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On Zhu Shijie’s Elimination Theory
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Abstract

Zhu Shijie’s siyuan shu(the four elements method) and his elimination of unknowns made

a significant contribution to the history of mathematics in the world in the 14th century. The

final equations given by Zhu Shijie in his book Si Yuan Yu Jian are sometimes simpler than

the resultants obtained from the simultaneous equations. This shows that Zhu Shijie took

additional special considerations in eliminating unknowns.

In §4.1 of the present note we will discuss the second problem in Section 6 of the last

chapter of Book III of Si Yuan Yu Jian , and give two possible arguments which Zhu Shijie

would have used to arrive at his final equation. We will also show that it is possible to simplify

his final equation for the fifth problem in the same section by using additional considerations

as in the second problem. However, he did not use such arguments. This shows that Zhu Shijie

did not use the additional considerations systematically.

In §4.3 we will give the list of of the given conditions, the simultaneous equations, the

resultant I calculated and Zhu Shijie’s final equations of all problems of the section 8 of the

last chapter of Book III of Si Yuan Yu Jian , which Zhu Shijie used four unknowns to solve

the problems. The list shows that only the last problem of Section 8 requires to use of four

unknowns, while three unknowns are sufficient for other problems.

Introduction

In northern China in the 12th and 13th centuries, the theory of equations was highly

developed, and equations of any order of one unknown could be solved numerically using a

kind of synthetic division. Also invented was the tianyuan shu (天元術, in 13th century it was

called ruji shu (如積術)(see [Liz, p.32])). The tianyuan shu is a method of writing equations of

one unknown. This was followed by the invention of the eruyuna shu (二元術, the two elements

method) and the sanyaun shu(三元術, the three elements method ). These are methods to

write equations of two or three unknowns.
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Finally, Zhu Shijie invented the siyuan shu(四元術, the four elements method). The siyuan

shu is a method of writing equations of four unknowns and then eliminating the unknowns to

obtain a final equation for one unknown. Zhu Shijie wrote a text book Si Yuan Yu Jian (四元玉
鑑, Jade Mirror of the Four Unknowns, 1301) and he used these methods to solve the problems

in the last chapter of Book III of Si Yuan Yu Jian .

In siyuan shu, the coefficients of the equation are arranged as in Figure 1. Not all mono-

mials can be represented in this way. In some cases, ad hoc arrangements are necessary (see,

for example, Figure 3 below). On the other hand, the elimination of unknowns was one of

the most important results of the time. However, Si Yuan Yu Jian only contains a concrete

description of how to eliminate the unknown y in the following simultaneous equations.

A(x) +B(x)y = 0

C(x) +D(x)y = 0

It is discussed in “Liang Yi Hua Yuan” (両儀化元) of the Section “Si Xiang Xi Cao Xi Ling

Zhi Tu”( 四象細草仮令之図). Here we see that Zhu Shijie uses a simple factorization to re-

duce the degree of final equation (resultant) (see §3 below). The following natural question

arises here. Did Zhu Shijie use any other factorization? In §2.2 we show that it is possible

that he was aware of the factorization. However, since there was no way to represent factor-

ization diagrammatically in the siyuan shu, it was very difficult for him to use factorization

systematically.

In his Si Yuan Yu Jian , Zhu Shijie only gave the final equation, but did not explain how he

derived the final equation from the simultaneous equations of two, or three, or four unknowns.

We can only deduce his method from his final equations. In some cases, however, his final

equation does not match the resultant obtained by eliminating unknowns. The degree of the

final equation is too law compared to the resultant of the original simultaneous equations. Such

is the case in the second problem of Section 6 ”Zuo You Feng Yuan(左右逢元). In this case,

it is likely that Zhu Shijie made additional consideration in order to obtain the final equation

of lower degree. In §4.1, we will consider conjectured methods to obtain the final equation.

Neither mathematicians nor historians have discussed such a possibility on this issue (see, for

example [Lu, Vol.2, pp.906–910] and [Li, p.226]. They discussed only the resultant to obtain

the final equation of degree 4.). Also in §4.1 we will take up the fifth problem in the same

Section and see that Zhu Shijie used neither factorization nor the fact that the solutions are

integers. Thus, Zhu Shijie’s method of finding the final equation seems to have been an ad hoc

application of the elimination method to individual problems, rather than a systematic one.

Zhu Shijie’s siyuan shu did not develop further in Chinese mathematics. The reason for

this was that there was no environment that required the kind of advanced mathematics that

required the siyuan shu, and there were few mathematicians who could understand the siyuan

shu. Another reason was that the notation of the siyuan shu was not suitable for constructing

a general theory. Of course, the fact that in Zhu Shijie’s time equations were a tool for solving

problems and not an object of mathematical research was also a major factor. It took more

than 380 years for Takakazu Seki([Se]) and later Bézout([Be]) to establish the general theory

of elimination.

Let us explain briefly the content of the present paper. In §1 we briefly explain the siyuan

shu. In §2 we will explain multiplication of polynomials in the siyuan shu and discuss the

possibility of factorization in the framework of the siyuan shu. In §3 the elimination process

described in “Liang Yi Hua Yuan” (両儀化元) of Section “Si Xiang Xi Cao Xi Ling Zhi Tu”(

四象細草仮令之図) is discussed. Here, the simultaneous equations are finally reduced to the
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following form

A(x) +B(x)y = 0

C(x) +D(x)y = 0.

Then,when A and C or B and D have a common divisor, Zhu Shijie uses the factorization to

reduce the degree of the final equation. In §4.1 we will discuss the second and fifth problems

of Section 6 ”Zuo You Feng Yuan(左右逢元) of the last chapter of Book III of Si Yuan Yu Jian

. For the second problem we present the expected methods for obtaining the final equation. In

§4.2 and §4.3, we will give the list of of the given conditions, the simultaneous equations, the

resultant I calculated and Zhu Shijie’s final equations of all problems of Section 7 and Section

8 of the last chapter of Book III of Si Yuan Yu Jian , respectively. Zhu Shijie used three

unknowns and four unknowns to solve the problems in Section 7 and Section 8, respectively.

The list shows that only the last problem of Section 8 requires to use of four unknowns, while

three unknowns are sufficient for other problems.

§ 1. On Siyuan Shu

The siyuan shu(四元術, four elements method) is a method to write down algebraic equa-

tions in four unknowns on a piece of paper by using symbols of counting-rods and and eliminate

unknowns to get the final equation of one unknown.

...
...

...
...

...
...

...
...

· · · y4w3 y3w3 y2w3 yw3 w3 zw3 z2w3 z3w3 · · ·

· · · y4w2 y3w2 y2w2 yw2 w2 zw2 z2w2 z3w2 · · ·

· · · y4w y3w y2w yw w zw z2w z3w · · ·

· · · y4 y3 y2 y 太 z z2 z3 · · ·

· · · y4x y3x y2x yx x zx z2x z3x · · ·

· · · y4x2 y3x2 y2x2 yx2 x2 zx2 z2x2 z3x2 · · ·

· · · y4x3 y3x3 y2x3 yx3 x3 zx3 z2x3 z3x3 · · ·
...

...
...

...
...

...
...

...

Figure 1. For example, if we put the 4 at the place y2x, it represents 4y2x. The above diagram

shows that there are no places for monomials of three unknowns or four unknowns like xyz,

xyzw.

In the following, we will use Arabic numerals instead of the symbol for the counting-rods.
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There were also eryuan shu (二元術, two elements method), sanyuan shu(三元術, three

elements method). Four unknowns are named as tianyuan(天元), diyuan(地元), renyuan(人元),

wuyuan(物元), respectively.

In siyuan shu, the symbols represented by the counting-rods represent the coefficients of

the monomials, and each coefficient is placed in the place indicated by the monomial, as was

shown in Figure 1. The central Tai (太, abbreviation for 太極 (Taiji))) corresponds to the

constant term, and the coefficients of the terms xmyn, xmzn, ymwn and znwm are well placed.

For example, Figure 2 represents x2 + y2 − z2 = 0 and x2 − y − z = 0, respectively.

y2 y z2z

太

x

x2

1 −1

1

y2 y z2z

太

x

x2

−1 −1

1

Figure 2. The left configuration represents x2+y2−z2 = 0. The right configuration represents

x2 − y − z = 0.

However, for example, there is not place for the term yz. In Figure 3, 4yz is placed at the

top right corner of the constant term 太. This is ad hoc, and there is no general rule about

how to arrange the coefficients of the terms like y2z2, xy2z2.

y2 y z2z

太

x

x2

4

−7

−3

12

−12

Figure 3. 4yz − 3z2 + (−7y + 12z)x− 12x2 = 0

The eryuan (two elements method) shu is free to express all polynomials and equations

in two unknowns, while sanyuan shu (three elements method) and siyuan shu (four elements

method) are restricted in the expression. The vector notation (k, l,m, n) for a monomial

xkylzmwn compensates for this shortcoming and can be generalized to more than four un-

knowns, but the theory has not developed in this directions, mainly because the unknowns

were not explicitly described.

§ 2. Multiplication and Factorization in Siyuan Shu

In this section we will describe the multiplication of polynomials, which is an important

process when setting upequations in siyuan shu. We will also explain the factorization of

polynomials in siyuan shu.
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§ 2.1. Multiplication

Multiplication by the m-th power of an unknown is explained by shifting the diagram by

m-lines segments.

For example, multiplying (x− y − xz2) by x and x2 is represented as in Figure 4.

y2 y z2z

太

x

x2

1

−11

x+ y − xz2 = 0

y2 y z2z

太

x

x2

1

−11

x(x+ y − xz2) = 0

y2 y z2z

太

x

x2

x3

1

−11

x2(x+ y − xz2) = 0

Figure 4. In the left configuration if we shift the configuration by 1 line below, we get the

configuration which represents x(x + y + xz2). If we shift the first configuration by 2 lines

below we get we get the one representing x2(x+ y − xz2).

However, if x + y + xz2 is multiplied by y2, then special care is needed. If we shift the

configuration by 2 lines to the direction of y, we get xy2 + y3 + x, not y2(x + y + xz2). It is

difficult to find a suitable place to represent the term xy2z2. The best place seems to be the

bottom right corner of 太, but this place is also suitable for the term xyz.

y2 y z2z

太

x

x2

1

−11

x+ y − xz2 = 0

y3 y2 y z2z

太

x

x2

1
-1

1

y3 + xy2 − xy2z2 = 0

Figure 5. It is difficult to express an equation y3 + xy2 − xy2z2 = 0.

§ 2.2. Factorization

Factorization can be thought of as the inverse process of the multiplication. Although it

is difficult to express the factorization in the frame work of siyuan shu, it is not surprising that

Zhu Shijie actually knew how to factorize in certain cases. However it is difficult to find any

evidence that this is true.

Now let us consider whether the following factorization is possible in siyuan shu.

−x2 − 8xy + 6xz − 8yz + 7z2 = (x+ z)(−x− 8y + 7z)
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In sanyuan shu the polynomial −x2−8xy+6xz−8yz+7z2 or the equation −x2−8xy+6xz−
8yz + 7z2 = 0 is expressed in the form

y2 y z2z

太

x

x2

-8
7

−8 6

−1

Looking at the configuration we may find that the polynomial is the sum of two polyno-

mials of the similar type.

y2 y z2z

太

x

x2

−8 7

−1

−x2 − 8xy + 7xz

y2 y z2z

太

x

x2

-8
7

−1

−zx− 8zy + 7z2

The left-hand configuration is obtained by shifting one line below the following configura-

tion (multiplication by x)and the right-hand configuration is obtained by shifting the following

configuration one line to the right of the configuration (multiplication by z).

y2 y z2z

太

x

x2

−8 7

−1

−x− 8y + 7z

y2 y z2z

太

x

x2

−8 7

−1

−x− 8y + 7z

y2 y z2z

太

x

x2

−8 7

−1

x(−x− 8y + 7z)

= −x2 − 8xy + 7xz

y2 y z2z

太

x

x2

-8
7

−1

z(−x− 8y + 7z)

= −xz − 8yz + 7z2

The original configuration is the sum of these two configurations, that is −x2−8xy+6xz−
8yz+7z2 is obtained by multiplying −x− 8y+7z by x+ z. Thus, finding such a factorization

is quite possible. On the other hand it is very difficult to express the factorization within the

frame work of the sanyuan shu (three elements method) or siyuan shu (four elements method).

It is possible to explain it in words, though.
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y2 y z2z

太

x

x2

-8
7

−8 6

−1

(x+ z)(−x− 8y + 7z)

= −x2 − 8xy + 6xz − 8yz + 7z2

§ 3. Elimination theory

The most important part of siyuan shu (the four elements method) is the elimination of

unknowns.

In Section “Si Xiang Xi Cao Xi Ling Zhi Tu”( 四象細草仮令之図) Zhu Shijie outlined

a method for eliminating unknowns. Three problems were given and solved. The problem of

“Liang Yi Hua Yuan” (両儀化元) deals with two unknowns and the basic tools of the elimination.

In the problem, Zhu Shijie dealt with a right triangle.

base a

leg b hypotenuse c

Figure 6. A right triangle.

Problem 3.1. Let us consider a right triangle The difference between the square of the

leg (b2) and the difference between the hypotenuse and the difference between the leg and base

(c − (b − a)) is equal to the product of the base and the leg (ab). It is also said that the sum

of the square of the base (a2), the sum of the hypotenuse and the difference of the leg and the

base (c+ (b− a)) is equal to the product of the base and the hypotenuse (ac). Find the leg.1

Let the unknown tiyuan (x) be the leg (b) and the unknown diyuan (y) be the sum of the

base and the hypotenuse (a+ c).

Zhu Shijie gave two equations

x2 + 2xy + 2x2y − 2y2 − xy2 = 0

x2 + 2xy + 2y2 − xy2 = 0

1Original text: 今有股冪減弦較較與股乘句等只云句冪加弦較和與句乘弦同問股幾何．
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but did not describe the procedure how to obtain these equations.

The problem gives three conditions given be the following equations.

b2 − {c− (b− a)} = ab

a2 + {c+ (b− a)} = ac

a2 + b2 = c2

Therefore, strictly speaking, the problem is an example of sanyaun shu. We need to change

from the unknowns a, b and c to unknowns a, x = b and y = a + c, and eliminate first a to

obtain the above simultaneous equations in x and y. Since Zhu Shijie only gave the results by

the elimination of a, let us try to eliminate a. The above equations can be rewritten as follows.

x2 − (y − x) = ax(3.1)

a2 + (x+ y − 2a) = a(y − a)(3.2)

x2 − y2 + 2ya = 0(3.3)

By (3.3) we have

2ay = y2 − x2.

Hence, multiplying 2y to the both sides of (3.1) and replacing 2ay by y2 − x2, we obatin

2x2y + 2xy − 2y2 = xy2 − x3.

The left hand side and the right hand side are expressed as follows.

2x2y + 2xy − 2y2

−2 0太
0 2 0

0 2 0

0 0 0

, xy2 − x3

0 0 太
1 0 0

0 0 0

0 0−1

Subtracting the right hand side from the left hand side we obtain the first equation

(3.4) x3 + 2(x+ x2)y − (2 + x)y2 = 0

−2 0太
−1 2 0

0 2 0

0 0 1

To obtain the second equation, first add a2 to the both side of (3.2) to obtain the equation

2a2 + x+ y2a = ay

Then, multiply 2y2 to the both sides of the equation to obtain

4a2y2 + 2xy2 + 2y3 − 4ay2 = 2ay3

Then, replace 2ay by y2 − x2 to obtain

(y2 − x2)2 + 2xy2 + 2y3 − 2y(y2 − x2) = 2y2(y2 − x2)

Thus we obtain the equation

x4 + 2x2y + 2xy2 − x2y2 = 0
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Dividing the both side by x we obtain

(3.5) x3 + 2xy + (2− x)y2 = 0

1 0太
−1 2 0

0 0 0

0 0 1

In this way we obtain two equations given by Zhu Shijie.

Next we need to eliminate y from the two equations (3.4) and (3.5). In Si Yuan Yu Jian

, Zhu Shie only wrote by “hu yin tong fen” (互隠通分) one obtains the interior polynomial

8 + 4x

and exterior polynomial

2x+ x2

Since these polynomials are equal we obtain the final equation

−8− 2x+ x2 = 0

Zhu Shijie did not give the procedure how to get the interior and exterior polynomials. So, let

us deduce the above result. By subtracting (3.5) from (3.4) we obtain

2x2y − 4y2 = 0

−4 0太
0 0 0

0 2 0

Dividing the equation by 2y we obtain

(3.6) x2 − 2y = 0

0−2太
0 0 0

0 0 1

To obtain the second equation, multiplying (3.6) by x and subtracting (3.4) from the equation

thus obtained we get the equation

(−4x− 2x2)y + (2 + x)y2 = 0

2 0 太
1−4 0

0−2 0

0 0 0

Dividing the both side by y we obtain the second equation

(3.7) (−4x− 2x2) + (2 + x)y = 0

0 2 太
0 1−4

0 0−2

0 0 0

The product of the coefficient of y of (3.6) and the the coefficient of the degree 0 term of (3.7)

is 8x+4x2. Dividing it by x we obtain the interior polynomial. The product of the coefficient

of y of (3.7) and the the coefficient of the degree 0 term of (3.6) is 2x2 + x3. Dividing it by x

we obtain the exterior polynomial. By cancellation of these polynomials, we obtain the final

equation

−8− 2x− x2 = 0
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In this way we can reconstruct the whole process of the elimination of unknowns.

Also for other two problems in this section he did not give the elimination process. Thus,

Zhu Shijie did not describe how to eliminate unknowns except equations of the basic type

A+By = 0

C +Dy = 0

In this case the elimination of y is given by

AD −BC = 0.

Moreover, the above consideration shows that if A and C or B and D have a common divisor

one can factor out the common divisor to obtain the final equation.

For the higher degree equations in y one need to find methods to deduce to this simple

case. For the simultaneous equations of degree two in y we can use the following process to

reduce to the basic situation.

a0 + a1y + a2y
2 = 0(3.8)

b0 + b1y + b2y
2 = 0(3.9)

we can proceed as follows. To eliminate y2 from the equations

(a0 + a1y) + a2y
2 = 0

(b0 + b1y) + b2y
2 = 0

we get the equation

(3.10) (a0b2 − a2b0) + (a1b2 − a2b1)y = 0

Of course this equation can be obtained by

b2 × (3.8)− a2 × (3.9) = 0.

Also eliminating y by the equations

a0 + (a1 + a2y)y = 0

b0 + (b1 + b2y)y = 0

we get the equation

(3.11) a0(b1 + b2y)− b0(a1 + a2y) = (a0b1 − a1b0)− (a0b2 − a2b0)y = 0

The equation can be also obtained by

{a0 × (3.9)− b0 × (3.8)}/y = 0

The eliminating y from the equations (3.10), (3.11), we get

(a0b2 − a2b0)− a0b2(a0b2 − a2b0)− (a1b2 − a2b1)(a0b1 − a1b0)

= a2
0b

2
2 + a2

1b0b2 + a0a2b
2
1 + a2

2b
2
0 − a0a1b1b2 − 2a0a2b0b2 − a1a2b0b1 = 0
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On the other hand Sylvester’s resultant is given by∣∣∣∣∣∣∣∣
a2 a1 a0 0

0 a2 a1 a0

b2 b1 b0 0

0 b2 b1 b0

∣∣∣∣∣∣∣∣ = a2

∣∣∣∣∣∣
a2 a1 a0

b1 b0 0

b2 b1 b0

∣∣∣∣∣∣+ b2

∣∣∣∣∣∣
a1 a0 0

a2 a1 a0

b2 b1 b0

∣∣∣∣∣∣
= a2(a2b

2
0 + a0b

2
1 − a0b0b2 − a1b0b1) + b2(a

2
1b0 + a2

0b2 − a0a1b1 − a0a2b0)

= a2
0b

2
2 + a2

1b0b2 + a0a2b
2
1 + a2

2b
2
0 − a0a1b1b2 − 2a0a2b0b2 − a1a2b0b1 = 0.

Hence the both resultants coincide.

Other cases Zhu Shijie used ad hoc method to reduce the simultaneous equations to the.

basic ones.

§ 4. The last chapter of Book III of Si Yuan Yu Jian

In the last chapter of Si Yuan Yu Jian , Zhu Shijie treated the problems solvable by

using two or many unknowns. Zhu Shijie only gave the final equations obtained by eliminating

unknowns but did not give his elimination processes. Therefore, we only guess his method by

looking at his final equations. Sometimes the degree of the final equation is less than the one

of the resultant, we may guess that Zhu Shijie used not only the elimination of the unknowns

but also additional consideration. Here we shall discuss the second problem of Section 6“Zuo

You Feng Yuan (左右逢元)” . Zhu Shijie’s final equation is linear but we cannot get a linear

resultant by eliminating unknowns. We shall give two possible arguments how Zhu Shijie would

get the linear equation.

In the rest of this section we shall give all the simultaneous equations, the resultants and

Zhu Shijie’s final equations of all the problems of Sections 7 and 8 of Chpter III, in which

simultaneous equations of three and four unknowns are treated.

The list of simultaneous equations shows that almost all problems in these sections are

artificial and can be solved with fewer unknowns in practice. This is because the siyuan shu

gives a strong restriction on the polynomials that can be represented.

§ 4.1. The second and fifth problems of Section 6

“Zuo You Feng Yuan (左右逢元)” of Book III

There are several problems in which Zhu Shijie’s final equations are different from the one

obtained by usual elimination of unknowns. Let us discuss one of such problems, the second

problem of §6 “Zuo You Feng Yuan (左右逢元)” of the Book III.

Problem 4.1. For a right triangle the product of the base (a) and hypotenuse (c) ex-

ceeds the product of the base (a) and leg (b) by 3. Also it is said that the product of the leg (b)

and the hypotenuse (c) is less than the square of the hypotenuse (c) by 5 bu (歩). Find the leg.2

Zhu Shijie chooses the tianyuan (x) as the leg (b) and the diyuan (y) as the difference

between the hypotenuse and the leg (c− b). The final equation Zhu Shijie gave is

12− 3x = 0.

2Original text: 今有句弦相乘比直積多三步只云股弦相乘比弦冪少五步問句股幾何．
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So far nobody has succeeded to obtain the final equation by eliminating the unknowns. The

conditions given in the problem are

ac− ab = 3(4.1)

c2 − bc = 5(4.2)

where a, b, c are the lengths of the base, the leg and the hypotenuse of a right triangle,

respectively. By (4.1) and (4.2) we obtain

a(c− b) = 3(4.3)

c(c− b) = 5(4.4)

Since Zhu Shijie considered only integral solutions, we may assume a, b, c are natural

numbers. Hence, the first equation (4.3) implies a = 1 and c − b = 3 or a = 3 and c − b = 1.

Similarly the second equation (4.4) implies that c = 5 and c − b = 1 or c = 1 and c − b = 5.

Therefore, we conclude that a = 3, c = 5 and c− b = 1. Then form (4.1) we infer 12− 3x = 0.

Thus, Zhu Shiujie may use the condition of integral solutions. However, this solution does not

use the elimination.

Therefore, the following argument seems to be more plausible as the one used by Zhu

Shijie. The equations (4.3) and (4.4) can be rewritten in the form

ay − 3 = 0(4.5)

cy − 5 = 0(4.6)

Eliminating y from the both equations we obtain

5a− 3c = 0

Hence c = 5a/3. By a2 + b2 = c2 we get b = 4a/3, since b is positive. Hence y = c− b = a/3.

Then by (4.5) a2 = 9, hence a = 3. Then, again by (4.1) or by b = 4a/3 we have 3x− 12 = 0.

If we do not use positivity of a, b, c, we need to argue as follows, which give the correct

resultant. From (4.5) and (4.6) we infer

(4.7) (xy)2 = (cy)2 − (ay)2 = 52 − 42 = 42.

The equations (4.6) and (4.7) imply

c2 =
25

16
x2.

As y = c− x we have

5 = cy = c2 − cx =
25

16
x2 − cx.

Hence

cx =
25

16
x2 − 5.

and

y2 = (c− x)2 = c2 − 2cx+ x2 =
25

16
x2 − 2(

25

16
x2 − 5) + x2 = 10− 9

16
x2

Therefore, we deduce the equation

16 = (xy)2 = x2(10− 9

16
x2).



On Zhu Shijie’s Elimination Theory 13

Thus

(4.8) 256− 160x2 + 9x4 = 0

is the resultant of the simultaneous equations

ax = 3

(x+ y)y = 5

a2 + x2 = (x+ y)2

The roots of the equation (4.8) are x = ±4 and ±4/3. For x = 4 we havey = 1, a = 3, for

x = −4 we have y = −1, a = −3, for x = 4/3 we have y = −3, a = −1 and for x = −4/3 we

havey = 1, a = 1. They are the solutions of the simultaneous equations. This means that the

degree of the resultant of the simultaneous equations is at least four. This also supports the

guess that Zhu Shijie did not use the elimination procedure fully to obtain his linear equation.

However, Zhu Shijie did not systematically use the integral approach. This can be seen,

for example, in the fifth problem of Section 6 of Book III.

Problem 4.2. There is a rectangle such that by adding the short side (a) to the area

and by subtracting three times of the long side (b) from the result we get 3 bu (歩). It is said

that the square of the long side is equal to the difference of the long side and the short side.

Find the area. 3

The conditions of the problem are given by the following equations.

ab+ a− 3b = 3(4.9)

a2 = b− a(4.10)

By (4.10) we get b = a2 + a. Then, substituting it to (4.9) we obtain the equation

ab+ a− 3(a2 + a) = a(b− 2− 3a) = 3

If we assume that a is a natural number, from the equation we infer that a = 3 and b−2−3a = 1,

or a = 1 and b− 2− 3a = 3. The first case is a = 3, b = 12 and the second case a = 1, b = 6.

The second case contradicts (4.10). Hence a = 3, b = 12 and the area is 36. However, in this

solution we do not use the elimination of unknowns.

Also if Zhu Shijie knew the factorization the first equation (4.9) gives

(a− 3)(b+ 1) = 0

so that we get immediately a = 3 without assuming integrability of the solutions.

Of course the problem asks the area, so it is expected to find the equation satisfying the

area. This is the reason why Zhu Shijie did not take such integral approach.

Let x be the area ab and y be the long side b. Hence, a = x/y. Then, (4.9) is rewritten

in the form

x+
x

y
− 3y − 3 = 0

3Original text: 今有直積加一平減三長餘有三步只云平冪與較等問積幾何．
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Hence we have

(4.11) x+ (−3 + x)y − 3y2 = (x− 3y)(1 + y) = 0

Similarly by (4.10) we get

(4.12) x2 + xy − y3 = 0

If Zhu Shijie knew the factorization (4.11), then he would get y = x/3, since y > 0. Then,

(4.12) implies 36x2−x3 = 0. Hence the final equation is 36−x = 0. However, his final equation

is of degree 3.

Let us try to eliminate y of the simultaneous equations:

x+ (−3 + x)y − 3y2 = 0(4.13)

x2 + xy − y3 = 0(4.14)

(4.13)× y − (4.14)× 3 gives the equation:

(4.15) −3x2 − 2xy + (−3 + x)y2 = 0

Then, (4.13)× (−3 + x) + (4.15)× 3 gives the equation:

(4.16) x(−3− 8x) + (9− 12x+ x2)y = 0

Similarly, ((4.13)× 3x+ (4.15))/y gives the equation:

(4.17) x(−11 + 3x)− (3 + 8x)y = 0

Eliminating y from (4.16) and (4.17) we obtain the resultant:

x(−108 + 111x− 111x2 −+3x3) = 3x(−36 + 37x− 37x2 + x3) = 3x(−36 + x)(1− x+ x2) = 0

Of course as we saw in §3, we may factor out x of the degree 0 terms of (4.16) and (4.17) to

obtain the final equation. Indeed, Zhu Shijie’s final equation is

−36 + 37x− 37x2 + x3 = 0

§ 4.2. Section 7 “San Cai Bian Tong”(三才變通) of Book III

In Section 7 “San Cai Bian Tong” of Book III eleven problems which can be solved by

using three unknowns are treated. The following is the list of the conditions of the problems,

the simultaneous equations, the resultant I calculated and Zhu Shijie’s final equations.

The symbols a, b and c denote the unknowns to describe the conditions given in the prob-

lem. The three unknowns, tianyuan, diyuan, renyuna are denoted by x, y and z respectively,

and they are represented by a, b and c as noted below.

First four problems the simultaneous equations contain linear equations so that the simul-

taneous equations are easily reduced to the ones of two unknowns. From Problem 5 to 10 the

same conditions are given and one can easily see that these conditions implies b = 4a/3 and

c = 5a/4. Hence, again the simultaneous equations are reduced to the one of two unknwons.

In the following list we use freely the following notations.

五和和 (sum of the five sums)

A = (a+ b) + (b+ c) + (c+ a) + {c+ (a+ b)}+ {c+ (b− a)}(4.18)

五較和 (sum of the five differences)

B = (b− a) + (c− a) + (c− b) + {c− (b− a)}+ {(a+ b)− c}(4.19)
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Prob. 1. Conditions:

ab− {c+ (b− a)}+ (c− b)2 = {c− (b− a)}2

a2 − (a+ b+ c) = c+ (b− c)

a2 + b2 = c2

x = a, y = b, z = c. Find the value of z.

Simultaneous equations:

x− x2 − (1 + 2x)c+ (−1 + 3x)y = 0

x2 − 2z − 2y = 0

x2 − z2 + y2 = 0

Resultant:

−68 + 38z − 2z2 = −2(34− 19z + z2) = (z − 17)(z − 2) = 0

Zhu Shiejie’s final equation:

34− 19z + z2 = 0

Prob. 2. Conditions: √
ab+ (a+ b− c)2 = 2(c− a)√

{c− (b− a)}2 − (a+ b) = b− (c− b)

a2 + b2 = c2

x = a, y = b, z = a+ b+ c. Find the value of z.

Simultaneous equations:

4yz − 3z2 + (−7y + 12z)x− 12x2 = 0

−y − 5y2 + 2yz + (−1− 6y + 2z)x− x2 = 0

2yz − z2 + 2(−y + z)x = 0

Resultant:

2z(−504 + 1974z − 161z2) = −14z(−72− 282z + 23z2) = 0

Zhu Shiejie’s final equation:

−864−4104z+42228z2−53998z3+4209z4 = (−72−282z+23z2)(−12−104z+183z2) = 0

Prob. 3. Conditions:

a(ab)/b− a− 3(b− a) = a

b(a+ b)− a = 2ab+ b− a

a2 + b2 = c2
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x = a, y = b, z = (a + b)2 + c2 + (b − a)2 + (ab + a + b) = 3(a2 + b2) + ab + a + b. Find

the value of z.

Simultaneous equations:

−3y + x+ x2 = 0

−1 + y − x = 0

−z + y + 3y2 + (1 + y)x+ 3x2 = 0

Resultant:

−94 + z = 0

Zhu Shiejie’s final equation:

188− 96z + z2 = (−2 + z)(−94 + z) = 0

Prob. 4. Conditions:

b(ab)− 2a

a
+ 2(b− a)

b
− a = b− a

ab− b(b− a)

b
= 2(b− a)

a2 + b2 = c2

x = a, y = b, z = (ab)2 + (a+ b)2 + b2 + a2 + (b− a)2 + (a+ b) + 2a+ 3b+ 4(b− a). Find

the value of z.

Simultaneous equations:

−(1 + x) + y = 0

4x− 3y = 0

−z − x+ 3x2 + 8y + (3 + x2)y2 = 0

Rrsultant:

−z + 248 = 0

Zhu Shijie’s final equation:

79608− 569z + z2 = (z − 321)(z − 248) = 0

From Problem 5 to Problem10 the same right triangle with conditions[
{ab− (a+ b)}a+ b− a− ab

b
+ (a+ b)

]
b+ b

a
− (2b+ b− a) = a

ab2

b
+ ab− a2

a
= c

a2 + b2 = c2

is treated. From these condtions we can easily show that

b =
4

3
a, c =

5

3
a
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Prob. 5. x = a, y = b, z = A+B + ab+ c. Find the value of z.

Simultaneous equations:

15− 41x+ 12x2 = 0

3z + 57x+ 4x2 = 0

Prob. 6. x = a, y = b, z = {c− (b− a)}ab, Find the value of z.

Simultaneous equations:

15− 41x+ 12x2 = 0

−9z + 16x3 = 0

Resultant:

41(−6000 + 46781z − 972z2) = 0

Zhu Shijie’s final equation:

6000− 46781z + 972z2 = 41(−48 + z)(−125 + 972z) = 0

Prob. 7. x = a, y = b, z = {c+ (a+ b)}(a+ b− c). Find the value of z.

Simultaneous equations:

15− 41x+ 12x2 = 0

−3z + 8x2 = 0

Resultant:

7200− 15852z + 648z2 = −12(−600 + 1321z − 54z2) = 0

Zhu Shijie’s final equation:

−600 + 1321z − 54z2 = −(−24 + z)(−25 + 54z) = 0

Prob. 8. x = a, y = b, z = AB. Find the value of z.

Simultaneous equations:

15− 41x+ 12x2 = 0

−3z + 140x2 = 0

Resultant:

3307500− 416115z + 972z2 = 9(367500− 46235z + 108z2) = 0

Zhu Shijie’s final equation:

367500− 46235z + 108z2 = (−420 + z)(−875 + 108z) = 0

Prob. 9. x = a, y = b, z =
c

B
(a+ b+ c). Find the value of z.
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Simultaneous equations:

15− 41x+ 12x2 = 0

−z + 2x = 0

Resultant:

30− 41z + 6z2 = 0

Zhu Shijie’s final equation:

30− 41z + 6z2 = (−6 + z)(−5 + 6z) = 0

Prob. 10. x = a, y = b, z =
b

A+B + a+ b+ c
· (ab)2. Find the value of z.

Simultaneous equations:

15− 41x+ 12x2 = 0

−9z + x4 = 0

Resultant:

− 2430000 + 725864112z − 80621568z2

= −432(5625− 1680241z + 186624z2) = 0

Zhu Shijie’s final equation:

5625− 1680241z + 186624z2 = (−9 + z)(−625 + 186624z) = 0

Prob. 11. Conditions: √
(c− a)(b+ c) + (a+ b) = b+ 1√
(c− b)(c+ b− a)− c = (a+ b− c)2 − 3

a2 + b2 = c2

x = a, y = b, z = a+ b− c. Find the value of z.

Simultaneous equations:

(y − z)(x+ 2y − z) + x+ y = (y + 1)2

2y(x− z)− (z + y − x) = (z2 − 3)2

2xy − 2(x+ y)z + z2 = 0

Resultant:

− 2(3560 + 760z − 7698z2 − 1134z3 + 6522z4 + 720z5 − 2829z6 − 233z7

+ 670z8 + 36z9 − 82z10 − 2z11 + 4z12) = 0

Zhu Shijie’s final equation:

3560 + 760z − 7698z2 − 1134z3 + 6522z4 + 720z5 − 2829z6 − 233z7

+ 670z8 + 36z9 − 82z10 − 2z11 + 4z12

= (−2 + z)(1 + z)(2 + z)(−890 + 700z + 1002z2 − 766z3

− 439z4 + 318z5 + 88z6 − 60z7 − 6z8 + 4z9)

= 0
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§ 4.3. Section 8 “Si Xiang Chao Yuan” (四象朝元) of Book III

In Book III, Section 8 “Si Xiang Chao Yuan”(四象朝元), six problems are solved using

four unknowns. The following is a list of the conditions of the problems, the simultaneous

equations, the resultant I obtained and the final equations of Si Yuan Yu Jian . The symbols

a, b and c denote the unknowns to describe the conditions given in the problem. The four

unknowns, tianyuan, diyuan, renyuna and wuyuan are denoted by x, y, z and w, respectively,

and they are represented by a, b and c as noted below. Also the symbol A and B are the same

given in (4.18) and (4.19).

The list below shows that only the last problem is a real problem of the siyuan shu. Other

problems are essentially the problems of sanyuan shu, since in the simultaneous equations

the first three equations consist of three unknowns and only the last one contains the fourth

unknown, which apperas linearly.

Prob. 1. The conditions:

3
√
5a+ 3b = b− 1√
3(a+ b) + 4(b− a) = a+ 2

a2 + b2 = c2

x = a, y = b, z = c, w = c− (b− c) + a+ b− c = 2a. Find the value of w.

The simultaneous equations:

1 + 5x+ 3y2 − y3 = 0

4 + 5x+ x2 − 7y = 0

x2 + y2 − z2 = 0

−2x+ w = 0

The resultant and Zhu Shijie’s final equation.

39360 + 74080w + 5520w2 − 280w3 − 264w4 − 30w5 − w6 = 0

Prob. 2. The conditions:

c+ (b− a) =
3

8
b2

{c− (b− a)}2 =
1

4
(a+ c)2

a2 + b2 = c2

x = a, y = b, z = c, w = 2c+ 4a+ 2b. Find the value of w.

The simultaneous equations:

8(z + y − x)− 3y2 = 0

4{z − (y − x)}2 − (x+ z)2 = 0

x2 + y2 − z2 = 0

− w + 2z + 4x+ 2y = 0
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Resultant:

6(1500− 140w + 3w2) = 6(−30 + w)(−50 + 3w) = 0

Zhu Shijie’s final equation:

−60000 + 1100w + 300w2 − 9w3 = −(−30 + w)(−50 + 3w)(40 + 3w) = 0

Prob. 3. The conditions:

b2 − [{(a+ b)− c}2 + (c− a)2] = c+ a

{c+ (a+ b)}2 − (a+ b){c+ (a+ b)}+ (c− a)− 2c2 = a+ b+ c

x = a, y = b, z = c, w = a+ b+ c. Find the value of w. Find the value of w.

The simultaneous equations:

z + 2z2 − 2zy + (1− 4z + 2y)x+ 2x2 = 0

− z2 + (−1 + z)y + (−2 + z)x = 0

− z2 + y2 + x2 = 0

− w + z + y + x = 0

Resultant:

20(48− 136w + 35w2 + 142w3 − 108w4 + 8w5)

= 20(−12 + w)(−1 + 2w)(4− 3w − 4w2 + 4w3) = 0

Zhu Shijie’s final equation:

− 48 + 424w − 851w2 + 68w3 + 960w4 − 656w5 + 48w6

= (−12 + w)(−1 + 2w)(−1 + 6w)(4− 3w − 4w2 + 4w3) = 0

Prob. 4. The conditions:

A+ (a+ b+ c) = 4ab+ 2a

(a+ b+ c)−B = [a+ b+ c+ {(a+ b)− c}]− b2

a2 + b2 = c2

x = a, y = b, z = c, w = a+ b+ c+ (a+ b+ c) + (a+ b− c). Find the value of w.

The simultaneous equations:

5z + 5y − 4xy + x = 0

z − 3y + y2 − 3x = 0

− z2 + y2 + x2 = 0

− w + z + 3y + x = 0
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Resultant:

− 7680 + 60224w + 2288w2 − 1204w3 − 33w4 + 4w5

= (−20 + w)(−8 + w)(12 + w)(−4 + 31w + 4w2) = 0

Zhu Shijie’s final equation:

7680− 75584w + 118160w2 + 5780w3 − 2375w4 − 70w5 + 8w6

= (−20 + w)(−8 + w)(12 + w)(−1 + 2w)(−4 + 31w + 4w2) = 0

Prob. 5. The conditions:

(a2 + b2 + c2)−A = 2(a+ b− c)2

A+ 2a2 + 2b2 − 8c =
1

2
B2 + (a+ b− c)

a2 + b2 = c2

x = a, y = b, z = c, w = 3
√
3a+ 5b+ 7c. Find the value of w.

The simultaneous equations:

− x− 2y − 2xy − 2z + 2xz + 2yz − z2 = 0

x+ 3y − 3z = 0

x2 + y2 − z2 = 0

− w3 + 3x+ 5y + 7z = 0

Resultant:

−21w3(3072− 112w3 + w6) = −21w3(−4 + w)(16 + 4w + w2)(−48 + w3) = 0

or

w4 − 64 = 0

The last equation is equal to the one obtained by Lu Shilin ([Lu, vol.3, p.1075) up to

constant. Zhu Shijie’s final equation:

3072− 112w − 41w3 = −(−4 + w)(768 + 164w + 41w2) = 0

Prob. 6.

Q = (b− a)2 + (c− a)2 + (c− b)2 + {c− (b− a)}2 + {(a+ b)− c}2

= 4a2 − 2ab+ 4b2 − 2ac− 6bc+ 4c2

= −2ab− 2ac− 6bc+ 8c2

The conditions:

Q− 3w + w2 + w3 − 2w4 = 0

(a+ b)2 − 2ab+ (a+ b+ c) = (w2)2 + c2 − b

1

2
(a+ b+ c) + {(a+ b)− c} = w3
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x = a, y = b, z = c, w given above. Find the value of w.

The simultaneous equations:

− 3w + w2 + w3 − 2w4 − 2xy − 2xz − 6yz + 8z2 = 0

− w4 + x+ 2y + z = 0

− 2w3 + 3x+ 3y − z = 0

x2 + y2 − z2 = 0

The resultant and Zhu Shijie’s final equation:

1152− 768w − 640w2 + 1792w3 − 384w4 − 9008w5 + 19112w6 − 8799w7 − 8795w8

+ 12637w9 + 2030w10 − 19168w11 + 22292w12 − 11112w13 + 2006w14 = 0
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