : ; xinig denote the
CRR data in the triaxial tests performed by the ith experimenter.
The number of data, ni, may vary from experimenter to experi-
menter. Similar to the formulation of nonhierarchical modeling
given by Eq. (3), the chance to observe xi is given as the product
of the likelihoods [Eq. (2)] of observations

fðxijμi; σiÞ ¼
Yni
j¼1

1ffiffiffiffiffiffi
2π

p
σi

exp

�
− ðxij − μiÞ2

2σ2
i

�
ð10Þ

where μi and σi = mean and standard deviation, respectively, that
are specific to the ith experimenter. As in the formulation of non-
hierarchical modeling given by Eq. (4) with Eq. (5), the mean was
modeled as

μi ¼ ai
Dr

100

�
Nc

20

�
bi ð11Þ

where ai and bi = model input parameters specific to the ith
experimenter.

Next, let X ¼ fx1;x2; : : : ; xNg denote the measured CRR data
obtained from N experimenters. When the statistics on the CRR
specific to each experimenter are known, the measurements of the
CRR from different experimenters are statistically independent.
Thus, the chance to observe X can be given as the product of the
likelihoods of observing xiði ¼ 1; 2; : : : ;NÞ as follows:

fðXjμ;σÞ ¼
YN
i¼1

(Yni
j¼1

1ffiffiffiffiffiffi
2π

p
σi

exp

�
− ðxij − μiÞ2

2σ2
i

�)
ð12Þ

where μ ¼ fμ1;μ2; : : : ;μNg and σ ¼ fσ1; σ2; : : : ; σNg.
A hierarchical prior distribution incorporating a superprior dis-

tribution should be introduced in the hierarchical Bayesian model-
ing to consider the overall tendency of all the experimenters in
addition to their individual characteristics. In this study, the param-
eters ai and bi were assumed to follow a normal distribution instead
of a noninformative prior distribution

fðaijμa; σaÞ ¼
1ffiffiffiffiffiffi
2π

p
σa

exp

�
− ðai − μaÞ2

2σ2
a

�
ði ¼ 1; 2; : : : ;NÞ

ð13Þ

fðbijμb; σbÞ ¼
1ffiffiffiffiffiffi
2π

p
σb

exp

�
− ðbi − μbÞ2

2σ2
b

�
ði ¼ 1; 2; : : : ;NÞ

ð14Þ
where the means μa and μb and the standard deviations σa and σb
are common across all experimenters and are sometimes called
hyperparameters. Similarly, σi is considered to follow a normal
distribution

fðσijμσ;σσÞ ¼
1ffiffiffiffiffiffi
2π

p
σσ

exp

�
− ðσi − μσÞ2

2σ2
σ

�
ði ¼ 1; 2; : : : ;NÞ

ð15Þ

σi should be positive and modeled to follow a log-normal dis-
tribution to avoid a negative value, but a simpler modeling was
adopted in this study because all samples of σi were positive, even
under the assumption of a normal distribution, as illustrated in Fig. 7.
Given the lack of prior knowledge about the hyperparameters, the
following noninformative prior distributions were adopted

fðμaÞ ∝ 1; −∞ < μa < þ∞ ð16Þ

fðμbÞ ∝ 1; −∞ < μb < þ∞ ð17Þ

fðμσÞ ∝ 1; −∞ < μσ < þ∞ ð18Þ

fðσaÞ ∝ 1; 0 < σa < þ∞ ð19Þ

fðσbÞ ∝ 1; 0 < σb < þ∞ ð20Þ

fðσσÞ ∝ 1; 0 < σσ < þ∞ ð21Þ

From the preceding equations, Bayesian estimation using the
hierarchical model gives the posterior PDF of all the uncertain
parameters as follows (Gelman et al. 2013; Givens and Hoeting
2005):

fðμa;μb;μσ;σa; σb; σσ;μ; σjXÞ ¼ kqðμa;μb;μσ;σa;σb;σσ;μ;σÞ
ð22Þ

© ASCE 04021188-4 J. Geotech. Geoenviron. Eng.
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where k = normalization constant intended to make the integration
of the posterior PDF equal to unit. The unnormalized PDF, q, can
be given as follows:

qðμa;μb;μσ;σa;σb;σσ;μ;σÞ
¼ qðμa;μb;μσ;σa;σb;σσ;a;b;σÞ
¼ fðXja;b;σÞfðμaÞfðμbÞfðμσÞfðσaÞfðσbÞfðσσÞ

×
YN
i¼1

fðaijμa;σaÞ×
YN
i¼1

fðbijμb;σbÞ×
YN
i¼1

fðσijμσ;σσÞ ð23Þ

where a ¼ fa1; a2; : : : ; aNg; and b ¼ fb1; b2; : : : ; bNg. As in the
nonhierarchical Bayesian modeling, the sample length of a Markov
chain was set as 30,000, of which the second half was used for
estimating the posterior.

In Eq. (23), a total of ð3N þ 6Þ uncertain variables should be
updated. If the number of experimenters is N ¼ 5, as shown in
Table 1, the number of uncertain variables to be updated will be-
come 21. Thus, Eq. (23) can be categorized as a high-dimensional
updating problem. If the prior distributions are assumed to be con-
jugate (Ang and Tang 2007; Gelman et al. 2013), then conventional
Monte Carlo simulation can be applied to solve the problem nu-
merically. If the prior distributions are not conjugate, as is often
the case in geotechnical engineering, MCMC-based Bayesian mod-
eling becomes a powerful tool for solving such complex problems
with no need for large sample approximation.

Bayesian Estimation of Liquefaction Resistance
Considering Individual Differences between
Experimenters

The hierarchical Bayesian model was applied to the series of cyclic
undrained triaxial tests with Dr ¼ 80% in the cooperative test pro-
gram (Toki et al. 1986) in consideration of the individual differen-
ces between the five experimenters (Table 1). As listed in the table,

some specifications were not common between the experimenters,
but it was assumed that these discrepancies would not significantly
affect the test results. Toki et al. (1986) and Tatsuoka et al. (1986)
concluded that the cyclic undrained triaxial strength is insensitive
to the H=D ratios of specimens between 1.5 and 2.7. They also
reported that the specimen diameter, D, has a nonnegligible effect
on the test results, as discussed in the next section. Strictly speak-
ing, individual variations due to the participation of different ex-
perimenters should be defined in a narrow sense under the ideal
condition that all specifications are common between the experi-
menters, but experimenter differences may be interpreted broadly
to include specifications that are not common.

Fig. 1. Comparison of the hierarchical model that considers the individual differences between experimenters with the nonhierarchical models.

Fig. 2. Bayesian prediction intervals estimated by the nonhierarchical
model for all experimenters (the dark and light gray areas represent
50% and 95% intervals, respectively).
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The regression (or average) curves of CRR for Dr ¼ 80% esti-
mated by the hierarchical Bayesian model are drawn as solid lines
in Fig. 1 for each experimenter along with the experimental plots.
The figure also compares the nonhierarchical Bayesian estimation
results for all bins (the nonhierarchical model was applied to the
results of all experimenters, resulting in the presence of a common

CRR curve regardless of the experimenter) and for each bin (the
model was applied only to the results of each experimenter). As
shown in the color legend, there is a slight deviation from the target
Dr in the laboratory tests, which is quantitatively considered in
Eqs. (4) and (11) for the nonhierarchical and hierarchical estima-
tions, respectively.

Fig. 3. Bayesian prediction intervals estimated by the nonhierarchical model for each experimenter (the dark and light gray areas represent 50% and
95% intervals, respectively): (a) Experimenter 1; (b) Experimenter 2; (c) Experimenter 3; (d) Experimenter 4; and (e) Experimenter 5.
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The average CRR curve of the nonhierarchical Bayesian model
for each experimenter (thin dashed lines in the figure) best repre-
sents each experimenter’s results because other experimenters’ re-
sults were not considered in the estimation. However, some of the
estimated CRR curves deviate from the nonhierarchical Bayesian

regression for all experimenters’ results (thick dashed line in the
figure), influenced considerably by the individuality of each experi-
menter. For example, the curves for Experimenters 1 and 3 differ
from the overall average in terms of slope and position, respectively.
This means that the regression for each bin is too sensitive to the

Fig. 4. Bayesian prediction intervals estimated by the hierarchical model that considers the individual differences between experimenters (the dark
and light gray areas represent 50% and 95% intervals, respectively): (a) Experimenter 1; (b) Experimenter 2; (c) Experimenter 3; (d) Experimenter 4;
and (e) Experimenter 5.
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individual characteristics, while the regression for all bins is too
generic and thus poorly applicable. The CRR curves estimated by
the hierarchical Bayesian model demonstrate that such trade-offs are
well resolved. Even though the number of test cases is limited, as in
the case of Experimenters 1 and 3, a CRR curve that considers indi-
viduality and does not stray too far from the overall trend (repre-
sented by the thick dashed line) can be obtained by referring to the
other experimenters’ results. When the number of test cases is rel-
atively large and the variability is not so large, as in the case of
Experimenter 5, the hierarchical regression result is approximately
equal to the nonhierarchical regression result for each bin.

The Bayesian prediction intervals estimated by the nonhierarch-
ical model for all experimenters’ results are shown in Fig. 2. The

average curve is represented by the solid line, and the dark gray
and light gray areas represent 50% and 95% intervals, respectively.
Moreover, Figs. 3 and 4 show the Bayesian prediction intervals for
each experimenter that are obtained from the nonhierarchical model
for each experimenter and from the hierarchical model, respectively.
Figs. 3(a, c, d) indicate that, when the number of test cases is limited,
the 95% prediction intervals are very wide, particularly in the re-
gion with no test data, compared with the intervals in Figs. 2 and
3(b and e), where the number of test cases is large. However, the
very wide prediction intervals are suppressed in Fig. 4 where the
hierarchical Bayesian model was used to consider the overall trend
in Fig. 2 instead of ignoring other experimenters’ results. This is
the advantage of implementing a hierarchical Bayesian model; an

Fig. 5. Histograms of parameter a in the nonhierarchical and hierarchical models: (a) Experimenter 1; (b) Experimenter 2; (c) Experimenter 3;
(d) Experimenter 4; and (e) Experimenter 5.
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experimenter can make reasonable predictions even with a limited
number of test cases. Note that the test results used in this study do
not have significant outliers, as shown in Fig. 2; because the pres-
ence of outliers may affect the robustness of statistical estimation
methods, future research is needed on this point.

Figs. 5 and 6 compare the histograms (or posterior distributions)
of the model input parameters, ai (or a) and bi (or b), respectively,
for each experimenter among the three different Bayesian models.
The gray histogram bars, which depict the nonhierarchical regres-
sion model for all bins, are common between all experimenters. As
shown in the figures, the MCMC samples for these parameters fol-
low a normal distribution regardless of the Bayesian model; the
target distributions in the hierarchical model were set as shown

in Eqs. (13) and (14), which confirms that the MCMC sampling
was successfully performed. However, the distribution spread dif-
fers from model to model, particularly for the parameter ai, which
determines the position of a CRR curve; the distribution is narrow
in the nonhierarchical regression model for all bins, but it is broad
in the nonhierarchical regression model for each bin, particularly
for Experimenters 1 and 3, where the number of test cases is lim-
ited. As for Experimenter 3, the peak location (i.e., mean value) of
the distribution is also different between the models, as shown in
Fig. 5(c). Even when the number is relatively large, a similar ten-
dency can be observed in Fig. 5(b) for Experimenter 2. Thus, re-
liable experimental data with low variability should be obtained to
accurately estimate the parameter ai using a nonhierarchical model

Fig. 6. Histograms of parameter b in the nonhierarchical and hierarchical models: (a) Experimenter 1; (b) Experimenter 2; (c) Experimenter 3;
(d) Experimenter 4; and (e) Experimenter 5.
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for each bin, even if the number of test data is sufficient. In other
words, the hierarchical model is considered superior to the nonhier-
archical model, except when there is enough reliable data in a par-
ticular bin. By contrast, the distributions of the parameter bi, which
determines the slope of a CRR curve from the nonhierarchical
model for each bin, do not deviate significantly from the distribu-
tion of the nonhierarchical model for all bins when a sufficient
number of data is available, as shown in Figs. 6(b and e). For any
of the model input parameters, the hierarchical Bayesian model can
be applied to reasonably estimate the parameter distribution con-
sidering the individual differences of the experimenters in addition
to the overall trend. For example, the peak location and width of the

blue histogram bars in Fig. 5(c) are affected by both the gray and
red histogram bars.

The histograms (or posterior distributions) of the parameter σi

in Eq. (10) [or σCRR in Eq. (3)], which show the variability of the
proposed models [i.e., Eqs. (11) and (4)], are compared in Fig. 7 for
each experimenter. The MCMC samples obtained from the non-
hierarchical regression model for all bins (gray histogram bars) fol-
low a normal distribution, whereas the samples obtained from the
nonhierarchical model for each bin (red histogram bars) are close
to a log-normal distribution. As a result, the distribution of the hier-
archical model is a mixture of both, as shown by the blue histogram
bars. Nonetheless, the distribution does not deviate considerably

Fig. 7. Histograms of parameter σ in the non-hierarchical and hierarchical models: (a) Experimenter 1; (b) Experimenter 2; (c) Experimenter 3;
(d) Experimenter 4; and (e) Experimenter 5.
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from the normal distribution given by Eq. (15), as the right-hand
side tail of the mixture distribution is not as heavy as that of the log-
normal distribution.

Fig. 8 shows the histograms (or posterior distributions) of the
means (i.e., μa, μb, and μσ) and standard deviations (i.e., σa, σb,
and σσ) of the model parameters ai, bi, and σi in the hierarchical
Bayesian model. As explained in Eqs. (13)–(21), these prior dis-
tributions were assumed noninformative. The figure indicates that
the posterior distributions of the means can be modeled as a nor-
mal distribution, while those of the standard deviations follow a
log-normal distribution. When a different experimenter newly per-
forms similar laboratory tests, these posterior distributions can be
used as prior distributions, instead of Eqs. (16)–(21), to estimate

the posterior distribution of the model input parameters specific to
the experimenter (ai, bi, and σi). This is an advantage of Bayesian
statistics using a hierarchical model. The model parameters for
other experimenters that have already been estimated, as shown in
Figs. 5–7, are also updated by adding new experimental results.

Discussion

The previous section introduces a methodology for estimating the
variability (or distribution) of CRR and model input parameters us-
ing an MCMC-based hierarchical Bayesian model, with focus on
the individual differences between experimenters. Other individual

Fig. 8. Histograms of different variables in the hierarchical model: (a) μa; (b) σa; (c) μb; (d) σb; (e) μσ; and (f) σσ.
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differences that are difficult to quantify in laboratory tests, e.g., dif-
ferences in testing apparatus and specimen size, can also be handled
using the same methodology. In this section, to illustrate another
example, we quantify the variation in CRR by Bayesian estimation
using a hierarchical model, considering the specimen diameter as
an individual difference. The specimen diameter is taken into ac-
count because Toki et al. (1986) and Tatsuoka et al. (1986) reported
that any difference in membrane penetration due to the difference in
specimen diameter has a nonnegligible effect on test results.

The average curves of CRR estimated by the hierarchical
Bayesian model are compared with those by the nonhierarchical
Bayesian models in Fig. 9, along with the experimental plots. Com-
parisons are made for each diameter, but the nonhierarchical regres-
sion results for all bins (thick dashed lines) are common regardless
of the specimen diameter. At D ¼ 5 cm, the estimated CRR curves
from the three Bayesian models are approximately equal, and this
can be attributed to the fact that the number of test cases is suffi-
cient. In the cases of D ¼ 7.5 cm and D ¼ 10 cm, the CRR curves
estimated using the non-hierarchical regression model for each bin
are slightly dragged by the results for each diameter, but the appli-
cation of the hierarchical model produces estimation curves that are
almost identical to that for D ¼ 5 cm. Meanwhile, the CRR curve
estimated for D ¼ 7 cm using the hierarchical Bayesian model dif-
fers from the curves for the other diameter and an effect of speci-
men diameter initially appears. However, Table 1 shows that all the
experiments with D ¼ 7 cm were conducted by Experimenter 4,
and the CRR curve estimated for the experimenter by the hierar-
chical model in Fig. 1 is smaller than the overall average curve.
This means that the result of the hierarchical model for D ¼ 7 cm,
shown in Fig. 9, is influenced by the individual differences of the
experimenters. Thus, it is difficult to conclude that the difference in
specimen diameter affects the experimental results, as described by
Toki et al. (1986) and Tatsuoka et al. (1986), in the Bayesian es-
timation using a hierarchical model. For the Bayesian prediction
intervals obtained by the nonhierarchical model, shown in Fig. 10,

the individual differences between specimen diameters also show
only a small effect.

Conclusions

Cyclic undrained triaxial tests are commonly used in research and
practical design to evaluate the liquefaction resistance of sandy soils.
This paper proposes a methodology to evaluate liquefaction resis-
tance by considering the variability or uncertainty associated with
experimentation, using the concept of Bayesian statistics. The results
of five research institutes’ cooperative test program involving cyclic
undrained triaxial tests on saturated Toyoura sand were selected
in this study as experimental data. In addition to conventional non-
hierarchical Bayesian modeling, Bayesian estimation using a hier-
archical model was introduced to properly incorporate the variability
caused by individual discrepancies (e.g., due to participation of dif-
ferent experimenters) into the liquefaction resistance evaluation. In
both the nonhierarchical and hierarchical modeling, a procedure
based on hybrid MCMC simulation was adopted to solve the Baye-
sian updating equation.

The regression curve of CRR estimated by the nonhierarchical
model for all experimenters’ results was too generic and poorly
applicable, while the curve estimated by the nonhierarchical model
for each experimenter’s results sometimes deviated from the overall
trend, influenced by the individual characteristics. The CRR curves
estimated by the hierarchical Bayesian model considered the indi-
viduality of each experimenter and did not stray far from the overall
trend by referring to the other experimenters’ results, even when an
experimenter had a limited number of test cases.

The wide posterior distributions of the model input parameters
and model variability estimated by the nonhierarchical Bayesian
model for each experimenter can be suppressed by considering the
other experimenters’ results (i.e., overall trend) using the hierarchi-
cal model, thereby allowing an experimenter to make reasonable

Fig. 9. Comparison of the hierarchical model that considers the difference in the specimen diameter with the nonhierarchical models.
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predictions even with a limited number of test cases for an experi-
menter. The hierarchical Bayesian model also estimated the pos-
terior distributions of the means and standard deviations of the
experimenter-specific model input parameters. These posterior dis-
tributions can be used as prior distributions instead of noninfor-
mative priors to update the posterior distribution of model input
parameters when a different experimenter newly performs similar
laboratory tests.

The proposed methodology can also be used to estimate the
variability of liquefaction resistance considering other individual
differences in laboratory tests, e.g., differences in testing apparatus
and specimen size. The advantage of hierarchical Bayesian model-
ing is that it can reasonably consider factors that affect the exper-
imental results but are difficult to quantify. This may allow for a
more rational evaluation of the response of liquefiable ground by
means of numerical analysis method, reflecting the realistic variabil-
ity of model parameters obtained from laboratory test results.

Data Availability Statement

Some or all data, models, or code that support the findings of this
study are available from the corresponding author upon reasonable
request.
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