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Synthesis of mesoscopic particles of multi-component rare earth permanent 
magnet compounds
T. Thuy Trinh , Jungryang Kim , Ryota Sato , Kenshi Matsumoto and Toshiharu Teranishi

Institute for Chemical Research, Kyoto University, Uji, Kyoto, Japan

ABSTRACT
Multielement rare earth (R)–transition metal (T) intermetallics are arguably the next generation 
of high-performance permanent magnetic materials for future applications in energy-saving 
and renewable energy technologies. Pseudobinary Sm2Fe17N3 and (R,Zr)(Fe,Co,Ti)12 (R = Nd, 
Sm) compounds have the highest potential to meet current demands for rare-earth-element- 
lean permanent magnets (PMs) with ultra-large energy product and operating temperatures 
up to 200°C. However, the synthesis of these materials, especially in the mesoscopic scale for 
maximizing the maximum energy product ( BHð Þmax), remains a great challenge. Nonequilibrium 
processes are apparently used to overcome the phase-stabilization challenge in preparing the 
R–T intermetallics but have limited control of the material’s microstructure. More radical 
bottom-up nanoparticle approaches based on chemical synthesis have also been explored, 
owing to their potential to achieve the desired composition, structure, size, and shape. While 
a great achievement has been made for the Sm2Fe17N3, progress in the synthesis of 
(R,Zr)(Fe,Co,Ti)12 magnetic mesoscopic particles (MMPs) and R–T/T exchange-coupled nano-
composites (NCMs) with substantial coercivity (Hc) and remanence (MrÞ, respectively, remains 
marginal.
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1. Introduction

The current high-end permanent magnet, Nd2Fe14 

B (P42/mnm) compound, has a relatively low Curie 
temperature Tc of 313°C [1,2] and, since its sintered 
magnet (Nd2Fe14B: 0.982 vol.%, O2: 600 ppm, grain 
orientation: 0.991) has reached the room-temperature 
BHð Þmax of 474 kJm� 3 [3], approaching the theoretical 

limit of 520 kJm� 3, high-performance permanent 
magnetic compounds that outperform the Nd2Fe14 

B and operate at elevated temperatures (typically 
200°C) for highly efficient electric motors and genera-
tors are ever-increasing demand [4–8]. Uniaxial mag-
netocrystalline multielement R–T intermetallics are 
arguably the exclusive candidates that can process 
ultra-large intrinsic magnetic properties, where strong 
spin-orbit coupling (SOC) of 4f electrons of 
R sublattice originates large uniaxial magnetocrystal-
line anisotropy field, Ha, and large magnetic moment 
and strong exchange interactions of 3d electrons of 
T sublattice result in large saturation magnetization, 

Ms, and high Tc, respectively, [9,10]. Among them, R2 

T17 (Th2Zn17-type, R-3m) and RT12 (ThMn12-type, I4/ 
mmm) compounds have the potential to meet current 
demands for rare-earth-element-lean PMs, owing to 
their intrinsic magnetic properties superior to those of 
the Nd2Fe14B compound (Figure 1) [1,2,11–22].

Magnetism on the mesoscopic scale, which is 
known as micromagnetism, exhibits particularly rich 
extrinsic behavior. Hc is an extrinsic property of cru-
cial importance in permanent magnetism and is gov-
erned by the real structure of materials under Brown’s 
paradox [23,24]: Hc is reduced to αHa by defects, 
where the factor α (0 ≤ α < 1) describes microstruc-
tural details [25–29]. The MMPs, especially magnetic 
nanoparticles (MNPs), are an important class of mag-
net building blocks that can be used to fabricate high- 
performance anisotropic PMs [30–32]. Their unique 
feature is the size-dependent coercivity: Hc of a single- 
domain grain increases beyond the superparamagnetic 
critical size (Dsp) as Hc,1 � Dsp=D

� �3=2, reaches the 
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maximum at the single-domain critical size (Dsd) 
given by Dsd � 72

ffiffiffiffiffiffiffiffiffiffiffiffi
AexK1
p

=μ0M2
s where Aex is the 

exchange stiffness and K1 is the first anisotropy con-
stant, and then decreases as Hc,1=Dn, provided that 
the grain has a strong cubic anisotropy [33–36]. The 
grain-size dependent coercivities of representative R2 

T17 and RT12 compounds are named a few and shown 
in Figure 2 [37–50]. Owing to the phase-stabilization 
challenges, control over the microstructure of R–T 
multielement materials is still a non-trivial task, 
though the R–T permanent magnetic materials have 
been established since 1960s [51] and the Nd2Fe14 

B compound has been utilized since its discovery in 
1984 [52–55].

Synthesis of multielement R–T intermetallics, espe-
cially the RT12 compound, is very challenging due to 
their complex crystal structure, desired phases formed 
in narrow compositions and at very high temperatures 
(700–1200°C), and poor chemical stability in the air 
environment [56–60]. In general, the R–T intermetal-
lics with equilibrium phases can be synthesized by 
equilibrium processes under the framework of their 
equilibrium phase diagrams, such as cooling of the 
alloying liquid with a very low cooling rate and 
annealing of the as-casting ingots at elevated tempera-
tures for a time as long as possible. The later process 
utilizing arc-melting or induction-melting and subse-
quent annealing is convenient to synthesize the inter-
metallics [12,13,16–19,22,37,58,59,61]. However, the 
equilibrium processes often lead to the formation of 
impurities because the strict equilibrium conditions to 
give pure phases are hardly realized, and/or the metals 
R and T can easily form several equilibrium phases, 
thus make the microstructure, especially the size, less 
controllable. In contrast, the nonequilibrium processes 
are appropriate for synthesizing not only metastable 

compounds but also the intermetallics with desired 
crystal structures free from impurities and a fine 
grain microstructure [61]. The most typical method 
is first to form the amorphous phase, followed by 
annealing at an appropriate temperature [14,40–50]. 
The annealing evolves the formation of metastable 
phases, which can be produced at various extreme 
nonequilibrium conditions, and the dynamical 
transformation between the metastable and the 
equilibrium phases, corresponding to the local free- 
energy minima. The differences between the crystal-
lographic symmetries of the phases result in the 
differences in the local free-energy minima for the 
formation of the phases. Other factors, such as the 
composition and the atomic binding energy, of 
course, also play an important role in the formation 
and stability of the phases. The descending sequence 
of the symmetries for the structures of the R–T 
compounds has been found as follows: Amorphous, 
CaCu5-type (P6/mmm), TbCu7-type (P6/mmm), Th2 

Ni17-type (P63/mmc), Nd2Fe14B-type (P42/mnm), 
ThMn12-type (I4/mmm), Th2Zn17-type (R-3m), and 
Nd3(Fe,Ti)29-type (A2/m) [56,57,61]. The differences 

Figure 1. Room-temperature intrinsic magnetic properties of 
up-to-date representative compounds. The Sm(Fe1-xCox)12 and 
NdFe12N compounds are in the form of thin film; the other 
compounds are in the form of micropowders. Data are incor-
porated with references [1,11–22].

Figure 2. Grain size dependence of room-temperature coer-
civity. (a) Sm2Fe17N3 compounds. (b) R(Fe,M)12Xx (R = Nd, Sm; 
M = Ti, V, Co, Mo, Al, Si: phase stabilizing elements; X = N, B) 
compounds. (a) Reprinted with permission from [39]. 
Copyright 2020 Elsevier. (b) Data are incorporated with refer-
ences [40–50].
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between the free-energy minima for the formation 
of the last five equilibrium phases in the sequence 
may be quite small, depending on the composition 
of alloys and the condition of the synthetic process, 
and, thus only one equilibrium phase usually forms 
as the final one under a given condition of compo-
sitions and processes [61]. The CaCu5-type (P6/ 
mmm) structure with the highest symmetry among 
those of the R–T metastable and equilibrium phases 
is the basic one from which the structures of various 
R–T compounds can be derived by replacements of 
the R atoms with a pair of T atoms, which is known 
as dumbbell atoms, as follows [56,57]: 

2RT5 � R þ 2T ¼ RT12 I4=mmmð Þ;

3RT5 � R þ 2T ¼ R2T17 R-3m or P63=mmcð Þ;

5RT5 � 2R þ 4T ¼ R3T29 A2=mð Þ:

For most of the R–T compounds, the metastable CaCu5- 
type phases may form in a narrow temperature range 
and, thus, are hardly observed experimentally. The for-
mation of the CaCu5-type phases can be observed by 
careful annealing with a very slow heating rate for a short 
time [46], whereas the metastable TbCu7-type phases 
form in a sufficiently wide temperature range to be 
observed in various synthetic processes [14,40,43]. In 
practice, the metastable compounds usually crystallize 
at annealing temperatures slightly higher than the crys-
tallization temperature of the amorphous phase, and 
subsequently can be dynamically transformed into 
more stable compounds at higher annealing tempera-
tures [61]. Therefore, the choice of the appropriate 
annealing temperatures under a given condition of com-
positions and processes is essential to promote the for-
mation of the desired intermetallic compounds. The 
following processes are those based on the method 
above: mechanical alloying; mechanical milling including 
high-energy ball milling (HEBM) and surfactant-assisted 
ball milling (SABM); rapid quenching/melt-spinning; 
hydrogenation disproportionation desorption recombi-
nation (HDDR) [61]. They are popularly adopted for the 
massive production of fine powders, although they have 
limited control of the microstructure of materials. DC 
magnetron sputtering nonequilibrium process is often 
used to fabricate metastable RT12 films [15,20]. Solid- 
state and solid-gas reactions are the other two powerful 
nonequilibrium processes for the synthesis of the meta-
stable and intermetallic compounds [19,37–39], and they 
are further discussed hereinafter. Among bottom-up 
synthetic approaches, chemical synthesis is the most 
versatile method for the preparation of MMPs with con-
trollable composition, structure, size, and shape [30– 
32,62]. Recent advances in the solution-phase synthesis 
of MNPs followed by the solid-state reaction have over-
come the phase stabilization challenges in preparing R–T 
intermetallics, leading to the successful synthesis of some 
binary R–T MMPs (e.g., SmCo5, Sm2Co17) with ultra- 
large room-temperature Hc [62,63]. Herein we present 

an overview of our ongoing research in the context of 
other recent developments in the chemical synthesis of 
the most challenging multielement pseudobinary R2T17 

and RT12 intermetallics with an emphasis on grain size 
and composition control. This review covers the basis 
behind the use of nanoparticles (NPs) as precursors for 
the microstructure control of MMPs and presents the 
most recent results of Sm2Fe17N3 and (R,Zr)(Fe,Co,M)12 

(R = Nd, Sm; M = Ti, V, Cr, Mn, Co, Mo, W, Al, Si, Ga) 
MMPs. The review also summarizes the efforts in the 
chemical synthesis of magnetically hard/soft exchange- 
coupled R–T/T NCMs.

2. Synthesis of nanostructured precursors

The high negative reduction potentials of R cations, 
a large difference in reduction potentials of R and 
T cations, and high chemical instability of R metals 
make it impossible to directly synthesize R–T inter-
metallics by solution-phase chemical reactions. An 
alternative chemical synthetic approach is to first 
synthesize nanostructured precursors, which are che-
mically stable and readily synthesized by solution- 
phase reactions, followed by R–D reactions of the 
precursors. Monodisperse nanostructured precursors 
with controllable composition, size, and shape are an 
important key to determine the microstructure of 
MMPs, and they are advantageous depending on 
their structural fashions such as core@shell, encapsu-
lated, doped, or mixed oxide NPs.

The core@shell nanostructures composed of 
T metal or T oxide (T–O) cores and R oxide (R–O) 
shells, namely T/T–O@R–O NPs hereinafter, are 
usually synthesized via a two-step reaction: the T or 
T–O NPs are firstly synthesized, followed by the 
deposition of R–O over the surface of the T or T–O 
NPs. The Co (Fm-3m) and amorphous Fe NPs with 
particle sizes of < 10 nm were readily synthesized by 
thermal decomposition of Co2(CO)8 and Fe(CO)5, 
respectively, as reported by Sun and co-workers 
[64,65]. The Co (P63/mmc) nanorods with the length 
in the range of 200–300 nm and the average diameter 
of 20 nm could be synthesized by using a Ru-catalyzed 
solvothermal reaction of cobalt laurate in the presence 
of hexadexylamine in 1,2-butanediol [66]. Amorphous 
Fe nanospheres with a particle size of 200 nm were 
synthesized by Carpenter and co-workers [67], where 
FeSO4 was reduced to Fe by NaBH4 at room tempera-
ture in the presence of sodium citrate. A series of Fe–O 
NPs with tunable sizes in a wide range from ca. 10 nm 
to several hundred nanometers were also successfully 
synthesized by the following procedures. Wüstite FeO 
(Fm-3m) NPs were synthesized by reductive thermal 
decomposition of Fe(acac)3 (acac = acetylacetonate) 
with oleic acid (OA) and oleylamine (OAm); their 
sizes were tuned from 14 to 100 nm by controlling the 
reaction temperatures [68]. Magnetite Fe3O4 (Fd-3m) 
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nanocubes were synthesized by thermal decomposition 
of Fe(acac)3 in the presence of OA in benzyl ether 
solvent at 290°C [69]; their sizes were tuned from 20 
to 200 nm by varying the OA concentration, as shown 
in Figure 3 [70]. Hyeon and co-workers developed the 
ultra-large-scale synthesis of smaller Fe3O4 nano-
spheres with tunable sizes in the range of 5–20 nm by 
thermal decomposition of Fe(III) oleate in various sol-
vents with different boiling points [71]. The reactivity of 
nanostructured precursors toward the following R–D 
reaction can be tailored by adopting NPs with different 
shapes as the surface energy can govern the inter- 
diffusion of metal atoms. For this purpose, Fe3O4 (Fd- 
3m) NPs with rationally-controlled shapes from a cube, 
truncated cube, cuboctahedron, truncated octahedron, 
to octahedron were prepared by varying the concentra-
tion of CPC (CPC = cetylpyridinium chloride), as 
shown in Figure 4 [70]. Once the transition metal 
core like the Co core was prepared, amorphous Sm–O 
shell could be deposited by thermal decomposition of 
Sm(acac)3 at 300°C in 1-octadecene solvent, as shown 
in Figure 5(a) [65,66]. The temperature rate was kept as 
low as 2°C min–1 to avoid homogeneous nucleation of 

particulate Sm–O NPs. The method has been success-
fully extended to synthesize Fe3O4@Sm–O NPs, as 
shown in Figure 5(b) [72]. The molar ratio of Fe to 
Sm could be tuned by adjusting relative amounts of 
Sm(acac)3 and Co or Fe3O4 NPs.

Figure 3. Size evolution of Fe3O4 (Fd-3m) NPs. (a,c,e,g) 
Transmission electron microscopy (TEM) images and (b,d,f,h) 
size distributions. Reprinted with permission from [70]. 
Copyright 2020 Wiley VCH.

Figure 4. Shape evolution of Fe3O4 (Fd-3m) NPs: (a–c) cubes, 
(d–f) truncated cubes, (g–i) cuboctahedra, (j–l) truncated octa-
hedra, (m–o) octahedra with small size, and (p–r) octahedra 
with large size. (a,d,g,j,m,p) TEM images, (b,e,h,k,n,q) Scanning 
electron microscopy (SEM) images, and (c,f,i,l,o,r) size distribu-
tions. Insets show the {100} and {111} planes in red and blue, 
respectively. Reprinted with permission from [70]. Copyright 
2020 Wiley VCH.

Figure 5. Chemically-synthesized core@shell nanostructured 
precursors. (a,b) TEM images of Co@Sm–O (Co core: Fm-3m, 
8 nm; Sm:Co = 1:4.3 at%) (a) and Fe3O4@Sm–O (Fe3O4 core: 
Fd-3m, 79 nm; Sm:Fe = 1:11.5 at%) (b). (a) Reprinted with 
permission from [65]. Copyright 2020 Wiley VCH. (b) 
Reproduced with permission from [72]. Copyright 2020 the 
Chemical Society of Japan.
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The T/T–O@R–O nanostructures are highly desir-
able because their size can be fully tuned in the meso-
scopic scale from a few nanometers to one micrometer 
by well-established solution chemical synthetic meth-
ods. However, this strategy has succeeded rather in 
binary R–T MMPs [65,66]; it may be inappropriate for 
higher-multielement R–T MMPs since the synthetic 
process involves multi-step reactions giving a very low 
overall yield and the R/T ratio is not well-controlled. 
For better control of the R–T composition and full 
access to the control of particle size, the encapsulated 
nanostructures, where R–O and T–O in crystalline 
and/or amorphous forms are co-precipitated within 
one nanostructure (namely RT–O NPs hereinafter), 
can be used as precursors. The SmCo-O (7 nm) NPs 
were synthesized by thermal decomposition of 
Sm(OAc)3 and Co(OAc)2 (OAc = acetate) by Sun 
and co-workers, as shown in Figure 6(a) [73]. We 
successfully extended this method to synthesize multi-
element NPs, e.g., Sm–O, Zr–O, and Ti–O encapsu-
lated CoFe2O4 (Fd-3m) NPs (5 nm), which will be 

reported in the forthcoming paper. Besides these, the 
Sm(Co or Fe)–O NPs with tunable sizes in the range of 
60–220 nm and different morphologies were synthe-
sized directly from thermal decomposition of Sm(acac)3 

and Co/Fe(acac)2 (Figure 6(b–j)) [74] or SmCo–oleate 
complex (Figure 6(k–s)) [75]. The SmCo–O NPs with 
various morphologies, such as Sm(OH)3–Co nanorods 
[76] or urchin-like [77], Sm(OH)3–Co(OH)2 nano-
flakes [78,79], and SmCo–O nanofibers [80,81], could 
be successfully obtained by sonification [76], hydro/ 
solvothermal reaction [77–79], and electrospinning 
[80,81]. Once the R amounts in these encapsulated 
nanostructures are under the critical concentration for 
the solid-solution formation, the R-doped T–O nanos-
tructures can be synthesized by using procedures which 
are similar to the above [81–85]. A series of R-doped Fe2 

O3 or Fe3O4 (R = Sm, Eu, Gd, Tb, Ho, Er, Y) NPs with 
different shapes and particle sizes tuned in the range of 
5 nm–1 μm could be obtained by thermal decomposi-
tion [82,84], hydrothermal reaction [85], and ultrasoni-
cation [86]. These precursors with R compositions 

Figure 6. Chemically-synthesized nanostructured precursors. (a) TEM image of Sm–O encapsulated CoO (Fm-3m) NPs (7 nm, Sm: 
Co = 1:3.6). (b–d) TEM images of Sm–O encapsulated CoO (P63mc) multipods (Sm:Co = 1:4.5): (b) 60 ±10 ×10 ±3 nm, (c) 
110 ±20 ×25 ±5 nm, and 220 ±40 ×45 ±5 nm. (e) HRTEM (high-resolution TEM) image of an enlarged part of a nanorod (inserted). 
(f) HAADF-STEM (high-angle annular dark-field scanning TEM) image and (g–i) elemental mapping images of Sm (g), Co (h), and 
O (i) of the multipods shown in (c). (j) TEM image of the multipods (shown in (c)) imbedded into a CaO matrix. (k–m) TEM images 
of Sm–O encapsulated CoO (Fm-3 m) NPs: (k) 110 ±8 nm, (l) 150 ±12 nm, (m) and 200 ±15 nm. (n) HRTEM image of a section of 
one 200 nm NP shown in (m), showing a mixture of smaller CoO and Sm–O NPs. (o) HAADF-STEM image and (p–r) elemental 
mapping images of Sm (p), Co (q), and O (r) of one representative 200 nm NP shown in (m). (s) TEM image of one 200 nm NP 
(shown in (m)) coated with a 10 nm layer of NGC (N-doped graphitic carbon). (t) SEM image of Fe2O3, NdFeO3, and Fe2(MoO4)3 

mixed NPs (ca. 200 nm). (a) Reproduced with permission from [73]. Copyright 2020 The Royal Society of Chemistry. (b–j) Reprinted 
with permission from [74]. Copyright 2020 Wiley VCH. (k–t) Reproduced with permission from [75,98]. Copyright 2020 American 
Chemical Society.
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varied below 20 at.% are suitable for the synthesis of 
RT12 MMPs.

The most simple and robust strategy for the con-
trol over the composition of the multielement R–T 
MMPs is to prepare mixed NPs of R–O and T–O 
(namely [T–O,R–O] NPs hereinafter): the precursors 
are synthesized via one-pot solution chemical synth-
esis; their stoichiometry is well determined by the 
feeding ratio of starting materials. Mixtures of Sm2 

O3/Sm(OH)3, Co/Co–O/Co(OH)2/CoOOH, and/or 
Fe/Fe–O NPs were usually prepared by reductive 
thermal decomposition [87], solvothermal reaction 
[88], co-precipitation [89–96], and ultrasonication 
[97]. The sol-gel method is rather simple and effi-
ciently produces a mixture of superfine oxide NPs, 
where a mixture of R–O and T–O gel is formed by 
using a poly-network gel process at elevated tempera-
tures, followed by calcination to convert the gel to the 
superfine oxides [98–100]. By varying the concentra-
tion of the R and T ions in the gel, the size of oxide 
NPs could be controlled in a wide range from ca. 
10 nm to several hundred nanometers, as shown in 
Figure 6(t) [98]. Monodisperse and size-tunable T/T– 
O@R–O and RT–O nanostructured precursors with 
homogeneous composition have opened horizons for 
optimization of the microstructure of R–T MMPs 
since they could be embedded in dispersant matrixes 
(e.g., CaO, graphite oxide GO), as shown in Figure 6 
(j) [74,78,79], or tightly coated with other layers 
intact (e.g., CaO, GO, nitrogen-doped graphitic car-
bon NGC) in core@shell structures, as shown in 
Figure 6(s) [73,75,76]. While mixed NPs strategy 
partially succeeded in only the embedding, leading 
to the limited kinetic control of the microstructure of 
R–T MMPs [88–92,100]. Although the mixed NPs 
exhibited poor control of particle size, they were 
capable to synthesize multielement R–T MMPs 
owing to feasible control of composition [98].

3. Synthesis of multielement R–T MMPs

Multielement R–T intermetallics, represented by Sm2 

Fe17N3, (Nd,Zr)(Fe,Co,Ti)12N, and (Sm,Zr)(Fe,Co, 
Ti)12, with large Ha, large Ms, and high Tc are the 
most promising candidates to replace Nd2Fe14B for 
modern permanent magnet applications (Figure 1). 
However, their chemical synthesis remains a great chal-
lenge due to the high negative reduction potentials of 
R cations (e.g., Sm3+: – 2.304 V, Nd3+: – 2.323 V) and 
very low chemical stability of R metals. Generally, the 
R and T cations are reduced by strong reducing agents 
(e.g., CaH2, Ca) accompanied by diffusion of R and 
T atoms to form R–T intermetallics under high- 
temperature solid-state reaction conditions, which is 
known as R–D process. Before the R–D process, it 
may need to remove organics from nanostructured 
precursors by calcination to avoid any undesirable 

formation of carbides and/or C interstitial compounds 
in the following R–D reaction, and/or adopt H2 pre- 
reduction of the calcined precursors to promote the R– 
D reaction. In this synthesis, the R–T MMPs encounter 
common issues of sintering in the R–D reactions at high 
temperatures and oxidation in air environments. 
A great strategy is the coating of nanostructured pre-
cursors with stable materials, which were mentioned in 
Section 2, to stabilize MMPs formed in high- 
temperature solid-state reaction conditions and against 
oxidation in air. The chemical synthetic approach has 
been successful to prepare rather simple binary R–T 
MMPs. Indeed, the SmCo5 and Sm2Co17 MMPs 
with tunable sizes in a wide range from a few nan-
ometers to a few micrometers have been successfully 
synthesized [65,66,73–78,80,81,87–93,97,99,100]. 
The resultant MMPs were dispersible in common 
solvents [74,75,91,100], possessed ultra-large Hc 
reaching the highest yet reported room-temperature 
μ0Hc of 7.2 T [91] for any permanent magnetic mate-
rials, and were strongly stable against oxidation at 
elevated temperatures [75]. The chemical synthesis of 
SmCo5 MMPs has been well documented in a previous 
review [63]. Thus, the nanostructured precursors are 
readily prepared by a wide range of solution chemical 
synthetic methods and the intriguing results of chemi-
cally-synthesized SmCo5 MMPs are triggering the 
chemical synthesis of MMPs of Sm2Fe17N and 
(R,Zr)(Fe,Co,M)12 (R = Nd, Sm; M = Ti, V, Cr, Mn, 
Co, Mo, W, Al, Si, Ga) compounds. The chemically 
synthesized MMPs of these compounds and their 
room-temperature magnetic properties are summar-
ized in Table 1.

3.1. Sm2Fe17N MMPs

The Sm2Fe17 (Th2Zn17-type, R-3 m) compound, repre-
sentative to the R2T17 intermetallic series, has a relatively 
low μ0Ms = 1.03 T, very low μ0Ha < 1 T, and very low Tc = 
116°C [100–102]. The interstitial doping of the Sm2Fe17 

compound with nitrogen atoms forms the Sm2Fe17N3 

(Th2Zn17-type, R-3 m) compound [19,101–103]; its 
intrinsic magnetic properties enormously increases to 
μ0Ms = 1.57 T, μ0Ha = 26 T, and Tc = 473°C [19], 
superior to those of the Nd2Fe14B compound (Figure 1). 
Nitrogen atoms interstitially doped in the 9e octahedral 
sites (Figure 7) expand the unit-cell volume and increase 
the Fe–Fe exchange interactions, resulting in the 
increases in Ms and Tc, respectively [102–104]. The 
hybridization of Sm-f states and N-p states changes mag-
netization direction from the easy-plane in the Sm2Fe17 to 
the easy-c axis in the Sm2Fe17N3 and affects band energy, 
leading to a large uniaxial magnetocrystalline anisotropy 
[104]. The Sm2Fe17N3 phase is metastable and, thus 
synthesized by nitridation of the Sm2Fe17 with N2 or 
NH3 in gas-solid reaction or with melamine (C3H6N6) 
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in a solid-state reaction under high temperature and/or 
pressure conditions. In practice [72], the Fe3O4@Sm–O 
NPs (ca. 30 nm) described in Section 2 (Figure 5(b)) were 
calcined at 1000°C for 1 h in air (Figure 8(a,b,g(i))), and 

subsequently reduced by H2 at 900°C for 1 h (Figure 8(c, 
d,g(ii))). The resultant NPs were converted into Sm2Fe17 

MMPs by the Ca R–D reaction at 900°C for 1 h in Ar, 
subsequently converted into Sm2Fe17N3 MMPs by in situ 
nitridation at various temperatures for 10 h in N2 (Figure 
8(e,f,g(iii))). The Hc of Sm2Fe17N3 MMPs depended on 
the nitriding temperature, as shown in Figure 8. This is 
related to thermal transformations in the nitridation pro-
cess: nitridation in a gas-solid reaction can only proceed 
at relatively high temperatures (400–500°C); nitrogen 
concentration in Sm2Fe17Nx (0 < x ≤ 3) is a function of 
nitriding temperature at low temperatures, while the Sm2 

Fe17N3 decomposed into SmNx and Fe at high tempera-
tures [19,105,106]. For example, the resultant Sm2Fe17N3 

MMPs formed by the nitridation at 435°C have an aver-
age particle size of 1.9 ±1.0 μm and a room-temperature 
μ0Hc of 1.3 T in an isotropic sample before the rinse with 
H2O, as shown in Figures 8(e,f,g(iii)) and 9.

In the light of nanostructured precursors, the par-
ticle size of Sm2Fe17N3 MMPs can be controlled 

Figure 8. Structural analysis of chemically synthesized Sm2Fe17N3 MMPs (R-3m, 1.9 ±1.0 μm). (a,c,e) SEM images, (b,d,f) energy- 
dispersive spectroscopy elemental maps (Fe K edge: purple, Sm L edge: yellow), and (g) Rietveld refinement XRD patterns of Fe3O4 

@Sm–O NPs calcined at 1000°C for 1 h (a,b,g(i)), subsequently reduced by H2 at 900°C for 1 h (c,d,g(ii)), and Sm2Fe17N3 MMPs 
synthesized by Ca R–D at 900°C for 1 h in Ar and in situ nitridation at 435 °C for 10 h in N2 (e,f,g(iii)). Inset in (e) shows the grain size 
distribution of the Sm2Fe17N3 MMPs. Reproduced with permission from [72]. Copyright 2020 the Chemical Society of Japan.

Figure 9. Room-temperature magnetic properties of Sm2Fe17N3 MMPs (R-3 m, 1.9 ±1.0 μm) formed by in situ nitridation of Sm2 

Fe17 MMPs at various temperatures for 10 h. (a,b) M-H curves before (a) and after (b) the rinse with H2O. (c) Nitriding-temperature 
dependence of coercivity (red rectangles: before the rise with H2O, blue circles: after the rinse with H2O). Replotted with 
permission from [72]. Copyright 2020 the Chemical Society of Japan.

Figure 7. Crystal structure of Sm2Fe17N3 (Th2Zn17, R-3m) 
compound.
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through thermodynamics based on careful observation 
of reaction temperature [39]. To this end, a synthesis 
using a mixture of Fe–O and Sm–O NPs prepared by 
a sol-gel method, as described in Section 2, was con-
ducted via consecutive calcination, H2 pre-reduction, 
and Ca R–D at various temperatures in the ranges of 
500–1000°C, 700–900°C, and 900–1000°C, respectively, 
followed by in situ nitridation at 430 °C. The particle 
size of the resultant Sm2Fe17N3 MMPs was largely 
dependent on the processing temperature. The first 
two processes conducted at low temperatures were cru-
cially important to control the final MMP size at the 
following R–D process as their resultant small NPs 
facilitated the Ca R–D reaction at low temperatures to 
obtain small MMPs. The Ca R–D process, in its turn, 
effectively determined the particle size of the resultant 
Sm2Fe17N3 MMPs as higher R–D reaction temperatures 
led to larger MMPs due to the sintering of the particles. 
As a result, the Sm2Fe17N3 MMPs exhibited particle 
sizes tuned in the range of 0.7–3.5 μm and room- 
temperature μ0Hc tuned in the range of 1.3–2.32 T in 
anisotropic samples. The smallest size of 0.69 μm was 
obtained at the lowest temperatures for the calcination 
at 500°C, H2 pre-reduction at 700°C, and Ca R–D 
processes at 900°C. The Hc showed an obvious mani-
festation of size dependence and its highest μ0Hc of 
2.32 T was obtained for the smallest size of 0.69 μm 
(Figure 2(a), the blue rectangles). However, the synth-
eses above required an excessive amount of Sm by 
25–30 at.% to the 2:17 stoichiometry to compensate 
for Sm evaporation during the Ca R–D reaction. The 
thermodynamic control could not proceed to obtain 
much smaller sizes as the calciothermic reduction 
must be conducted at temperatures far above the melt-
ing point of Ca (845°C). Recently, an efficient kinetic 
approach that was advanced by the engineering of 
nanostructured precursors could achieve the formation 
of Sm2Fe17N3 MMPs with better-controlled size and 
composition by Sun and co-workers [74]. In this synth-
esis, SmFe–O nanocubes (110 nm) were tightly coated 
with CaO by thermal decomposition of Ca(acac)2 at 
200°C, calcined at 185°C for 5 h, and reduced by Ca at 
850°C for 30 min in Ar. The resultant Sm2Fe17 MMPs 
were then mixed with C3H6N6 and annealed at 600°C 
for 6 h in Ar to form 100 nm Sm2Fe17N3 MMPs. The 
overall synthesis costed an excessive Sm composition of 
the SmFe–O nanocubes by only 2 at.% to the 2:17 
stoichiometry to compensate for Sm loss. The resultant 
Sm2Fe17N3 MMPs were well dispersible in conventional 
solvents and exhibited room-temperature μ0Hc of 
1.54 T in an anisotropic PEG–embedded Sm2Fe17N3 

(PEG = polyethylene glycol) sample. This Hc value 
was smaller than that reported above because their 
particle size (100 nm) was smaller than the single- 
domain critical diameter of Sm2Fe17N3, Dsd = ca. 
390 nm [36]. This method would give the Sm2Fe17N3 

MMPs with larger sizes approaching the Dsd by increas-
ing the particle size of the precursors, leading to ultra- 
large Hc.

3.2. RT12 MMPs

NdFe12N (ThMn12-type, I4/mmm) and Sm(Fe,Co)12 

(ThMn12-type, I4/mmm) compounds are the most 
impressive candidates for rare-earth-element-lean per-
manent magnets: their thin films were found to possess 
significantly large Ms and Ha (Figure 1), BHð Þmax the-
oretical limits of 550 and 630 kJm� 3, respectively, and 
high Tc of 550 and 586°C, respectively; all the properties 
surpass those of the Nd2Fe14B [15,20,107–109]. 
Recently, anisotropic Sm(Fe0.8Co0.2)12–B films com-
posed of columnar grains (40 nm) textured with amor-
phous B intergranular boundary have been realized. 
The films exhibited a large room-temperature μ0Hc of 
1.2 T, μ0Mr of 1.5 T, and very small temperature- 
dependent Hc, promising excellent stability at T ≥ 
150°C [110]. Unfortunately, they are metastable phases 
and, thus could not be realized in bulk for the fabrica-
tion of PMs. To this end, one can partially substitute Fe 
with stabilizing elements M (M = Ti, V, Cr, Mn, Co, 
Mo, W, Al, Si, Ga) in preferential 8f, 8i, and 8j sites, 
depending on the stabilizing elements, for example, Ti, 
V, and Mo in 8i; Co and Si in 8 f and 8 j; Ga in 8 j, as 
shown inFigure 10 [12,13,17,18,40–50,106,111–117]. 
The substitution with a large concentration of M leads 
to a significant reduction in Ms, except for Co, as shown 
in Figure 1 for Ti. The Co substitution results in the Ms 
enhancement based on the Slater-Pauling curve, which 
is elucidated by an increase in the majority-spin state 
density below the Fermi level [114,117]. An effective 
strategy that stabilizes the low M-substituted concentra-
tion compounds and rationally enhances Ms is to sub-
stitute Sm or Nd with other R elements of smaller 
atomic number (e.g., Zr, Y) in preferential 2a sites 
(Figure 10), though it reduces Ha for Zr, as shown in 
Figure 1 [16,21,22,117–126]. The substituted com-
pounds have been found to be stable at even very high 
temperatures [127]. The stabilization by the substitu-
tion can be understood as a decrease of local mis-
matches in interatomic distances in the structure 
unfavorable for the orbital hybridization [121], 

Figure 10. Crystal structure of RFe12 (ThMn12, I4/mmm) com-
pounds (R = Sm, Nd).
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resulting in low formation energies of the substituted 
compounds [114,126]. Interstitial nitrogen doping into 
2b octahedral sites in Nd(Fe,M)12 (Figure 10) is of 
crucial importance to enhance Ms and Ha; it could be 
explained as the hybridization between N-p (2b) and 
Fe-d (8j) gives raises in the magnetic moment and the 
crystal field parameter r2A0

2 [128,129].
Despite such impressive Ha and enormous research 

efforts, the RT12 MMPs with substantial Hc have not 
been realized yet, the reported Hc values being still less 
than 10% of the corresponding Ha [40–50,111,112,124]. 
The following critical issues make it extremely difficult 
to practically realize the hard magnetic potential of RT12 

compounds. Firstly, the size and shape of RT12 

MMPs have not been well optimized, especially in 
the sub-micrometer range, as shown in Figure 2(b) 
[40–50,111,112,124]. Secondly, since equilibrium 
phases formed along with the typical RT12 phase are 
ferromagnetic, the conventional methods cannot intro-
duce appropriate non-magnetic intergranular boundary 
phases, unlike Nd2Fe14B where their intergranular 
boundary is greatly facilitated by the eutectic reaction 
with Nd phase [8,21,111,130]. Finally, the RT12 com-
pounds usually melt at relatively high temperatures, 
making it difficult to fabricate anisotropic magnets 
through the liquid-phase sintering [8,21,111,130]. 
Chemically synthesized fine RT12 MMPs with optimum 
microstructure may become suitable for sintering into 
fully dense anisotropic magnets, but is greatly challen-
ging to be obtained. In a typical synthesis, a mixture of 
Fe2O3 (P41212, R-3c), NdFeO3 (Pnma), and Fe2(MoO4)3 

(P21/c, Pbcn) NPs (ca. 200 nm), as described in Section 2 
(Figure 6(t)), reduced by H2 at 700°C to convert into 
Fe(Mo) alloyed (Im-3m) and Nd2O3 (C2/m, P-3m1) 
NPs, and subsequently converted into NdFe10Mo2 (I4/ 
mmm) MMPs (ca. 3–8 μm) by CaH2 R–D at 1010°C for 
4 h (Figure 11(a,b)) [98]. The particle size of the oxide 
NPs was crucial in controlling the particle size of NdFe10 

Mo2 MMPs: the CaH2 R–D reaction could be carried 
out at lower temperatures (e.g., 960°C) and for a short 
time for the smaller oxide NPs (ca. 50 nm), resulting in 
smaller NdFe10Mo2 MMPs [98,131]. The nitridation of 
NdFe11Ti was conducted using the same procedure for 
the synthesis of Sm2Fe17N3, as described in Section 3.1, 
but at higher temperatures (550–600°C). As a result, the 
NdFe10Mo2N MMPs (ca. 3–8 μm) exhibited a room- 
temperature μ0Hc of 0.35 T [131]. The method has been 
successfully applied to synthesize a series of ternary, 
quaternary, and quinary R(Fe,M)12X (R = Nd, Y, Nb, 
Tb, Er; M = Ti, Mo, W, Si; X = N, H) MMPs, as shown 
in Table 1 [131–136]. For the formation of the 
R(Fe,M)12X phase almost free from impurities such 
as Fe and/or TiFe2 phases, these syntheses were 
required to compensate the Sm evaporation in Ca 
R–D process of 2–10 at.% exceeded to the 1:12 stoi-
chiometry, depending on R elements. Since the 

formation of R(Fe,M)12X phase required very high 
temperature (960–1100°C) for long reaction time 
(4–8 h), the particle sizes of resultant MMPs were in 
the range of 3–8 μm. The size control through ther-
modynamics, which is applicable for Sm2Fe17N3, is 
no longer effective for RT12 in the mesoscopic scale in 
such high-temperature reactions. The particle size 
may be further controlled to some extent through 
kinetics, in which the mixed oxide NPs are embedded 
in dispersant matrixes (e.g., CaO, GO) to suppress the 
resultant MMPs from sintering. A more effective 

Figure 11. Structural analysis and room-temperature mag-
netic properties of chemically synthesized NdFe10Mo2 and 
NdFe10Mo2N MMPs (I4/mmm, 3–8 μm). (a) SEM image and 
(b) XRD patterns of NdFe10Mo2 MMPs synthesized using CaH2 

R–D at 1010 °C for 4 h. (c) M-H curve of NdFe10Mo2N MMPs 
synthesized by nitridation of NdFe10Mo2 MMPs, showing μ0Hc 

of 0.35 T. (a,b) Reproduced with permission from [98]. 
Copyright 2020 American Chemical Society. (c) Reprinted 
with permission from [131]. Copyright 2020 Elsevier.
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approach to the kinetic control is to adopt encapsu-
lated nanostructures as precursors (Figure 6(a–s)), 
where all elements are incorporated in a single NPs 
with homogeneous composition. We have examined 
the feasibility of this approach for the synthesis 
of quinary (Sm,Zr)(Fe,Co,Ti)12 MMPs using Sm–O, 
Zr–O, and Ti–O encapsulated CoFe2O4 (Fd-3m) 
NPs (5 nm), which was mentioned in Section 2. As 
a result, we have successfully synthesized ultrafine 
(Sm,Zr)(Fe,Co,Ti)12 MMPs with partially controllable 
size. The resulting (Sm,Zr)(Fe,Co,Ti)12 MMPs exhib-
ited a relatively large room-temperature Hc and high 
susceptibility to magnetic-field alignment, resulting in 
anisotropic bulk magnets with a large BHð Þmax, which 
will be reported in the forthcoming paper. Taking these 
potentials into consideration, synthetic prospects will 
move a step forward in the size control through kinetics, 
which is advanced by the use of encapsulated nanos-
tructure as precursors, to obtain their particle size in the 
range below 1 μm.

3.3. Oxidation and Hydrogenation of R–T MMPs

The chemical synthesis of R–T MMPs involves cal-
ciothermic reduction, resulting in the formation of 
byproducts (e.g., CaO, CaCO3) and residual reductants 
(e.g., CaH2 or Ca). Therefore, a post purifying process is 
required; however, it is still a challenge to achieve high 
purity and improved magnetic properties of R–T MMPs. 
The purification using water-based solutions as a rinsing 
agent has been found to form side products and, thus 
affect the magnetic properties of as-synthesized R–T 
MMPs to some extent [81]. Generally, water-rinsing 
induced oxidation and hydrogenation of R–T MMPs 
are inevitable side reactions. Owing to low ionization 
potentials, R elements can be easily oxidized to form 
surface oxides once R–T MMPs are exposed to air envir-
onment, especially in acidic solutions, leading to an 
attenuation of magnetic performance. Recently, a new 
washing process has been reported for highly effective 
purification and stabilization against oxidation of Sm– 
Co and Nd2Fe14B MMPs by Choa and co-workers [81]. 
In this procedure, a methanol solution of NH4Cl was 
used as a rinsing agent, in which Ca and CaO react with 
NH4Cl to form NH3 and methanol-soluble CaCl2. As 
a result, neither surface oxidation nor any damage to 
the MMPs was observed by HRTEM characterization, 
resulting in a substantial improvement of Ms, even near 
a Ms theoretical value for Sm–Co MMPs. For the 
nanoscale R–T MMPs sensitive to air, the situation is 
much severe at elevated temperatures. Their protection 
against long-term and severe oxidation is crucially 
important for practical applications, especially for high- 
temperature applications. Recently, Sun et al. demon-
strated a new strategy for the chemical synthesis and 
stabilization of SmCo5 NPs for high-performance 

upnanomagnet applications in a broad temperature 
range [75]. In particular, the chemically synthesized 
SmCo–O NPs composed of Sm2O3 and CoO were 
coated with a layer of NGC (Figure 6(s)), embedded 
in CaO matrix, and reduced by Ca at 850°C to produce 
SmCo5@NGC MMPs. The resultant SmCo5@NGC 
MMPs showed efficient stability against oxidation: 
they could maintain 99.2% or 98.3% of magnetization 
after their exposure to air at room temperature for 
5 days or 100°C for 48 h, respectively. The protection 
of R–T MMPs against oxidation is also necessary to 
prevent the oxidation induced decomposition. It has 
been found that the (Sm0.8Zr0.2)(Fe0.75Co0.25)11.5Ti0.5 

phase was stable at very high temperatures up to at 
least 1100°C in an almost oxygen-free atmosphere, but 
was decomposed above 427°C [127].down

Hydrogenation of R–T MMPs through the exother-
mic reaction of residual Ca with H2O in a rinsing process 
using water-based solutions has been found to consider-
ably reduce Hc of Sm2Fe17N3 MMPs [72,95,96]. As seen 
in Figure 9, the Hc of Sm2Fe17N3 MMPs rinsed with 
distilled H2O is reduced by 40–80% those of as- 
synthesized ones. This could be understood as H atoms 
interstitially occupy available 18g tetrahedral sites 
(Figure 7) to cause a decrease in Ha [137,138]. It was 
also obviously observed that the dehydrogenation of 
hydrogen-doped Sm2Fe17N3 MMPs by means of anneal-
ing in vacuum was ineffective to recover their Hc [95]. As 
a result, the Sm2Fe17N3 MMPs (0.6 μm) exhibited room- 
temperature μ0Hc of 2.8 T, 1.56 T, and 2.28 T in the form 
of anisotropic samples for as-synthesis, rinse with 
distilled water, and a combination of the rinse and dehy-
drogenation in a reduced atmosphere at 200°C, respec-
tively. Slow oxidation of residual Ca to CaO, prior to the 
rising process, was then applied to avoid the in situ 
formation of H2, resulting in the Hc preservation of 
as-synthesized Sm2Fe17N3 MMPs [96]. However, the 
oxidation also generated water-insoluble Sm2O3 and 
CaCO3 impurities, deteriorating Ms. The purification 
process using a NH4Cl/methanol solution, as pre-
viously described [81], is greatly capable of selectively 
rinsing out impurities and avoiding the in situ gen-
eration H2; it has been extended to successfully pre-
pare dispersible Sm2Fe17N3 MMP [74]. Unlike what 
was observed in the Sm2Fe17N3 compound, hydrogen 
interstitial doping in preferential 2b octahedral sites 
in RT12 compound (Figure 10) has been found to 
enhance their Ms, Ha, and Tc [132–135,139–147]. 
The increase in Ha was attributed to an increase in 
the crystal field and a change in the local symmetry of 
4f-electron shell along the c-axis, while the increases 
in Ms and Tc were attributed to an unit-cell-volume 
expansion and strong Fe–Fe exchange interactions, 
respectively, beyond the hydrogen interstitial doping 
[139–147].
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4. R–T/T exchange-coupled NCMs

Magnetically hard/soft exchange-coupled NCMs have 
long been a potential candidate for high-performance 
permanent magnets since it can possess a large 
BHð Þmax, which is deduced from large Ha and Ms of 

the corresponding hard and soft magnetic constitu-
ents, respectively [148,149]. Subject to the R elements 
crisis, they have the high potential to meet current 
demands for R-element-lean PMs with large BHð Þmax 
and operating temperatures of 150–200°C. The effec-
tiveness of exchange-coupled interaction, which is 
represented by the microstructure factor α [25–29], 
is inversely proportional to the ratio Ds=δw, where Ds 

is the size of a soft magnetic phase and δw ¼

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aex=K1

p
is the domain wall width of a hard mag-

netic phase [148,149]. An effective exchange-coupled 
interaction requires the size of the soft magnetic phase 
being small enough (Ds < 2δw for anisotropic bulk 
NCMs) and the size of the hard magnetic phase 
approaching the exchange length (lex) of the soft mag-
netic phase [148–151]. These fundamentals have led to 
two following approaches to the development in the 
exchange-coupled NCMs based on the hard magnetic 
materials. One is to adopt materials with a large K1 but 
a consequently small δw, such as L10-FePt [152], Nd2 

Fe14B [153,154], SmCo5 [87,155–158], and Sm2Fe17N3 

[150], as their large Ha compensated for a small 
Ms corresponding to a small Ds (Ds < ca. 10 nm) 
[148,149]. Another is to adopt materials with 
a moderate K1 and a consequently relatively large δw, 
such as L10-FePd [159–161] and HfCo7 [162], as they 
had benefitted to α and Ds, and a large Ms correspond-
ing to a large Ds (Ds < ca. 20 nm) could be compen-
sated for a moderate Ha [148,149,161,162]. The latter 
approach is not usually considered, since the gain in α 
is overcompensated by the reduction of Ha.

Apart from the microstructure issues above, the 
most obvious obstacle to the synthesis of R–T/T 
NCMs is the formation of undesirable phases as the 
R and T metals can form many equilibrium and meta-
stable phases. The design of magnetically hard/soft 
exchange-coupled NCMs with the soft phase as an 
equilibrium phase of the hard phase, which is similar 
to the one that was proved to be so effective in L10- 
FePd/Fe NCMs [159–161], is a solution. Chemical 
synthesis of R–T/T NCMs has had very limited success 
in obtaining large BHð Þmax. The Sm2Fe17N3 has a large 
K1 of 16.2 MJm� 3 [19]; the Sm2Fe17N3 (2.4 nm)/Fe65 

Co35 (9 nm) alternatively multilayered anisotropic 
NCMs have been theoretically predicted to have 
a grant BHð Þmax of 1 MJm� 3 (120 MG Oe) [149]. 
Nevertheless, large BHð Þmax of Sm2Fe17N3 NCMs has 
never been realized, because there has still no their 
bulk materials prepared with a grain size of the order 
of 10 nm, where large Hc and Mr could be achieved in 

their NCMs [150,151]. Since this size range is an unrea-
listic practice for metastable Sm2Fe17N3, little attention 
has been paid to the Sm2Fe17N3 NCMs so far. Owing to 
it’s a huge K1 of 17.2 MJm� 3, a relatively small μ0Ms of 
1.07 T [36], and easy chemical synthesis among R–T 
intermetallics, the SmCo5 has drawn considerable 
attention as a hard magnetic phase [87,155–158]. 
Generally, the SmCo5/Fe NCMs were synthesized by 
a simultaneous Ca R–D of mixed oxide NPs 
[87,155,156]; they exhibited very small Mr, resulting 
in very small BHð Þmax. The main reason for such the 
reported small BHð Þmax in the SmCo5/Fe NCMs is 
a lack of an easy-axis alignment of the hard magnetic 
SmCo5 phase. It has been demonstrated that the aniso-
tropic FePt/Fe0.8Ni0.2 NCMs could enhance BHð Þmax by 
224% of that of the corresponding isotropic NCMs 
[163]. Therefore, chemical synthesis of particulate 
NCMs, which is similar to the ones that were proved 
to be so effective in L10-FePd/Fe NCMs [161] and 
HfCo7/Fe65Co35 NCMs [162], is of crucial importance 
to fabricate the anisotropic NCMs with ultra-large 
BHð Þmax. In a typical synthesis [157], particulate 

SmCo5/Co MMPs (200 nm, Co-soft phase: 4 wt.%) 
were synthesized by Ca R–D of Sm[Co(CN)6]⋅ 4H2 

O@GO MMPs and Co(acac)2 additive at 960°C; their 
isotropic sample showed room-temperature μ0Hc of 
2.07 T, Mr=Ms of 0.75, and BHð Þmax of 80 kJm� 3 

(10 MG Oe). This small BHð Þmax resulted from a low 
fraction of the soft magnetic Co phase (4 wt.%) and/or 
too large grain size of the hard magnetic SmCo5 phase 
(ca. 200 nm) to an effective exchange coupling 
[148–151]. It is highly perspective to gain a drastically 
enhanced BHð Þmax as the particulate SmCo5/Co MMPs 
can be magnetically aligned to form the anisotropic 
NCMs. In the line with the problem of R–T/T NCMs, 
the great challenge in the synthesis of SmCo5/Fe(or Co) 
NCMs is to achieve a high fraction of the soft phase 
since other phases can be formed with the increase in 
the fraction [155,157]. An effective chemical synthesis 
avoiding this alloying issue is to disperse SiO2-coated Fe 
NPs in SmCo5 matrix, which is described in the litera-
ture elsewhere [156]. Prospects are presumably better 
for RT12/T NCMs, where T is the only equilibrium 
phase of the RT12 phase at their high fraction. There 
have unfortunately been no reports on the RT12/T 
NCMs yet.

5. Conclusions and prospects

Multicomponent R–T permanent magnetic materials, 
which are multielement or multi-phase ones, are 
expected to shape the growth of BHð Þmax back to the 
‘Moore’s law’ after decades of Nd2Fe14B magnets since 
the theoretical BHð Þmax limit is given by μ0M2

s =4 while 
the Ms can further increase (Figure 1). However, 
extraordinary achievements in searching for high- 
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performance magnetic materials with ultra-large 
intrinsic properties with the aid of theoretical calcula-
tions in recent years, especially (R,Zr)(Fe,Co,Ti)12 

(R = Nd, Sm) compounds (Figure 1), leave a large 
gap behind them to the fabrication of their corre-
sponding magnets. This lag practically comes from 
challenges in the synthesis of these compounds with 
optimum microstructure in the mesoscopic range for 
maximizing practically relevant extrinsic properties 
and the introduction of appropriate grain boundaries 
for the fabrication of their anisotropic magnets. While 
conventional synthetic techniques that are popular 
with the production of magnetic material powders 
remain unsatisfactory, chemical synthetic approach 
with recent advances in the solution-phase synthesis 
of nanostructured precursors followed by solid-state 
reaction may become suitable to overcome the chal-
lenges. As nanostructured precursors are used, the 
chemical approach broadens microstructural control 
horizons given by thermodynamics and kinetics. The 
thermodynamics, unfortunately, addresses a limit in 
the size control of RT12 intermetallics, where their 
formation requires very high temperatures. Prospects 
seem to be only adopting the kinetic control, where 
appropriate engineering of nanostructured precursors 
toward the following solid-state reaction is a crucial 
key. The ideal nanostructured precursors are particu-
late NPs composed of all constituents, and they are 
monodisperse and homogenous in composition. In 
addition to the precedent challenges in the synthesis 
of R–T intermetallics, the synthesis of R–T/T NCMs 
faces new problems of achieving the R–T phase with 
a particle size of the order of 10 nm for effective 
exchange interactions, and the formation of undesired 
phases with an increase in the T fraction. As a result, 
while monodisperse Sm2Fe17N3 MMPs with very well- 
controllable size and ultra-large Hc are ready for the 
fabrication of anisotropic magnets, progress in the 
development of (R,Zr)(Fe,Co,Ti)12 MMPs and R–T/T 
NCMs remains marginal. Once MMPs with primarily 
optimum microstructure are synthesized, their aniso-
tropic magnets can be fabricated by a rapid low- 
temperature current sintering method [164] or an 
infiltration treatment [165], instead of conventional 
liquid-phase sintering.
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