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The Gaussian orthogonal ensemble (GOE) of random matrices has been widely employed to describe diverse
phenomena in strongly coupled quantum systems. In particular, it has often been invoked to explain the
fluctuations in decay rates that follow the χ -squared distribution for one degree of freedom, as originally
proposed by Brink and by Porter and Thomas. However, we find that the coupling to the decay channels
can change the effective number of degrees of freedom from one to two. Our conclusions are based on a
configuration-interaction Hamiltonian originally constructed to test the validity of transition-state theory, also
known as the Rice-Ramsperger-Kassel-Marcus theory in chemistry. The internal Hamiltonian consists of two
sets of GOE reservoirs connected by an internal channel. We find that the effective number of degrees of freedom
depends on the control parameter ρ�, where ρ is the level density in the first reservoir and � is the level decay
width. The distribution for two degrees of freedom is a well-known property of the Gaussian unitary ensemble
(GUE); our model demonstrates that the GUE fluctuations can be present under much milder conditions. Our
treatment of the model permits an analytic derivation for ρ� � 1.
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Introduction. Random matrix theory was proposed by
Wigner [1] and extended by Dyson [2] to model the generic
features of complex quantum systems. The main idea is
to consider an ensemble of Hamiltonians with matrix ele-
ments that randomly generated. The theory has been widely
employed to discuss properties in a variety of systems [3]
including nuclear spectra [4,5], atomic spectra [6], electrons
in mesoscopic systems [7,8], unimolecular chemical reactions
[9], quantum chromodynamics [10], and microwave cavity
resonances [11–13]. See also Ref. [14] for a recent develop-
ment of random state technology, in which the properties of
random states are exploited to carry out numerical simulations
for many-body systems.

Among the ensembles in random matrix theory is the Gaus-
sian orthogonal ensemble (GOE) with Dyson index β = 1,
used to simulate Hamiltonians that obey time-reversal sym-
metry. For our purposes the important property is that the
eigenfunction amplitudes approach a Gaussian distribution in
the limit of large matrix dimensions. This leads to a χ -squared
distribution with one degree of freedom for the fluctuations of
decay widths at fixed energy into a single channel. On the
other hand, if the Hamiltonian is complex, its decay widths
might follow a χ -squared distribution with two degrees of
freedom, as in the Gaussian unitary ensemble (GUE) charac-
terized by the Dyson index β = 2. Both of these distributions
were proposed as possibilities in the original publication by
Porter and Thomas [15], as well as in the earlier publication by
Brink [16]. In the sequel, we will refer to the β = 1 distribu-
tion as the “PT distribution” and the other one by its definition,

the χ -squared distribution with ν = 2 degrees of freedom.1

Since the Hamiltonian matrices governing the quantum sys-
tems are often real, it is commonly assumed that they follow
the PT distribution. However, in nuclear physics, the topic has
recently become controversial [17–19] and other mechanisms
have been suggested to explain deviations [20–25].

In this Letter, we revisit this problem making use of a
random matrix model we developed in Ref. [26]. The model
was constructed to assess the validity of transition-state theory
[27–34]. The internal states of the system are represented by
two GOE Hamiltonians connecting with each other via bridge
states. Each GOE Hamiltonian is augmented by an imaginary
energy −i�/2 on the diagonal associated with direct decays
from the states. Hamiltonians based on two interacting GOE
reservoirs have been studied previously [11,35], but limited to
purely real Hamiltonians. In our reaction model, the Hamilto-
nian also contains an explicit entrance channel that is coupled
to the first GOE reservoir. Those reservoir states can decay
directly or pass to the second reservoir through the bridge
channel. We will show below that the decay rate from the
second GOE Hamiltonian follows the PT distribution when
�a for the first GOE matrix is small, changing gradually to
the χ -squared for two degrees of freedom as �a increases.
Note that the internal Hamiltonian is real, but becomes

1The number of degrees of freedom denoted here by the symbol ν

is conventionally written k.

2470-0045/2021/104(5)/L052104(5) L052104-1 ©2021 American Physical Society

https://orcid.org/0000-0002-2250-1063
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.104.L052104&domain=pdf&date_stamp=2021-11-22
https://doi.org/10.1103/PhysRevE.104.L052104


K. HAGINO AND G. F. BERTSCH PHYSICAL REVIEW E 104, L052104 (2021)

effectively complex due to the boundary conditions imposed
by the coupling to the entrance and decay channels.

Model. The Hamiltonian in our model is a matrix acting on
states in a discrete-basis representation. The bridge channel

consists of two states that are connected to each other and to
the sets of GOE reservoir states. The Hamiltonian is defined
as

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
. . .

. . . 0 t1 0 0 0 0
t1 0 vT

2 0 0 0
0 v2 Hgoe

a − i�a/2 v3 0 0
0 0 vT

3 0 t2 0
0 0 0 t2 0 vT

4
0 0 0 0 v4 Hgoe

b − i�b/2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1)

The ellipses and first two explicit entries in the vector space
are associated with states in the entrance channel; the param-
eter t1 is a hopping matrix element connecting adjacent states
in the channel. The entries in the fourth and fifth rows and
columns apply to the bridge states. The third and sixth rows
and columns represent Ng × Ng subblocks containing the GOE
Hamiltonians with g = a or b. The matrix elements in the Hgoe

g

submatrices are taken from the GOE ensemble [4],

〈i|Hgoe
g | j〉 = 〈 j|Hgoe

g |i〉 = ri jvg(1 + δi, j )
1/2. (2)

Here, ri j is a random number from a Gaussian distribution
of unit dispersion, 〈r2

i j〉 = 1, and vg is the root-mean-square
value of the matrix elements. The vectors vk connect the
channels to the GOE states, and we assume that their matrix
elements are given as vk (i) = rivk , where ri is random with
〈r2

i 〉 = 1 and vk is an overall scaling factor. It will be con-
venient to parametrize the derived analytic formulas in terms
of the GOE level density ρ0g = N1/2

g /πvg at the center of the
spectrum and the limiting eigenvalues Emg = ±2N1/2

g vg.
As described in Ref. [26] and in the Supplemental Material

[36], the GOE states can be treated implicitly in a reduced
Hamiltonian, leaving only the four channel amplitudes ex-
plicit:

Hred =

⎡
⎢⎣

0 t1 0 0
t1 w22 w23 0
0 w23 w33 t2
0 0 t2 w44

⎤
⎥⎦. (3)

We have left out the couplings marked by ellipses in the
previous equation because they are treated implicitly in the
derived expressions for reaction rates. The wkk′ in Eq. (3) are
self-energies associated with the states in the channels. They
are given by

wkk′ = vk · (
E − Hgoe

g + i�g/2
)−1 · vk′ , (4)

where E is the total energy of the reaction. These are evaluated
with (Hgoe

g , �g) = (Hgoe
a , �a) for w22, w23, and w33, and with

(Hgoe
g , �g) = (Hgoe

b , �b) for w44. Since the spectrum of Hgoe
g

is purely real, the inverse matrix expression (4) always exists.
The reaction cross section σk
 associated with an entrance
channel k leading to an exit channel 
 may be computed as
a kinematic cross section for the entrance channel multiplied

by a transmission factor Tk
,

σk
 = σkTk
. (5)

Our model has only one entrance channel and we drop the
index k in the formulas below. There are many exit channels
associated with the imaginary decay widths; we add together
all the contributions passing through states in reservoir a to
define Ta and similarly for reservoir b. The total inelastic
transmission factor T is then given by T = Ta + Tb. Notice
that T and Tb are proportional to �12 and �34, respectively,
where �i j expresses the probability flux from channel site i
to j. Formulas for T and Ta expressing their dependence on
the Hamiltonian parameters are derived in the Supplemental
Material.

A particularly interesting physical observable is the prob-
ability Pb of the reaction producing products from the b
reservoir,

Pb = Tb

T
. (6)

This is closely related to the branching ratio Br = Tb/Ta dis-
cussed in Ref. [26]. As derived in the Supplemental Material,
Pb can be expressed in terms of the Hamiltonian parameters as

Pb = t2
2 |w23|2 Im(w44)

Im(w22)|s|2 − Im(w2
23w44s∗)

, (7)

where s = w33w44 − t2
2 .

Fluctuation statistics. We derived the transition-state for-
mula in Ref. [26] by estimating the mean value of Br from the
statistical properties of the self-energies. For that estimate we
evaluated the expectation values of the diagonal self-energies
and their off-diagonal squares |w23|2 and w2

23. The results are
shown in Table I, together with additional statistical proper-
ties needed in the present context. See Refs. [37,38] and the
Supplemental Material for their derivation.

In assessing how the statistical properties of the self-
energies affect Pb, we first note that w2

23 is small compared
to the other terms in the denominator of Eq. (7). This is due to
its inverse dependence on Emg, since that energy is large com-
pared to all other energy scales. Also, the fluctuation in the
diagonal self-energy can be neglected for large GOE spaces
since it varies as N−1/4

g times its expectation value. Thus, the
entire fluctuation in Pb can be attributed to its dependence
on |w23|2. From Table I we see that its standard deviation
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TABLE I. Expectation values and standard deviations SD(x) =√
〈x2〉 − 〈x〉2 of self-energy expressions appearing in Eq. (7). The

statistical properties have been evaluated at E = 0 in the limits of
large Ng and (ρ0g)−1 � �g � Emg. It is assumed that k �= k′ in the
entries with subscript kk′.

x 〈Re x〉 〈Im x〉 SD(Re x) SD(Im x)

wkk 0 −πv2
k ρ0g (

2πv4
k ρ0g

�g
)1/2 (

2πv4
k ρ0g

�g
)1/2

wkk′ 0 0 (
πv2

k v2
k′ ρ0g

�g
)1/2 (

πv2
k v2

k′ ρ0g

�g
)1/2

|wkk′ |2 2πv2
k v2

k′ ρ0g

�g

2πv2
k v2

k′ ρ0g

�g

w2
kk′ − πv2

k v2
k′ ρ0g

Emg
0

2πv2
k v2

k′ ρ0g

�g

2πv2
k v2

k′ ρ0g

�g

is equal to its expectation value. In the χ -squared family of
distributions, the standard deviation of the PT distribution
is twice its expectation value while the distribution for two
degrees of freedom is equal to the expectation value. One
can also infer that the fluctuations in wkk′ have two indepen-
dent degrees of freedom by noting that the cross-correlation
〈(Re wkk′ )(Im wkk′ )〉 vanishes in the limit considered above.
Thus the real and imaginary parts can be considered separate
degrees of freedom. This is our analytic evidence that the fluc-
tuations in transition-state theory follow the corresponding
χ -squared distribution in the overlapping resonance region,
ρ0a�a � 1.

For the remainder of the Letter we explore numerically
the distribution for a range of ρ0a�a extending well into the
isolated resonance region,2 ρ0a�a � 1. Figure 1 shows the
distribution of Pb for the Hamiltonian parameters given in

2The Green’s function for the isolated resonance region has also
been studied analytically [39].
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FIG. 1. Distribution of numerically sampled decay probabilities
Pb (black circles) compared with the PT distribution (dashed line)
and χ -squared distribution for two degrees of freedom (dashed line).
The dimensions of the two GOE spaces are Ng = 100 and their
Hamiltonian parameters vg, vk, vk′ , �g are set to 0.1. The hopping
matrix elements in the channel spaces are taken as ti = 1. The mean
values and the root-mean-square (rms) deviations for the numerical
sampling are calculated for 50 histogrammed runs, each of which is
constructed for 500 samples.
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FIG. 2. The distribution of the transmission probability for the
second reservoir, Pb, for several values of �a and t2 = −(10�a)1/2 as
explained in the text. The dots with error bars were calculated with
50 histogrammed samplings as in Fig. 1. The dashed and the solid
curves denote the PT distribution and the χ -squared distribution for
two degrees of freedom, respectively.

the caption. One can see that the numerically sampled dis-
tribution agrees well with the χ -squared distribution for two
degrees of freedom. To understand the deviation from the PT
distribution, Fig. 2 shows the distribution of the probability Pb

for several values of �a, setting t2 = −(10�a)1/2 and keeping
the other parameters the same as in Fig. 1. We wish to keep
the expectation value 〈Pb〉 constant as �a is varied. This is
achieved in the transition-state formula Eq. (38) of Ref. [26]
by changing t2 as described. The two curves in each panel
show the fits to the two distributions. When �a is much
smaller than vg and �b, as in Fig. 2(a), the distribution is
consistent with the PT distribution. As �a increases, it grad-
ually deviates from that, and eventually comes close to the
distribution for two degrees of freedom. We have checked that
the calculated distribution is insensitive to the decay widths
in the second reservoir over a broad range of the parameter
ρ0b�b.

We also carried out a least-squared fit of number of degrees
of freedom in a χ -squared distribution to the histogrammed
data with results shown in Fig. 3. It comes out close to one
for small control parameter ρ0a�a and close to two for mod-
erate and large ρ0a�a. We have also plotted on the figure the
function ν(y) = (1 + 8.28y2)/(1 + 3.81y2) with y = ρ0a�a as
a purely phenomenological description of fitted ν parameters.

Summary. Making use of random-matrix theory, we have
applied a Hamiltonian model to fluctuations in reactions of
complex quantum systems. The model had been previously
proposed to find the limits of validity of the transition-state
theory of averaged reaction quantities. It is common wisdom
that fluctuations in decay rates associated with a transition
state in a time-reversal-invariant Hamiltonian follow the PT
distribution for one degree of freedom. However, the effective
Hamiltonian is complex when boundary conditions arising
from other channels are taken into account. When those de-
cay widths are comparable or larger than the average level
spacing, the fluctuations approach the χ -square distribution
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FIG. 3. Fitted values to the number of degrees of freedom ν

as a function of the control parameter �aρ0a. The Hamiltonians
are defined in the same way as in Fig. 2. The dashed line shows
an empirical fit, ν(y) = (1 + 8.28y2)/(1 + 3.81y2 ) with y = ρ0a�a.
Note that the ν exceeds 2 in the asymptotic region ρ0a�a � 1. This
may be a finite-size effect, but we have not examined this possibility.

for two degrees of freedom. In the model, the key quantity
responsible for fluctuations is the quantity w23 which depends
on Green’s function for the Hamiltonian of the first reservoir.
For real Green’s functions the fluctuations are also real, corre-
sponding to a single degree of freedom. However, if the states
in the reservoir can decay directly into continuum channels,
the Green’s function is complex and the fluctuations approach
those of a complex quantity with independent variations in the
real and imaginary parts. This behavior leads to reaction rates
that follow a distribution with two degrees of freedom.

In constructing the model, we assumed that the diagonal
energies of the entrance channel, the bridge channels, and the
centers of the two GOE reservoirs are equal. In fact, the con-
clusions remain under less restrictive conditions. The equality
of the two bridge-state energies is implicit in the definition of
a channel. Also, the interest is only in fluctuations associated
transmission through open channels; this requires the channel

energy to be close to that of the bridge channel. The center
energies of the two GOE reservoirs are not required to be
the same. Displacements of the center energies result in an
offset of the real part of the wkk , which can be subsumed
into the construction of the channel Hamiltonian. Turning
to the off-diagonal w23, its crucial role in the fluctuations is
due to the fact that its expectation value is zero. This comes
about because of the structure of the matrix element with the
uncorrelated vectors v2 and v3 rather than the details of the
reservoir Hamiltonian.

A crossover from one to two degrees of freedom has also
been studied in random matrix models [8,40], interpolating
between the GOE and the GUE ensembles. However, it is not
clear from such studies how to relate the complex matrix ele-
ments to physical quantities when the underlying Hamiltonian
is purely real.

The present model might be useful in the methodology for
determining the effective number of channels in transition-
state theory. In Ref. [41] the effective number of channels in a
unimolecular reaction was estimated from a formula based on
the PT distribution [9],

νeff = 2〈�〉2/(〈�2〉 − 〈�〉2). (8)

The authors found that their theoretical calculations were a
factor of 2 off. Depending on the direct decay widths of the
initial molecule, the explanation might be the factor of 2
difference between the variances of the two distributions.

Previously, it has been shown in nuclear physics that a
coupling to continuum states could narrow the distribution,
leading to a fitted number of degrees of freedom smaller than
one [22]. This was not realized in our model, as the fit gave
values between 1 and 2. In any case, it would be interesting if
the deviation from the Porter-Thomas distribution discussed
in that paper could be observed experimentally.
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