Total Synthesis of Cryptopleurine and its Analogues

Yousuke Yamaoka*a Takuro Yamakawa ${ }^{\text {a }}$ Kaito Tateishia Kiyosei Takasu*a
${ }^{\text {a }}$ Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan

Received: Accepted:
 Accepted: Published online
 Published online: DOI:

Abstract Total synthesis of phenanthroquinolizidine alkaloid cryptopleurine was achieved in 8 steps from commercially available 2 pyridinecarboxaldehyde and epoxide derived from methyl eugenol. The key intermediate 5 enables the divergent synthesis of cryptopleurine derivatives by late-stage installation of various substituents on the C-ring.

Key words heterocycles, phenanthroquinolizidines, cryptopleurine, natura product synthesis, cyclization, anticancer agents

Phenanthroquinolizidine and phenanthroindolizine alkaloids, represented by cryptopleurine (1) and antofine (2), have received attention recent years because of their attractive biological activities (Figure 1). ${ }^{1}$ They exhibit low nano-molar levels of in vitro activity against a variety of tumor cell lines. The specific target of these alkaloids is still unknown, however, several studies have indicated that these might show their several unique modes of action, different from currently available drugs. ${ }^{2}$ Tylocrebrine, a phenanthroindolizine alkaloid, was advanced to clinical trials in the early 1960's but failed due to central nervous system toxicity. ${ }^{3}$ Suffness proposed that more polar analogs would prevent side effects due to the passage of the blood brain barrier.

cryptopleurine (1)

antofine (2)

Figure 1 Structures of cryptopleurine (1) and antofine (2)

Thus, structure-activity relationship (SAR) studies of penanthroquinolizidine and phenanthroindolizine alkaloids are well investigated. ${ }^{4-7}$ These results indicate that phenanthrene
skeleton ${ }^{4}$ and basic nitrogen ${ }^{5}$ are important for a cytotoxic activity. Furthermore, Lack of indolizidine and quinolizidine core of these natural products also decrease their activity in cancer cell growth assays. ${ }^{6}$ Recently, SAR studies on the phenanthrene ring of antofine and cryptopleurine were reported by Kim group ${ }^{7}$ revealed that modification of the C-6 methoxy group on the Cring is allowed to improve their bioactivity. In addition, they have also found that the cytotoxicity is further enhanced by introducing substituents that are hydrogen donors at C-6 position (Scheme 1a). Thus, the efficient synthesis of cryptopleurine analogue bearing several substitutions on the C ring is highly required for exploring further anticancer activity (Scheme 1b). Although many reports of total synthesis of cryptopleurine have been reported by other groups ${ }^{1,8}$ and us ${ }^{9}$, most of them involve the introduction of the C-ring of these natural products in the early stage of the synthesis. Therefore, the development of a simple, direct approach for the synthesis of cryptopleurine in which the C ring is introduced at the end of the synthesis is highly desirable. ${ }^{10}$

Herein we report the total synthesis of cryptopleurine and its derivatives via the late-installation of various C-rings. We proposed retrosynthetic analysis of cryptopleurine as shown in Scheme 2. The phenanthrene skeleton of cryptopleurine could be constructed by Suzuki-Miyaura cross coupling followed by oxidative coupling of vinyl triflate 5 as a key intermediate with several aryl boronates. This strategy allows for the efficient installation of a variety of C-rings. Vinyl triflate 5 could be synthesized from 1,4-reduction of enone 6 and triflation of the generated enolate. Enone 6 could be prepared from the known epoxide 8^{11} and commercially available 2pyridinecarboxaldehyde (9).
(a) Kim's SAR studies of antofine and cryptopleurine ${ }^{7}$

(b) This work: Late-stage installation of the C ring for SAR studeis

Scheme 1 SAR studies of Phenanthroquinolizidine and phenanthroindolizine alkaloids for improving the antitumor activity. And our aim.

We began the synthesis of the key intermediate 5 from 2pyridinecarboxaldehyde (9) (Scheme 3). Acetalization of formyl group of 9 under acidic conditions, followed by hydrogenation of pyridine moiety catalyzed by palladium hydroxide under hydrogen atmosphere afforded the desired product 10. Nucleophilic ring-opening of the epoxide $\mathbf{8}^{11}$ with piperidine $\mathbf{1 0}$ in the presence of $E t_{3} \mathrm{Al}^{12}$ afforded the mixture of diastereomeric alcohols in high yield. The resulting secondary alcohols were converted into ketone 7 by Swern Oxidation. Treatment of compound 7 with 10% aqueous HCl provided enone 6 via a deacetalization-aldol condensation cascade reaction. ${ }^{13}$ Enone 6 was subjected to a tandem 1,4-reduction/enolate trapping to achieve the synthesis of the key vinyl triflate 5 on a >5 g scale without any problems.

To accomplish the total synthesis of cryptopleurine, two coupling reactions with triflate 5 were conducted (Scheme 4). SuzukiMiyaura coupling of vinyl triflate 5 with 4-methoxyphenyl boronic acid pinacol ester as the C-ring of the natural product gave the desired compound 4 a in high yield. Finally, oxidative biaryl coupling ${ }^{7 b}$ of $\mathbf{4 a}$ in the presence of [Bis(trifluoroacetoxy)iodo]benzene (PIFA)/ $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ afforded cryptopleurine (1) in 73\% yield. We accomplished the total synthesis of cryptopleurine via the late-installation of the C-ring in total 8 steps (Scheme 4).

Scheme 4 Endgame of total synthesis of cryptopleurine (1)
Finally, to demonstrate our proof of concept, we synthesized cryptopleurine derivatives with various substituents on the Cring (Scheme 5). Other functional group, such as trifluoromethyl (3b), cyano (3c), and nitro (3d) groups also could be introduced at the C-6 position using the corresponding para-substituted aryl boronic acid pinacol esters as coupling partners. When 3-tertbutyldimethylsilyloxyphenylboronic acid pinacol ester was used, the compound 3e with siloxy group at the 7 -position could be
selectively obtained. ${ }^{14}$ The use of 2-methoxyphenylboronic acid pinacol ester as a coupling partner afforded the compound $\mathbf{3 f}$ with methoxy group at the C-8 position albeit in low yield due to the steric hindrance. The use of 3 -nitrophenylboronic acid pinacol ester as a coupling partner afforded inseparable regioisomers $\mathbf{3 g} / \mathbf{3 h}$ with nitro group at the C-5 and C-7 position, respectively. For separation of regioisomers, further derivatization was conducted. Hydrogenation of a mixture of $\mathbf{3 g}$ and $\mathbf{3 h}$ afforded the corresponding amines $\mathbf{S 1 a}$ and $\mathbf{S 1 b}$, which could be separated by silica gel column chromatography.

Scheme 5 The synthesis of cryptopleurine derivatives: ${ }^{\text {a }}$ Isolated yields of Suzuk coupling, ${ }^{b}$ Isolated yields of oxidative coupling.

In conclusion, we have achieved the total synthesis of cryptopleurine (1) in 8 steps from commercially available materials. The key features of our synthesis are: (i) multi-gram synthesis of vinyl triflate $\mathbf{5}$ as the key intermediate, and (ii) consecutive cross-coupling and oxidative coupling to construct the phenanthrene ring. This strategy enables the efficient synthesis of cryptopleurine derivatives bearing several substituents on the C-ring. The syntheses and biological evaluation of these analogues of cryptopleurine are currently underway.

Dehydrated solvents for the reactions were purchased and used without further desiccation. For reactions that require heating, oil bath was used as a heat source. Reactions were monitored by thin-layer chromatography (TLC) carried out on Wako TLC silica gel 70 F 254 . Column chromatography was performed using silica gel 60N (Spherical, neutral, 63-210 $\mu \mathrm{m}$) from Kanto Chemical with visualization by ultraviolet (UV) irradiation at 254 nm . Nuclear magnetic resonance (NMR) spectra were recorded on a JEOL JNM-LA (500 MHz for ${ }^{1} \mathrm{H}$ and 125 MHz for ${ }^{13} \mathrm{C}$) or a JEOL JNM ECZ600R (600 MHz for ${ }^{1} \mathrm{H}$ and 150 MHz for ${ }^{13} \mathrm{C}$). Chemical shifts are presented in ppm relative to tetramethylsilane (${ }^{1} \mathrm{H}, 0.00$) or solvents as follows: CDCl_{3} $\left({ }^{13} \mathrm{C}, 77.0\right)$. The following abbreviations were used to explain NMR peak multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet br = broad. High-resolution mass spectra (HRMS) were recorded on a SHIMADZU LCMS-IT-TOF fitted with an ESI. IR experiments were recorded on a SHIMADZU IRAffinity-1 spectrometer. The wave numbers of maximum absorption peaks of IR spectroscopy are presented in cm^{-1}.

Procedures

2-(1,3-Dioxolan-2-yl)piperidine (10)

To a solution of 2-(1,3-dioxolan-2-yl)pyridine ${ }^{15}$ ($20 \mathrm{~g}, 132 \mathrm{mmol}$) in AcOEt (150 mL) was added $\mathrm{Pd}(\mathrm{OH})_{2}(5.0 \mathrm{~g}, 5 \%$ on Carbon, 1.8 mmol$)$. After flushing with H_{2}, the solution was stirred for 99 h at $23^{\circ} \mathrm{C}$. After completion of the reaction, the reaction mixture was filtered over Celite. The filtrate was concentrated under reduced pressure and purified by column chromatography on silica gel $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}\right)$ to afford $10(17 \mathrm{~g}$, 82\%) as a white waxy solid.

IR (neat): 3387, 3321, 3252, 2936, 2889, 2859, 2828, 1647, 1605, 1443, $1408,1312,1211 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta=4.68(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-3.92(\mathrm{~m}, 2 \mathrm{H})$, 3.91-3.84 (m, 2H), 3.09 (dddd, $J=11.6,4.0,2.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.58$ (m, 2H), 1.87-1.77 (m, 2H), 1.74-1.68 (m, 1H), 1.63-1.56 (m, 1H), 1.44 (ddddd $J=12.5,12.5,3.9,3.9,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.38-1.23(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta=105.6,64.7,64.5,58.5,46.0,26.9,25.7,23.7$.
HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{NO}_{2}$: 158.1176; found: 158.1183 .

1-[2-(1,3-Dioxolan-2-yl)piperidin-1-yl]-3-(3,4-dimethoxyphenyl)propan-2-one (7)

To a solution of $\mathbf{1 0}(10.3 \mathrm{~g}, 65.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ was added a 1.1 M toluene solution of $\mathrm{AlEt}_{3}(77.4 \mathrm{~mL}, 85.1 \mathrm{mmol})$ dropwise at $0{ }^{\circ} \mathrm{C}$ under argon atmosphere. After stirring for 30 min , a solution of 2-(3,4dimethoxybenzyl)oxirane (8) ${ }^{10}$ ($14.0 \mathrm{~g}, 72.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ was added dropwise to the mixture. After stirring for 1.5 h at $23^{\circ} \mathrm{C}$, the reaction mixture was quenched by 10% aqueous $\mathrm{NaOH}(150 \mathrm{~mL})$. After stirring for 5 min , the reaction mixture was extracted with $\mathrm{CHCl}_{3}(150 \mathrm{~mL}$ $\times 3$) and the combined organic layers were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=10 / 1\right)$ to afford 1 -[2-(1,3-dioxolan-2-yl)piperidin-1-yl]-3-(3,4-dimethoxyphenyl)propan-2 ol ($20.0 \mathrm{~g}, 88 \%, \mathrm{dr}=63: 37$ based on the crude ${ }^{1} \mathrm{H}$ NMR) as colorless oil.
IR (neat): $3418,2936,1721,1589,1512,1462,1420,1261,1234 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta=6.85-6.74(\mathrm{~m}, 3 \mathrm{H}), 5.05-4.90(\mathrm{~m}, 1 \mathrm{H}), 3.99-$ $3.76(\mathrm{~m}, 12 \mathrm{H}), 3.99-3.76(\mathrm{~m}, 7 \mathrm{H}), 1.78-1.27(\mathrm{~m}, 6 \mathrm{H})$ as a mixture of diastereomers.
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta=148.52,148.50,147.24,147.22,131.31$ 131.25, 121.09, 121.02, 112.41, 112.39, 110.98, 110.92, 104.20, 103.24, 68.26, 68.21, 64.75, 64.67, 64.63, 64.47, 62.07, 61.56, 59.35, 59.01, 55.75 $55.65,52.00,49.61,40.83,40.55,25.33,24.44,24.01,23.59,22.68,21.59$ (one peak is missing due to incidental equivalence) as a mixture of diastereomers.

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{NO}_{5} 352.2118$; found 352.2106 . To a solution of $(\mathrm{COCl})_{2}(22 \mathrm{~mL}, 256 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(140 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added DMSO ($36 \mathrm{~mL}, 511 \mathrm{mmol}$) dropwise under argon atmosphere. The mixture was stirred for 15 min . Then, a solution of 1-[2-(1,3-dioxolan 2 -yl)piperidin-1-yl]-3-(3,4-dimethoxyphenyl)propan-2-ol (20 g, 56.8 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 mL) was added dropwise to the mixture. After stirring for $1 \mathrm{~h}, \mathrm{Et}_{3} \mathrm{~N}(79 \mathrm{~mL}, 568 \mathrm{mmol})$ was added, and the reaction mixture was stirred for 30 min with warming up to $23^{\circ} \mathrm{C}$. The reaction mixture was washed with water ($150 \mathrm{~mL} \times 3$) and the organic layer was dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica ge (hexane/AcOEt) to afford 7 ($15.9 \mathrm{~g}, 80 \%$) as yellow oil.
IR (neat): 2936, 1717, 1589, 1516, 1450, 1420, 1261, $1238 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 600 \mathrm{MHz}$): $\delta=6.82(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.75(\mathrm{~m}, 2 \mathrm{H})$, $4.74(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.83(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.80-$ 3.73 (m, 2H), 3.68 (d, $J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.64$ (d, $J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.63$ (d, $J=$ $17.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~d}, J=17.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.76-2.67(\mathrm{~m}, 2 \mathrm{H}), 2.63-2.56(\mathrm{~m}$, 1H), 1.81-1.75 (m, 1H), 1.75-1.69 (m, 1H), 1.58-1.51 (m, 2H), 1.49-1.40 ($\mathrm{m}, 1 \mathrm{H}$), 1.37-1.28 (m, 1H).
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta=208.4,148.8,147.8,126.9,121.6,112.5$, 111.1, 105.0, 64.7, 64.2, 63.7,61.7, 55.84, 55.79, 53.9, 46.8, 26.5, 25.4, 22.9.

HRMS (ESI): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{5}$ 350.1962; found 350.1956

8-(3,4-Dimethoxyphenyl)-1,3,4,9a-tetrahydro-2H-quinolizin-7(6H)one (6)

10% Aqueous $\mathrm{HCl}(377 \mathrm{~mL})$ added to 7 and the aqueous solution was refluxed at $120^{\circ} \mathrm{C}$ for 2 h . The solution was cooled to $23^{\circ} \mathrm{C}$ and quenched with saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~L})$. The reaction mixture was extracted with $\mathrm{CHCl}_{3}(500 \mathrm{~mL} \times 3)$, and the combined organic layers were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel by column chromatography on silica gel (hexane/AcOEt $=1 / 1)$ to afford $6(8.56 \mathrm{~g}$, 79\%) as yellow oil.

IR (neat): 2997, 2936, 2835, 2793, 2739, 1682, 1605, 1516, 1462,1362 $1250,1231 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta=6.95-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$ $6.74(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 6 \mathrm{H}), 3.51(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=$ $15.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.99-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.93-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.27$ (ddd, $J=11.5$, $11.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.41(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta=194.5,149.2,148.8,148.3,137.4,127.4$ $120.8,111.8,110.7,63.7,61.2,55.78,55.7654 .6,31.2,24.8,24.5$

HRMS (ESI): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{3} 288.1594$; found 288.1594

8-(3,4-Dimethoxyphenyl)-1,3,4,6,9,9a-hexahydro-2H-quinolizin-7 yl trifluoromethanesulfonate (5)

To a solution of $6(8.56 \mathrm{~g}, 29.8 \mathrm{mmol})$ in THF (100 mL) was added a 1.0 M THF solution of L-Selectride ${ }^{\circledR}$ ($31.3 \mathrm{~mL}, 31.3 \mathrm{mmol}$) dropwise at $-78{ }^{\circ} \mathrm{C}$ under argon atmosphere. After stirring at same temperature for 1 h , to the reaction mixture was added a solution of $\operatorname{PhNTf}_{2}(12.8 \mathrm{~g}, 35.8 \mathrm{mmol})$ in THF (50 mL). The reaction mixture was stirred for 15 h with gradually warming up to $23^{\circ} \mathrm{C}$. The reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(300 \mathrm{~mL})$ and extracted with AcOEt (300 mL). The organic layer was dried over MgSO_{4}, filtered, and concentrated under reduced pressure The residue was purified by column chromatography on silica gel (Hexane/AcOEt) to afford 5 ($6.93 \mathrm{~g}, 55 \%$) as yellow oil.

IR (neat): 2396, 1520, 1450, 1416, 1246, $1211 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=6.87-6.83(\mathrm{~m}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$, $3.48(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.15-3.03(\mathrm{~m}, 2 \mathrm{H}), 2.53(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-$ $2.26(\mathrm{~m}, 2 \mathrm{H}), 2.15(\mathrm{dd}, J=11.5,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.70$ (m, 1H), 1.69-1.53 (m, 1H), 1.40-1.23 (m, 2H)
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=148.8,148.5,138.4,128.2,127.5,118.0(\mathrm{q}$, $\left.J_{\text {C-F }}=318 \mathrm{~Hz}\right), 120.3,111.2,110.8,57.0,55.71,55.67,55.3,55.1,38.5,32.4$ 25.3, 23.8.

HRMS (ESI): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{~S}$ 422.1244; found 422.1235 .

8-(3,4-dimethoxyphenyl)-7-(4-methoxyphenyl)-1,3,4,6,9,9a-hexahydro- 2 H -quinolizine (4a)

To a mixture of 5 ($104 \mathrm{mg}, 0.247 \mathrm{mmol}$), 4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)anisole ($69.3 \mathrm{mg}, 0.296 \mathrm{mmol}$), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(8.6 \mathrm{mg}, 7.4$ $\mu \mathrm{mol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(102 \mathrm{mg}, 0.740 \mathrm{mmol})$ was added a solution of DME/ $\mathrm{H}_{2} \mathrm{O}$ ($2.4 \mathrm{~mL}, \mathrm{v} / \mathrm{v}=2 / 1$) under Argon atmosphere. After stirring at $80^{\circ} \mathrm{C}$ for 2 h , the mixture was cooled to $23^{\circ} \mathrm{C}$ and diluted with water (25 mL). The mixture was extracted with $\mathrm{CHCl}_{3}(25 \mathrm{~mL} \times 3)$, and the combined organic layers were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel ($\mathrm{AcOEt} / \mathrm{MeOH}$). The residue was diluted with AcOEt (15 mL) and extracted with 10% aqueous $\mathrm{HCl}(15 \mathrm{~mL} \times 3)$. The resulting aqueous layers were basified with 10% aqueous $\mathrm{NaOH}(70 \mathrm{~mL})$ and then extracted with $\mathrm{CHCl}_{3}(50 \mathrm{~mL} \times 3$). The combined organic layers were dried over MgSO_{4}, filtered, and concentrated under reduced pressure to afford $\mathbf{4 a}$ ($67.4 \mathrm{mg}, 72 \%$) as white solids. Spectroscopic properties were consistent with those reported in the literature. ${ }^{8 c}$

cryptopleurine (1)

To a solution of 8-(3,4-dimethoxyphenyl)-7-(4-methoxyphenyl)-1,3,4,6,9,9a-hexahydro-2H-quinolizine (4) ($22.8 \mathrm{mg}, 60.1 \mu \mathrm{~mol}$) and PIFA ($28.5 \mathrm{mg}, 66.1 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.30 \mathrm{~mL})$ was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(22.9 \mu \mathrm{~L}$ 0.180 mmol) at $-40{ }^{\circ} \mathrm{C}$. After stirring at same temperature for 24 h , the reaction mixture was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ and diluted with water (20 mL). the mixture was extracted with $\mathrm{CHCl}_{3}(25$ $\mathrm{mL} \times 3$) and the combined organic layers were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (AcOEt/MeOH) to afford cryptopleurine (1) (17.2 mg, 73\%) as white solids. Spectroscopic properties were consistent with those reported in the literature. ${ }^{9 \mathrm{a}}$

2,3-Dimethoxy-6-(trifluoromethyl)-11,12,13,14,14a,15-hexahydro$\mathbf{9 H}$-dibenzo[f,h]pyrido[1,2-b]isoquinoline (3b)

To a mixture of 5 ($100 \mathrm{mg}, 0.238 \mathrm{mmol}$), 4,4,5,5-tetramethyl-2-[4-(trifluoromethyl)phenyl]-1,3,2-dioxaborolane ($97.1 \mathrm{mg}, 0.357 \mathrm{mmol}$) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(27.7 \mathrm{mg}, 23.8 \mu \mathrm{~mol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(98.5 \mathrm{mg}, 0.713 \mathrm{mmol})$ was added a solution of $\mathrm{DME} / \mathrm{H}_{2} \mathrm{O}(2.4 \mathrm{~mL}, \mathrm{v} / \mathrm{v}=1 / 1)$ under argon atmosphere After stirring at $80^{\circ} \mathrm{C}$ for 2 h , the mixture was cooled to $23^{\circ} \mathrm{C}$ and diluted with water (25 mL). The solution was extracted with AcOEt ($25 \mathrm{~mL} \times 5$) and the combined organic layers were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel ($\mathrm{AcOEt} / \mathrm{MeOH}=20 / 1$). The residue was diluted with AcOEt (10 mL) and extracted with 10% aqueous $\mathrm{HCl}(10$ $\mathrm{mL} \times 3$). The resulting aqueous layer was basified with 10% aqueous $\mathrm{NaOH}(70 \mathrm{~mL})$ and then extracted with $\mathrm{CHCl}_{3}(50 \mathrm{~mL} \times 3)$. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated under reduced pressure to afford 8-(3,4-dimethoxyphenyl)-7-[4-(trifluoromethyl)phenyl]-1,3,4,6,9,9a-hexahydro-2H-quinolizine (71.3 $\mathrm{mg}, 72 \%$) as yellow solids.

IR (neat): 2936, 1605, 1512, 1462, 1323, $1254 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta=7.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{dd}, J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=2.0 \mathrm{~Hz}$ $1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.12-3.08(\mathrm{~m}, 2 \mathrm{H})$, $2.57-2.52(\mathrm{~m}, 1 \mathrm{H}) 2.47-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{td}, J=11.0$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.34(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta=147.9,147.5,144.7,133.5,133.4,130.9$, $129.3,128.2\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=32 \mathrm{~Hz}\right), 124.0\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=270 \mathrm{~Hz}\right), 124.7\left(\mathrm{q}, J_{\mathrm{c}-\mathrm{F}}=4.0 \mathrm{~Hz}\right)$ $120.5,112.6,110.5,59.7,57.7,55.6,55.4,55.3,39.4,33.2,25.8,24.2$.
HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{NO}_{2} 418.1988$; found 418.1992
To a solution of 8-(3,4-dimethoxyphenyl)-7-\{4-(trifluoromethyl)phenyl\} 1,3,4,6,9,9a-hexahydro- 2 H -quinolizine ($139 \mathrm{mg}, 0.333 \mathrm{mmol}$) and PIFA ($158 \mathrm{mg}, 0.366 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.7 \mathrm{~mL})$ was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(127 \mu \mathrm{~L}$, 0.999 mmol) at $-40^{\circ} \mathrm{C}$. After stirring at same temperature for 24 h the reaction mixture was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and extracted with $\mathrm{CHCl}_{3}(15 \mathrm{~mL} \times 3)$. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (AcOEt/MeOH) to afford $\mathbf{3 b}$ ($74.3 \mathrm{mg}, 54 \%$) as yellow solids.
IR (neat): 2932, 2855, 2253, 1620, 1516, 1470, 1420, 1331, 1296, 1258 cm^{-1}.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta=8.73(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.3 \mathrm{~Hz}$ $1 \mathrm{H}), 7.72$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~s}$ $3 \mathrm{H}), 4.07(\mathrm{~s}, 3 \mathrm{H}), 3.65-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}) 3.10(\mathrm{dd}, J=$ $16.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.93-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{td}, J=12.0$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.74$ (m, 2H), 1.57-1.41 (m, 2H).
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 150 \mathrm{MHz}$): $\delta=149.8,149.0,130.6,129.4,128.0,124.7$ (q , $\left.J_{C-F}=270 \mathrm{~Hz}\right), 126.8\left(\mathrm{q}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=31.5 \mathrm{~Hz}\right), 126.2,125.2,123.7,123.3,121.4(\mathrm{q}$, $J_{C-F}=2.8 \mathrm{~Hz}$), $119.8(\mathrm{q}, ~ J \mathrm{c}-\mathrm{F}=2.7 \mathrm{~Hz}), 103.7,103.4,57.3,56.2,56.1,56.0$, 55.9 34.9, 33.7, 25.8, 24.2.

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NO}_{2} 416.1832$; found 416.1827 .

2,3-Dimethoxy-11,12,13,14,14a,15-hexahydro-9H-dibenzo[ffh]pyrido[1,2-b]isoquinoline-6-carbonitrile (3c)

To a mixture of 5 ($294 \mathrm{mg}, 0.696 \mathrm{mmol}$), 2-(4-cyanophenyl)-4,4,5,5 tetramethyl-1,3,2-dioxaborolane ($192 \mathrm{mg}, 0.836 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(24.1$ $\mathrm{mg}, 20.9 \mu \mathrm{~mol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(289 \mathrm{mg}, 2.09 \mathrm{mmol})$ was added a solution of $\mathrm{DME} / \mathrm{H}_{2} \mathrm{O}(7.0 \mathrm{~mL}, \mathrm{v} / \mathrm{v}=2 / 1)$ under argon atmosphere. After stirring at $80^{\circ} \mathrm{C}$ for 2.5 h , the mixture was cooled to $23^{\circ} \mathrm{C}$ and diluted with water (25 mL). The solution was extracted with AcOEt ($25 \mathrm{~mL} \times 5$), and the combined organic layers were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel ($\mathrm{AcOEt} / \mathrm{MeOH}$). The residue was diluted with AcOEt (10 mL) and extracted with 10% aqueous $\mathrm{HCl}(10 \mathrm{~mL}$ $\times 3$). The resulting aqueous layer was basified with 10% aqueous NaOH (70 mL) and then extracted with $\mathrm{CHCl}_{3}(50 \mathrm{~mL} \times 3$). The combined organic layers were dried over MgSO_{4}, filtered, and concentrated under reduced pressure to afford 4 -[8-(3,4-dimethoxyphenyl)-1,3,4,6,9,9a-hexahydro2 H -quinolizin- 7 -yl]benzonitrile ($225 \mathrm{mg}, 86 \%$) as white solids.

IR (neat): 2932, 2226, 1605, 1512, 1462, $1258 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=7.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.5 \mathrm{~Hz}$ $2 \mathrm{H}), 6.66(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{dd}, J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.60-3.58(\mathrm{~m}, 4 \mathrm{H}), 3.11-3.07(\mathrm{~m}, 2 \mathrm{H}), 2.56-2.52(\mathrm{~m}, 1 \mathrm{H})$ 2.47-2.40 (m, 1H), 2.36-2.30 (m, 1H), 2.13 (td, $J=12.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-$ 1.82 (m, 2H), 1.78-1.68 (m, 2H), 1.43-1.33 (m, 2H).
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta=148.2,147.8,145.9,134.6,133.2,131.7$ $130.3,129.8,120.8,118.8,112.3,110.7,109.8,59.4,57.7,55.7,55.51$ 55.47, 39.6, 33.1, 25.8, 24.6

HRMS (ESI): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2} 375.2067$; found 375.2065 .
To a solution of 4-[8-(3,4-dimethoxyphenyl)-1,3,4,6,9,9a-hexahydro- 2 H -quinolizin-7-yl]benzonitrile ($225 \mathrm{mg}, 0.602 \mathrm{mmol}$) and PIFA (285 mg , $0.662 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(229 \mu \mathrm{~L}, 1.81 \mathrm{mmol})$ at $-40^{\circ} \mathrm{C}$. After stirring at same temperature for 24 h , the reaction mixture was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(9 \mathrm{~mL})$ and extracted with $\mathrm{CHCl}_{3}(15 \mathrm{~mL} \times 3)$. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel ($\mathrm{AcOEt} / \mathrm{MeOH}$) to afford 3c ($127 \mathrm{mg}, 57 \%$) as yellow solids.

IR (neat): 2924, 2851, 2226, 1612, 1520, 1466, 1420, $1258 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 600 \mathrm{MHz}$): $\delta=8.81(\mathrm{~s}, 1 \mathrm{H}), 7.90-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.69$ (d, $J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~s}, 3 \mathrm{H}), 4.08(\mathrm{~s}, 3 \mathrm{H})$, $3.61(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}) 3.15-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.94-$ $2.89(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{td}, \mathrm{J}=13.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-2.05$ (m, 1H), 1.92-1.90 (m, 1H), 1.85-1.74 (m, 2H), 1.58-1.42 (m, 2H).
${ }^{13} \mathrm{C}$ NMR (CDCl $3,150 \mathrm{MHz}$): $\delta=150.0,149.3,130.9,130.8,128.2,128.0$ $126.9,126.3,125.1,123.5,123.0,119.8,108.3,103.7,103.2,57.2,56.12$, $56.06,56.0,55.6,35.0,33.6,25.8,24.2$

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}$ 373.1911; found 373.1909.

2,3-Dimethoxy-6-nitro-11,12,13,14,14a,15-hexahydro-9H-dibenzo[f,h]pyrido[1,2-b]isoquinoline (3d)

To a mixture of 5 ($150 \mathrm{mg}, 0.357 \mathrm{mmol}$), 4-(4,4,5,5-tetramethyl-1,3,2 dioxaborolan-2-yl)nitrobenzene ($133 \mathrm{mg}, 0.535 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(41.2$ $\mathrm{mg}, 35.7 \mu \mathrm{~mol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(148 \mathrm{mg}, 1.07 \mathrm{mmol})$ was added a solution of $\mathrm{DME} / \mathrm{H}_{2} \mathrm{O}(3.6 \mathrm{~mL}, \mathrm{v} / \mathrm{v}=1 / 1)$ under argon atmosphere. After stirring at $80^{\circ} \mathrm{C}$ for 2.5 h , the mixture was cooled to $23^{\circ} \mathrm{C}$ and diluted with water (25 $\mathrm{mL})$. The solution was extracted with $\mathrm{CHCl}_{3}(25 \mathrm{~mL} \times 3)$, and the combined organic layers were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel ($\mathrm{AcOEt} / \mathrm{MeOH}$). The residue was diluted with AcOEt (15 mL) and extracted with 10% aqueous $\mathrm{HCl}(15 \mathrm{~mL} \times 3)$. The resulting aqueous layer was basified with 10% aqueous $\mathrm{NaOH}(70 \mathrm{~mL})$ and then extracted with $\mathrm{CHCl}_{3}(50 \mathrm{~mL} \times 3)$. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated under reduced pressure to afford 8-(3,4-dimethoxyphenyl)-7-(4-nitrophenyl)-1,3,4,6,9,9a-hexahydro-2Hquinolizine ($125 \mathrm{mg}, 89 \%$) as yellow solids.

IR (neat): 2936, 1593, 1516, 1462, 1342, $1254 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta=8.00(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=3.3 \mathrm{~Hz}$, 2 H), $6.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.57$ (dd, $J=8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.63-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.15-3.07(\mathrm{~m}, 2 \mathrm{H}), 2.55$ (ddd, $J=17.8,3.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.45 (dddd, $J=17.8,10.3,2.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $2.37-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{ddd}, J=11.7,11.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.80(\mathrm{~m}, 2 \mathrm{H})$, 1.79-1.65 (m, 2H), 1.44-1.30 (m, 2H).
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta=148.2,148.1,147.9,146.0,135.2,133.2$, $130.1,129.8,123.2,120.9,112.2,110.7,59.4,57.7,55.7,55.6,55.5,39.8$, 33.2, 25.8, 24.2.

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4} 395.1965$; found 395.1973
To a solution of 8-(3,4-dimethoxyphenyl)-7-(4-nitrophenyl)-1,3,4,6,9,9a-hexahydro- 2 H -quinolizine ($310 \mathrm{mg}, 0.786 \mathrm{mmol}$) and PIFA (372 mg , $0.865 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL})$ was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(150 \mu \mathrm{~L}, 1.18 \mathrm{mmol})$ at $-40^{\circ} \mathrm{C}$. After stirring at same temperature for 24 h , the reaction mixture was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and extracted with $\mathrm{CHCl}_{3}(15 \mathrm{~mL} \times 3)$. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel ($\mathrm{AcOEt} / \mathrm{MeOH}$) to afford 3d ($212 \mathrm{mg}, 69 \%$) as yellow solids.

IR (neat): 2932, 1616, 1516, 1470, 1416, 1339, 1300, 1258, $1207 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=9.42(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{dd}, J=9.2,2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 8.01$ (s, 1H), 7.97 (d, J = 9.2 Hz, 1H), $7.31(\mathrm{~s}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=15.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.17(\mathrm{~s}, 3 \mathrm{H}), 4.09(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~d}, J=10.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.19(\mathrm{dd}, J=17.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=16.5,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-$ $2.40(\mathrm{~m}, 1 \mathrm{H}), 2.35$ (ddd, $J=11.7,11.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.95-$ $1.88(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.42(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 150 \mathrm{MHz}$): $\delta=150.2,149.5,144.8,132.4,131.8,128.2$, $126.5,125.4,124.1,123.7,119.3,118.8,103.8,103.5,57.2,56.2,56.0,55.9$, $35.2,33.8,25.9,24.3$ (one peak is missing due to incidental equivalence).

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4} 393.1809$; found 393.1818.

7-[(tert-Butyldimethylsilyl)oxy]-2,3-dimethoxy-11,12,13,14,14a,15-hexahydro-9H-dibenzo[f,h]pyrido [1,2-b]isoquinoline (3e)
To a mixture of 5 ($309 \mathrm{mg}, 0.734 \mathrm{mmol}$), tert-butyldimethyl[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenoxy]silane ($244 \mathrm{mg}, \quad 0.729$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(25.4 \mathrm{mg}, 22.0 \mu \mathrm{~mol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(304 \mathrm{mg}, 2.20 \mathrm{mmol})$ was added a solution of $\mathrm{DME} / \mathrm{H}_{2} \mathrm{O}(7.4 \mathrm{~mL}, \mathrm{v} / \mathrm{v}=2 / 1)$ under argon atmosphere. After stirring at $80^{\circ} \mathrm{C}$ for 1.5 h , the solution was cooled to $23^{\circ} \mathrm{C}$ and diluted with water (25 mL). The solution was extracted with AcOEt ($25 \mathrm{~mL} \times 5$), and the combined organic layers were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel ($\mathrm{AcOEt} / \mathrm{MeOH}$). The residue was diluted with AcOEt (10 mL) and extracted with 10% aqueous $\mathrm{HCl}(10 \mathrm{~mL} \times 3)$. The resulting aqueous layer was basified with 10% aqueous $\mathrm{NaOH}(70 \mathrm{~mL})$ and then extracted with $\mathrm{CHCl}_{3}(50 \mathrm{~mL} \times 3)$. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated under reduced pressure to afford $7-\{3-[($ tert -butyldimethylsilyl)oxy]phenyl\}-8-(3,4-dimethoxyphenyl)-1,3,4,6,9,9a-hexahydro- 2 H -quinolizine ($300 \mathrm{mg}, 85 \%$) as yellow oil.

IR (neat): 2930, 2857, 2835, 2733, 1597, 1576, 1512, 1481, 1464, 1441, $1425,1416,1395,1360,1321,1306,1281,1261,1248,1217 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta=7.03(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.74-6.71(\mathrm{~m}, 1 \mathrm{H})$, 6.66 (s, 2H), 6.61-6.57 (m, 1H), 6.52-6.49 (m, 1H), 6.48 (s, 1H), 3.79 (s, $3 \mathrm{H}), 3.60(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 3.12-3.01(\mathrm{~m}, 2 \mathrm{H}), 2.56-2.49$ (m, 1H), 2.43-2.35 (m, 1H), 2.34-2.26 (m, 1H), $2.11(\mathrm{td}, J=11.0,4.1 \mathrm{~Hz}$, $1 \mathrm{H}), 1.90-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.32(\mathrm{~m}, 2 \mathrm{H}), 0.887(\mathrm{~s}$, $9 \mathrm{H}),-0.01(\mathrm{~s}, 3 \mathrm{H}),-0.02(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 150 \mathrm{MHz}$): $\delta=155.2,147.9,147.3,142.3,134.2,131.8$, $131.6,128.8,122.0,121.1,120.4,118.3,112.7,110.4,60.2,57.8,55.6,55.5$, 55.4, 39.4, 33.3, 25.8, 25.6, 24.3, 18.1, -4.75, -4.77.

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{NO}_{3} \mathrm{Si} 480.2928$; found 480.2927

To a solution of 7-\{3-[(tert-butyldimethylsilyl)oxy]phenyl\}-8-(3,4 dimethoxyphenyl)-1,3,4,6,9,9a-hexahydro- 2 H -quinolizine ($152 \mathrm{mg}, 0.317$ mmol) and PIFA ($150 \mathrm{mg}, 0.349 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.6 \mathrm{~mL})$ was added BF_{3}. $\mathrm{OEt}_{2}(118 \mu \mathrm{~L}, 0.951 \mathrm{mmol})$ at $-40^{\circ} \mathrm{C}$. After stirring at same temperature for 24 h , the reaction mixture was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and extracted with $\mathrm{CHCl}_{3}(15 \mathrm{~mL} \times 3)$. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel ($\mathrm{EtOAc} / \mathrm{MeOH}$) to afford $\mathbf{3 e}(92.5 \mathrm{mg}, 61 \%)$ as brown oil.
IR (neat): 2928, 2859, 1616, 1504, 1466, 1427, 1234, $1215 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta=8.40(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~s}$, $1 \mathrm{H}), 7.23(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.13$ (dd, $J=9.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=15.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.09(\mathrm{~s}, 3 \mathrm{H}), 4.05(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~d}, J=11.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.11(\mathrm{dd}, J=16.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J=15.8,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-$ $2.36(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{td}, J=11.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.89$ (d, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.85-1.73 (m, 2H), 1.59-1.49 (m, 1H), 1.49-1.40 (m, $1 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}), 0.264(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta=153.6,148.54,148.49,130.3,127.3,124.9$, $124.8,124.1,123.9,123.6,119.6,111.7,103.8,103.2,57.4,56.2,55.93$ 55.89, 55.84, 34.9, 33.8, 25.9, 25.8, 24.3, 18.4, -4.27, -4.29.

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{NO}_{3} \mathrm{Si} 478.2772$; found 478.2772 .

2,3,8-Trimethoxy-11,12,13,14,14a,15-hexahydro-9H-dibenzo[f,h]pyrido[1,2-b]isoquinoline (3f)

To a mixture of $\mathbf{5}$ ($279 \mathrm{mg}, 0.661 \mathrm{mmol}$), 2-(2-Methoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ($186 \mathrm{mg}, 0.794 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(22.9$ $\mathrm{mg}, 19.8 \mu \mathrm{~mol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(274 \mathrm{mg}, 1.98 \mathrm{mmol})$ was added a solution of $\mathrm{DME} / \mathrm{H}_{2} \mathrm{O}(6.6 \mathrm{~mL}, \mathrm{v} / \mathrm{v}=2 / 1)$ under argon atmosphere. After stirring at $80^{\circ} \mathrm{C}$ for 3 h , the mixture was cooled to $23^{\circ} \mathrm{C}$ and diluted with water (25 mL). The solution was extracted with AcOEt ($25 \mathrm{~mL} \times 5$), and the combined organic layers were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel ($\mathrm{AcOEt} / \mathrm{MeOH}$). The residue was diluted with AcOEt (10 mL) and extracted with 10% aqueous $\mathrm{HCl}(10 \mathrm{~mL}$ $\times 3$). The resulting aqueous layer was basified with 10% aqueous NaOH (70 mL) and then extracted with $\mathrm{CHCl}_{3}(50 \mathrm{~mL} \times 3$). The combined organic layers were dried over MgSO_{4}, filtered, and concentrated under reduced pressure to afford 8-(3,4-dimethoxyphenyl)-7-(2-methoxyphenyl)-1,3,4,6,9,9a-hexahydro- $2 H$-quinolizine ($221 \mathrm{mg}, 88 \%$) as brown oil.

IR (neat): 2932, 2832, 1597, 1578, 1512, 1489, 1462, 1435, 1416, 1242 cm^{-1}.
${ }^{1} \mathrm{H}$ NMR (CDCl $3,600 \mathrm{MHz}$): $\delta=7.10(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.77$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$), $6.72(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.57-3.42(\mathrm{~m}, 1 \mathrm{H})$, $3.50(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.62-2.30(\mathrm{~m}, 3 \mathrm{H}), 2.15-2.00(\mathrm{~m}, 1 \mathrm{H})$, 1.90-1.65 (m, 4H), 1.46-1.30 (m, 2H).
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 150 \mathrm{MHz}$): $\delta=157.1,147.4,147.0,134.4,131.9,131.1$, $129.9,127.9,120.4,119.5,112.0,110.2,110.0,59.3,57.8,55.5,55.3,55.2$, 55.0, 38.7, 33.0, 25.6, 24.2 (one peak is missing due to incidental equivalence).

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{NO}_{3} 380.2220$; found 380.2214 .
To a solution of 8-(3,4-dimethoxyphenyl)-7-(2-methoxyphenyl)-1,3,4,6,9,9a-hexahydro- 2 H -quinolizine ($235 \mathrm{mg}, 0.620 \mathrm{mmol}$) and PIFA ($294 \mathrm{mg}, 0.682 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(236 \mu \mathrm{~L}$, $1.86 \mathrm{mmol})$ at $-10{ }^{\circ} \mathrm{C}$. After stirring at same temperature for 15 h , the reaction mixture was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(9 \mathrm{~mL})$ and extracted with $\mathrm{CHCl}_{3}(15 \mathrm{~mL} \times 3)$. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel ($\mathrm{AcOEt} / \mathrm{MeOH}$) to afford $\mathbf{3 f}$ ($21.7 \mathrm{mg}, 9 \%$) as a brown oil.

IR (neat): 2932, 2855, 2832, 1585, 1528, 1504, 1466, 1431, 1300, 1254 $1207 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 600 \mathrm{MHz}$): $\delta=8.12(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{t}$ $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H})$,
4.08 (s, 3H), 4.03 (s, 3H), 4.01-3.95 (m, 1H), 3.93 (s, 3H), 3.26 (d, J = 10.3 $\mathrm{Hz}, 1 \mathrm{H}), 3.14-3.04(\mathrm{~m}, 1 \mathrm{H}), 3.01-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.35-$ $2.25(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.72(\mathrm{~m}$, $2 \mathrm{H}), 1.59-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.37(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 150 \mathrm{MHz}$): $\delta=157.8,149.3,148.4,131.2,126.1,126.0$, $125.5,123.5,121.1,115.2,107.0,104.0,103.3,59.5,56.7,55.8,55.8,55.5$, 35.1, 33.4, 25.5, 24.0 (two peak is missing due to incidental equivalence). HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{NO}_{3} 378.2064$; found 378.2066.

2,3-dimethoxy-5-nitro-11,12,13,14,14a,15-hexahydro-9H-dibenzo[f,h]pyrido[1,2-b]isoquinoline (3g) and 2,3-dimethoxy-7-nitro-11,12,13,14,14a,15-hexahydro-9H-dibenzo[f,h]pyrido[1,2b]isoquinoline (3h)

To a mixture of 5 ($116 \mathrm{mg}, 0.275 \mathrm{mmol}$), 3-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)nitrobenzene ($103 \mathrm{mg}, 0.413 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(9.5$ $\mathrm{mg}, 8.3 \mu \mathrm{~mol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(114 \mathrm{mg}, 0.83 \mathrm{mmol})$ was added a solution of $\mathrm{DME} / \mathrm{H}_{2} \mathrm{O}(2.7 \mathrm{~mL}, \mathrm{v} / \mathrm{v}=2 / 1)$ under argon atmosphere. After stirring at $80^{\circ} \mathrm{C}$ for 2 h , the mixture was cooled to $23^{\circ} \mathrm{C}$ and diluted with water (25 mL) and extracted with $\mathrm{CHCl}_{3}(25 \mathrm{~mL} \times 3)$. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (AcOEt $/ \mathrm{MeOH}$). The residue was diluted with AcOEt (15 mL) and extracted with 10% aqueous $\mathrm{HCl}(15 \mathrm{~mL} \times 3)$. The resulting aqueous layer was basified with 10% aqueous $\mathrm{NaOH}(70 \mathrm{~mL})$ and then extracted with $\mathrm{CHCl}_{3}(100 \mathrm{~mL} \times 3)$. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated under reduced pressure to afford 8-(3,4-dimethoxyphenyl)-7-(3-nitrophenyl)-1,3,4,6,9,9a-hexahydro-2Hquinolizine ($95.0 \mathrm{mg}, 88 \%$) as yellow amorphous.

IR (neat): 2932, 1573, 1462, 1346, $1254 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (CDCl $3,500 \mathrm{MHz}$): $\delta=7.99(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{dd}, J=8.3$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.65-3.55(\mathrm{~m}$, $1 \mathrm{H}), 3.17-3.08(\mathrm{~m}, 2 \mathrm{H}), 2.58-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.31$ (m, 1H), 2.15 (ddd, $J=11.5,11.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.90-1.80 (m, 2H), 1.80-1.67 (m, 2H), 1.45-1.30 (m, 2H).
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta=148.2,147.9,147.7,142.5,135.6,134.8$, 133.1, 129.7, 128.7, 123.6, 121.2, 120.9, 112.2, 110.7, 59.5, 57.7, 55.6, 55.54, 55.46, 39.7, 33.2, 25.8, 24.2.

HRMS (ESI): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4} 395.1965$; found 395.1954.
To a solution of 8-(3,4-dimethoxyphenyl)-7-(3-nitrophenyl)-1,3,4,6,9,9a-hexahydro- 2 H -quinolizine ($254 \mathrm{mg}, 0.644 \mathrm{mmol}$) and PIFA (305 mg , $0.708 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.2 \mathrm{~mL})$ was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(245 \mu \mathrm{~L}, 1.93 \mathrm{mmol})$ at $-40^{\circ} \mathrm{C}$. After stirring at same temperature for 24 h , the reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and extracted with $\mathrm{CHCl}_{3}(15 \mathrm{~mL} \times 3)$. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel ($\mathrm{AcOEt} / \mathrm{MeOH}$) to afford a mixture of 2,3 -dimethoxy-5-nitro-11,12,13,14,14a,15-hexahydro-9Hdibenzo $[f, h]$ pyrido $[1,2-b]$ isoquinoline ($\mathbf{3 g}$) and 2,3-dimethoxy-7-nitro-11,12,13,14,14a,15-hexahydro-9 H -dibenzo[f,h]pyrido[1,2-b]isoquinoline $(3 h)(148 \mathrm{mg}, 58 \%$ regio-selectivity ratio $=45: 55)$ as brown oil.
IR (neat): 2932, 2855, 1612, 1519, 1465, 1334, $1261 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta=8.72$ ($\mathrm{d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$, major), 8.54 ($\mathrm{d}, J=$ $9.2 \mathrm{~Hz}, 1 \mathrm{H}$, major), $8.29(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}$, major), 8.02-7.94 (m, 1 H, minor), 7.92 ($\mathrm{s}, 1 \mathrm{H}$, major), 7.66 ($\mathrm{d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$, minor), $7.55-7.50$ ($\mathrm{m}, 1 \mathrm{H}$, minor), $7.38(\mathrm{~s}, 1 \mathrm{H}$, minor), $7.25(\mathrm{~s}, 1 \mathrm{H}$, major), $7.25(\mathrm{~s}, 1 \mathrm{H}$, minor), 4.48-4.36(m, 1 H , major and minor), 4.12 ($\mathrm{s}, 1 \mathrm{H}$, major), 4.09 ($\mathrm{s}, 1 \mathrm{H}$, major), 4.05 ($\mathrm{s}, 1 \mathrm{H}$, minor), $3.95(\mathrm{~s}, 1 \mathrm{H}$, minor), 3.70-3.59 ($\mathrm{m}, 2 \mathrm{H}$, major and minor), 3.35-3.21 ($\mathrm{m}, 1 \mathrm{H}$, major and minor), 3.15-3.03 (m, 1 H , major and minor), 2.96-2.81 ($\mathrm{m}, 1 \mathrm{H}$, major and minor), 2.42-2.24 ($\mathrm{m}, 2 \mathrm{H}$, major and minor), 2.09-2.00 ($\mathrm{m}, 1 \mathrm{H}$, major and minor), 1.96-1.38 ($\mathrm{m}, 5 \mathrm{H}$, major and minor).
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta=150.7,149.8,149.0,148.9,148.1,144.8$, $132.4,130.7,129.4,128.1,127.6,127.5,126.1,125.6,125.0,124.3,123.5$, $122.7,121.1,119.8,119.3,118.7,118.6,106.1,104.0,103.6,103.4,57.2$, $57.0,56.1,56.0,55.8,55.7,55.6,34.9,34.8,33.7,33.6,25.8,24.21,24.18$.

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4} 393.1809$; found 393.1803.

2,3-Dimethoxy-11,12,13,14,14a,15-hexahydro-9H-
 dibenzo[f,h]pyrido[1,2-b]isoquinolin-5-amine (S1a)
 and
 2,3-Dimethoxy-11,12,13,14,14a,15-hexahydro-9H- dibenzo[f,h]pyrido[1,2-b]isoquinolin-7-amine (S1b)

To a solution of the mixture of $\mathbf{3 g}$ and $\mathbf{3 h}(148 \mathrm{mg}, 0.38 \mathrm{mmol})$ in $\mathrm{MeOH} / \mathrm{AcOH}(5.0 \mathrm{~mL}, \mathrm{v} / \mathrm{v}=4 / 1)$ was added $\mathrm{Pd} / \mathrm{C}(3.9 \mathrm{mg}, 10 \%$ on Carbon, $3.7 \mu \mathrm{~mol}$). After flushing with H_{2}, the reaction mixture was stirred for 6 h . After completion of the reaction, the reaction mixture was filtered over Celite, and the filtrate was concentrated under reduced pressure and purified by column chromatography on silica gel (AcOEt/MeOH) to afford S1a ($32.8 \mathrm{mg}, 14 \%$ in 2 steps) as brown oil, and $\mathbf{S 1 b}$ ($31.4 \mathrm{mg}, 13 \%$ in 2 steps) as yellow solids.

S1a: IR (neat): 2932, 1616,1508, 1466, $1258 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 600 \mathrm{MHz}$): $\delta=8.85(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.23$ (s, 1H), $6.93(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.31-4.26(\mathrm{~m}, 2 \mathrm{H}), 4.04(\mathrm{~s}$, $3 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{~d}$, $J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.99-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.29(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{~d}, J=12.4 \mathrm{~Hz}$, 1 H), 1.90 (d, $J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.59$ (ddd, $J=11.7,11.0$, $11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.50-1.40(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 150 \mathrm{MHz}$): $\delta=147.7,147.1,144.3,130.9,126.7,126.4$, $125.9,124.3,118.9,114.6,113.7,107.6,103.7,57.3,56.2,56.0,55.9,55.8$, $34.5,33.2,25.5,24.0$ (one peak is missing due to incidental equivalence).

HRMS (ESI): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} 363.2067$; found 363.2049.

S1b: IR (neat): 3368, 3314, 2932, 1767, 1620, 1508, 1466, $1246 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta=8.33(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~s}$, $1 \mathrm{H}), 7.04(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.99$ (dd, $J=8.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=15.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.08(\mathrm{~s}, 3 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 4.01-3.68(\mathrm{~m}, 2 \mathrm{H}), 3.54(\mathrm{~d}, J=15.4 \mathrm{~Hz}$, 1 H), 3.26 (d, $J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.09$ (dd, $J=16.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.88 (dd, $J=$ $15.9,10.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.36 (dddd, $J=10.3,9.7,3.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.29 (ddd, $J=$ $11.2,11.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.72$ (m, 2H), 1.59-1.38 (m, 2H).
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 150 \mathrm{MHz}$): $\delta=148.5,148.1,144.2,130.3,127.2,124.4$, $124.2,123.9,121.8,115.7,105.8,103.8,102.9,57.4,56.2,56.1,55.9,55.8$, 34.9, 33.7, 25.9, 24.3 (one peak is missing due to incidental equivalence). HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{2} 7 \mathrm{~N}_{2} \mathrm{O}_{2} 363.2067$; found 363.2056 .

Funding Information

This work was financially supported by JSPS KAKENHI (Grants 18 K 05103 and 19H03350), MEXT KAKENHI (Grant JP21H05211) in Digi-TOS, and the AMED Platform for Supporting Drug Discovery and Life Science Research (Grant jp19am0101092j0003). Y.Y. thanks the Takeda Science Foundation.

Supporting Information

YES (this text will be updated with links prior to publication)

Primary Data

NO (this text will be deleted prior to publication)
(1) For reviews of phenanthroindolizidine and phenanthroquinoizidine alkaloids, see: (a) Li, Z.; Jin, Z.; Huang, R. Synthesis 2001, 2365. (b) Chemler, S. R. Curr. Bioact. Compd. 2009, 5, 2. (c) Burtoloso, A. C. B.; Bertonha, A. F.; Rosset, I. G. Curr. Bioact. Compd. 2014, 14, 191.
(2) Gao, W.; Lam, W.; Zhong, S.; Kaczmarek, C.; Baker, D. C.; Cheng, Y.C. Cancer Res. 2004, 64, 678.
(3) Suffness, M.; Cordell, G. A. In The Alkaloids Chemistry and Pharmacology; Brossi, A., Ed.; Academic Press: New York, 1985; Vol. 25, pp 3-355.
(4) (a) Stærk, D.; Christensen, J.; Lemmich, E.; Duus, J. Ø.; Olsen, C. E.; Jaroszewski, J. W. J. Nat. Prod. 2000, 63, 1584. (b) Lykkeberg, A. K.; Christensen, J.; Budnik B. A.; Abe, F.; Jaroszewski, J. W. J. Nat. Prod. 2002, 65, 1299.
(5) (a) Chuang, T.-H.; Lee, S.-J.; Yang, C.-W.; Wu, P.-L. Org. Biomol. Chem., 2006, 4, 860. (b)Gao, W.; Busson, S.; Grill, S. P.; Gullen, E. A.; Hu, Y.C.; Huang, X.; Zhong, S.; Kaczmarek, C.; Gutierrez, J.; Francis, S.; Baker, D. C.; Yu, S.; Cheng, Y.-C. Bioorg. Med. Chem. Lett. 2007, 17, 4338. (c) Su, C.-R.; Damu, A. G.; Chiang, P.-C.; Bastow, K. F.; MorrisNatschke, S. L.; Lee, K.-H.; Wu, T.-S. Bioorg. Med. Chem. 2008, 16, 6233.
(6) (a) Banwell, M. G.; Bezos, A.; Burns, C.; Kruszelnicki, I.; Parish, C. R.; Su, S.; Sydnes, M. O. Bioorg. Med. Chem. Lett. 2006, 16, 181. (b) Wei, L.; Brossi, A.; Kendall, R.; Bastow, K. F.; Morris-Natschke, S. L.; Shi, Q.; Lee, K.-H. Bioorg. Med. Chem. 2006, 14, 6560
(7) (a) Fu, Y.; Lee, S. K.; Min, H.-Y.; Lee, T.; Lee, J.; Cheng, M.; Kim, S. Bioorg. Med. Chem. Lett. 2007, 17, 97. (b) Kwon, Y.; Song, J.; Lee, H.; Kim, E.-Y.; Lee, K.; Lee, S. K.; Kim, S. J. Med. Chem. 2015, 58, 7749.
(8) Recent examples of total synthesis of cryptopleurine, see: (a) Jo, Y.I.; Cheon, C.-H. J. Org. Chem. 2019, 84, 11902. (b) Ansari, A.; Ramapanicker, R. ChemistrySelect 2018, 3, 12591. (c) Lerchen, A.; Knecht, T.; Koy, M.; Daniliuc, C. G.; Glorius, F. Chem. Eur. J. 2017, 23, 12149. (d) Chang, C.-F.; Li, C.-F.; Tsai, C.-C.; Chuang, T.-H. Org. Lett. 2016, 18, 638. (e) Liéby-Muller, F.; Marion, F.; Schmitt, P.; Annereau, J.; Kruczynski, A.; Guibaud, N.; Bailly, C. Bioorg. Med. Chem. Lett. 2015, 25, 184. (f) Stoye, A.; Opatz, T. Eur. J. Org. Chem. 2015, 2149. (g) Chen, F.; Su. B.; Wang, Q. Org. Chem. Front. 2014, 1, 674 (h) Zheng, Y.; Liu, Y.; Wang, Q. J. Org. Chem. 2014, 79, 3348. (i) Ying, W.; Herndon, J. W. Eur. J. Org. Chem. 2013, 3112. (j) Pasare, S. V.; Dyapa, R. Org. Biomol. Chem. 2012, 10, 6776. (k) Zeng, C.; Liu, H.; Zhang, M.; Guo, J.; Jiang, S.; Yu, S. Synlett 2012, 23, 2251. (l) Wang, Z.; Feng, A.; Cui, M.; Liu, Y. Wang, L.; Wang, Q. PloS One 2012, 7, e52933. (m) Yang, X.; Shi, Q.; Bastow, K. F.; Lee, K.-H. Org. Lett. 2010, 12, 1416. (n) Cui, M.; Song, H.; Feng, A; Wang, Z.; Wang, Q. J. Org. Chem. 2010, 75, 7018. (o) Wang, Z.; Wang, Q. Tetrahedron Lett. 2010, 51, 1377. (p) Cui, M.; Wang, Q. Eur. J. Org. Chem. 2009, 5445.
(9) (a) Yamaoka, Y.; Taniguchi, M.; Yamada, K.; Takasu, K. Heterocycles 2018, 97, 292. (b) Yamaoka, Y.; Taniguchi, M.; Yamada, K.; Takasu, K. Synthesis 2015, 47, 2819.
(10) Tian, G.; Song, L.; Li, Z.; Robeyns, K.: Van Meervelt, L.; Van der Eycken, E. V. A. Org. Lett. 2020, 22, 8441.
(11) Jeyakumar, K.; Chand, D. K. Synthesis 2008, 807.
(12) Koepler, O.; Laschat, S.; Baro, A.; Fischer, P.; Miehlich, B.; Hotfilder, M.; le Viseur, C. Eur. J. Org. Chem. 2004, 3611.
(13) Heathcock, C. H.; Norman, M. H.; Dickman, D. A. J. Org. Chem. 1990, 55, 798.
(14) Even though the smaller 3-methoxy group instead of the 3-tertbutyldimethylsilyloxy group was used as the same reaction, the methoxy group was selectively installed at a 7-position.
(15) Hobson, S. T.; Boecker, J. D.; Gifford, J. H.; Nohe, T. L.; Wierks, C. H. J. Heterocyclic. Chem. 2003, 40, 277.

References

