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We present a new method of deriving shapes of entanglement wedges directly from conformal
field theory (CFT) calculations. We point out that a reduced density matrix in holographic
CFTs possesses a sharp wedge structure such that inside the wedge we can distinguish two
local excitations, while outside we cannot. We can determine this wedge, which we call a CFT
wedge, by computing a distinguishability measure. We find that CFT wedges defined by the
fidelity or Bures distance as a distinguishability measure coincide perfectly with shadows of
entanglement wedges in anti-de Sitter (AdS)/CFT. We confirm this agreement between CFT
wedges and entanglement wedges for two-dimensional holographic CFTs where the subsystem
is chosen to be an interval or double intervals, as well as higher-dimensional CFTs with a round
ball subsystem. On the other hand, if we consider a free scalar CFT, we find that there are no
sharp CFT wedges. This shows that sharp entanglement wedges emerge only for holographic
CFTs owing to the large-N factorization. We also generalize our analysis to a time-dependent
example and to a holographic boundary conformal field theory (AdS/BCFT). Finally, we study
other distinguishability measures to define CFT wedges. We observe that some of the measures
lead to CFT wedges which slightly deviate from the entanglement wedges in AdS/CFT, and
we give a heuristic explanation for this. This paper is an extended version of our earlier letter
(arXiv:1908.09939 [hep-th]) and includes various new observations and examples.
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1. Introduction

The anti-de Sitter / conformal field theory (AdS/CFT) correspondence has provided a key framework
for exploring quantum gravity aspects of string theory [1]. The principle ofAdS/CFT relates quantum
gravity in anAdS spacetime equivalently to a CFT which lives on the boundary ofAdS. The basic rule
of the correspondence is given by the bulk–boundary correspondence [2,3], which says the gravity
partition function is equal to the CFT partition function.
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To better understand the AdS/CFT correspondence, it is useful to decompose it into subregions.
Namely, we would like to understand which subregion in AdS is dual to a given region A in a
CFT. The answer to this question has been argued to be the entanglement wedge MA [4–6], the
region surrounded by the subsystem A and the extremal surface �A whose area gives the holographic
entanglement entropy [7–12]. Here we consider a static spacetime and assume a restriction on the
canonical time slice. In more general time-dependent spacetimes, the genuine entanglement wedge
is given by the domain of dependence of MA.

In this correspondence, called entanglement wedge reconstruction, the bulk reduced density matrix
on the entanglement wedge ρbulk

MA
is equivalent to the CFT reduced density matrix ρA. So far, this

subregion–subregion duality has been explained by combining several known facts: the gravity dual
of a bulk local field operator (called the Hamilton–Kabat–Lifschytz–Lowe (HKLL) map [13–15] and
its generalization [16]), the formula of quantum corrections to holographic entanglement entropy
[17,18], and the conjectured connection between AdS/CFT and quantum error-correcting codes [19–
21]. However, since this explanation relies highly on the dual AdS geometry and its dynamics from
the beginning, it is not clear how the entanglement wedge geometry naturally emerges from a CFT
itself.

Recently, a new approach to entanglement wedges was reported briefly in Ref. [22], where purely
CFT analysis reveals the structure of the entanglement wedge for the first time. In the present paper,
which is a full paper accompanying the letter in Ref. [22], we provide not only detailed explanations
but also more evidence for this construction, with various new examples. This includes a precise
derivation of the entanglement wedge from the Bures metric when the subsystem A consists of
double intervals. Moreover, we give purely CFT derivations of the entanglement wedges in a time-
dependent setup and in AdS / boundary CFT (BCFT) [23–25]. Though most of our examples are
two-dimensional (2d) CFTs, in a later part of this paper we will analyze higher-dimensional CFTs
and derive the entanglement wedges from CFTs.

In our analysis, it is important to remember that only a special class of CFTs, called holographic
CFTs, can have classical gravity duals which are well approximated by general relativity. A holo-
graphic CFT is characterized by a large central charge c (or a large rank of the gauge group N ) and
very strong interactions. The latter property leads to a large spectrum gap [26–28]. Thus, we expect
that the entanglement wedge geometry is available only when we employ holographic CFTs. Indeed,
our new framework will explain how entanglement wedges emerge from holographic CFTs.

Consider a locally excited state in a 2d CFT, created by inserting a primary operator Oα(w, w̄) on
the vacuum. The index α distinguishes different primaries. As the first example, we focus on a 2d
CFT on a Euclidean complex plane R2. We write the coordinates of this space by (w, w̄), or equally
(x, τ) such that w = x + iτ . We choose a subsystem A on the x-axis and define the reduced density
matrix on A, tracing out its complement B:

ρA(w, w̄) = Nα · TrB
[
Oα(w, w̄)|0〉〈0|O†

α(w̄, w)
]
, (1.1)

where Nα is a normalization factor to secure Tr ρA = 1. This state was first introduced in Refs. [29,30]
to study its entanglement entropy. We refer also to Ref. [31] for calculations of the entanglement
entropy of primary states.

We choose the (chiral and anti-chiral) conformal dimension hα of the primary operator Oα in the
range

1 � hα � c. (1.2)
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Fig. 1. Sketch of an entanglement wedge MA for an interval A in AdS3/CFT2, also showing holographic
computations of two-point functions dual to geodesics. The blue (or green) geodesic does (or does not)
intersect with MA at P.

This assumption allows us to neglect its backreaction in the gravity dual and to approximate the
two-point function 〈O(w1, w̄1)O†(w2, w̄2)〉 by the geodesic length in the gravity dual between the
two points (w1, w̄1) and (w2, w̄2) on the boundary η → 0 of the Poincaré AdS3

ds2 = η−2(dη2 + dwdw̄) = η−2(dη2 + dx2 + dτ 2), (1.3)

where we set the AdS radius to one. Thus, by projecting on the bulk time slice τ = 0, the state
ρA(w, w̄) is dual to a bulk excitation at a bulk point P, which is defined by the intersection between
the time slice τ = 0 and the geodesic. This procedure is sketched in Fig. 1.

In this way, we can probe the bulk point by using the locally excited reduced density matrix in
Eq. (1.1). If the entanglement wedge reconstruction is correct, then we should be able to distinguish
ρA(w, w̄) and ρA(w′, w̄′) when w �= w′ if either of their bulk points P and P′ is in the entanglement
wedge. If both of them are outside, we should not be able to distinguish ρA(w, w̄) and ρA(w′, w̄′).
Remarkably, this argument of distinguishability is based on purely CFT calculations and we can
define a CFT counterpart of the entanglement wedge from this analysis, which we call the CFT
wedge. We can regard CFT wedges as shadows of entanglement wedges when we interpret the
geodesics in Euclidean spaces as light rays. In other words, the entanglement wedge reconstruction
argues that the CFT wedge coincides with the true entanglement wedge. One may think that our
definition of CFT wedges may depend on the choice of the local operator Oα . However, assuming
the probe limit in Eq. (1.2), our results for CFT wedges are universal and do not depend on the choice
of the local operator. We only define the notion of CFT wedges in this probe limit. The main part of
this paper is to confirm these expectations in various examples of AdS/CFT.

The paper is organized as follows. In Sect. 2 we give a brief review of the distance (or distinguisha-
bility) measure of quantum states, and introduce the concept of CFT wedges. In Sect. 3 we analyze
the geometry of the CFT wedge from the measure I (ρ, ρ′) in the single-interval case of 2d CFTs, and
confirm that this reproduces the entanglement wedges. In Sect. 4 we study the Bures information
metric in the single-interval case of 2d CFTs, and confirm that this reproduces the entanglement
wedges. In Sect. 5 we analyze how the time-dependent excited states correctly probe the entangle-
ment wedges in a simple example. In Sect. 6 we turn to the double-interval example in 2d CFTs and
confirm that the Bures metric reproduces the entanglement wedges, while the measure I (ρ, ρ′) leads
to a small deviation. In Sect. 7 we analyze the CFT wedges for global quantum quenches and the
thermofield double state, where the correct entanglement wedge is reproduced under a reasonable
assumption. In Sect. 8 we extend our calculations of CFT wedges in higher-dimensional holographic
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CFTs and confirm that the Bures metric reproduces the correct entanglement wedges. In Sect. 9 we
discuss other distinguishability measures, and observe that CFT wedges for most of them fall into
the two classes of the Bures metric and I (ρ, ρ′). In Sect. 10 we discuss how we can reproduce the
entanglement wedge if we employ the HKLL operators instead of local operators. In Sect. 11 we
summarize our conclusions and discuss future problems. Appendix A gives the detailed calculations
of I (ρ, ρ′) in the single interval. In Appendix B we present a detailed analysis of the Bures metric
in c = 1 CFT. In Appendix C we discuss the Bures metric in a general time-dependent case. In
Appendix D we list the properties of various distinguishability measures.

2. Distance measure of quantum states and CFT wedges

The main analysis in this paper is to study the distinguishability of reduced density matrices of the
form of Eq. (1.1). Therefore, in this section we summarize relevant measures of distances between two
density matrices ρ and ρ′. See Ref. [32] for a textbook. After these preparations we will introduce
the notion of CFT wedges, which are finally identified with shadows of entanglement wedges in
AdS/CFT.

2.1. Fidelity and related quantities

First, we introduce quantities which provide analogues of the inner product of two density matrices.
One of the best quantities is the fidelity F(ρ, ρ′) defined by

F(ρ, ρ′) = Tr
[√√

ρρ′√ρ

]
. (2.1)

The fidelity is symmetric under an exchange of ρ and ρ′, and takes values in the range

0 ≤ F(ρ, ρ′) = F(ρ′, ρ) ≤ 1. (2.2)

Moreover, it satisfies

F(ρ, ρ′) = 1 if and only if ρ = ρ′, (2.3)

F(ρ, ρ′) = 0 if and only if ρρ′ = 0. (2.4)

Therefore, we can employ the fidelity to distinguish two quantum states.
There are many other measures which satisfy the basic properties in Eqs. (2.2), (2.3), and (2.4)—

they are listed in Appendix D. One of them is the affinity A(ρ, ρ′) [33]:

A(ρ, ρ′) = Tr
[√

ρ
√

ρ′
]
. (2.5)

This quantity has upper and lower bounds in terms of the fidelity:

F2(ρ, ρ′) ≤ A(ρ, ρ′) ≤ F(ρ, ρ′). (2.6)

For the actual computations, taking a square root of a given density matrix is not always tractable.
This motivates us to consider the quantity I (ρ, ρ′):

I (ρ, ρ′) ≡ tr ρρ′√(
tr ρ2

) (
tr ρ′2) . (2.7)
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This quantity is called geometric mean fidelity; it was introduced in Ref. [34] (see also Refs. [35,36])
and satisfies the basic properties in Eqs. (2.2), (2.3), and (2.4). it was employed to study non-
equilibrium dynamics of quantum systems in Ref. [37]. We might be able to think that this quantity
I (ρ, ρ′) is analogous to the second Rényi entropy, while the fidelity is analogous to von Neumann
entropy. Indeed, the total power of ρ and ρ′ is two in the former, and one in the latter.

It is also useful to evaluate these quantities when the states are pure, expressed as ρ = |φ〉〈φ| and
ρ′ = |φ′〉〈φ′|. From the definitions, we obtain

F(ρ, ρ′) = |〈φ|φ′〉|, (2.8)

A(ρ, ρ′) = |〈φ|φ′〉|2, (2.9)

I (ρ, ρ′) = |〈φ|φ′〉|2. (2.10)

2.2. Distance measures

Now we move on to distance measures between two quantum states ρ and ρ′. First of all, the Bures
distance is defined from the fidelity as

DB(ρ, ρ′)2 = 2(1 − F(ρ, ρ′)). (2.11)

It is obvious that this quantity is symmetric and takes values in the range

0 ≤ DB(ρ, ρ′) = DB(ρ′, ρ) ≤ 2. (2.12)

In addition, it satisfies

DB(ρ, ρ′) = 0 if and only if ρ = ρ′. (2.13)

There are several other important distance measures: the trace distance Dtr(ρ, ρ′) [38], relative
entropy distance DR(ρ, ρ′), Hellinger distance DH(ρ, ρ′), and geometric mean fidelity distance
DI (ρ, ρ′), given respectively by

Dtr(ρ, ρ′) = 1

2
|ρ − ρ′|1 = 1

2
Tr
[√

(ρ − ρ′)2
]

, (2.14)

DR(ρ, ρ′)2 = Tr
[
ρ(log ρ − log ρ′)

]
, (2.15)

DH(ρ, ρ′)2 = 2(1 − A(ρ, ρ′)), (2.16)

DI (ρ, ρ′)2 = 2(1 − I (ρ, ρ′)). (2.17)

Three of them, namely Dtr , DH, and DI , satisfy the basic properties in Eqs. (2.12) and (2.13).
On the other hand, the relative entropy distance DR(ρ, ρ′) is not symmetric and takes the values
0 ≤ DR(ρ, ρ′) < ∞, though Eq. (2.13) holds. Refer to Refs. [39,40] for computations in integrable
2d CFTs, and to Ref. [41] for an application to locally excited states (see also Ref. [42]).

It is useful to note the following relations between these distances:

DR(ρ, ρ′) ≥ 2Dtr(ρ, ρ′)2, (2.18)

1 − F(ρ, ρ′) ≤ Dtr(ρ, ρ′) ≤
√

1 − F(ρ, ρ′)2. (2.19)
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2.3. Information metrics and the quantum Cramér–Rao theorem

Furthermore, we can introduce the so-called information metric when the density matrix is param-
eterized by continuous variables λi, denoted by ρ(λ). For the Bures distance, this metric is defined
as

DB(ρ(λ + dλ), ρ(λ)) = GBijdλidλj + · · ·, (2.20)

where the dλi are infinitesimally small and · · · denotes the higher powers of dλi. This metric GBij

is called the Bures metric. In the same way, we can define another metric from the relative entropy
distance DR, called the quantum Fisher metric GR. It is also possible to define the metrics GH and
GI for the distance measures DH and DI , respectively.

The quantum version of the Cramér–Rao theorem [43] (see also the textbook Ref. [32]) tells us
that when we try to estimate the value of λi from physical measurements, the errors of the estimated
value are bounded by the inverse of the Bures metric GB:

〈δλiδλj〉 ≥ (G−1
B )ij. (2.21)

In particular, when GBij = 0, the uncertainty becomes divergent and we cannot estimate the value of
λi at all. This is simply because the density matrix does not depend on λi and we cannot distinguish
density matrices for various values of λi.

More precisely, the quantum Cramér–Rao theorem is stated as follows. A physical measurement
is described by the positive operator-valued measure Mω (≥ 0) such that

∑
ω Mω = I , where ω

corresponds to each value of the measurement. Tr[ρMω] denotes the probability that the measured
value is given by ω. We would like to estimate the value of λi from the measured value ω following
an arbitrarily chosen function λi → λ̂i(ω). We introduce an error in this process as

〈δλiδλj〉 ≡
∑
ω

(λi − λ̂i(ω))(λj − λ̂j(ω))Tr[ρλMω]. (2.22)

To be exact, we actually consider n copies of the system ρ⊗n
λ and take the asymptotic limit

〈δλiδλj〉n ≡
∑
ω

(λi − λ̂i(ω))(λj − λ̂j(ω))Tr[ρ⊗n
λ M n

ω]. (2.23)

The quantum Cramér–Rao theorem [43] argues that the lower bound is given by the inverse of the
Bures metric:

lim
n→∞ n〈δλiδλj〉n ≥ (G−1

B )ij. (2.24)

2.4. Simple information metric example: Pure states in CFTs

For pure states ρ = |φ〉〈φ| and ρ′ = |φ′〉〈φ′|, the distance measures look like

DB(ρ, ρ′)2 = 2(1 − |〈φ|φ′〉|), (2.25)

DH(ρ, ρ′)2 = 2(1 − |〈φ|φ′〉|2). (2.26)

We omit the relative entropy distance because DR becomes divergent when |φ〉 �= |φ′〉.
Consider locally excited states |φ(w, w̄)〉 = Oα(w, w̄)|0〉 in a 2d CFT. We simply find

|〈φ(w)|φ′(w′)〉| = |w − w̄|2h|w′ − w̄′|2h

|w − w̄′|4h
. (2.27)
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This leads to the Bures metric

D2
B � hα

τ 2 (dτ 2 + dx2), (2.28)

and the Hellinger metric

D2
H � 2hα

τ 2 (dτ 2 + dx2). (2.29)

Interestingly, the information metric is proportional to the two-dimensional hyperbolic space H2.
This looks like a time slice of the gravity dual, i.e. the Poincaré AdS3 of Eq. (1.3). This coincidence
is very natural because the distinguishability between two excitations should increase when the cor-
responding bulk points are geometrically separated. This was already noted essentially in Ref. [44].
However, this result is universal for any 2d CFT as the computation only involves two-point func-
tions. This implies that the study of the information metric of the reduced density matrix ρA has more
opportunities to explore deep mechanisms of AdS/CFT, which is the main motivation of this paper.

2.5. CFT wedges in holographic CFTs

Distinguishability measures for the reduced density matrices of Eq. (1.1) crucially depend on the
nature of CFTs such as multi-point correlation functions, as opposed to those for pure states. The
special properties of holographic CFTs allow us to introduce a CFT counterpart of the entanglement
wedge, as we will explain in this paper for various examples. We call these geometrical structures
in holographic CFTs CFT wedges, which we introduce below.

Consider an information metric G# (here, # = B, I , . . . specifies the type of distance measure) for a
reduced density matrix ρA of a locally excited state given by Eq. (1.1), regarding the operator insertion
point X = (w, w̄) as the parameter λ in Eq. (2.20). The information metric has the components G#ij

with i, j = w, w̄, and depends on the location (w, w̄). Since the restriction to 2d CFTs is not necessary
in this subsection, we have in mind holographic CFTs in any dimensions below.

In this setup, we introduce the geometrical structure in a CFT, which we call the CFT wedge C(#)
A

for the subsystem A, as follows:

if X ∈ C(#)
A , then G#ij(X ) > 0;

if X /∈ C(#)
A , then G#ij(X ) � 0. (2.30)

In the case of the Bures metric, we can write this equivalently in terms of fidelity as follows:

if X = X ′ ∈ C(B)
A , then F(ρ(X ), ρ(X ′)) � 1;

if X /∈ C(B)
A and X ′ /∈ C(B)

A , then F(ρ(X ), ρ(X ′)) � 1;

otherwise, F(ρ(X ), ρ(X ′)) � 0. (2.31)

Also, for the distance measure I (ρ, ρ′) we can express the CFT wedge C(I )
A by

if X = X ′ ∈ C(I )
A , then I (ρ(X ), ρ(X ′)) � 1;

if X /∈ C(I )
A and X ′ /∈ C(I )

A , then I (ρ(X ), ρ(X ′)) � 1;

otherwise, I (ρ(X ), ρ(X ′)) � 0. (2.32)
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Note that the sharp geometrical structures in Eqs. (2.30), (2.31), and (2.32) only appear in holo-
graphic CFTs, where we take the limit hα � 1 as in Eq. (1.2). The non-vanishing information metric
in Eq. (2.30) scales as O(hα). For generic CFTs, such as free field CFTs, we only find smeared
behaviors, which prohibit us defining a CFT wedge, though qualitatively the behaviors of distance
measures are often similar. In other words, the sharp CFT wedges emerge only when we consider
holographic CFTs.

We would also like to stress that the CFT wedges can depend on the choice of distance measures.
Indeed, as we will see later, for generic setups, C(B)

A and C(I )
A can differ. In the end, we argue that

the correct choice which probes the low-energy states in AdS/CFT (i.e. the code subspace) will be
the Bures metric. We will comment more on this point in the final part of this paper.

3. Entanglement wedge from I (ρ, ρ ′) in the single-interval case

We start with the simplest example, namely the CFT wedges C(I )
A of Eq. (2.32) for the measure

I (ρ, ρ′) in Eq. (2.7) when A is a single interval in a 2d CFT. Consider a 2d CFT on the flat space R2,
whose Euclidean time and space coordinate are denoted by τ and x. We employ a complex coordinate
(w, w̄), or equally a Cartesian coordinate (τ , x) such that w = x + iτ . If the CFT has a gravity dual,
it is dual to gravity in the Poincaré AdS3 metric of Eq. (1.3). However, below we will analyze both
holographic and non-holographic CFTs to compare their results.

3.1. Reduced density matrix for single-interval and CFT wedges

We choose the subsystem A to be an interval 0 ≤ x ≤ L at τ = 0. The extremal surface �A in the
bulk AdS is given by the semicircle (x − L/2)2 + η2 = L2/4. Therefore, the entanglement wedge
MA is given by

(x − L/2)2 + η2 ≤ L2/4. (3.1)

Note that this is also identical to the causal wedge [45].
From the viewpoint of CFTs, we consider an excited state by inserting a local operator Oα at (w, w̄)

and define the reduced density matrix in Eq. (1.1). We regard the location (τ , x) of the insertion point
as the parameters of ρA. Having in mind the AdS/CFT duality, the geodesic which connects (τ , x) and
(−τ , x) intersects the time slice τ = 0 at the point P given by η = τ . Therefore, if the entanglement
reconstruction is correct, the CFT wedge, based on a proper distance measure, should coincide with
|w − L/2| ≤ L/2, or, equally,

CA :
(

x − L

2

)2

+ τ 2 ≤ L2

4
. (3.2)

Accordingly, the information metric should vanish if the intersection P is outside the CFT wedge,
i.e.

CA :
(

x − L

2

)2

+ τ 2 >
L2

4
, (3.3)

while it is non-vanishing inside the wedge, Eq. (3.2).
In this section we focus on calculating the CFT wedge C(I ) for the measure I (ρ, ρ′) of Eq. (2.7).
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Fig. 2. The conformal mapping for the calculation of Tr[ρρ ′]. The green (or blue) points describe the local
excitations in the CFT which are dual to bulk local excitations outside (or inside) the CFT wedge.

3.2. Calculation of I (ρ, ρ ′)
Let us calculate I (ρ, ρ′) of Eq. (2.7) for the two density matrices

ρ = ρA(w, w̄), ρ′ = ρA(w′, w̄′). (3.4)

To calculate Tr[ρρ′], consider the conformal transformation1

z2 = w

w − L
, (3.5)

which maps two flat-space path integrals for ρ(w, w̄) and ρ(w′, w̄′) into a single plane. The coordinate
of the latter (single plane) is written as (z, z̄). The insertion points of the local operators Oα and O†

α

are given by

w1 = x + iτ(= w), w2 = x − iτ(= w̄) (3.6)

for ρ(w, w̄), and

w′
3 = x′ + iτ ′(= w′), w′

4 = x′ − iτ ′(= w̄′) (3.7)

for ρ(w′, w̄′). Refer to the upper two pictures in Fig. 2. The transformation in Eq. (3.5) maps these
four points into z1, z2, z′

3, and z′
4 given by

z1 =
√ −x − iτ

L − x − iτ
, z2 =

√ −x + iτ

L − x + iτ
,

z′
3 = −

√ −x′ − iτ ′
L − x′ − iτ ′ , z′

4 = −
√ −x′ + iτ ′

L − x′ + iτ ′ . (3.8)

It is important to note that the boundaries of the CFT wedge |w − L/2| = L/2 of the original two
flat planes are mapped into the diagonal lines z = ±iz̄, as depicted in Fig. 2. As we will see soon,
this leads to the CFT wedge structure in the distinguishability.

1 The calculations are similar to Refs. [29,30,46].
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The trace Tr[ρρ′] is now expressed as a correlation function on the z-plane:

Tr[ρρ′] =
∣∣∣∣ dz1

dw1

∣∣∣∣
2hα

∣∣∣∣ dz2

dw2

∣∣∣∣
2hα

∣∣∣∣ dz′
3

dw′
3

∣∣∣∣
2hα

∣∣∣∣ dz′
4

dw′
4

∣∣∣∣
2hα

· H (z1, z2, z′
3, z′

4) · Z (2)

(Z (1))2
,

H (z1, z2, z′
3, z′

4) ≡ 〈O†
α(z1, z̄1)Oα(z2, z̄2)O

†
α(z′

3, z̄′
3)Oα(z′

4, z̄′
4)〉

〈O†
α(w1, w̄1)Oα(w2, w̄2)〉〈O†

α(w′
3, w̄′

3)Oα(w′
4, w̄′

4)〉
, (3.9)

where 〈· · ·〉 denotes the normalized correlation function such that 〈1〉 = 1, and we also write the
vacuum partition function on an n-sheeted complex plane by Z (n).

Thus, we obtain

I (ρ, ρ′) =
∣∣∣∣dz1/dw1

dz′
1/dw′

1

∣∣∣∣
2hα

∣∣∣∣dz2/dw2

dz′
2/dw′

2

∣∣∣∣
2hα

∣∣∣∣dz′
3/dw′

3

dz3/dw3

∣∣∣∣
2hα

∣∣∣∣dz′
4/dw′

4

dz4/dw4

∣∣∣∣
2hα

× F(z1, z2, z′
3, z′

4)√
F(z1, z2, z3, z4)F(z′

1, z′
2, z′

3, z′
4)

, (3.10)

where F is the (normalized) four-point function

F(z1, z2, z′
3, z′

4) = 〈O†
α(z1, z̄1)Oα(z2, z̄2)O

†
α(z′

3, z̄′
3)Oα(z′

4, z̄′
4)〉. (3.11)

Because we have the relations

z1 = −z3 = z, z2 = −z4 = z̄,

z′
1 = −z′

3 = z′, z′
2 = −z′

4 = z̄′, (3.12)

we can simplify Eq. (3.10) as follows:

I (ρ, ρ′) = F(z, z̄, −z′, −z̄′)√
F(z, z̄, −z, −z̄)F(z′, z̄′, −z′, −z̄′)

. (3.13)

We now study this quantity for both a holographic CFT and a free scalar CFT.

3.3. Holographic CFTs

First, let us evaluate Eq. (3.13) in holographic CFTs. We assume the range in Eq. (1.2) of conformal
dimension hα . In this case, the large-N (or large-c) factorization property justifies the generalized
free field approximation [47]. That is, in the large-c limit, the leading contribution to the correlation
function in Eq. (3.11) is given by a simple Wick contraction based on the two-point function

〈O†
α(z, z̄)Oα(z′, z̄′)〉 = |z − z′|−4hα . (3.14)

The generalized free field prescription leads to a simple expression of the four-point function:

F(z1, z2, z′
3, z′

4) � |z1 − z2|−4h · |z′
3 − z′

4|−4h + |z1 − z′
4|−4h|z2 − z′

3|−4h

� |z − z̄|−4h · |z′ − z̄′|−4h + |z + z̄′|−8h, (3.15)

where in the final line we remember that z1 = z and z′ = z3. In the right-hand side of Eq. (3.15), the
first term comes from the Wick contraction 〈O†(1)O(2)〉〈O†(3)O(4)〉, which we call the trivial Wick
contraction. The second term arises from the other Wick contraction, 〈O†(1)O(4)〉〈O†(3)O(2)〉,
which we call the non-trivial Wick contraction.

11/59

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2020/11/11B105/5921192 by Kyoto D

aigaku N
ogaku-bu Toshoshitsu user on 05 July 2022



PTEP 2020, 11B105 Y. Kusuki et al.

First, consider the case where the local operator is inserted outside the CFT wedge, Eq. (3.3). This
is mapped into the uncolored region in Fig. 2 given by the wedge region |Im[z]| < |Re[z]|. When
both w and w′ are outside the wedge, the lengths |z1 −z2| = |z− z̄| and |z′

1 −z′
2| = |z′− z̄′| are shorter

than |z1 − z′
4| = |z2 − z′

3| = |z + z̄′|. Therefore, the four-point function in Eq. (3.11) is approximated
by the first term, which comes from the trivial Wick contraction. Therefore, we finally obtain

if w and w′ are outside, then I (ρ, ρ′) � 1. (3.16)

This tells us that we cannot distinguish between ρ and ρ′ when the local excitations are outside the
CFT wedge.

Next, we turn to the case where both w and w′ are inside the CFT wedge, Eq. (3.2). In this case,
the lengths |z1 − z2| = |z − z̄| and |z′

1 − z′
2| = |z′ − z̄′| are larger than |z1 − z′

4| = |z2 − z′
3| = |z + z̄′|.

Therefore, the four-point function in Eq. (3.11) is approximated by the second term, which comes
from the non-trivial Wick contraction. Therefore, we finally obtain

I (ρ, ρ′) � |z + z̄′|−8h · |z + z̄|4h · |z′ + z̄′|4h. (3.17)

Since we always have |z + z̄||z′ + z̄′| ≤ |z + z′|2 and take the limit hα � 1, this quantity I (ρ, ρ′) is
vanishing except when z = z′:

if w and w′ are inside and w = w′, then I (ρ, ρ′) � 1; (3.18)

if w and w′ are inside and w �= w′, then I (ρ, ρ′) � 0. (3.19)

Finally, when either of w or w′ is inside the CFT wedge, we find that I (ρ, ρ′) is vanishing:

if w is inside and w′ is outside (or vice versa), then I (ρ, ρ′) � 0. (3.20)

These behaviors in Eqs. (3.16), (3.18), (3.19), and (3.20) confirm our expectations in Eq. (2.32),
and this shows that the CFT wedge C(I )

A agrees with the entanglement wedge in AdS/CFT in the
present example. Refer to Appendix A for more detailed calculations of I (ρ, ρ′) in this example.

We also plot the profiles of I (ρ, ρ′) in the left columns of Figs. 3 and 4. The left graph in Fig. 3
shows I (ρ, ρ′) as a function of w when w′ is fixed inside the CFT wedge. We observe a clear peak
at w = w′, which will be highly localized in the limit hα � 1. In the left graphs of Fig. 4 we fixed
w′ outside the CFT wedge. We can observe a clear entanglement wedge structure, where we have
I � 0 inside and I � 1 outside.

3.4. Free scalar c = 1 CFT

To understand how the properties of holographic CFTs are relevant to the emergence of entanglement
wedges in the gravity duals, consider the free massless scalar CFT (c = 1 CFT) in two dimensions.
We choose the operator Oα to be

Oα(w, w̄) = eip(φ(w)+φ(w̄)), (3.21)

where φ(w) and φ(w̄) are chiral and anti-chiral massless scalar fields. Note that the conformal
dimension of the above operator is hα = h̄α = p2

2 . In this case we obtain

F(z, z̄, −z′, −z̄′) = |z + z′|8h

|z − z̄|4h|z′ − z̄′|4h|z + z̄′|8h
. (3.22)
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Fig. 3. The value of I (ρ, ρ ′) as a function of Re[w] (horizontal axis) and Im[w] (depth axis) when w′ is fixed
inside the CFT wedge. In particular, we chose hα = 1/2, w′ = 1 + 0.1i, and A = [0, 2] (i.e. L = 2). The left
and right graphs describe the results for the holographic CFT and the c = 1 free scalar CFT, respectively.

We can easily estimate Eq. (3.13) analytically, and obtain

I (ρ, ρ′) =
( |z + z′|2|z + z̄||z′ + z̄′|

4|z||z′||z + z̄′|2
)4h

, (3.23)

for any values of w and w′. Note that in these excited states, we always have Tr[ρ2] = Tr[ρ′2] = 1
as they do not generate entanglement between the left and right moving modes [29,30,46].

Thus, in this free scalar CFT there is no sharp CFT wedge structure, as expected for non-holographic
CFTs. The numerical plots are in the right columns of Figs. 3 and 4. Even though we can observe a
peak when w is inside the CFT wedge (see Fig. 3), which is similar to the holographic case, we do
not find any sharp CFT wedge when w is outside the wedge (see Fig. 4). In this way we can conclude
that there is no emergence of the entanglement wedge in c = 1 CFT, as expected.

3.5. Two different operators

So far we have assumed that both ρA and ρ′
A are created by the same local operator Oα , as in Eq. (1.1).

It is also instructive to consider the case where ρA and ρ′
A are created by two orthogonal operators Oα

and Oβ respectively (each chiral conformal dimension hα and hβ) such that the two-point function
〈OαOβ〉 vanishes. We would like to calculate I (ρA, ρ′

A) in this case. Again, we can use the expression
in Eq. (3.10) as

I (ρA, ρ′
A) = 〈O†

α(z1)Oα(z2)O
†
β(z′

3)Oβ(z′
4)〉√

〈O†
α(z1)Oα(z2)O

†
α(z3)Oα(z4)〉.〈O†

β(z′
1)Oβ(z′

2)O
†
β(z′

3)Oβ(z′
4)〉.

, (3.24)

where we can write z1 = z, z2 = z̄, z3 = −z, z4 = −z̄, etc.
Now we evaluate this in holographic CFTs, by applying the large-c factorization (generalized free

field prescription). First of all, we can always estimate

〈O†
α(z1)Oα(z2)O

†
β(z′

3)Oβ(z′
4)〉 � |z − z̄|−4hα · |z′ − z̄′|−4hβ . (3.25)
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Fig. 4. The value of I (ρ, ρ ′) as a function of Re[w] (horizontal axis) and Im[w] (depth axis) when w′ is fixed
outside the CFT wedge. In particular, we chose hα = 10 and A = [0, 2] (i.e. L = 2). The upper two graphs
are for w′ = −1 + 0.1i, and the lower ones are for w′ = 1 + 2i, both of which are outside the wedge. The left
and right graphs describe the results for the holographic CFT and the c = 1 free scalar CFT, respectively. We
find that the wedge structure is sharp only in the holographic CFT. For the free scalar CFT, we can detect an
excitation even outside the wedge.

Depending on whether z � z′ is inside or outside the CFT wedge, Eqs. (3.2) or (3.3), we find

inside EW: 〈O†
α(z1)Oα(z2)O

†
α(z3)Oα(z4)〉 � |z − z̄|−8hα ;

outside EW: 〈O†
α(z1)Oα(z2)O

†
α(z3)Oα(z4)〉 � |z + z̄|−8hα . (3.26)

Thus, we can evaluate Eq. (3.24) as follows:

inside EW: I (ρA, ρ′
A) �

∣∣∣∣z + z̄

z − z̄

∣∣∣∣
4hα

·
∣∣∣∣∣z

′ + z̄′

z′ − z̄′

∣∣∣∣∣
4hβ

� 0;

outside EW: I (ρA, ρ′
A) � 1. (3.27)

This nicely fits with the entanglement wedge structure inAdS/CFT: we can distinguish two different
operators inside the wedge, while we cannot outside. In particular, since this analysis can be applied
to the case when Oβ is the identity operator, ρA cannot be distinguished from the vacuum one (no
insertions of operators), if the insertion of Oα is outside the wedge.
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Fig. 5. The complex plane which describes the path integral that calculates the trace An,m = Tr[(ρmρ ′ρm)n],
i.e. Eq. (4.1), after performing the conformal transformation in Eq. (4.3). Here we choose m = 1 and n = 3
for convenience.

4. The Bures metric in the single-interval case

So far we have studied the measure I (ρ, ρ′). Instead, here we calculate the Bures distance DB(ρ, ρ′)
defined by Eq. (2.11) and the Bures metric GB defined by Eq. (2.20) in the same setup. This problem
is essentially the computation of the following trace:

An,m(ρ, ρ′) = Tr[(ρmρ′ρm)n]. (4.1)

By analytically continuing n and m and setting n = 1/2 and m = 1/2, we obtain the fidelity:

A1/2,1/2(ρ, ρ′) = Tr
[√√

ρρ′√ρ

]
= F(ρ, ρ′). (4.2)

We will employ this replica-like method below to calculate the fidelity.
For this, we apply the conformal transformation

zk = w

w − L
, (4.3)

where

k = (2m + 1)n, (4.4)

so that the path integrals for 2mn ρs and n ρ′s are mapped into that on a single plane, with the
correct order of ρs and ρ′s specified by Eq. (4.1). See Fig. 5 for a sketch of the geometry after
the conformal transformation. This map is similar to those employed for the calculations of relative
entropy [48–52].

Then, An,m is written as the 2k-point function divided by the normalization of Tr[ρ] and Tr[ρ′],
i.e. two-point functions:

An,m = 〈O†
α(w1)Oα(w2) · · · O†

α(w2k−1)Oα(w2k)〉∏k
i=1〈O†

α(w2i−1)Oα(w2i)〉
· Z (k)

(Z (1))k
. (4.5)
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Here, Z (k) is the vacuum partition function with k-replicated space. The 2k-point function in the
w-plane is mapped into that in the z-plane by

〈O†
α(w1)Oα(w2) · · · O†

α(w2k−1)Oα(w2k)〉

=
2k∏

i=1

∣∣∣∣ dzi

dwi

∣∣∣∣
2h

· 〈O†
α(z1)Oα(z2) · · · O†

α(z2k−1)Oα(z2k)〉. (4.6)

Since we have

dz

dw
= −z1−k(zk − 1)2

kL
(4.7)

and

〈O†
α(w)Oα(w′)〉 =

∣∣∣∣∣(z
k − 1)(z′k − 1)

L(z′k − zk)

∣∣∣∣∣
4hα

, (4.8)

the ratio in Eq. (4.5) can be rewritten as

An,m =
2k∏

i=1

∣∣∣∣∣(zi)
1−k

k

∣∣∣∣∣
2hα

×

k∏
j=1

|(z2j−1)
k − (z2j)

k |4hα · 〈O†
α(z1)Oα(z2) · · · O†

α(z2k−1)O(z2k)〉 · Z (k)

(Z (1))k
. (4.9)

Note that we have

z1 =
( −x − iτ

L − x − iτ

)1/k

, z2(= z̄1) =
( −x + iτ

L − x + iτ

)1/k

,

z2s+1 = e
2π i
k sz1, z2s+2 = e

2π i
k sz2 (s = 1, 2, . . . , k − 1). (4.10)

As we will see in explicit evaluations, the analytical continuation m = 1/2 is rather straightforward.
This allows us to define the convenient ratio

An(ρ, ρ′) = Tr[(√ρρ′√ρ)n]√
Tr[ρ2n]Tr[ρ′2n] . (4.11)

We immediately find that A1(ρ, ρ′) = I (ρ, ρ′) and A1/2(ρ, ρ′) = F(ρ, ρ′).

4.1. The Bures metric in holographic CFT for Poincaré AdS3

Let us focus on a holographic 2d CFT. The leading contribution is again given by the generalized
free field prescription. When w and w′ are outside the CFT wedge, Eq. (3.3), we can approximate
the 2k-point function as

〈O†
α(z1)Oα(z2) · · · O†

α(z2k−1)Oα(z2k)〉 �
k∏

j=1

〈O†
α(z2j−1)Oα(z2j)〉

�
k∏

j=1

|z2j−1 − z2j|−4hα . (4.12)
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In this case we get the trivial Bures distance

DB(ρ, ρ′)2 = 2(1 − A1/2,1/2) � 0, (4.13)

where we note that k → 1 in this limit. Thus, the Bures metrics GBij all vanish in the outside wedge
case.

On the other hand, when w and w′ are inside the CFT wedge, Eq. (3.2), we can approximate

〈O†(z1)O(z2) · · · O†(z2k−1)O(z2k)〉 �
k∏

j=1

〈O†(z2j−2)O(z2j−1)〉

�
k∏

j=1

|z2j−2 − z2j−1|−4hα

� |z̄ − e
2π i
k z′|−8hαn|z̄ − e

2π i
k z|−4hα(2m−1)n, (4.14)

where we regard z0 = z2k . Thus, we have

An,m �
2k∏

i=1

∣∣∣∣∣(zi)
1−k

k

∣∣∣∣∣
2hα

×

|zk − z̄k |8hαmn|z′k − z̄′k |4hαn|z̄ − e
2π i
k z′|−8hαn|z̄ − e

2π i
k z|−4hα(2m−1)n · Z (k)

(Z (1))k
. (4.15)

In the limit m = n → 1/2 (k → 1), we find

A1/2,1/2 = |z − z̄|2hα |z′ − z̄′|2h|z′ − z̄|−4hα = |w − w̄|2hα |w′ − w̄′|2hα |w′ − w̄|−4hα , (4.16)

where z and w are related by z = w
w−L in the k → 1 limit. By assuming that dz = z′ − z is

infinitesimally small, we obtain the Bures metric

DB(ρ, ρ′)2 � hα

τ 2 (dx2 + dτ 2). (4.17)

Interestingly, this Bures metric coincides with that for the pure state in Eq. (2.28). Therefore, it
is proportional to the metric on a time slice of AdS3. Remember that the original Euclidean time
coordinate τ can be regarded as the radial coordinate η via the intersection between the geodesic
and the time slice, as in Fig. 1. This agreement between the information metric with the bulk metric
is natural if we think that the distinguishability in the quantum estimation theory is related to the
bulk locality resolution. At the same time, the agreement between the Bures metric for ρA with
local excitation inside the CFT wedge and that for the pure state tells us us that we can perfectly
reconstruct the information in the entanglement wedge from ρA. This supports the entanglement
wedge reconstruction.

4.2. The Bures metric in holographic CFT for global AdS3

Next, we turn to a holographic CFT dual to the Euclidean global AdS3,

ds2 = R2(cosh2 ρdτ 2 + dρ2 + sinh2 ρdx2). (4.18)

This is a 2d holographic CFT with the space coordinate compactified on a circle, x ∼ x + 2π . We
choose the subsystem A to be the interval 0 ≤ x ≤ l at τ = 0.
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By performing the conformal transformation w = eξ with ξ = τ + ix, we find

A1/2,1/2 = |w − 1/w̄|2hα |w′ − 1/w̄′|2hα

|w − 1/w̄′|2hα |w′ − 1/w̄|2hα
=
[

2 cosh τ cosh τ ′

cosh(τ + τ ′) − cos(x − x′)

]2hα

. (4.19)

This leads to the following Bures metric inside the CFT wedge:

D2
B = hα

sinh2 τ
(dτ 2 + dx2). (4.20)

Since the geodesic in global AdS3 which connects the two points (τ0, x0) and (−τ0, x0) at the
boundary ρ → ∞ looks like

e2τ =
sinh ρ +

{
cosh2 ρ

cosh2 ρ∗
− 1

}1/2

sinh ρ −
{

cosh2 ρ

cosh2 ρ∗
− 1

}1/2 , (4.21)

where ρ∗ is the intersection point of the time slice τ = 0 and this geodesic in the bulk AdS, by taking
the boundary limit ρ → ∞ we find the relation

sinh τ0 = 1

sinh ρ∗
. (4.22)

By relating the boundary point (τ , x) to the bulk point (ρ, x) on the time slice τ = 0 using this
relation we can rewrite the metric in Eq. (4.20) as

D2
B = hα(dρ2 + sinh2 ρdx2), (4.23)

which agrees with the time slice metric of the global AdS3, Eq. (4.18).

4.3. The Bures metric in holographic CFT for BTZ

Consider a holographic CFT dual to the Euclidean Bañados–Teitelboim–Zanelli (BTZ) (with a
non-compact horizon),

ds2 = R2

((
2π

β

)2

sinh2 ρdτ 2 + dρ2 +
(

2π

β

)2

cosh2 ρdx2

)
. (4.24)

This is given by a 2d holographic CFT, with the space coordinate compactified on a circle, τ ∼ τ +β.

By performing the conformal transformation w = e
2π
β

ξ with ξ = x + iτ , we find the following
result in the case of the non-trivial Wick contraction:

A1/2,1/2 = |w − w̄|2hα |w′ − w̄′|2hα |w′ − w̄|−4hα =
⎡
⎣ 2 sin

(
2π
β

τ
)

sin
(

2π
β

τ ′
)

cos
(

2π(τ+τ ′)
β

)
− cosh

(
2π(x−x′)

β

)
⎤
⎦

2hα

.(4.25)

Note that we limit the range of τ to −β/2 ≤ τ ≤ β/2.
This leads to the following Bures metric inside the wedge:

D2
B = hα

(
2π
β

)2

sin2
(

2π
β

τ
)(dτ 2 + dx2). (4.26)
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The geodesic in BTZ which connects the two points (τ0, x0) and (−τ0, x0) at the boundary ρ = ∞
looks like

ei 4π
β

τ =
cosh ρ + i

{
sinh2 ρ

sinh2 ρ∗
− 1

}1/2

cosh ρ − i
{

sinh2 ρ

sinh2 ρ∗
− 1

}1/2 , (4.27)

where ρ∗ is the intersection point of the time slice τ = 0 and this geodesic in the bulk. Note
that Eq. (4.19) in the global AdS and Eq. (4.27) in BTZ are related by the familiar coordinate
transformation

(ρ, τ , x) → (ρ + iπ/2, iτ , ix). (4.28)

By taking the boundary limit ρ = ∞, we find the relation

sin
(

2π

β
τ0

)
= 1

cosh ρ∗
. (4.29)

By relating the boundary point (τ , x) to the bulk point (ρ, x) on the time slice τ = 0 using this
relation, we can rewrite the metric in Eq. (4.26) as

D2
B = hα

(
dρ2 +

(
2π

β

)2

cosh2 ρdx2

)
, (4.30)

which agrees with the time slice metric of the BTZ, Eq. (4.24).
Moreover, we can also confirm that the CFT wedge in this case agrees with the entanglement

wedge in BTZ as follows. The condition for the non-trivial Wick contraction is |z − z̄| > |z + z̄|,
where

z2 = e
2π
β

(x+iτ) − 1

e
2π
β

(x+iτ) − e
2π
β

l
. (4.31)

This leads to the condition[
e

2π
β

l sin
(

2πτ

β

)]2

+
(

e
2π
β

l cos
(

2πτ

β

)
− 1

)(
e

2π
β

l cos
(

2πτ

β

)
− e

2π
β

l
)

≤ 0. (4.32)

On the other hand, the geodesic which connects x = 0 and x = l (on the slice τ = 0) in the BTZ
geometry is

cosh
[

2π
β

(
x − l

2

)]
sinh

[
2π
β

(
x − l

2

)] = cosh ρ∗ sinh ρ√
cosh2 ρ − cosh2 ρ∗

, (4.33)

where

cosh ρ∗ =
cosh

(
π l
β

)
sinh

(
π l
β

) . (4.34)

This coincides with the border of Eq. (4.32) via the relation between τ and ρ given by Eq. (4.29).
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4.4. The Bures distance for different operators

Next, we consider the Bures distance DB(ρA, ρ′
A), where ρA and ρ′

A are defined by locally excited
operators Oα(w, w̄) and Oβ(w′, w̄′) that are orthogonal to each other. Let us work out the behavior
of the Bures distance by computing An introduced in Eq. (4.11) and taking the limit n = 1/2. Using
the expression in Eq. (4.9), we eventually find:

if w and w′ are both outside the CFT wedge, then An � 1;

if w and w′ are both inside the CFT wedge,

then An =
∣∣∣∣∣z − e

π i
n z̄

z − z̄

∣∣∣∣∣
4hαn

·
∣∣∣∣∣z

′ − e
π i
n z̄′

z′ − z̄′

∣∣∣∣∣
4hβn

� 0;

if w is inside and w′ outside the CFT wedge,

then An =
∣∣∣∣∣z − e

π i
n z̄

z − z̄

∣∣∣∣∣
4hαn

� 0. (4.35)

Here, we used the assumption that hα , hβ � 1 and noted that the inside CFT wedge region is given

by |z − e
π i
n z̄| < |z − z̄|. By taking the n = 1/2 limit, the fidelity behaves as follows:

if w and w′ are both outside the CFT wedge, then F(ρ, ρ′) � 1;

otherwise, F(ρ, ρ′) � 0. (4.36)

The above behaviors precisely agree with what we expect from the entanglement wedge reconstruc-
tion.

4.5. The Bures distance in free scalar c = 1 CFT

It is useful to compare the previous Bures metric in holographic CFTs with that in free scalar CFT.
Consider a c = 1 free scalar CFT and choose the primary operator Oα to be as in Eq. (3.21) with
p = 1/2 to simplify the calculations. As we explain in Appendix B, in this case we can analytically
evaluate An,m, and eventually we find the fidelity

A1/2,1/2 = (
√

z + √
z′)(

√
z̄ +

√
z̄′)

(
√

z + √
z̄′)(

√
z̄ + √

z′)
· (

√
z + √

z̄)(
√

z′ +
√

z̄′)
4
√|z||z′| , (4.37)

where z = w/(w − L). Several profiles of the fidelity are plotted in Fig. 6.
The Bures metric for the free scalar can be found as

D2
B = − L2(dw)2

16w2(L − w)2 − L2(dw̄)2

16w̄2(L − w̄)2 + L2(√
w

w−L +
√

w̄
w̄−L

)2 · (dw)(dw̄)

2|w||w − L|3 . (4.38)

This metric is plotted in Fig. 7. Note that we cannot find any sharp structure of a CFT wedge, as
opposed to the holographic CFT. However, in the limit τ → 0, we find the metric D2

B � h
τ 2 (dτ 2+dx2)

for 0 ≤ x ≤ L.

5. Time dependence

In this section we analyze how we can understand time evolutions of the CFT wedges and how they
agree with the AdS/CFT prediction.
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Fig. 6. Profiles of the fidelity An=1/2,m=1/2 = Tr
[√√

ρρ ′√ρ
]

in c = 1 free scalar CFT for the operator O = eiφ ,
which has the dimension h = 1/2 when we change the value of w. The upper left, upper right, lower left, and
lower right graphs describe An=1/2,m=1/2 for w = 1 + 0.05i, w = 1 + 0.2i, w = 1 + 0.8i, and w = 1 + 2i,
respectively. An=1/2,m=1/2 is plotted as a function of (p, q) for ρ ′(w′ = p + iq), with L = 2.

Fig. 7. Profiles of the Bures metric for c = 1 free scalar CFT as a function of w = x + iτ : τ 2Gττ (left), τ 2Gτx

(middle), and τ 2Gxx (right) as functions of x and τ , with L = 2. At the boundary τ → 0, we find τ 2Gττ ,xx → 1
2

and τ 2Gτx → 0.

Consider insertions of two operators Oα and O†
α at w1 = x + iτ1 and w2 = x − iτ2. If we choose

τ1 = τ0 + it, τ2 = τ0 − it, (5.1)

then we can describe the Lorentzian time evolution of the state e−τ0H Oα(x)|0〉.
The gravity dual of the two-point function 〈O†

α(w1, w̄1)Oα(w2, w̄2)〉 is given by the geodesic in the
Poincaré AdS3 which connects the two boundary points, given by(

τ − τ1 − τ2

2

)2

+ η2 = (τ1 + τ2)
2

4
. (5.2)

This intersects with the time slice τ = 0 at the point η = √
τ1τ2. Therefore, the condition of inside

the CFT wedge, (
x − L

2

)2

+ η2 ≤ L2

4
, (5.3)
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is rewritten in terms of the CFT as

x2 − Lx + τ1τ2 ≤ 0. (5.4)

We now derive this condition from the information metric analysis. The crucial condition of the CFT
wedge is

|z2 − z3| ≤ |z1 − z2|, (5.5)

where

z1 =
√

−x − iτ1

L − x − iτ1
= −i

√
x + iτ1

L − x − iτ1
,

z2 =
√

−x + iτ2

L − x + iτ2
= i

√
x − iτ2

L − x + iτ2
,

z3 = −z1. (5.6)

This condition is rewritten as

Re
[√

(x + iτ1)(x + iτ2)(L − x + iτ1)(L − x + iτ2)
]

≥ 0. (5.7)

This is equivalent to

Im[(x + iτ1)(x + iτ2)(L − x + iτ1)(L − x + iτ2)] ≥ 0, (5.8)

or equally

− (τ1 + τ2)L(x2 − Lx + τ1τ2) ≥ 0, (5.9)

which finally reproduces the condition in Eq. (5.4) derived from the entanglement wedge structure
in AdS/CFT.

After the analytical continuation to the real time evolution of Eq. (5.1), the CFT wedge is given by(
x − L

2

)2

+ τ 2
0 + t2 ≤ L2

4
. (5.10)

This agrees with the entanglement wedge in AdS/CFT. Refer to Fig. 8 for a sketch.
The fidelity A1/2,1/2 = F(ρ, ρ′) is computed as

A1/2,1/2 =
[ |w2 − w1||w′

2 − w′
1|

|w′
2 − w1||w2 − w′

1|
]2hα

=
[

|τ1 + τ2|2|τ ′
1 + τ ′

2|2(
(x′ − x)2 + (τ1 + τ ′

2)
2
) (

(x′ − x)2 + (τ ′
1 + τ2)2

)
]hα

. (5.11)

This leads to the Bures metric in Euclidean space:

D2
B = 2(1 − A1/2,1/2) � 4h

(τ1 + τ2)2 (dx2 + dτ1dτ2). (5.12)

We can actually see that this length coincides with the square of the minimal length between the
geodesic which connects w1 and w2 and the one which connects w′

1 and w′
2.
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Fig. 8. The time evolution of a local excitation in CFT and entanglement wedge in the gravity dual.

If we substitute Eq. (5.1), then we have the Bures metric under the real time evolution:

D2
B = h

τ 2
0

(dx2 + dt2). (5.13)

Notice that even though we consider the Lorentzian time t, the metric is positive definite as follows
from the definition of the Bures metric. Refer to Appendix C for an analysis of the Bures metric in
the more general time-dependent case.

6. Double-interval case

Consider the reduced density matrix ρA in a 2d CFT when A consists of two disconnected intervals
A1 and A2, which are parameterized as

A1 = [0, s], A2 = [l + s, l + 2s]. (6.1)

Owing to the conformal invariance, this parameterization is enough to cover all possible configura-
tions of the double intervals. Then, as in the single-interval case, we insert a local operator Oα at a
point w = x + iτ . This defines a reduced density matrix ρA, Eq. (1.1), for the locally excited state.

6.1. Conformal map

We employ the following conformal transformation (analogous to the one in Refs. [53–55]) which
maps a complex plane (the w-plane) with two slits along A1 and A2 into a cylinder (coordinate z):

z = f (w) = −J (κ2)

(
1

2K(κ2)

∫ w̃

0

dx√
(1 − x2)(1 − κ2x2)

− 1

2

)
, (6.2)

where we have introduced

w̃ = 2

l

(
w − s − l

2

)
,

J (κ2) = 2π
K(κ2)

K(1 − κ2)
,

K(κ2) =
∫ 1

0

dx√
(1 − x2)(1 − κ2x2)

,
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Fig. 9. The conformal mapping for the calculation of Tr[ρAρ
′
A] in the double-interval case. Here we chose

phase (i), where the entanglement is connected, as shown by the colored region. The lower picture describes the
geometry after the mapping and represents a torus by identifying Im[z] ∼ Im[z]+2π and Re[z] ∼ Re[z]+2J .
The green (or blue) points describe the local excitations in the CFT which are dual to bulk excitations inside
(or outside) the entanglement wedge MA.

κ = l

l + 2s
. (6.3)

Note that we have

dz

dw
= − 2π

lK(1 − κ2)
√

(1 − w̃2)(1 − κ2w̃2)
. (6.4)

Also notice that we are considering the analytical continuation of the integral given by the Jacobi
elliptic function:

∫ w̃

0

dx√
(1 − x2)(1 − κ2x2)

= sn−1(w̃, κ2). (6.5)

It is useful to note the relation

sn−1(w̃, 0) = arcsin(w̃). (6.6)

Consider the calculation of Tr[ρρ′], where ρ = ρA(w, w̄) and ρ′ = ρA(w′, w̄′). Each of ρ and
ρ′ is described by the path integral on the complex plane with two slits. We can compute Tr[ρρ′]
as the partition function on the space obtained by gluing the two complex planes along the slits.
This is conformally mapped into a torus. This torus is constructed by gluing two cylinders: one of
them describes ρ and is obtained by performing the transformation z = f (w) in Eq. (6.2). The other
corresponds to ρ′ and is obtained from another transformation, z = −f (w). These conformal maps
take the original two-sheeted geometry into a torus, as depicted in Fig. 9. The horizontal and vertical
length of the torus are given by 2J and 2π , respectively.

Finally, we find that I (ρ, ρ′) is given by the same formula as in the single-interval case, Eq. (3.13),
where F is the torus four-point function. In the next subsection we study the CFT wedge geometry
by focusing on holographic CFTs.
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6.2. CFT wedges from I (ρ, ρ ′) in holographic CFTs

In holographic CFTs, we need to distinguish two phases depending on the moduli of the torus [26]:

(i) Connected phase: J < π , or equally κ < 3 − 2
√

2;
(ii) Disconnected phase: J > π , or equally κ > 3 − 2

√
2.

In phase (i), the entanglement wedge gets connected because s2 > (2s + l)l, i.e. SA1 + SA2 > SA1A2 .
In this case, the AdS3/CFT2 duality tells us that the entanglement wedge MA in the Poincaré AdS,
Eq. (1.3), looks like

M Con
A :

l2

4
≤
(

x − s − l

2

)2

+ η2 ≤
(

l

2
+ s

)2

(6.7)

on the time slice τ = 0. In terms of the location of the local operator Oα insertion, the corresponding
CFT wedge is expected to be

CCon
A :

l2

4
≤
(

x − s − l

2

)2

+ τ 2 ≤
(

l

2
+ s

)2

. (6.8)

On the other hand, in phase (ii) the entanglement wedge gets disconnected as s2 < (2s + l)l, i.e.
SA1 + SA2 < SA1A2 . In this case, the entanglement wedge MA in the Poincaré AdS, Eq. (1.3), is found
to be M Dis

A = M Dis(1)
A ∪ M Dis(2)

A , where

M Dis(1)
A :

(
x − s

2

)2 + η2 ≤ s2

4
,

M Dis(2)
A :

(
x − 3s

2
− l

)2

+ η2 ≤ s2

4
. (6.9)

The corresponding CFT wedge reads

CDis(1)
A :

(
x − s

2

)2 + τ 2 ≤ s2

4
,

CDis(2)
A :

(
x − 3s

2
− l

)2

+ τ 2 ≤ s2

4
. (6.10)

Now let us work out the CFT wedge from the calculation of I (ρ, ρ′) in holographic CFTs. The
two-point functions on the torus in phases (i) and (ii) behave like

〈O†
α(z, z̄)Oα(z′, z̄′)〉(i) �

∣∣∣∣sin
(

π(z + 2π in1 − z′)
2J

)∣∣∣∣
−4hα

,

〈O†
α(z, z̄)Oα(z′, z̄′)〉(ii) �

∣∣∣∣sinh
(

(z + 2Jn2 − z′)
2

)∣∣∣∣
−4hα

, (6.11)

where we assumed that
∣∣∣sin

(
π(z+2π in−z′)

2J

)∣∣∣ takes the smallest value among all integer n at n = n1

for phase (i) and
∣∣∣sinh

(
(z+2Jn2−z′)

2

)∣∣∣ takes the smallest value among all integer n at n = n2 for
phase (ii).

This expression for the two-point functions in Eq. (6.11) follows from the standard fact in
AdS3/CFT2 that the gravity dual of the torus is given by a solid torus. We can construct the dual
solid torus by filling the inside of the torus such that the circle Re[z] (or Im[z]) shrinks to zero size
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in the bulk when we consider phase (i) (or (ii)). This is due to the well-known Hawking–Page phase
transition [56], and matches perfectly with the large-c CFT analysis [26].

We can rewrite the value of I (ρ, ρ′) in holographic CFTs using the generalized free field
approximation:

I (ρ, ρ′) � F(z1, z2, z′
3, z′

4)√
F(z1, z2, z3, z4)F(z′

1, z′
2, z′

3, z′
4)

, (6.12)

where

F(z1, z2, z′
3, z′

4) = min
[
〈O†

α(z1, z̄1)Oα(z2, z̄2)〉〈O†
α(z′

3, z̄′
4)Oα(z′

4, z̄′
4)〉,

〈O†
α(z1, z̄1)Oα(z′

4, z̄′
4)〉〈O†

α(z2, z̄2)Oα(z′
3, z̄′

3)〉
]

. (6.13)

The locations z1, z2 and z′
3, z′

4 of the operator insertions are depicted in Fig. 9, explicitly obtained via
the map in Eq. (6.2) from the original insertion locations w1, w2 and w′

3, w′
4 in the double-sheeted

geometry which describes the path integral of Tr[ρρ′].
When the true minimum is the first term in Eq. (6.13), i.e. the trivial contraction, we simply find

I (ρ, ρ′) = 1 and we cannot detect the local operator insertions. On the other hand, if the other
one is favored as the minimum (i.e. the non-trivial contraction), then I (ρ, ρ′) becomes a non-trivial
function of the locations of operator insertions.

The condition that the non-trivial contraction is favored is given by

min
[∣∣∣sin

( π

2J
(z2 − z1)

)∣∣∣ ,
∣∣∣sin

( π

2J
(z2 − z1 − 2π i)

)∣∣∣] ≥
∣∣∣sin

( π

2J
(z3 − z2)

)∣∣∣ (6.14)

in the connected case (i), and by∣∣∣∣sinh
(

1

2
(z2 − z1)

)∣∣∣∣ ≥ min
[∣∣∣∣sin

(
1

2
(z2 − z3)

)∣∣∣∣ ,

∣∣∣∣sin
(

1

2
(z2 − z3 − 2J )

)∣∣∣∣
]

(6.15)

in the disconnected case (ii).
We plot the parameter region of (x, τ), where the non-trivial contraction is favored, in Fig. 10 for

the connected phase (i) and Fig. 11 for the disconnected phase (ii).
In both cases, the region is very close to the true entanglement wedge, Eq. (6.8). The deviation

is interestingly very small (within a few percent), and is sketched in Fig. 12. The wedge derived
from I (ρ, ρ′) in the holographic CFT can be larger or smaller than the true entanglement wedge
in AdS/CFT, depending on the situation. Notice that these deviations are leading order in our com-
putational scheme, i.e. 1/c expansions, and thus we cannot regard them as quantum corrections in
gravity. Rather, it is an essential feature of the Rényi-like measure I (ρ, ρ′). We will comment on
possible interpretations of this phenomenon in later subsections.

6.3. Plots of I (ρ, ρ ′) in holographic CFTs

We also explicitly plot the values of I (ρ, ρ′) as a function of w′ (the location of operator insertion
of ρ′

A) when we fix w (the location of operator insertion of ρA) for both the connected (upper two
pictures) and the disconnected (lower two pictures) cases in Fig. 13. In both plots, the left graphs
show the plots when we fix w to be inside the wedge. In this case we find a sharp peak of I (ρ, ρ′),
which reaches the maximum I (ρ, ρ′) = 1 only when w′ = w. In the right graphs, w is outside the
wedge. We see that I (ρ, ρ′) = 1 when w′ is also outside the wedge, while we have I (ρ, ρ′) = 0
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Fig. 10. The location of the local operator on the w̃-plane where the non-trivial contraction is favored (left), and
its deviation from the entanglement wedge (middle and right). We set κ = 0.1, where the entanglement wedge
is connected, i.e. phase (i). The blue curves are the borders between the non-trivial and trivial contraction. The
orange line in the right picture describes the entanglement wedge.

Fig. 11. The location of the local operator on the w̃-plane where the non-trivial contraction is favored (left),
and its deviation from the entanglement wedge (right). We set κ = 0.2, where the entanglement wedge is
disconnected, i.e. phase (ii). The blue curves are the borders between the non-trivial and trivial contraction.
The orange line in the right picture describes the entanglement wedge.

Fig. 12. The small deviation between the CFT wedge (red) based on I (ρ, ρ ′) and the correct entanglement
wedge in AdS/CFT. The left and right pictures correspond to the connected and disconnected phases.
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Fig. 13. The values of I (ρ, ρ ′) as a function of Re[w′] (horizontal) and Im[w′] (depth) for fixed values of w
when the subsystem A consists of double intervals. In the upper two pictures κ = 0.1 (connected phase), and
in the lower ones κ = 0.2 (disconnected phase). In the upper left and right pictures, w = 5 + 5i (inside the
wedge) and w = 5 + 20i (outside the wedge), respectively. In the lower left and right pictures, w = 3 + i
(inside the wedge) and w = i (outside the wedge), respectively.

when w′ is inside the wedge. All of these agree with the expectation from AdS/CFT, neglecting the
small deviation previously discussed.

6.4. CFT wedge from I (ρ, ρ ′) for the complement

It is instructive to also consider the behavior of CFT wedges for the reduced density matrix ρB,
where B is the complement of the subsystem A. We again focus on CFT wedges based on I (ρ, ρ′).
The calculation of Tr[ρBρ′

B] is very similar to the previous one of Tr[ρAρ′
A], as depicted in Fig. 14.

The only, but very important, difference is that the locations of z2 and z4 are flipped. Therefore,
the conditions of non-trivial Wick contraction are simply opposite to each other: when we need to
take the non-trivial one for Tr[ρAρ′

A], we need to take the trivial one for Tr[ρBρ′
B], and vice versa.

Therefore, the CFT wedge for ρB is just the complement of that for ρA.
This relation helps us to understand the behavior in Fig. 12. First of all, when the CFT wedge for

A = A1 ∪ A2 is disconnected, it is clear that the CFT wedge CA should be larger than or equal to
that for the union of the CFT wedges CA1 and CA2 , as the information included in ρA is greater than
that in the union of ρA1 and ρA2 . This explains the right picture of Fig. 12. Also, this requirement is
trivially satisfied in the left picture.
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Fig. 14. The conformal transformation for the calculation of Tr[ρBρ
′
B] in the double-interval case assuming

phase (i), where the entanglement wedge B is disconnected, as depicted by the colored region. The lower
picture describes the geometry after the transformation, given by a torus by identifying Im[z] ∼ Im[z] + 2π

and Re[z] ∼ Re[z] + 2J . The green (or blue) points correspond to the local excitation in the CFT which is
dual to the bulk excitation outside (or inside) the entanglement wedge MB.

To better understand the left picture in Fig. 12, let us consider the complement of A, i.e. B = B1∪B2.
Since the wedge of B is disconnected when that for A is connected, we can apply the same rule, i.e.
CB should be larger than or equal to the union of CB1 and CB2 . As we just showed, we also know
that CB is the complement of CA. These two facts lead to the behavior of the left picture in Fig. 12.

6.5. The Bures distance in holographic CFTs

In the double-interval case we found that the CFT wedge defined by the distinguishablity measure
I (ρ, ρ′) does not precisely agree with the expected entanglement wedge from AdS/CFT, though the
deviations are very small. This motivates us to study CFT wedges for the Bures distance DB(ρ, ρ′),
Eq. (2.11), or equally the fidelity F(ρ, ρ′), Eq. (2.1), which is expected to be the ideal distinguishablity
measure.As we will see below, the CFT wedge for DB precisely agrees with the correct entanglement
wedge.

The fidelity can be computed from the analytical continuation A1/2,1/2 of An,m, Eq. (4.1), via a
replica-like method. Even though it is very difficult to evaluate An,m for general integers n and m,
we can heuristically obtain analytical results in the limit n → 1/2 and m → 1/2 as follows. First,
notice the useful property shown in Refs. [27,28] that the vacuum replica partition function of a
holographic CFT with k ∼ 1 can be approximated by2

Z�k ([0,s]∪[l+s,l+2s]) −−−→
c→∞

{
Z�k ([0,l+2s])Z�k ([s,l+s]), (i) connected phase: s2 > (2s + l)l,
Z�k ([0,s])Z�k ([l+s,l+2s]), (ii) disconnected phase: s2 < (2s + l)l,

(6.16)
where �k([a, b]) means the k-sheeted manifold with a cut along the interval [a, b], and Z�k ([a,b]) is
the vacuum partition function on that manifold.

2 If k is enough large, then we need to take the contributions from the descendants into account. We can
consider this by making use of Virasoro conformal blocks.
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Fig. 15. The complex plane which describes the path integral that calculates the trace An,m = Tr[(ρmρ ′ρm)n],
i.e. Eq. (4.1), where we performed the conformal transformation of Eq. (4.3) with L = s. Here, we choose
m = 1 and n = 3 for convenience. Now that we consider the double-interval case, we have cuts associated
with the slit [l + s, l + 2s] (the red solid lines).

Indeed, the limit of fidelity n → 1/2 and m → 1/2 corresponds to k → 1, as is clear from the
relation in Eq. (4.4). Therefore, we can factorize the computation of the fidelity F(ρ, ρ′) into two
correlation functions, each of which includes a single interval. In this sense the calculations are
reduced to the fidelity in the single-interval case, which we already worked out, e.g. in Eqs. (4.13)
and (4.16). A CFT wedge in the single-interval case is bounded by a semicircle, which agrees with
the correct entanglement wedge.

We can illustrate this factorization from another viewpoint. If one wants to probe the disconnected
entanglement wedge [0, s], one may consider the conformal transformation in Eq. (4.3) with L = s.
This leads to the geometry shown in Fig. 15, which has “cuts” associated with the slit [l + s, l + 2s]
(the red solid lines in the figure). Although these cuts give non-trivial contributions to the 2k-point
function in general, these contributions can be neglected in the limits n = m → 1/2. Therefore, we
can evaluate this 2k-point function in the same way as the single-interval case, which means that the
result just reduces to Eq. (4.16).

In this way, owing to the factorization in Eq. (6.16), we can conclude that the CFT wedges C(B)

calculated from the Bures distance (or equally fidelity) coincide with the expectations from the
entanglement wedges: Eq. (6.8) in the connected case and Eq. (6.10) in the disconnected case. It is
also clear that the Bures metric in the double-interval case also agrees with the AdS metric as in the
single-interval case, when the locations of operator insertions are inside the wedge.

6.6. Interpretation of the two different CFT wedges C(I )
A and C(B)

A

So far, we have seen the calculations of two distinguishability measures I (ρ, ρ′) and F(ρ, ρ′) in the
double-interval case. Entanglement wedges in AdS/CFT are precisely reproduced from the latter, i.e.
the fidelity, while the former predicts CFT wedges which are slightly distorted from the actual entan-
glement wedges. Here, we discuss why CFT wedges depend on the choice of these distinguishability
measures.

First, remember that I (ρ, ρ′) is essentially the calculation of Tr[ρρ′], and the fidelity F(ρ, ρ′) is
equal to Tr

[√√
ρρ′√ρ

]
. In this sense the total power of the density matrices (for this we identify ρ

and ρ′) is two for the former and one for the latter.
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A measurement of a physical quantity is described by 〈Oi〉 = Tr[ρOi]. In the classical gravity
limit of AdS/CFT, we restrict the operators Oi to low-energy ones. Therefore, we expect that the
entanglement wedge should be determined by the distinguishability of low-energy states (or so-called
code subspaces [19,20]).

In this sense, the quantity Tr[ρρ′] goes beyond the low-energy approximation as Oi = ρ′ is a
highly excited operator. A reduced density matrix can be expressed as ρA = e−HA in terms of the
modular Hamiltonian HA. For a CFT vacuum, for example, HA is given by an integral of the energy
stress tensor. Therefore, ρA = e−HA includes an infinite number of energy stress tensors, which are
clearly outside of the low-energy states.

On the other hand, when we calculate the Bures metric the fidelity F(ρ, ρ′) distinguishes low-
energy states when ρ is very close to ρ′. We argue that the above different property of distinguishing
states causes the difference of CFT wedges between I (ρ, ρ′) and F(ρ, ρ′). This also explains why the
latter agrees with the expectation from the actual entanglement wedge in AdS/CFT. We will explore
differences of CFT wedges for various other distance measures Sect. 9.

7. Entanglement wedges from AdS/BCFT

Here, we consider a quantum state |�〉 in a CFT on a 2d space with boundaries, called BCFT, given
by

|�bdy〉 = e− β
4 H |B〉. (7.1)

Its gravity dual is given by the AdS/BCFT construction [23–25] via the holography.
This is the initial state of the global quantum quench [57] using the boundary state |B〉 (i.e. the

Cardy state [58]). We choose the subsystem A to be the interval [0, L] as before. The reduced density
matrix ρA = TrB[|�bdy〉〈�bdy|] is computed as the path integral on a strip −β

4 ≤ τ ≤ β
4 . We describe

this space by the coordinate w = x + iτ ; see the upper pictures in Fig. 16.

Fig. 16. The conformal transformation for the calculation of Tr[ρAρ
′
A] in the BCFT setup. The upper pictures

describe the setup in the original w coordinate. The red slit describes the subsystem A. The thick black lines
describe the boundaries. They are mapped into the y coordinate as shown in the middle pictures. Finally, they
are mapped into cylinders as shown in the lower pictures. To calculate the trace Tr[ρAρ

′
A], we identify the two

red circles, which describe the subsytem A, and the final geometry becomes a cylinder.
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Next, we transform by the conformal map

y = e
2π
β

w, (7.2)

so that the w-plane is mapped into a half-plane, as in the middle pictures in Fig. 16. In this coordinate,

the subsystem A is the interval [1, e
2πL
β ].

Finally, we introduce a new cylindrical coordinate ζ via the elliptic map

ζ = π

K(1 − κ2)

∫ y

0

dỹ√
(1 − ỹ2)(1 − κ2ỹ2)

= π

K(1 − κ2)
· sn−1(y, κ2), (7.3)

where we have defined

κ = e− 2πL
β (< 1). (7.4)

See the lower pictures in Fig. 16.

7.1. Phase transitions of entanglement wedges in AdS/BCFT

We expect that the state in Eq. (7.1) is dual to half of the eternal BTZ geometry [59]. In the Euclidean
setup, it is identical to the geometry given by the metric in Eq. (4.24). In the AdS/BCFT (see
Refs. [23–25] for details), the gravity dual of a BCFT state is found by adding a boundary surface
into an AdS space, which extends to the bulk.

There are two phases in the holographic calculation of the entanglement entropy SA which fol-
lows from the prescription of AdS/BCFT: (a) the connected geodesic �con is favored, and (b) the
disconnected geodesics �dis which end on the horizon are favored. Accordingly, the geometry of the
entanglement wedge changes between (a) and (b). Since the length of the connected and disconnected
geodesic is computed from the explicit form of the geodesic, Eq. (4.33), as

|�con| = 2
∫ ρ∞

ρ∗
dρ

cosh ρ√
cosh2 ρ − cosh2 ρ∗

=
[

arctanh

(
sinh ρ√

cosh2 ρ − cosh2 ρ∗

)]ρ∞

ρ∗
= ρ∞ − log sinh ρ∗, (7.5)

|�dis| = 2
∫ ρ∞

0
dρ = ρ∞, (7.6)

where the constant ρ∗ is related to L via

cosh ρ∗ tanh
(

πL

β

)
= 1, (7.7)

phases (a) and (b) correspond to the regions

phase (a) �con: sinh ρ∗ > 1 ↔ sinh
(

πL

β

)
< 1 ↔ κ = e− 2πL

β > 3 − 2
√

2;

phase (b) �dis: sinh ρ∗ < 1 ↔ sinh
(

πL

β

)
> 1 ↔ κ = e− 2πL

β < 3 − 2
√

2. (7.8)

This is the same condition we encounter in the case of a double interval. This is not a coincidence,
and indeed we find that the ratio of the horizontal length and vertical length of the cylinder of the ζ

coordinate in Fig. 16 is given by π
J = K(1−κ2)

2K(κ2)
, which is the same ratio as appears in Fig. 9. Indeed,
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Fig. 17. The entanglement wedges in AdS/BCFT in phases (a) and (b). The upper pictures describe the geom-
etry of the entanglement wedge (gray region) in the time slice of the BTZ black hole. The lower pictures show
the wedge geometry in the CFT dual, Eq. (4.32), in the w-plane by the geodesic projection.

it is a cylinder with circumference 2π and length J = 2π
K(κ2)

K(1−κ2)
. Via the doubling trick this can be

extended as a torus, with the periodicities given by 2π and 2J .
In this way, the reduced density matrix analysis provides the phase transition of the entanglement

wedge at the correct value of subsystem size. The expected entanglement wedge geometry from
AdS/BCFT is shown in Fig. 17.

7.2. Wick contractions and distinguishability

Now we come back to the evaluation of I (ρA, ρ′
A). This is given by the four-point functions as

I (ρA, ρ′
A) = F(ζ1, ζ2, ζ ′

3, ζ ′
4)√

F(ζ1, ζ2, ζ3, ζ4)F(ζ ′
1, ζ ′

2, ζ ′
3, ζ ′

4)
, (7.9)

where F denotes the four-point function on the cylinder in the ζ coordinate,

F(ζ1, ζ2, ζ3, ζ4) = 〈O†
α(ζ1)Oα(ζ2)O

†
α(ζ3)Oα(ζ4)〉. (7.10)

Note that this four-point function is defined on the cylinder.
In the generalized free field prescription, we can evaluate this four-point function via Wick contrac-

tions. There are three possible Wick contractions: (i) trivial contraction, (ii) non-trivial contraction,
and (iii) boundary contraction, as depicted in Fig. 18. The third one is new, and is the contraction
between each point of ζi (i = 1, 2, 3, 4) and its mirror point ζ ′

i due to the presence of the boundary.
In phase (a) we have J > π , and thus the state is dual to the BTZ black hole on an interval

−J ≤ Re ζ ≤ J , where Im ζ is the Euclidean time. Therefore, the two-point function behaves as

〈Oα(ζ )Oα(ζ ′)〉 = sinh
(

ζ1 − ζ2

2

)−4hα

≡ Ga(ζ − ζ ′). (7.11)
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Fig. 18. The three possibilities for Wick contractions in holographic BCFTs.

In phase (b), since J < π the state is dual to a global AdS3 on an interval −J ≤ Re ζ ≤ J , where
Imζ is the Euclidean time. Therefore, the two-point function behaves as

〈Oα(ζ )Oα(ζ ′)〉 = sin
(

π(ζ1 − ζ2)

2J

)−4hα

≡ Gb(ζ − ζ ′), (7.12)

where J = 2πK(κ2)/K(1 − κ2).
It is obvious that we obtain I (ρA, ρ′

A) = 1 (i.e. ρA and ρ′
A are indistinguishable) when contrac-

tion (i) or (iii) is favored. We can distinguish ρA and ρ′
A, i.e. I (ρA, ρ′

A) < 1, when the non-trivial
contraction (ii) is favored. The condition that the non-trivial contraction (ii) is favored is:

(ii) is more favored than (i): G(ζ1 − ζ4) � G(ζ1 − ζ2);

(ii) is more favored than (iii): G(ζ1 − ζ4) � G(ζ1 − ζ ′
1), (7.13)

when hα is very large.
In phase (a) they are equivalent to the condition

(ii) is more favored than (i):

∣∣∣∣sinh
[
ζ1 − ζ4

2

]∣∣∣∣ <

∣∣∣∣sinh
[
ζ1 − ζ2

2

]∣∣∣∣ ; (7.14)

(ii) is more favored than (iii):

∣∣∣∣sinh
[
ζ1 − ζ4

2

]∣∣∣∣ <

∣∣∣∣sinh
[
ζ1 − ζ ′

1

2

]∣∣∣∣ . (7.15)

We numerically plot this region in the left panel of Fig. 19. If we ignore the boundary contributions,
this CFT wedge is very close to the actual entanglement wedge from AdS/CFT as depicted in the
right panel of Fig. 19. This small deviation is because we are actually employing the measure I (ρ, ρ′)
which has the unwanted property that it is also sensitive to high-energy states. In other words, if we
utilize the Bures metric instead, we can reproduce the expected CFT wedges which agree with the
entanglement wedges. This situation is the same as that discussed in Sect. 6.6 for the example of
double intervals.

In phase (b), they are equivalent to the conditions

(ii) is more favored than (i):

∣∣∣∣sin
[
ζ1 − ζ4

2

]∣∣∣∣ <

∣∣∣∣sin
[
ζ1 − ζ2

2

]∣∣∣∣ , (7.16)
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Fig. 19. �con, the region where the non-trivial Wick contraction (ii) is favored, is shown for phase (a) with
κ = 1/5 and β = 1. In the left picture, the blue region corresponds to Eq. (7.14) and the orange region
corresponds to Eq. (7.15). The distinguishable region is the overlap between them. In the right picture the
blue curve is the border of Eq. (7.14), while the orange curve is the expected entanglement wedge profile,
Eq. (4.32), from the AdS/CFT. We observe a very small deviation between them.

∣∣∣∣sin
[
ζ1 − ζ4

2

]∣∣∣∣ <

∣∣∣∣sin
[

2π − ζ1 + ζ2

2

]∣∣∣∣ ; (7.17)

(ii) is more favored than (iii):

∣∣∣∣sin
[
ζ1 − ζ4

2

]∣∣∣∣ <

∣∣∣∣sin
[
ζ1 − ζ ′

1

2

]∣∣∣∣ . (7.18)

This region is plotted numerically in Fig. 20. The resulting CFT wedge is largely different from
that expected from the entanglement wedge. However, if we are allowed to ignore the boundary
contribution (i.e. the constraint to the green region), this CFT wedge is the same as the actual
entanglement wedge from AdS/CFT. In other words, we can reproduce the correct geometry of the
entanglement wedge only when the one-point function 〈Oα〉bdy vanishes. This is because in this case
the boundary contraction (iii) is not allowed. If the boundary one-point function does not vanish, then
we get the smaller wedge from the holographic CFT rather than the correct entanglement wedge;
see Fig. 21.

Even though when 〈Oα〉bdy �= 0 the CFT wedge does not agree with the entanglement wedge
in AdS/CFT, this discrepancy is present even when A is the total system (i.e. the pure state). In
other words, we cannot probe points near the black hole horizon by two-point functions dual to the
geodesic which connects two boundary points. This is simply because the two-point function gets
factorized into one-point functions when the points are close to the boundaries of BCFT. Therefore,
this means that we cannot employ our original idea that we probe the bulk geometry by two-point
functions when 〈Oα〉bdy does not vanish. In this sense, we should not think the above discrepancy
shows that the CFT predicts an entanglement wedge which differs from the AdS/CFT prediction.
Rather, we need to find a better CFT quantity which can probe the bulk geometry.3

3 If we turn to a setup of a pure state black hole created by a heavy operator OH [60], we may avoid the
mentioned problem because the two-point function 〈OHOα〉 is vanishing.
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Fig. 20. �dis, the region where the non-trivial Wick contraction (ii) is favored, is shown for phase (b) with
κ = 1/10 and β = 1. In the left picture, the blue, orange, and green regions correspond to Eqs. (7.16), (7.17),
and (7.18), respectively. The distinguishable region is the overlap between these three regions.

Fig. 21. The CFT wedges in phase (a) (left) and phase (b) (right). The upper wedges are obtained from
Eqs. (7.14), (7.16), and (7.17). For the lower wedges we impose Eqs. (7.15) and (7.18) in addition. In
phase (b), i.e. the right two pictures, the upper and lower panels correspond to 〈Oα〉bdy = 0 and 〈Oα〉bdy �= 0,
respectively.
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The entanglement wedge in AdS/BCFT which ends on the boundary surface as in the upper right
picture of Fig. 17 plays a crucial role in a recent explanation of the black hole information paradox
[61–66], where a region of the entanglement wedge near the boundary surface is called the islands.
When 〈Oα〉bdy = 0, our arguments above support the entanglement reconstruction relevant to this
interesting problem.

7.3. Thermofield double state

The thermofield double (TFD) state also provides a closely related but different setup of AdS/CFT.
It is given by the pure state in the direct product of two identical CFT Hilbert spaces, H1 ⊗ H2:

|TFD〉 = 1

ZTH

∑
n

e−βEn/2|n〉1|n〉2, (7.19)

where |n〉 is the energy eigenstate with energy En, and ZTH = ∑
n e−βEn is the thermal partition

function. When we trace out either one of the Hilbert spaces, the reduced density matrix coincides
with the canonical distribution. As discovered in Ref. [67], this pure state |TFD〉 is dual to the eternal
AdS black hole. In AdS3/CFT2, the dual geometry is given by the eternal BTZ solution, which is
obtained by continuing the Lorentzian geometry inside the horizon and which has two asymptotically
AdS boundaries. The two boundaries correspond to the first and second CFTs. In the well-known path
integral formulation, the state in Eq. (7.19) is described by a strip with width β/2 in the Euclidean
time direction, while the space direction is an infinite line. The boundary conditions on the two
boundaries of the strip are arguments of two CFTs, which in total represent the wave functional of
the TFD state.

Let us choose subsystem A in the first CFT at τ = 0 and subsystem A′ in the second CFT at
τ = −β/2. For simplicity, we choose A and A′ to be symmetric with respect to the middle line
τ = −β/4. In this setup, if we artificially take a Z2 quotient τ → π/2 − τ , then we get back to the
previous example of the global quantum quench, Eq. (7.1). Thus, the mathematical structures are
very similar.

Consider the CFT wedge for the union of these two subsystems AA′ in the TFD state. The entan-
glement wedge from CFT is simply given by doubling that for the global quench (see Fig. 17) across
the horizon, utilizing the Z2 symmetry.

The calculation of the measure I (ρ, ρ′) in CFT can be done by doubling the cylinder into a torus, as
depicted in Fig. 16, where the dotted green circle represents the subsystem A′. Therefore, we find that
the phase transition structure, i.e. the connected phase (a) and the disconnected phase (b), is identical.
Moreover, the CFT wedge is determined by the condition that the non-trivial Wick contraction is
favored over the trivial one. Notice that boundary contractions are not allowed as we do not have
any boundaries in our CFT, as opposed to the previous example. Because of this, we find that the
CFT wedge in the connected phase agrees with the entanglement wedge up to a very small deviation,
which can be confirmed in the right picture of Fig. 19. In the disconnected phase, the CFT wedge
perfectly agrees with the entanglement wedge, as confirmed from Fig. 21. This small deviation for
the connected case is again due to the measure I (ρ, ρ′), and should be absent in the CFT wedges for
the Bures metric, as in Sect. 6.6 for the example of double intervals.

8. Higher-dimensional case

Here we derive the entanglement wedge in higher-dimensional AdS/CFT. Consider a (d + 1)-
dimensional holographic CFT on Rd+1 dual to AdSd+2. We write the coordinates of Rd+1
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Fig. 22. The computation of Tr[ρρ ′] in a three-dimensional CFT.

as (τ , x1, . . . , xd). Consider the reduced density matrix of the locally excited state ρA =
TrB

[
Oα(τ , x)|0〉〈0|[Oα(τ , x)]†

]
as before. We first analyze the case where the subsystem A is a

half-plane, and later extend the results to the case where A is a round sphere.

8.1. Half-plane subsystem

Let us start with the simple example where the subsystem A is given by the half-plane x1 > 0 at
τ = 0. A path integral calculation of the quantity I (ρ, ρ′) in Eq. (2.7) can be obtained as a natural
generalization of our previous analysis in two dimensions, and is depicted in the upper pictures of
Fig. 22. To proceed, it is useful to introduce a polar coordinate (T , ζ , x2, . . . , xd) as follows:

x1 = ζ cos T , τ = ζ sin T , (8.1)

where (x2, . . . , xd) are the same as before. The metric looks like

ds2 = dτ 2 +
d∑

i=1

(dxi)
2 = dT 2 + T 2dη2 +

d∑
i=2

(dxi)
2. (8.2)

By using this polar coordinate, we can express the trace Tr[ρρ′] as a path integral on the space
illustrated in the lower picture of Fig. 22. Since the two spaces Rd are glued to each other along A,
the periodicity of T is now 4π .

The gravity dual is given by the topological black hole (refer to Ref. [68]):

ds2 = dz2 + dτ 2 +∑d
i=1(dxi)

2

z2

= dr2

f (r)
+ f (r)dT 2 + r2

(
dη2 +∑d

i=2(dxi)
2

ζ 2

)
,

(8.3)
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where f (r) ≡ r2 − 1 − μ

rd−2 . The smoothness of the geometry determines the periodicity βT of T as

βT = 4πr+
(d + 1)r2+ − (d − 1)

, (8.4)

where r+ is the outer horizon f (r+) = 0.
We take the periodicity to be βT = 2πn. This leads to

r+ = 1

n(d + 1)
+
√

1 − 2

d + 1
+ 1

n2(d + 1)2 . (8.5)

We can evaluate two-point functions in the holographic CFT from this geometry by applying the
standard formula in AdS/CFT:

〈O1(a)O2(b)〉 ∼ e−�OLab , (8.6)

where Lab is the geodesic distance between the two points a and b in the gravity dual. Note that even
though the two-point functions on Rd are universal in higher-dimensional CFTs, that is not true for
two-point functions on a curved manifold. Therefore we need the evaluation of two-point functions
using the gravity dual.

We consider geodesics described by the form T = T (r), where ζ and x2, . . . , xd take fixed values.
The geodesic equation in the metric of Eq. (8.3) looks like

dT

dr
= 1

f (r)
(

f (r)
f (r∗) − 1

)1/2 , (8.7)

where r∗ is the minimum value of r on the geodesic (or equally the turning point). By integrating
the solution to this equation as

L12 =
∫ r∞

r∗

[
f (r)

(
dT

dr

)2

+ 1

f (r)

]1/2

, (8.8)

we can find the geodesic length L between two boundary points (T , r) = (Ta, r∞) and (T , r) =
(Tb, r∞); r∞ is the cutoff at the AdS boundary and is written as r∞ = ζ/ε in terms of the CFT cutoff
ε. The geodesic length Lab is a function of the time difference Tb − Ta, and they are parameterized
by r∗ as

Tb − Ta = 2
∫ r∞

r∗

dr

f (r)
(

f (r)
f (r∗) − 1

)1/2 , (8.9)

Lab = 2
∫ r∞

r∗

1√
f (r) − f (r∗)

. (8.10)

Now let us consider the evaluation of I (ρ, ρ′). As in the two-dimensional CFT case we apply
the large-N factorization, namely generalized free field calculation. Then, the non-trivial Wick con-
traction is favored when Lab > Lbc, where the points p1, p2, and p3 are the AdS boundary points
a = (T1, r∞), b = (2π −T1, r∞), and c = (T2, r∞). Since Lab is a monotonically increasing function
of Tb − Ta, we find that the non-trivial Wick contraction is favored when Lab > Lbc holds, i.e.

(2π − T1) − T1 > T2 − (2π − T1). (8.11)
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When we calculate the information metric we assume that p1 and p3 are almost the same position
in each Rd . This means that T2 � 2π + T1 (look at the bottom picture of Fig. 22). In this way, the
condition of non-trivial Wick contraction, Eq. (8.11), leads to

0 ≤ T1 <
π

2
. (8.12)

In the original coordinates of (τ , x1, . . . , xd), this is equivalent to

x1 > 0. (8.13)

This reproduces the correct entanglement wedge of the half-plane A.
In the Bures distance limit, the replica number n is finally taken to be n = 1. Therefore, we do not

need to worry about the curved space complications and the two-point function takes the standard
universal form:

〈O†(τ , x)O(τ ′, x′)〉 =
∣∣∣∣(τ − τ ′)2 +

d∑
i=1

(xi − x′
i)

2
∣∣∣∣
−2�O

. (8.14)

In the same way as the two-dimensional CFT case, we find, in the limit n = m = 1/2,

A1/2,1/2 = 〈O†(−τ , x)O(τ ′, x′)〉√〈O†(τ , x)O(−τ , x)〉 · 〈O†(τ ′, x′)O(−τ ′, x′)〉 , (8.15)

where the two-point functions are given by Eq. (8.14).
Thus, the final Bures information metric is computed as

ds2 = �O

2
· dτ 2 +∑d

i=1(dxi)
2

τ 2 . (8.16)

This does indeed agree with the time slice metric of a (d + 2)-dimensional Poincaré AdS.

8.2. Spherical subsystem

Next, we turn to spherical subsystems. Consider a holographic CFT on Rd+1. In polar coordinates,
the metric takes

ds2 = dτ 2 + dr2 + r2dΩ2
d−1.

We take the subregion A to be inside the spherical region defined by {τ = 0, r ≤ R}. To apply the
replica method, we use the map [68]

r = R
sinh (u)

cosh (u) + cos
(

τH
R

) , τ = R
sin

(
τH
R

)
cosh (u) + cos

(
τH
R

) .

After this coordinate transformation, the metric looks like

ds2 = 1(
cosh (u) + cos

(
τH
R

))2

(
dτ 2

H + R2 (du2 + sinh2 (u) d�2
d−1

))
,

which is conformally equivalent to S1×Hd . The S1 direction represents the Euclidean time coordinate
and its period is β = 2πR, and in this map the original surfaces τ = 0− and τ = 0+ will transform
to τH = 0+ and τH = Rβ−, respectively.
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The gravity dual of the above space is a topological black hole with the metric (see Ref. [68])

ds2 = f (ρ) dτ 2
H + dρ2

f (ρ)
+ ρ2 (du2 + sinh2 ud�2

d−1

)
, f (ρ) = ρ2

R2 − 1 − M

R2ρd−1
.

Around the event horizon we can approximate f (ρ) � εf ′ (ρ+), where ρ+ is the larger solution
of f (ρ) = 0. After substituting this form if we require that this spacetime is the regular solution to
the Einstein equation, i.e. we do not admit any conical singularity, the inverse temperature is fixed

as βT = 4πρ+R2

(d+1)ρ2+−(d−1)R2 .

Now, let us consider calculating I
(
ρ, ρ′); ρ is a state in which operators O (τ , r) and O† (−τ , r)

are inserted, and ρ′ is a state in which operators O
(
τ ′, r′) and O†

(−τ ′, r′) are similarly inserted. If
we apply the replica method to evaluate the correlation function, we have to consider geodesics in
the topological black hole which connect two boundary points, and to choose the mass parameter
M in Eq. (8.17) such that the periodicity of τH is 4πR. However, as in the previous calculation, the
geodesic length is monotonic with the difference of boundary time coordinates, and hence we only
have to specify the difference of τ instead of calculating the length of the geodesic directly.

As in the previous argument, we find that non-trivial contraction is favored when

0 ≤ τH ≤ πR

2
. (8.17)

This condition is equivalent to

0 ≤ r ≤
√

R2 − τ 2, (8.18)

which indeed perfectly reproduces the expected entanglement wedge in AdSd+2.
Correlation functions on S1 × Hd are related to those on Rd+1 by

〈
O (τH, u) O† (τ ′

H, u′)〉 =
∣∣∣∣ ∂ (τ , r)

∂ (τH, u)

∣∣∣∣
�O

∣∣∣∣∣ ∂
(
τ ′, r′)

∂ (τH, u′)

∣∣∣∣∣
�O

× (
Ω (τH, u) Ω

(
τ ′

H, u′))�O
〈
O (τ , r) O† (τ ′, r′)〉 ,

where � = 1
cosh(u)+cos

( τH
R

) is a conformal factor.

In the above form we just care about Jacobian and conformal transformations of the correlation
functions, whose explicit forms are given by

〈
O (τ , r) O† (τ ′, r′)〉 =

∣∣∣(τ − τ ′)2 + (
r − r′)2

∣∣∣−�O
,

∣∣∣∣ ∂ (τ , r)

∂ (τH, u)

∣∣∣∣ =
∣∣∣∣∣R sinh2 u − sin2 τH

R(
cosh (u) + cos

(
τH
R

))2

∣∣∣∣∣ .

Then, the Bures distance becomes

A 1
2 , 1

2
=

〈O (−τH, u) O†
(
τ ′

H, u′)〉√〈O (−τH, u) O† (τH, u)
〉 〈O (−τ ′

H, u′)O†
(
τ ′

H, u′)〉
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=
∣∣∣(τ− − τ ′)2 + (

r − r′)2
∣∣∣−�O

(∣∣(τ− − τ)2 + (r− − r)2
∣∣−�O

∣∣∣(τ ′− − τ ′)2 + (
r′− − r′)2

∣∣∣−�O
)1/2 ,

where

τ− = R
sin

(−τH
R

)
cosh (u) + cos

(−τH
R

) , r− = R
sinh (u)

cosh (u) + cos
(−τH

R

) . (8.19)

Above, we neglected the spherical part for simplicity; however, we can treat it in a similar way and
thus can derive the full Bures metric:

ds2 = 1

2

�O
sin2 τH

R

(
1

R2 dτ 2
H + du2 + sinh2 ud�2

d−1

)
. (8.20)

By considering a geodesic which connects τH at the AdS boundary ρ = ∞ and the middle point
τH = 0 and ρ = ρ∗, the relation between τH and ρ∗ is found as

sin
( τ

R

)
= R

ρ∗
. (8.21)

This maps the Bures metric of Eq. (8.20) into the time slice metric of AdS:

ds2 = dρ2

ρ2/R2 − 1
+ ρ2(du2 + sinh2 ud�2

d−1), (8.22)

up to a constant factor.

9. Other distinguishability measures

In this section we analyze behaviors of some more distinguishability measures other than I (ρ, ρ′)
and F(ρ, ρ′) in our CFT setup, and we summarize which distinguishability measures can reproduce
correct entanglement wedges, discussing possible reasons.

9.1. Affinity (Hellinger distance)

The affinity A(ρ, ρ′) is defined by Eq. (2.5), and the Hellinger distance DH(ρ, ρ′) is introduced as
in Eq. (2.16), accordingly. The affinity for our density matrix in Eq. (1.1) in 2d CFTs with a single-
interval A can also be evaluated by the analytic continuation of the replica correlation function as

A(ρ, ρ′) ≡ lim
m,n→ 1

2

trρmρ′n = lim
m,n→ 1

2

Zm,n

Nm,n
, (9.1)

where the correlation function is the same as in Eq. (4.5) with k = m + n, and

wj =
{

w, if j = 1, . . . , m,
w′, otherwise.

(9.2)

The normalization is given by

Nm,n = |w − w̄|−4mh
∣∣w′ − w̄′∣∣−4nh

. (9.3)
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The partition function can be evaluated in a similar manner to the fidelity. For example, the partition
function for the single-interval case is

Z1/2,1/2 =
{

|w − w̄|−2h
∣∣w′ − w̄′∣∣−2h

, outside the CFT wedge,

|w − w̄|2h
∣∣w′ − w̄′∣∣2h ∣∣w − w̄′∣∣−8h

, inside the CFT wedge,
(9.4)

where the CFT wedge for the affinity is the same as that for the fidelity. In this example we find that

A(ρ, ρ′) = F2(ρ, ρ′). (9.5)

Actually, the same relation also holds for the double-interval case. CFT wedges of affinity in both
single- and double-interval cases coincide with those of the fidelity, and therefore agree with the
actual entanglement wedge in AdS.

9.2. Trace distance

From the property in Eq. (2.19), we have

F(ρ, ρ′) −→ 1 ⇐⇒ Dtr(ρ, ρ′) −→ 0. (9.6)

Therefore, the trace distance has the same transition point as the fidelity, which perfectly matches
the entanglement wedge. It would be interesting to check this conclusion from a direct calculation
in holographic CFTs.

9.3. Chernoff bound

The quantum Chernoff bound is largely discussed as another distinguishability measure. It was first
introduced in Ref. [69] as

Q(ρ, ρ′) ≡ min
0≤m≤1

Qm(ρ, ρ′), (9.7)

where Qm is the quantum Rényi overlaps [70],

Qm(ρ, ρ′) ≡ tr ρmρ′1−m lim
n→1−m

= Zm,n

Nm,n
. (9.8)

The partition function is the same as Eq. (4.5) with k = m + n, and

wj =
{

w, if j = 1, . . . , m,
w′, otherwise.

(9.9)

Note that this quantity is bounded from above by Q(ρ, ρ′) ≤ 1, which is saturated if ρ = ρ′, and
from below by 0 ≤ Q(ρ, ρ′), which saturates if ρρ′ = 0. One important property is that the Chernoff
bound gives bounds on the affinity and the fidelity as

F2(ρ, ρ′) ≤ Q(ρ, ρ′) ≤ A(ρ, ρ′) (= Q1/2(ρ, ρ′)). (9.10)

Combining with Eq. (9.5), one can easily find, for the single- and double-interval cases,

A(ρ, ρ′) = Q(ρ, ρ′) = F2(ρ, ρ′). (9.11)
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We can directly check this equality by evaluating the replica partition function. Note that this equality
holds if both density states ρ and ρ′ are pure states, that is,

A(ρ, ρ′) = Q(ρ, ρ′) = F2(ρ, ρ′) = tr
(
ρρ′). (9.12)

Note that we also have the following bounds on the trace distance:

1 − Q(ρ, ρ′) ≤ Dtr(ρ, ρ′) ≤
√

1 − Q2(ρ, ρ′), (9.13)

which is consistent with our conclusion that the quantum Chernoff bound also plays a role as a probe
of the correct entanglement wedge.

9.4. Super-fidelity

In general cases, it is hard to get fidelity and affinity due to the complication involved in evaluating
the square root of a density matrix. Instead, we can rely on super-fidelity, which is defined by

FN (ρ, ρ′) ≡ tr ρρ′ +
√

1 − tr ρ2
√

1 − tr ρ′2. (9.14)

This quantity involves only products of density matrices, which greatly simplifies its evaluation, in
sharp contrast with the fidelity. The super-fidelity does not satisfy the property FN (ρ, ρ′) = 0 ⇔
ρρ′ = 0.

The point is that the super-fidelity gives the upper bound on the fidelity as [71,72]

F(ρ, ρ′) ≤ FN (ρ, ρ′) ≤ 1. (9.15)

The equality is satisfied when ρ = ρ′. From this inequality, one can find that FN (ρ, ρ′) < 1 directly
implies F(ρ, ρ′) < 1, which means that the super-fidelity is another similarity measure.

Let us focus on holographic CFTs. In fact, one can immediately find that tr ρρ′ ∼ tr ρ2 ∼ tr ρ′2 ∼
e−#c, which means that the super-fidelity reduces to the trivial upper bound FN (ρ, ρ′) = 1 in the
large-c limit. Therefore, we cannot distinguish our two states by making use of the super-fidelity in
holographic CFTs. Note that in CFTs with finite c, this also gives a non-trivial bound.

9.5. p-fidelity

A generalization of the fidelity, p-fidelity [36] is defined by

Fp(ρ, ρ′) ≡
∣∣∣∣√ρ

√
ρ′∣∣∣∣2

p

max
{ ||ρ||2p , ||ρ′||2p

} , (9.16)

where we introduce

||A||p =
(

tr
[(

AA†
) p

2
]) 1

p

. (9.17)

The fidelity F(ρ, ρ′) coincides with F1(ρ, ρ′). By using the p-fidelity, the lower bound on F2(ρ, ρ′)
is given by the measure I (ρ, ρ′), Eq. (2.7):

F2(ρ, ρ′) ≤ I (ρ, ρ′). (9.18)

Therefore, we cannot utilize the 2-fidelity as a probe of the entanglement wedge in general.
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Table 1. A � indicates that a measure enables us to reproduce the entanglement wedge.

Entanglement wedge
reproduction

F �
A �
Q �
Dtr �
JS �
FN

I
F2

9.6. Quantum Jensen Shannon divergence

The quantum Jensen Shannon divergence (QJS divergence) is defined in Ref. [73]4 as

JS(ρ, ρ′) ≡ H

(
ρ + ρ′

2

)
− H (ρ) + H (ρ′)

2
, (9.19)

where H is the von Neumann entropy. This quantity can also be seen in quantum information theory,
where it is called the Holevo information. As shown in Ref. [73], it shares many relevant physical
properties with the relative entropy. Since the relative entropy is well defined only in some restricted
situations, the QJS divergence is more useful as a distinguishability measure. The QJS divergence
also satisfies the inequality (which comes from the bound on the Holevo information [38])

0 ≤ JS(ρ, ρ′) ≤ 1, (9.20)

where the lower bound is saturated if and only if ρ = ρ′.
For two neighboring density states, this quantity can be approximated by the fidelity as

JS(ρ, ρ′) � 1 − F(ρ, ρ′) if ρ � ρ′. (9.21)

Through this relation, we can conclude that the QJS divergence can also probe the entanglement
wedge in a similar way to the fidelity.

9.7. Comparison of distinguishability measures and entanglement wedge reconstruction

Finally, we would like to compare the results of the above distinguishability measures in addition to
I (ρ, ρ′) and the fidelity F(ρ, ρ′). CFT wedges defined by the measures {F , A, Q, Dtr , JS} reproduce
the correct entanglement wedges for 2d holographic CFTs. On the other hand, CFT wedges deviate
from the correct entanglement wedges when we employ the measures {I , FN , F2}. This is summarized
in Table 1.

The fundamental properties of these measures are listed in Table D.1 inAppendix D. By comparing
this table with the previous one, we notice that property (ix), i.e. monotonicity under completely
positive trace-preserving (CPTP) maps, seems to be responsible for reproducing correct entanglement
wedges.5 At the same time, another common property for the coincidence between CFT wedges and

4 The QJS divergence has also been studied in the context of holography in Ref. [74].
5 The monotonicity is analogous to the strong subadditivity of the entanglement entropy [75–77].
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entanglement wedges is that the total power of ρ and ρ′ is one in the trace, as we emphasized in
Sect. 6.6. This requirement comes from probing only the low-energy states dual to the classical
gravity. On the the other hand, for the other measures {I , FN , F2} the total power of ρ and ρ′ is
two. In this sense the former look analogous to the von Neumann entropy, while the latter seem
analogous to the second Rényi entropy. In summary, our results in this paper suggest that these two
properties are necessary for a distinguishability measure in holographic CFTs to reconstruct the
correct entanglement wedges.6

It is interesting to note that there are other similarity measures which satisfy property (ix), for
example the relative entropy. For this reason, we can expect that this quantity can also probe the
entanglement wedge. It would be interesting to investigate whether the relative entropy can actually
detect the entanglement wedge; this is left for future work.

10. Entanglement wedges from HKLL operators

In this paper we have worked out the shape of the entanglement wedge from purely CFT computations
by exciting the CFT vacuum by a local operator inserted at various locations. In this sense, a local
operator plays the role of a probe for our holographic geometry. However, we need to choose the
conformal dimension of the operator Oα in the range of Eq. (1.2) to obtain sensible results. Even
though it will be difficult to remove the constraint hα � c for negligible backreactions, one might
think that we can somehow remove the requirement hα � 1, which was necessary to have a sharp
resolution of the image of the CFT wedge by the local operator. The resolution of the distinguishability
can be estimated by the Bures information metric, owing to the Cramér–Rao bound in Eq. (2.21),
which is given for the local operator result in Eq. (4.17) as

〈(δx)2〉 ≥ τ 2

hα

. (10.1)

In this sense, the resolution of our local operator analysis is O(1/
√

hα) in the length scale. Therefore,
we need the assumption hα � 1 to probe the geometry. On the other hand, the classical gravity
approximation of AdS/CFT predicts that the actual resolution is of scale O(1/c), which is equivalent
to the Planck scale. Therefore, the local operator is a slightly coarse-grained probe, especially when
hα is not very large.

A more fined-grained operator for this purpose is known as the HKLL operator [13–15]. This
operator is known as the CFT counterpart of a bulk local field operator φα , and thus should be
suitable to extract the bulk geometry including the entanglement wedge. Thus, in this section we
would like to study how we can probe the entanglement wedge geometry by the HKLL operator.
However, note that analysis of HKLL operators has a disadvantage that the computations become
highly complicated compared to the local operator ones. Due to this technical issue, our analysis
will rely on heuristic arguments.

6 This observation naturally raises a question: can we find a similar deviation of CFT wedge versus entan-
glement wedge to I if we employ the Hilbert–Schmidt distance? In particular, is the wedge from I the same as
that from the Hilbert–Schmidt distance? DHS(ρ, ρ ′) ≡ √

tr(ρ − ρ ′)2, which is analogous to the second Rényi
entropy. It is known that the Hilbert–Schmidt distance is bounded by the trace distance [78] (see also Ref. [79]),
0 ≤ DHS(ρ, ρ ′) ≤ √

2Dtr(ρ, ρ ′). Unfortunately, the Hilbert–Schmidt distance reduces to 0 in the large-c limit
for the same reason as the super-fidelity, and therefore we cannot extract interesting information from this
quantity. Note that {FN , DHS} have the term tr (ρρ ′), which means that these two quantities contain the same
information as I . In fact, if one appropriately normalizes them, then we can extract the same wedge as from I .
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We focus on the simplest setup of AdS3/CFT2, where the global AdS3 is dual to a holographic two-
dimensional CFT on a cylinder. The global AdS3 is described by the coordinates (ρ, x, τ) with the
metric in Eq. (4.18), and the two-dimensional cylinder is parameterized by the complex coordinate
ξ = τ + ix and ξ̄ = τ − ix. It is useful to employ the state representation of HKLL operators given
in Refs. [44,80], which is written as

|φα(ρ, x, τ)〉 = Ñα ·
∞∑

k=0

(−1)ke−δ(L
ξ0
0 +L̄

ξ0
0 ) �(2hα)

k!�(k + 2hα)
(Lξ0

−1)
k(L̄ξ̄0

−1)
kOα(ξ0, ξ̃0)|0〉, (10.2)

where Ñα is the overall normalization for the unit norm; Lξ0
n and L̄ξ0

n are the chiral and anti-chiral

Virasoro operators around the point ξ0. The term e−(L
ξ0
0 +L̄

ξ0
0 )δ represents the regularization of the

infinite summation of k over the descendants, and the infinitesimally small parameter δ controls this
UV regularization of localized excitation. More importantly, the location ξ0 on the cylinder is given
by the projection along the geodesic which passes through the bulk point (ρ, x, τ) in the global AdS3

(as depicted in Fig. 1). This is explicitly given by ξ0 = tanh ρ
2 · eτ+ix.

First, note that the state in Eq. (10.2) can be obtained from our original local operator state by
replacing the primary operator with a summation over descendants. In this sense we can effectively
estimate the conformal dimension of the local operator in Eq. (10.2) as its average hα ∼ 1/δ. As
argued in Ref. [44], in large-c CFTs we expect that δ is O(1/c). This agrees with the resolution
expected from the AdS/CFT, i.e. the scale is larger than the Planck scale. Our previous results for the
excited states by local operators imply that the result of the Bures information metric for the reduced
density matrix ρA is identical to that for the pure state as long as the excited point is within the CFT
wedge. When we consider a pure HKLL state, i.e. Eq. (10.2), the Bures metric is computed as [44]

D2
B = 1

8δ2 (dρ2 + sinh2 ρdx2). (10.3)

The Cramér–Rao bound from this result indeed agrees with the AdS/CFT prediction 〈(δx)2〉 ≥
O(1/δ2) = O(1/c2). In other words, the metric in Eq. (10.3) agrees with the correct time slice
metric of the global AdS if we set δ = O(c) up to an O(1) constant.

Moreover, from the above heuristic arguments, we expect that the CFT wedge for the Bures metric
for HKLL states agrees with the correct entanglement wedge as in the local operator case. In this way,
we can reproduce the shape of the entanglement wedge from analysis of the Bures metric of HKLL
states such that the resolution scale agrees with the AdS/CFT expectation. It is an interesting future
problem to confirm the above arguments by explicit CFT calculations and their replica interpretations.

11. Conclusions and discussions

We have presented a new method to determine the shape of the entanglement wedge from purely
CFT calculations. Our strategy is to introduce CFT wedges, which are counterparts of entanglement
wedges inAdS/CFT and which are defined for a given CFT. We can view a CFT wedge as a shadow of
an entanglement wedge because the former is obtained from the latter by projecting along a geodesic
in AdS backgrounds.

To determine the border of the CFT wedge, we employed the locally excited states and asked
whether we can distinguish two reduced density matrices ρA and ρ′

A with slightly different points
excited. If the points are in the CFT wedge, we can distinguish them, while we cannot if they are
outside the wedge. To quantify this we mainly examined two different distinguishability measures,
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namely the Bure distance (or equally fidelity) DB(ρ, ρ′) and its Rényi-like version denoted by I (ρ, ρ′)
(called the geometric mean fidelity). In general, we found that the CFT wedges are sharp only for
holographic CFTs, while for generic CFTs the CFT wedges get blurred. This special feature of sharp
CFT wedges for holographic CFTs mainly originates from the large-N factorization property. In a
very brief summary, we observed that the CFT wedges for the Bures distance perfectly agree with
the expected entanglement wedge in AdS/CFT in all the examples we studied. Moreover, it turned
out that the Bures metric agrees with the metric on the entanglement wedge in AdS up to the overall
factor. Thus, our results provide a genuine CFT derivation of entanglement wedges in AdS/CFT for
the first time.

As a first example, we intensively studied the case where the subsystem A is a single interval in
2d CFTs. We found that in holographic CFTs, the border of the CFT wedge becomes sharp and
perfectly agrees with the entanglement wedge for both the choices of distinguishability measure. We
also studied a free scalar 2d CFT and showed that the CFT wedge structure is obscure, though some
qualitative features are similar. This clearly shows that the geometry of entanglement wedges emerges
only in holographic CFTs, being consistent with our understanding of AdS/CFT. We also calculated
the Bures information metric and found that it is proportional to the metric on the entanglement
wedge. Moreover, we studied the time evolution of the reduced density matrix and confirmed that the
resulting time-dependent CFT wedges agree with the covariant description of entanglement wedges
in AdS/CFT. As a future problem, we can also consider another non-trivial time-dependent setup,
the falling-particle geometry, where we can rely on the CFT techniques developed in Refs. [82,83].

As a second, less trivial, example, we chose A to be double intervals in 2d holographic CFTs.
In this case, the standard holographic analysis tells us the phase transition between the connected
and disconnected entanglement wedge. Our CFT wedge analysis perfectly reproduced this phase
transition. However, we found that the resulting CFT wedge for the measure I (ρ, ρ′) slightly deviated
from the expected entanglement wedge.7 On the other hand, we showed that the CFT wedge for
the Bures distance reproduces the entanglement wedge in AdS/CFT perfectly. We argued that this
difference of CFT wedges between two measures occurs because they are sensitive to different
parts of the quantum states in CFT. The Bures distance DB(ρ, ρ′) or fidelity F(ρ, ρ′) is sensitive to
low-energy states as the total power ptot of ρ and ρ′ (i.e. ∼ρptot ) is one, while the (second) Rényi-
like measure I (ρ, ρ′) is also sensitive to high-energy modes as the total power ptot is two. This is
analogous to the well-known fact that the von Neumann entropy is simply computed as the area in
AdS/CFT, while the computation of Rényi entropy requires us to take into account backreactions
[84,85].

We also analyzed an example of 2d boundary conformal field theory (BCFT), which has a gravity
dual via AdS/BCFT. This example also experienced a phase transition between a connected and
disconnected extremal surface. We showed that the CFT wedges agree with the expectation from
entanglement wedges in AdS/BCFT under the assumption that the boundary one-point function
vanishes. A similar argument also holds for the thermofield double state without any assumptions. It
will also be an interesting future problem to analyze CFT wedges for excited states created by heavy
operators, as such states are expected to be dual to pure state black holes. We can imagine that we
can calculate the correlation functions of probe operators in the presence of the heavy operators on

7 It might be an interesting possibility to introduce “Rényi-like CFT wedges” defined by the measure I (ρ, ρ ′),
which itself may be useful for further understanding of AdS/CFT. We leave this for a future problem.

48/59

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2020/11/11B105/5921192 by Kyoto D

aigaku N
ogaku-bu Toshoshitsu user on 05 July 2022



PTEP 2020, 11B105 Y. Kusuki et al.

the replicated surfaces via a semi-classical approximation of conformal blocks, which is left for a
future problem.

Moreover, we presented calculations of CFT wedges in higher-dimensional CFTs when the sub-
system A is given by a round ball or a half-space. The resulting CFT wedges perfectly agree with
the expectation from the entanglement wedge in the higher-dimensional AdS/CFT. Since this only
covers the special example in higher dimensions, it will be an intriguing future problem to further
explore higher-dimensional CFT wedges.

Since there are many other known distinguishability measures of quantum states, we examined
whether such measures can reproduce the expected CFT wedges. We found that the affinity (Hellinger
distance) A(ρ, ρ′), the trace distance Dtr(ρ, ρ′), the Chernoff bound Q(ρ, ρ′), and the quantum Jensen
Shannon divergence JS(ρ, ρ′) pass this test, as does the Bures distance or fidelity. Interestingly,
these measures have the common feature of monotonicity under CPTP maps. Also, they share the
aforementioned property that the total power ptot of ρ is one. It will be interesting to understand
systematically how the difference in this total power affects the CFT wedges. It will also be an
important future problem to extend our analysis of CFT wedges to the qunatum Fisher metric based
on the relative entropy, which we have not discussed in this paper.

In the final part of the paper we studied states excited by HKLL operators for the computation
of the information metric instead of those created by the local operators in CFTs. This is because,
when the conformal dimension is not large, the local operator excitations are not sharp probes for
detecting the bulk geometry. The HKLL operators are expected to be localized in a bulk point well
even if the conformal dimension is small. We gave a heuristic argument for how we can extract the
expected CFT wedge from HKLL states. This allows us to detect the entanglement wedge up to
the Planck scale, matching the AdS/CFT prediction. Moreover, the Bures information metric for the
HKLL states agrees with the actual metric of AdS up to an O(1) factor, which we could not fix. It
will be very interesting to pursue this agreement more with the precise coefficient.

All the calculations in this paper concerned the leading contribution in the 1/N or 1/c expansion
dual to the classical gravity approximation. Therefore, it will be an interesting future direction to
study 1/N or 1/c corrections dual to the quantum corrections in gravity. In this context, we may
study the emergence of quantum extremal surfaces [81].

Also, the present work of deriving the entanglement wedges from CFTs might be related to other
approaches to entanglement wedges. This involves an emergence of entanglement wedges in path
integral optimization [86–89], where the mathematical structure has a significant similarity. Also,
one basic geometrical characterization of entanglement wedges will be the entanglement wedge
cross section, whose CFT interpretations have been discussed from various viewpoints [90–100].
We hope we come back to these connections in future works.
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Appendix A. Details of calculations of I (ρ, ρ ′) in the single-interval case

Here we present a detailed analysis of the quantity I (ρ, ρ′) when w and w′ take generic values. We
write z = p + iq (= z1) and z′ = p′ + iq′ (= −z3) such that p, p′ > 0 and q, q′ < 0, as we see from
Fig. 2. We denote the regions inside and outside the CFT wedge by Win and Wout. Note that Wout

corresponds to p > −q and p′ > −q. The non-trivial Wick contraction for the calculation of the
four-point function F(z, z̄, −z′, −z̄′) given by Eq. (3.15) is favored when |z − z̄||z′ − z̄′| > |z + z̄′|2,
i.e.

4qq′ > (p + p′)2 + (q − q′)2. (A.1)

When w ∈ Wout and w′ ∈ Wout, we find that

F(z, z̄, −z, −z̄) � |2q|−8h, F(z′, z̄′, −z′, −z̄′) � |2q′|−8h, (A.2)

where the trivial Wick contractions are favored. Also, since (p + p′)2 + (q − q′)2 > (q + q′)2 + (q −
q′)2 > 4qq′, we find that

F(z, z̄, −z′, −z̄′) � |4qq′|−4h, (A.3)

where the trivial Wick contractions are favored. Thus, we have I (ρ, ρ′) � 1.
When w ∈ Win and w′ ∈ Wout, we find that

F(z, z̄, −z, −z̄) � |2p|−8h, F(z′, z̄′, −z′, −z̄′) � |2q′|−8h. (A.4)

When the trivial Wick contraction is favored for F(z, z̄, −z′, −z̄′), we find that

I (ρ, ρ′) � |p|4h

|q|4h
� 1 (A.5)

in the h � 1 limit. When the non-trivial one is favored we obtain

I (ρ, ρ′) � |4pq′|4h

|(p + p′)2 + (q − q′)2|4h
� 1, (A.6)

where we noted that

(p + p′)2 + (q − q′)2 > (p − q′)2 + (q − q′)2 > −4pq′. (A.7)

Thus, in this case we have I (ρ, ρ′) � 0.
Finally, when w ∈ Win and w′ ∈ Win, we have

F(z, z̄, −z, −z̄) � |2p|−8h, F(z′, z̄′, −z′, −z̄′) � |2p′|−8h. (A.8)
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Fig.A.1. The profile of the regions of z′ and w′ (surrounded by blue curves) where the non-trivial Wick
contraction is favored, i.e. |z − z̄||z′ − z̄′| > |z + z̄′|2. In the upper pictures we set z = 2 − i (outside the
wedge), and in the lower two pictures we set z = 1 − 2i (inside the wedge). The left and right pictures depict
the regions in the z′- and w′-plane, respectively. The orange curves describe the borders of the wedges. The
green points describe the locations of w and z. We took the subsystem A to be [0, 2].

When the trivial Wick contraction is favored for F(z, z̄, −z′, −z̄′), we find that

I (ρ, ρ′) � |pp′|4h

|qq′|4h
� 1 (A.9)
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in the h � 1 limit, unless p = p′ and q = q′. When the non-trivial one is favored we obtain

I (ρ, ρ′) � |4pp′|4h

|(p + p′)2 + (q − q′)2|4h
� 1, (A.10)

where we noted that

(p + p′)2 + (q − q′)2 ≥ 4pp′, (A.11)

with the equality holding when p = p′ and q = q′. Thus, in this case we have I (ρ, ρ′) � 0 except
for the case w = w′. If w = w′ we have I (ρ, ρ′) = 1. See Fig. A.1 for plots.

When δz = z′ − z is infinitesimally small, we can expand DI (ρ, ρ′) ≡ 2 − 2I (ρ, ρ′) as follows:

DI (ρ, ρ′) � 4h

|z + z̄|2 · |dz|2

= h

4
·
(√

x(L − x) + iτL + τ 2 +√
x(L − x) − iτL + τ 2

)2

τ 2
√

x2 + τ 2
√

(L − x)2 + τ 2
(dx2 + dτ 2). (A.12)

This is the expression of the information metric constructed from the distance measure DI .

Appendix B. Detailed analysis of the Bures metric in c = 1 CFT

We start with the expression in Eq. (4.9) and consider the free scalar CFT

An,m = k−4kh · |z|8mnh(1−k) · |z′|4nh(1−k) · |zk − z̄k |8mnh · |z′k − z̄′k |4nh

× 〈O†
α(z1)Oα(z2) · · · O†

α(z2k−1)O(z2k)〉 · Z (k)

(Z (1))k
. (B.1)

Below we set h = 1/2 by assuming the operator O = eiφ .
We can write the 2k-point function as

〈O†
α(z1)Oα(z2) · · · O†

α(z2k−1)O(z2k)〉 = f (z)k · g(z, z′)n, (B.2)

such that f (z)k corresponds to the computation Tr ρk and g(z, z′)n corresponds to the ratio between
Tr(ρmρ′ρm)n and Tr ρk . The former, f (z), is computed as

f (z) =
∏k−1

j=1 |z − ze
2π i
k j|4h∏k−1

j=0 |z − z̄e
2π i
k j|4h

= k2

2r2(1 − cos(kθ1))
, (B.3)

where we set h = 1/2. We define

r =
√

x2 + y2, r′ =
√

x′2 + y′2,

cos θ1 = x2 − y2

r2 , sin θ1 = 2xy

r2 ,

cos θ2 = xx′ − yy′

rr′ , sin θ2 = x′y + xy′

rr′ ,

cos θ3 = xx′ + yy′

rr′ , sin θ3 = x′y − xy′

rr′ ,
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cos θ4 = x′2 − y′2

r2 , sin θ4 = 2x′y′

r′2 . (B.4)

The function g(z, z′) is estimated as

g(z, z′)

=
⎡
⎣∏k−1

j=0 |z − z̄e
2π i
k j|4h ·∏k−1

j=1 |z′ − ze
2π i
k j|4h∏k−1

j=1 |z − z̄′e 2π i
k j|4h ·∏k−1

j=1 |z − ze
2π i
k j|4h

⎤
⎦

2

·
[∏n−1

l=1 |z − z̄′e 2π i
n l|4h ·∏n−1

l=1 |z − ze
2π i
n l|4h∏n−1

l=0 |z − z̄e
2π i
n l|4h ·∏n−1

l=1 |z′ − ze
2π i
n l|4h

]
·

[∏n−1
l=1 |z − z̄′e 2π i

n l|4h ·∏n−1
l=1 |z′ − z′e 2π i

n l|4h∏n−1
l=0 |z′ − z̄′e 2π i

n l|4h ·∏n−1
l=1 |z − z′e 2π i

n l|4h

]

=
k−1∏
j=0

[
|z − z̄e

2π i
k j|4h · |z′ − ze

2π i
k j|4h

|z − z̄′e 2π i
k j|4h

]2

·
n−1∏
l=0

[
|z − z̄′e 2π i

n l|4h

|z − z̄e
2π i
n l|4h|z′ − ze

2π i
n l|4h

]

·
n−1∏
l=0

[
|z − z̄′e 2π i

n l|4h

|z′ − z̄′e 2π i
n l|4h|z − z′e 2π i

n l|4h

]
·
∏n−1

l=1

[
|z − ze

2π i
n l|4h · |z′ − z′e 2π i

n l|4h
]

∏k−1
j=1 |z − ze

2π i
k j|8h

. (B.5)

Let us assume that hα = 1/2. To evaluate g(z, z′), the following identities are useful:

n−1∏
j=1

sin
(π

n
j
)

= n

2n−1 , (B.6)

and, for w = reiθ and w′ = r′eiθ ′
,

n−1∏
j=0

|w − w′e
2π i
n j|2 = r2n + r′2n − 2rnr′n cos

(
n(θ − θ ′)

)
. (B.7)

If we write w = x + iy and w′ = x′ + iy′, we have

cos(θ − θ ′) = xx′ + yy′

rr′ , sin(θ − θ ′) = x′y − xy′

rr′ . (B.8)

By using Eqs. (B.6) and (B.8) we can rewrite g(z, z′) as

g(z, z′) =
[

2r2k(1 − cos(kθ1))
(
r2k + r′2k − 2rkr′k cos(kθ3)

)
(
r2k + r′2k − 2rkr′k cos(kθ2)

)
(2r)2(k−1) · k2 · 22(1−k)

]2

×
(
r2n + r′2n − 2rnr′n cos(nθ2)

)2 · (2r)2(n−1)(2r′)2(n−1) · n4 · 24(1−n)(
r2n + r′2n − 2rnr′n cos(nθ3)

)2 · 2(r)2n(1 − cos(nθ1)) · 2(r′)2n(1 − cos(nθ4))
. (B.9)

Finally, by taking the limit n = m → 1/2 (k → 1), we find that

An=1/2,m=1/2 = |z − z̄| · |z′ − z̄′| · 1

4y2 · g(z, z′)1/2, (B.10)

53/59

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2020/11/11B105/5921192 by Kyoto D

aigaku N
ogaku-bu Toshoshitsu user on 05 July 2022



PTEP 2020, 11B105 Y. Kusuki et al.

Fig. B.1. The profile of An=1/2,m=1/2 = Tr
[√√

ρρ ′√ρ
]

in c = 1 free scalar CFT for the operator O = eiφ

which has the dimension h = 1/2 for various choices of excited points. The upper left, upper right, and lower
left graphs describe An=1/2,m=1/2 for ρ(w = 1 + 0.05i), ρ(w = 0.05i), and ρ(w = −1 + 0.05i), respectively, as
a function of (p, q) for ρ ′(w′ = p+ iq). The lower right graphs describe An=1/2,m=1/2 for w = s+0.05i [s = −1
(blue), s = 0 (orange), s = 1 (green), and s = 2 (red)] as a function of p such that w′ = p + 0.05i, with L = 2.

where g(z, z′) in the limit n = m → 1/2 reads

g(z, z′)n=m=1/2 =
[

4y2 · (r2 + r′2 − 2rr′ cos θ3
)

r2 + r′2 − 2rr′ cos θ2
· r + r′ − 2

√
rr′ cos(θ2/2)

r + r′ − 2
√

rr′ cos(θ3/2)

]2

× (1/16) · (1/rr′)
4rr′(1 − cos(θ1/2)(1 − cos(θ4/2))

. (B.11)

Thus, we obtain

An=1/2,m=1/2 = r + r′ + 2
√

rr′ cos(θ3/2)

r + r′ + 2
√

rr′ cos(θ2/2)
· |y||y′|

2rr′√(1 − cos(θ1/2))(1 − cos(θ4/2))
. (B.12)

To evaluate Eq. (B.12) we have to be careful with the computations of cosines such as cos(θ3/2).
For this, it is useful to focus on the case m = 1/2 and k = 2n for the integer n in Eqs. (B.3) and (B.9),
which corresponds to the calculation of Tr[(ρρ′)n]. In this case we have

cos(nθ1) = 1

2

(
ζ + ζ−1), cos(2nθ1) = 1

2

(
ζ 2 + ζ−2),

cos(nθ2) = 1

2

(
ζ 1/2ζ ′1/2 + ζ−1/2ζ ′−1/2), cos(2nθ2) = 1

2

(
ζ ζ ′ + ζ−1ζ ′−1),

cos(nθ3) = 1

2

(
ζ 1/2ζ ′−1/2 + ζ−1/2ζ ′1/2), cos(2nθ3) = 1

2

(
ζ ζ ′−1 + ζ−1ζ ′),

cos(nθ4) = 1

2

(
ζ ′ + ζ ′−1), cos(2nθ4) = 1

2

(
ζ ′2 + ζ ′−2), (B.13)
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where we defined

ζ = z2n

|z|2n = w

w − L
· |w − L|

|w| , ζ ′ = z′2n

|z′|2n = w′

w′ − L
· |w′ − L|

|w′| . (B.14)

By using this expression we can take the analytical continuation n → 1/2. In this way we obtain the
final expression in Eq. (4.37).

We have plotted An=1/2,m=1/2 = Tr
[√√

ρρ′√ρ
]

for fixed choices of w′ as a function of w′ = p+iq
in Fig. B.1 and Fig. 6. We find a localized peak A � 1 at w = w′ when w is close to the center of the
subsystem A. However, the entanglement wedge is not clear again, as opposed to the holographic
case.

Appendix C. General time-dependent case

For a generic pure state in a holographic CFT with a gravity dual, the fidelity F(ρ, ρ′) = A1/2,1/2

is computed from the two-point function 〈O†
α(w, w̄)Oα(w′, w̄′)〉 in such a state dual to a geodesic

length L(w, w̄ : w′, w̄′), simply written as L(w : w′), as

A1/2,1/2 � exp
{
h
[
L(w1 : w2) + L(w′

1 : w′
2) − L(w′

1 : w2) − L(w1 : w′
2)
]}

. (C.1)

By setting w1 = x1 + iτ1 and w2 = x2 − iτ2 and taking the limits x′
1,2 − x1,2 = dx1,2 → 0 and

τ ′
1,2 − τ1,2 = dτ 1,2 → 0, this leads to the Bures metric given by

D2
B = 2(1 − A1/2,1/2)

� (−2h) · [(∂x1∂x2L)dx1dx2 + (∂x1∂τ2L)dx1dτ2

+ (∂τ1∂x2L)dτ1dx2 + (∂τ1∂τ2L)dτ1dτ2
]
. (C.2)

If we set x1 = x2 = x and τ1 = τ2 = τ , we get the 2d metric

D2
B � (−2h) · [(∂x1∂x2L)(dx)2 + (∂x1∂τ2L + ∂τ1∂x2L)dτdx + (∂τ1∂τ2L)dτdτ

]
. (C.3)

If we plug in the geodesic length in Poincaré AdS3, L = log[(x1 − x2)
2 + (τ1 + τ2)

2], we obtain

D2
B = h [Gxxdx1dx2 + Gtx(dx1dτ2 − dx2dτ2) + Gttdτ1dτ2] ,

Gxx = Gtt = 4
[
(τ1 + τ2)

2 − (x1 − x2)
2
]

[
(τ1 + τ2)2 + (x1 − x2)2

]2 ,

Gtx = 8 [(τ1 + τ2)(x1 − x2)][
(τ1 + τ2)2 + (x1 − x2)2

]2 . (C.4)

If we restrict to x1 = x2 = x, then we reproduce the metric in Eq. (5.12) as expected.

Appendix D. Distinguishability measures

Here we list the fundamental properties (including Joza’s axioms [102]) of distinguishability
measures, and summarize them in Table D.1 (see Ref. [36] for more details).

(i) 0 ≤ F(ρ, ρ′) ≤ 1
(ii) F(ρ, ρ′) = 1 if and only if ρ = ρ′
(iii) F(ρ, ρ′) = 0 if and only if ρρ′ = 0
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Table D.1. A � indicates when a measure satisfies the particular property (i)–(ix). “S” means that the quantity
satisfies super-multiplicativity but not multiplicativity.

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix)

F � � � � � � � � �
A � � � � � � � � �
Q � � � � � � � � �
Dtr

∗ � � � � � ? � �
JS∗,† � � � � � � �
FN � � � � � � S
I � � � � � �
F2 � � � � � �

∗ The properties (ii) and (iii) for Dtr and JS are defined based on
1 − Dtr and 1 − JS, instead of themselves. †: The QJS divergence
satisfies convexity, instead of concavity [(vi) and (vii)].

(iv) F(ρ, ρ′) = F(ρ′, ρ)

(v) F(UρU †, Uρ′U †) = F(ρ, ρ′) for any unitary operator U
(vi) F (∑

i piρi, ρ′) ≥ ∑
i piF

(
ρi, ρ′) for any pi ≥ 0 such that

∑
i pi = 1 (separable concavity)

(vii) F
(∑

i piρi,
∑

j pjρ
′
j

)
≥ ∑

i piF
(
ρi, ρ′

i

)
for any pi ≥ 0 s.t.

∑
i pi = 1 (joint concavity)

(viii) F (
ρ1 ⊗ ρ2, ρ′

1 ⊗ ρ′
2

) = F(ρ1, ρ′
1)F(ρ2, ρ′

2) (multiplicativity)
(viii) (S) F (

ρ1 ⊗ ρ2, ρ′
1 ⊗ ρ′

2

) ≥ F(ρ1, ρ′
1)F(ρ2, ρ′

2) (super-multiplicativity)
(ix) F (E(ρ), E(ρ′)

) ≥ F(ρ, ρ′) for any CPTP map E .
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