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We introduce a new quantity, called pseudo-entropy, as a generalization of entanglement entropy via
postselection. We expect this quantity to provide a new class of order parameters in quantum many-body
systems. In the anti–de Sitter space (AdS)/conformal field theory (CFT) correspondence, this quantity is
dual to areas of minimal area surfaces in time-dependent Euclidean spaces which are asymptotically AdS.
We call this geometric computation of pseudo-entropy via the AdS=CFT the holographic pseudo-entropy.
We study its basic properties and classifications in qubit systems. In specific examples, we provide a
quantum information theoretic meaning of this new quantity as an averaged number of Bell pairs when the
post-selection is performed. We also present properties of the pseudo-entropy for random states. We then
calculate the pseudo-entropy in the presence of local operator excitations for both the two dimensional free
massless scalar CFT and two dimensional holographic CFTs. We find a general property in CFTs that the
pseudo-entropy is highly reduced when the local operators get closer to the boundary of the subsystem. We
also compute the holographic pseudo-entropy for a Janus solution, dual to an exactly marginal perturbation
of a two dimensional CFT and find its agreement with a perturbative calculation in the dual CFT. We show
the linearity property holds for holographic states, where the holographic pseudo-entropy coincides with a
weak value of the area operator. Finally, we propose a mixed state generalization of pseudo-entropy and
give its gravity dual.
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I. INTRODUCTION

In recent developments of theoretical physics, entangle-
ment entropy has played crucial roles, unifying theoretical
frameworks in quantum information theory, condensed
matter physics, and high energy physics. Entanglement
entropy measures the amount of quantum entanglement,
which is an important resource in quantum information
theory [1,2]. It also becomes a useful quantum order
parameter in condensed matter physics [3,4]. In high
energy physics, this quantity provides a universal charac-
terization of degrees of freedom in quantum field theories
[5–9]. Moreover, the geometric formula of entanglement
entropy [10–12], based on the anti–de Sitter space/ con-
formal field theory (AdS=CFT) correspondence [13,14] or
holography in a more general context [15,16], motivates us

expect that spacetimes in gravity emerge from quantum
entanglement [17,18].
The AdS=CFT correspondence relates path integrals in

conformal field theories (CFTs) to gravitational partition
functions in anti-de Sitter (AdS) spaces in an equivalent
way [13,14]. This allows us to understand quantum states in
quantum many-body systems, which are normally alge-
braically complicated, in the light of a much simpler
geometrical language. This advantage of AdS=CFT is
manifest in the computation of entanglement entropy. In
AdS=CFT, the entanglement entropy in CFTs can be
computed as the area of extremal surface [10–12], whose
derivations based on the bulk-boundary correspondence
were given in [19,20]. The entanglement entropy is defined
by dividing the Hilbert space as H ¼ HA ⊗ HB and by
calculating the von Neumann entropy

SðρAÞ ¼ −Tr½ρA log ρA�; ð1:1Þ

where ρA ¼ TrB½jΨihΨj� is the reduced density matrix for
the total quantum state jΨi ∈ H. At the AdS boundary, the
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extremal surface, whose area gives the above entanglement
entropy, is supposed to end on the boundary of A.
In a static asymptotically AdS spacetime, the extremal

surface sits on the canonical time slice and therefore
coincides with the minimal area surface on that slice
[10]. This static setup can be Wick rotated into a
Euclidean AdS=CFT setup in a straightforward way. On
the other hand, in a generic asymptotically AdS spacetime
which is time-dependent, there is no common canonical
time slice on which extremal surfaces at a fixed boundary
time extend [11]. The Wick rotation which brings this
Lorentzian time-dependent metric into a Euclidean one is
subtle as the metric can become complex valued in general
under this procedure.
This raises a simple question: what is the meaning of the

area of minimal surfaces in Euclidean asymptotically AdS
spaces which are time-dependent? Via the AdS=CFT, such
a geometry is typically dual to a path-integral in the dual
CFTwith time-dependent sources as sketched in Fig. 1. We
write the coordinate of the Euclidean time as τ. By focusing
on a particular Euclidean time τ ¼ 0, the upper path-
integral (i.e., 0 ≤ τ < ∞) defines a quantum state jφi,
while the lower one (i.e., −∞ < τ ≤ 0) defines another
quantum state jψi. In particular, the gravity partition
function on the whole Euclidean space, which is asymp-
totically AdS, coincides with the inner product hφjψi.
In this paper we argue that the area of a minimal area

surface in a (generically time-dependent) Euclidean asymp-
totically AdS space calculates the following CFT quantity
analogous to the von Neumann entropy, which we call
pseudo-entropy:

SðT ψ jφ
A Þ ¼ −Tr½T ψ jφ

A logT ψ jφ
A �; ð1:2Þ

where T ψ jφ
A ¼ TrB½T ψ jφ� is defined from the transition

matrix:

T ψ jφ ≡ jψihφj
hφjψi : ð1:3Þ

We call T ψ jφ
A a reduced transition matrix. Notice that these

matrices T ψ jφ
A and T ψ jφ are not Hermitian in general and

therefore we cannot regard them as quantum (mixed) states
in an ordinary sense. Indeed, in general the entropic

quantity SðT ψ jφ
A Þ is complex valued. Nevertheless, such

generalized density matrices naturally arise in the context
of the postselection where the initial state jψi is post-
selected into the state jφi. In the postselection setup, a
quantity analogue to the expectation value of an observable
operator O can be defined by

hOi ¼ hφjOjψi
hφjψi ¼ Tr½OT ψ jφ�: ð1:4Þ

This is known as a weak value [21] and has been studied
since it can be used in certain experiments (refer e.g., [22]
for a review). Note that this quantity also takes complex
values in general. Refer to [23] for studies of conditional
entropy of post-selected states.
The main purpose of this paper is to introduce the novel

quantity (1.2), which we call pseudo-entropy, in quantum
many-body systems and field theories mainly motivated by
the above holographic consideration. Since this quantity
provides a new fundamental relationship between geom-
etries in gravity and quantum information in CFT, we
expect that this helps us to understand the basic principle of
the AdS=CFT correspondence and eventually quantum
gravity. Also, its involving the information of two inde-
pendent quantum states makes it largely different from
known quantum informational quantities which are related
to geometries in gravity. At the same time, this quantity can
serve as a new class of order parameters in quantum many-
body systems.
This paper is organized as follows. In Sec. II, we will

present the basic definitions and properties of pseudo-
entropy. We will also give a general replica method which
will be used to calculate the pseudo-entropy in quantum
field theories. Moreover we will explain the holographic
calculation of pseudo-entropy in the AdS=CFT. In Sec. III,
we examine properties of pseudo-entropy in qubit systems.
Firstly we classify the reduced transition matrices and also
point out a monotonicity property in two qubit systems.
Next we will provide an interpretation of pseudo-entropy
for a class of transition matrices in terms of averaged
number of Bell pairs that could have been distilled from the
intermediate state when a final state is post-selected. We
also show a couple of typical properties of pseudo-entropy.
In Sec. IV, we will present computations of pseudo-Rényi
entropy in a two dimensional free scalar CFT by choosing
the quantum states to be locally excited states. In Sec. V, we
study holographic pseudo-entropy. After we explain its
general properties, we give explicit results in a Janus
AdS=CFT, which corresponds to the pseudo-entropy for
CFT states with two different external fields. We also

FIG. 1. The calculation of holographic pseudo-entropy. At the
time specified as the dotted circle, the bra state and ket state are
different. Accordingly, the asymptotically AdS Euclidean geom-
etry is time-dependent. The dots are excitations by inserting
external sources or operators to CFTs.
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present results of holographic pseudo-entropy for locally
excited states. We will also show the linearity is satisfied in
our holographic formula. In Sec. VI, we give a mixed state
generalization of pseudo-entropy, based on reflected
entropy. In Sec. VII, we summarize our conclusions and
discuss future problems.

II. BASICS OF PSEUDO-ENTROPY

Here we introduce a quantity, called pseudo-entropy,
which is a generalization of entropy from an ordinary
quantum state to a process of a post-selection. After we give
its definition and basic properties, we explain general
methods to calculate this quantity in quantum field theories
and the AdS=CFT.

A. Definition of pseudo-entropy

Consider two pure quantum states jψi and jφi which
satisfy hφjψi ≠ 0. We introduce the transition matrix
between them T ψ jφ as follows:

T ψ jφ ≡ jψihφj
hφjψi ; ð2:1Þ

which is normalized such that its trace is one.
Note that this satisfies

ðT ψ jφÞn ¼ T ψ jφ; ð2:2Þ

and thus we find

Tr½ðT ψ jφÞn� ¼ 1; ð2:3Þ

for any n ∈ Nþ. Under the exchange of jψi and jφi, we find

T ψ jφ ¼ ½T φjψ �†: ð2:4Þ

We divide the total system into two subsystems A and B
such that the total Hilbert space H is given by a tensor
product:

H ¼ HA ⊗ HB: ð2:5Þ

Accordingly we introduce the reduced transition matrix

T ψ jφ
A ≡ TrB½T ψ jφ� ¼ TrB

�jψihφj
hφjψi

�
: ð2:6Þ

Now we introduce “nth Rényi entropy” of the transition

matrix T ψ jφ
A in the same way as we define the nth Rényi

entropy of a quantum state ρ:

SðnÞðT ψ jφ
A Þ≡ 1

1 − n
log Tr½ðT ψ jφ

A Þn� ðn ∈ Nþ; n ≥ 2Þ;
ð2:7Þ

where we can simply choose the branch of the log function:

−π < Im½logðzÞ� ≤ π. We call this quantity SðnÞðT ψ jφ
A Þ the

pseudo-nth Rényi entropy. In the following of this paper,
we use logðzÞ to denote the principal value of the

logarithmic function. Notice that, since T ψ jφ
A is not a

quantum state (i.e., Hermitian and non-negative), this
pseudo-Rényi entropy takes a complex value in general.

Note also that when B is empty, i.e., T ψ jφ
A ¼ T ψ jφ, it is

obvious that its entropy is vanishing

SðnÞðT ψ jφÞ ¼ 0: ð2:8Þ

This can be easily seen from (2.3).

For n ∈ Nþ, n ≥ 2, SðnÞðT ψ jφ
A Þ admits an alternative

expression

SðnÞðT ψ jφ
A Þ ¼ 1

1 − n
log
�X

j

λjðT ψ jφ
A Þn

�
; ð2:9Þ

where λjðT ψ jφ
A Þ are the eigenvalues of T ψ jφ

A . Note that since

T ψ jφ
A is not Hermitian in general, we cannot always

diagonalize it either by the unitary matrices or even by
regular matrices. Nevertheless, its eigenvalues are always
well defined and (2.9) follows directly from a Jordan

decomposition of T ψ jφ
A .

This expression can be extended to n ∈ Rþnf1g where
an is defined as

an ≡ en logðaÞ ða ∈ C; n ∈ RþÞ: ð2:10Þ

This allows us to take the n → 1 limit and define a von
Neumann version of pseudo-entropy as

SðT ψ jφ
A Þ≡ lim

n→1
SðnÞðT ψ jφ

A Þ

¼ −
X
j

λjðT ψ jφ
A Þ log ½λjðT ψ jφ

A Þ�: ð2:11Þ

We call this the pseudo-entropy of T ψ jφ
A , or the entangle-

ment pseudo-entropy of A.
Finally, we would like to note that pseudo-(Rényi)

entropy can be expressed in matrix form as follows:

SðnÞðT ψ jφ
A Þ¼ 1

1−n
logTrðT ψ jφ

A Þn; ðn∈Rþnf1gÞ ð2:12Þ

SðT ψ jφ
A Þ ¼ −TrðT ψ jφ

A logT ψ jφ
A Þ: ð2:13Þ

A few comments are in order. In the main parts of this
paper, especially in the context of quantum field theories
and the AdS=CFT correspondence, we focus on the case

where Tr½ðT ψ jφ
A Þn� is non-negative. Therefore we do not

need to worry about the choice of branch of the log
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function. In more generic examples, Tr½ðT ψ jφ
A Þn� takes

complex values and the choice of the branch is important.
Though in the above we just chose a simple one
−π < Im½logðzÞ� ≤ π, we would like to keep open the
possibility that there might be a better choice for applica-
tions in physics, leaving as a future problem.

B. Basic properties of pseudo-entropy

First we have to note that the pseudo-entropy SðnÞðT ψ jφ
A Þ

is complex valued in general because the eigenvalues of the

transition matrix T ψ jφ
A can be complex. Only in special

choices of states jψi and jφi, we find non-negative

eigenvalues of T ψ jφ
A , which we will be especially interested

in this paper.
In general, we can easily prove the following basic

properties for n ∈ Rþ,

ðiÞ If jψi has no entanglement; then SðnÞðT ψ jφ
A Þ ¼ 0:

ð2:14Þ

ðiiÞ If TrðT ψ jφ
A Þn and all eigenvalues of T ψ jφ

A are in

CnR−; then SðnÞðT ψ jφ
A Þ ¼ SðnÞðT φjψ

A Þ�: ð2:15Þ

ðiiiÞ SðnÞðT ψ jφ
A Þ ¼ SðnÞðT ψ jφ

B Þ: ð2:16Þ

The property (i) follows because when jψi ¼ jψ 0iAjψ 00iB,
we can show ðT ψ jφ

A Þn ¼ T ψ jφ
A . The property ðiiÞ can be

found from the relation (2.4). The preconditions of ðiiÞ are
imposed since logðzÞ ¼ ðlogðz�ÞÞ� does not hold for z ∈
R− in our convention. Note that these preconditions are
sufficient but not necessary. The precondition “eigenvalues

of T ψ jφ
A are in CnR−” can be removed if we restrict to

n ∈ Nþnf1g. In Sec. III E, we will use pseudo-Tsallis

entropy TqðT ψ jφ
A Þ ¼ ð1 − trðT ψ jφ

A ÞqÞ=ðq − 1Þ for analysis.
It satisfies TqðT ψ jφ

A Þ ¼ TqðT φjψ
A Þ� for q ∈ Nþnf1g. The

property ðiiiÞ can also be proved via an explicit calculation.

C. Classifications of transition matrices

In this paper, we mainly focus on the transition matrices

which give positive SðnÞðT ψ jφ
A Þ for n > 0. To understand

how special this class is, we would like to classify the
transition matrices.
We start with a Hilbert spaceH factorized into two parts

as H ¼ HA ⊗ HB. Let us denote the set of transition
matrices onH asTðHÞ. Consider several special classes of
transition matrices given as follows.

(i) A: The set of transition matrices which give real-

valued TrðT ψ jφ
A Þn for n > 0.

(ii) ℬ: The set of transition matrices which give non-

negative real SðnÞðT ψ jφ
A Þ for n > 0.

(iii) C: The set of transition matrices which give T ψ jφ
A

whose eigenvalues are real and non-negative.
(iv) D: The set of transition matrices which give positive

semidefinite Hermitian T ψ jφ
A .

(v) E: The set of transition matrices which give positive

semidefinite Hermitian T ψ jφ
A and positive semide-

finite Hermitian T ψ jφ
B .

It is not difficult to figure out that E ⊆ D ⊆ C ⊆ ℬ ⊆ A ⊆
TðHÞ.
For example, in a trivial setup where dimH ¼ dimHA ¼

dimHB ¼ 1 and T ψ jφ ¼ 1, these classes degenerate, i.e.,
E ¼ D ¼ C ¼ ℬ ¼ A ¼ TðHÞ.
In particular, for 2-qubit systems, we find E ⊂ D ⊂ C ¼

ℬ ⊂ A ⊂ TðHÞ, as we will see in Sec. III A. We will
explore various properties of pseudo-entropy in qubit
systems in Sec. III.
With these in mind, the only nontrivial part remained in

the general inclusion relation E ⊆ D ⊆ C ⊆ ℬ ⊆ A ⊆
TðHÞ is whether there is a system in which there exists
a T ψ jφ belonging toℬ but not to C. The answer is yes. The
following two states in a 2-qutrit system give such an
example

jψi ¼ ðU ⊗ IÞjφi; ð2:17Þ

jφi ¼ 2ffiffiffi
5

p j0i ⊗ j0i þ 1ffiffiffiffiffi
10

p j1i ⊗ j1i þ 1ffiffiffiffiffi
10

p j2i ⊗ j2i;

ð2:18Þ

where

U ¼ j0ih0j þ cos
π

4
j1ih1j − sin

π

4
j1ih2j þ sin

π

4
j2ih1j

þ cos
π

4
j2ih2j: ð2:19Þ

In this case

T ψ jφ
A ¼ 5

ffiffiffi
2

p

4
ffiffiffi
2

p þ 1

�
4

5
j0ih0j þ 1

10
ffiffiffi
2

p j1ih1j − 1

10
ffiffiffi
2

p j1ih2j

þ 1

10
ffiffiffi
2

p j2ih1j þ 1

10
ffiffiffi
2

p j2ih2j
�
; ð2:20Þ

and the three eigenvalues of T ψ jφ
A are

8

8þ ffiffiffi
2

p ≡ p;
1þ iffiffiffi

2
p ð8þ ffiffiffi

2
p Þ≡ qeiω;

1 − iffiffiffi
2

p ð8þ ffiffiffi
2

p Þ≡ qe−iω: ð2:21Þ

Clearly this example is in classA but not in class C. We can
see that, for n < 1,
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TrðT ψ jφ
A Þn ¼ pn þ ðqeiωÞn þ ðqe−iωÞn

¼ pn þ 2qn cosðnωÞ > pþ 2q cosω ¼ 1;

ð2:22Þ

and hence SðnÞðT ψ jφ
A Þ > 0. For n > 1,

TrðT ψ jφ
A Þn ¼ pn þ ðqeiωÞn þ ðqe−iωÞn > pn − 2qn > 0:

ð2:23Þ

Moreover, for 1 < n ≤ 2,

TrðT ψ jφ
A Þn ¼ pn þ ðqeiωÞn þ ðqe−iωÞn

¼ pn þ 2qn cosðnωÞ < pþ 2q cosω ¼ 1;

ð2:24Þ

and for 2 < n,

TrðT ψ jφ
A Þn ¼ pn þ ðqeiωÞn þ ðqe−iωÞn

≤ pn þ 2qn < p2 þ 2q2 ¼ 33

33þ ffiffiffi
2

p < 1:

ð2:25Þ

Therefore, 0 < TrðT ψ jφ
A Þn < 1 for n > 1 and hence

SðnÞðT ψ jφ
A Þ > 0. On the other hand, we can explicitly

confirm that SðT ψ jφ
A Þ > 0. As a result, this example is in

class ℬ but not in class C.

D. Pseudo-entropy in QFT

(Entanglement) pseudo-entropy can also be computed in
quantum field theories using a replica trick in path integral
formalism. This is just a straightforward generalization of
the replica trick for computing conventional entanglement
entropy given in [7,8]. The upshot is that we can simply
generalize the replica trick such that the initial and final
state are different, keeping the replicating procedure the
same, to calculate the pseudo-entropy.
For simplicity, let us first consider a QFTwhich lives on

an infinite line R parametrized by x and under a Euclidean
time evolution (or imaginary time evolution). The follow-
ing inner product can be evaluated using a path integral
over a manifold with proper boundary conditions imposed.

ð2:26Þ

Here, jαi and jβi are some pure states in the QFT, ϕ̂ðxÞ is
the field operator, ϕðτ; xÞ is the field configuration,H½ϕ̂ðxÞ�
is the Hamiltonian and S½ϕðτ; xÞ� is the (Euclidean) action.
Therefore, we can regard a path integral over a manifold
with a free boundary as a pure state. Here we use dashed
lines to denote the free boundary. For example,

ð2:27Þ

Now, let us consider the following two states given by
path integral

ð2:28Þ

ð2:29Þ

Then,

ð2:30Þ

and
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ð2:31Þ

From these two path integrals we can get the transition
matrix T ψ jφ. We can divide the time slice into two parts A
and B and accordingly factorize the total Hilbert space as
H ¼ HA ⊗ HB. Here, we take A as the left-hand part and B
as the right-hand part. Then, we have,

ð2:32Þ

and the nth replica turns out to be

ð2:33Þ

Let us denote the manifold corresponding to hφjψi as Σ1

and the one corresponding to TrAðTrBðjψihφjÞÞn as Σn.
Also let us use ZM to denote the path integral over the
manifold M. Then, the nth pseudo-Rényi entropy can be
computed as

SðnÞðT ψ jφ
A Þ ¼ 1

1 − n
log

�
ZΣn

ðZΣ1
Þn
�
; ð2:34Þ

and the entanglement pseudo-entropy can be obtained by
taking the n → 1 limit.
It is useful to note that if we consider an Euclidean

quantum field theory whose action is real valued and add a
time-dependent source which is also real valued, we expect
the partition function is non-negative. Therefore in this case

SðnÞðT ψ jφ
A Þ is non-negative for any n. In this paper,

especially via connection to the AdS=CFT, we have in
mind this class of Euclidean field theory.
In Sec. IV, as one of the simplest examples of calcu-

lations of pseudo-Rényi entropy in quantum field theories,
we will present explicit calculations of pseudo-entropy in a
two dimensional conformal field theory (CFT), described
by a massless free scalar field ϕ. We will define jψi and jφi
as excited states by acting a primary operatorOðx; τÞ on the
vacuum with different points ðx1; τ1Þ and ðx2; τ2Þ such that
jψi ∝ Oðw1; w̄1Þj0i and jφi ∝ Oðw2; w̄2Þj0i, where w ¼
xþ iτ. The reduced transition matrix looks like

T ψ jφ
A ¼ N · TrB½Oðw1; w̄1Þj0ih0jO†ðw2; w̄2Þ�; ð2:35Þ

where N is a normalization factor to secure the unit norm.
We are interested in the difference between the pseudo-

Rényi entropy and the Rényi entropy of the ground state.

ΔSðnÞA ¼ SðnÞðT ψ jφ
A Þ − SðnÞðρð0ÞA Þ; ð2:36Þ

where ρð0ÞA ¼ TrBj0ih0j, i.e., the reduced density matrix for
the CFT vacuum.

The trace TrðT ψ jφ
A Þn can be obtained from the path-

integral by gluing n-sheets with two operators O and O†

inserted as shown in Fig. 2. We denote this replicated space
as Σn. As in [24,25] for the ordinary Rényi entropy via the
replica method, we can calculate the difference (2.36) from
the 2n point function on Σn as follows

ΔSðnÞA ¼ 1

1− n

×

�
log

hO†ðw1; w̄1ÞOðw2; w̄2Þ � � �Oðw2n; w̄2nÞiΣn

ðhO†ðw1; w̄1ÞOðw2; w̄2ÞiΣ1
Þn

�
:

ð2:37Þ

A A A

ATr[τ ]=A
n

2πn

n-sheets

(x1,τ1)

(x2,τ2)O2

O1

†

FIG. 2. The replica method calculation of pseudo-entropy in
two dimensional CFTs for locally excited states.
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We take wi ¼ xi þ iτi to be the location of the operator
insertion in each sheet. By applying the conformal map (we
chose the subsystem A to be an interval ½xl; xr�),

w − xl
w − xr

¼ zn; ð2:38Þ

we can relate the above 2n point function on Σn to that on a

standard complex plane. We will evaluate ΔSðnÞA explicitly
in Sec. IV for n ¼ 2, 3. We will also present holographic
pseudo-entropy for such locally excited states in Sec. V D.
Finally let us comment that we should distinguish the

pseudo-entropy, defined through the postselection process
as we explained in the above, from the (standard) entan-
glement entropy after projection measurements. The latter
was studied in [26,27] for two dimensional CFTs.

E. Holographic pseudo-entropy

As a special class of QFTs, holographic CFTs admit
classical gravity duals via the AdS=CFT correspondence
[13]. This allows us to compute the pseudo-entropy holo-
graphically. Consider a computation of the inner product
hφjψi in the path-integral formalism of CFT. This quantity
is identical to the partition function obtained by gluing
along a time slice two Euclidean path-integrals, each of
which produces jψi and jφi, respectively (depicted as the
boundary of figure 1). If we insert operators O1ðx1Þ;
O2ðx2Þ; � � � on this time slice in this total path-integral,
then we have (after dividing the inner product)

hφjO1ðx1ÞO2ðx2Þ � � � jψi
hφjψi ¼ Tr½T ψ jφ ·O1ðx1ÞO2ðx2Þ � � ��:

The AdS=CFT correspondence relates a dþ 1 dimen-
sional gravity on an AdSdþ1 to a d dimensional holographic
CFT. The gravity dual of this inner product is the classical
partition function of an asymptotically AdS Euclidean
space, which is obtained from the standard rule of the
AdS=CFT. Note that since the bra and ket state on the
time slice is different, there is neither (Euclidean) time-
translational invariance nor the time reversal symmetry on
the time slice. In this sense, we have the genuine Euclidean
time-dependent geometry as the classical gravity dual.
Now we take a subsystem A on the time slice in the

holographic CFT and consider its (von Neumann) pseudo-

entropy SðT ψ jφ
A Þ. We argue that this is simply given by

generalizing the holographic entanglement entropy [10,11]
to the gravity background with Euclidean time-dependence
(refer to Fig. 1):

SðT ψ jφ
A Þ ¼ MinΓA

�
AðΓAÞ
4GN

�
; ð2:39Þ

where ΓA satisfies ∂ΓA ¼ ∂A and is homologous to A.

Since it is straightforward to derive this formula as the
authors of [19] did in the case of holographic entanglement
entropy, here we give only a brief sketch of this. In the
replica calculation explained in the previous subsection, we
can obtain the nth pseudo-Rényi entropy by computing
TrAðTrBðjψihφjÞÞn as a partition function on n-replicated
geometry Σn. In this geometry, the deficit angle 2πð1 − nÞ
is present around the boundary of A (i.e., ∂A). In the
AdS=CFT description, this partition function on Σn is equal
to that of classical gravity on an asymptotically AdS space
whose boundary coincides with the replicated space Σn.
Naively the solution to Einstein equation with this boun-
dary geometry is given by extending the deficit angle on ∂A
toward the bulk AdS. We call this extended surface with the
deficit angle as ΓA. However, the true solution to Einstein
equation should be smooth and this deficit angle surface in
the bulk, which is singular, is not an appropriate solution.
Nevertheless, this naive prescription gives a correct von
Neumann entropy (but not correct Rényi entropy). This is
because the difference between the true solution and the
singular solution isOðn − 1Þwhen n is very closed to 1 and
thus the values of the gravity action evaluated on these two
solutions differ by Oððn − 1Þ2Þ, which does not contribute
in the von Neumann entropy limit n → 1. To see this, note
that at n ¼ 1 the two solutions coincide with the standard
AdS solution which satisfies the Einstein equation.
The gravity action takes the familiar form:

IG ¼ −
1

16πGN

Z
ddþ1x

ffiffiffi
g

p ðR − 2ΛÞ þ � � � ; ð2:40Þ

where the omission � � � includes the boundary term as well
as matter field contributions which do not contribute to the
entropy. In the presence of the deficit angle on ΓA, the Ricci
scalar behaves as R ¼ 4πð1 − nÞδΓA

ðxÞ, where δΓA
ðxÞ is the

delta-function which localizes on ΓA. Therefore we can
evaluate the Oðn − 1Þ term of the gravity action

IG ¼ n − 1

4GN
AðΓAÞ þ…; ð2:41Þ

where the terms � � � are all proportional to n, which does not
contribute to the entropy. The gravity partition function is
expressed as ZG ¼ e−IG in terms of the on-shell gravity
action IG. Finally the holographic pseudo-entropy is

computed as AðΓAÞ
4GN

by taking n → 1 limit of the for-
mula (2.34). Solving Einstein equation corresponds to
minimizing the area with respect to the change of ΓA.
These arguments derive the holographic formula (2.39).
Interestingly, this holographic formula tells us that the

pseudo-entropy computed for a classical gravity dual is
always non-negative, assuming the bulk metric is real
valued. This is because the only source for the holographic
entanglement entropy by the replica trick is the Einstein
Hilbert term which gives rise to the area term as in [19], as
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long as we consider Einstein gravity coupled to various
matter fields. In the field theory side we can understand this
as follows. Typically the Euclidean gravity with a real
valued metric is dual to an Euclidean CFTwith real valued
external sources. In such a theory, the partition functions

are non-negative and the same is true for TrðT ψ jφ
A Þn. Also

we expect the analyticity about the replica number n, which
can be confirmed in explicit results from CFT calculations
in Sec. V D. Therefore, we can compute the pseudo-
entropy without worrying about the choice of branch of
the log function.
Notice also that the basic properties of (2.14), (2.15), and

(2.16) are obvious in the holographic formula. Moreover, it
is clear from the geometric property of asymptotically AdS
backgrounds that the holographic pseudo-entropy obeys
the area law as in the standard entanglement entropy [5,6].
We will give more details of holographic pseudo-entropy
with several examples in Sec. V.
We would like to mention that if we Wick rotate a

generic Lorentzian time-dependent solution of Einstein
gravity into an Euclidean time-dependent solution, we
encounter a complex valued metric. In this case we expect
the minimal area becomes complex valued. Though, in the
present paper we will not discuss such cases, leaving it as a
future problem, we would like to note that this looks
consistent with the fact that the pseudo-entropy is generi-
cally complex valued.
It is intriguing to compare this formula with the covariant

holographic entanglement entropy [11], which calculates
the entanglement entropy under time evolutions as the area
of an extremal surface in a Lorentzian time-dependent
asymptotically AdS spacetime. Our pseudo-entropy for-
mula in Euclidean asymptotically AdS spaces, may be
regarded as a Wick rotation of the covariant holographic
entanglement entropy from the gravity dual viewpoint.
However, note that the former computes the von Neumann
entropy for a standard quantum state, while the latter
computes the von Neumann entropy for a transition matrix.
It is also useful to note that we can express the holo-

graphic pseudo-entropy by using the area operator Â
introduced in [28] as follows:

SðT ψ jφ
A Þ ¼

hφj Â
4GN

jψi
hφjψi ; ð2:42Þ

i.e., the weak value of the area operator. We assume that jψi
and jφi are in the same subspace of the low energy Hilbert
space. Notice that if jψi and jφi are descendants of two
different primaries, which are orthogonal to each other,
then the hφjÂjψi does vanish. Using this fact, we will
confirm the expected linearity of the area operator in
section V F.

III. PSEUDO-ENTROPY IN QUBIT SYSTEMS

In this section, we study pseudo-entropy in qubit systems
in detail.

A. Classification in 2-qubit systems

An arbitrary pure state in a 2-qubit system can be written
as (up to an overall normalization)

jψi ¼ j00i þ aj11i; ð0 ≤ a ≤ 1Þ ð3:1Þ

by choosing the basis appropriately. Here, we use the
notation jiji≡ jiiA ⊗ jjiB. In such a basis, another arbi-
trary bipartite state can be written as (up to an overall
normalization)

jφi ¼ j00i þ be−iθj11i þ ce−iξj01i þ de−iηj10i;
× ðb; c; d ≥ 0;−π ≤ θ; ξ; η ≤ πÞ: ð3:2Þ

The transition matrix between the two states is reduced to

T ψ jφ
A ¼ 1

1þ abeiθ
ðj0ih0j þ aceiξj1ih0j

þ deiηj0ih1j þ abeiθj1ih1jÞ

≡
 

1
1þabeiθ

deiη

1þabeiθ

aceiξ

1þabeiθ
abeiθ

1þabeiθ

!
ð3:3Þ

It is easy to see

T ψ jφ ∈ A ⇔ 0 ≤ detðT ψ jφ
A Þ: ð3:4Þ

It is also not hard to find that the following three
statements are equivalent:

SðnÞðT ψ jφ
A Þ takes nonnegative real values

for n > 0; i:e:T ψ jφ ∈ ℬ:

⇔Both λ1 and λ2 are real and nonnegative;

i:e:T ψ jφ ∈ C:

⇔0 ≤ detðT ψ jφ
A Þ ≤ 1=4: ð3:5Þ

Let us then figure out when T ψ jφ gives positive semi-

definite Hermitian T ψ jφ
A , i.e., T ψ jφ ∈ D. For two states jψi

and jφi where

jψi ¼ j00i þ aj11i; ð0 ≤ a ≤ 1Þ; ð3:6Þ

T ψ jφ
A is Hermitian if and only if
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∃
8<
:

b ∈ R; b ≠ −1=a
0 ≤ c

−π ≤ ξ ≤ π

s:t:

jφi ¼ j00i þ bj11i þ ce−iξj01i þ aceiξj10i: ð3:7Þ

In this case,

T ψ jφ
A is positive semidefinite ⇔ a ¼ 0 or b ≥ ac2:

ð3:8Þ

Note that T ψ jφ
A and T ψ jφ

B are not necessarily Hermitian at
the same time. For two states jψi and jφi where

jψi ¼ j00i þ aj11i; ð0 ≤ a ≤ 1Þ; ð3:9Þ

both T ψ jφ
A and T ψ jφ

B are Hermitian if and only if it is either
of the following two cases.

Case I: ∃ b ∈ R, b ≠ −1=a, s.t.

jφi ¼ j00i þ bj11i: ð3:10Þ

Case II: a ¼ 1 and

∃

8>><
>>:

b ∈ R; b ≠ −1=a
0 ≤ c

−π ≤ ξ ≤ π

s:t:

jφi ¼ j00i þ bj11i þ ce−iξj01i þ ceiξj10i: ð3:11Þ

In case I,

Both T ψ jφ
A and T ψ jφ

B are positive semidefinite

⇔a ¼ 0 or b ≥ 0: ð3:12Þ

In case II,

Both T ψ jφ
A and T ψ jφ

B are positive semidefinite

⇔b ≥ c2: ð3:13Þ

1. Counting the degrees of freedom
of 2-qubit transition matrix

Choosing the basis like (3.1) and (3.2), it can be
observed that there are 7 independent variables to charac-
terize the transition matrix T ψ jφ. However, as we can see in
(3.3), only 6 independent variables remain in T ψ jφ

A .
Moreover, since the pseudo-entropy can be computed from
the two eigenvalues, there are only 2 independent variables
that are relevant.

Considering transition matrices which give nonnegative

real SðnÞðT ψ jφ
A Þ for n > 0, as we can see from (3.5), there

are 6 independent variables for T ψ jφ and 5 independent

variables for T ψ jφ
A .

If we focus on transition matrices which give positive

semidefinite Hermitian T ψ jφ
A , according to (3.7) and (3.8),

there are 4 independent variables for T ψ jφ and 3 indepen-

dent variables for T ψ jφ
A .

Moreover, when both T ψ jφ
A and T ψ jφ

B are positive semi-
definite Hermitian, the transition matrices can be classified
in two cases. In case I, there are 2 independent variables for

T ψ jφ and 1 independent variables for T ψ jφ
A . In case II, there

are 3 independent variables for T ψ jφ and 3 independent

variables for T ψ jφ
A .

Figure 3 shows the Venn diagram of the classification of
2-qubit transition matrices we have discussed above.
Let us present an exotic example as follows, which

belongs to the class A but not to ℬ.
Example 1. For this we choose

jψi ¼ 1ffiffiffi
2

p ðj00i þ eiθj11iÞ;

jφi ¼ 1ffiffiffi
2

p ðj00i þ j11iÞ: ð3:14Þ

We obtain

FIG. 3. The Venn diagram of the classification of 2-qubit
transition matrices. For each class of states, we use ðm; nÞ to
represent that there are m independent variables for T ψ jφ and n

independent variables for T ψ jφ
A .
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T ψ jφ
A ¼ 1

1þ eiθ
ðj0ih0j þ eiθj1ih1jÞ; ð3:15Þ

where the eigenvalues are complex valued and each of them
is complex conjugate to the other. We can evaluate the
pseudo-Rényi entropy

SðnÞðT ψ jφ
A Þ ¼ 1

1 − n
log

�
cos nθ

2

2n−1cosnðθ
2
Þ
�
: ð3:16Þ

In particular for n ¼ 2, we find

Sð2ÞðT ψ jφ
A Þ ¼ log

�
1þ cos θ
cos θ

�
; ð3:17Þ

which is larger than log 2 for 0 < jθj < π
2
and is complex

valued for π
2
< jθj < π.

The pseudo-von Neumann entropy reads

SðT ψ jφ
A Þ ¼ log

�
2 cos

θ

2

�
þ θ

2
· tan

θ

2
: ð3:18Þ

Also note that, in this case, the two states jψi and jφi satisfy
SðρψAÞ ¼ SðρφAÞ where ρψA ¼ TrBðjψihψ jÞ. We have

SðT ψ jφ
A Þ − SðρψAÞ ¼ SðT ψ jφ

A Þ − SðρφAÞ

¼ log

�
cos

θ

2

�
þ θ

2
· tan

θ

2
≥ 0: ð3:19Þ

However, note that the original periodicity of θ disappears.

B. A monotonicity of pseudo-entropy in 2-qubit systems

Consider two states jψi and jφi in a 2-qubit system
H ¼ HA ⊗ HB which are related by a local basis trans-
formation:

jψi ¼ ðU ⊗ VÞjφi ð3:20Þ

where U and V are unitary transformations on HA and HB
respectively. A significant feature of 2-qubit systems in this

setup is the following monotonicity under the unitary
transformations:

SðnÞðT ψ jφ
A Þ ≥ SðnÞðTrBðjψihψ jÞÞ ¼ SðnÞðTrBðjφihφjÞÞ
for n > 0; ð3:21Þ

if all the eigenvalues of T ψ jφ
A are real and nonnegative.

1. Proof

We present a proof by explicitly writing down the
reduced transition matrix. We can always choose the basis
such that

jψi ¼ cj00ij000i þ sj10ij100i ð3:22Þ

jφi ¼ cj0ij0i þ sj1ij1i ð3:23Þ

where 0 ≤ s ≤ c ≤ 1, c2 þ s2 ¼ 1 and,

j00i ¼ Uj0i; j10i ¼ Uj1i; ð3:24Þ

j000i ¼ Vj0i; j100i ¼ Vj1i: ð3:25Þ

Then,

jψihφj ¼ c2ðUj0ih0jÞ ⊗ ðVj0ih0jÞ
þ csðUj0ih1jÞ ⊗ ðVj0ih1jÞ
þ csðUj1ih0jÞ ⊗ ðVj1ih0jÞ
þ s2ðUj1ih1jÞ ⊗ ðVj1ih1jÞ: ð3:26Þ

Let us introduce the following notation:

M ¼ M00j0ih0j þM01j0ih1j þM10j1ih0j þM11j1ih1j

¼
�
M00 M01

M10 M11

�
: ð3:27Þ

Tracing out the subsystem B, we have

TrBðjψihφjÞ ¼
�
c2V00U00 þ csV01U01 s2V11U01 þ csV10U00

c2V00U10 þ csV01U11 s2V11U11 þ csV10U10

�
: ð3:28Þ

Thus we get the reduced transition matrix

T ψ jφ
A ¼ 1

Δ

�
c2V00U00 þ csV01U01 s2V11U01 þ csV10U00

c2V00U10 þ csV01U11 s2V11U11 þ csV10U10

�
; ð3:29Þ

where

Δ ¼ TrðT ψ jφ
A Þ ¼ c2V00U00 þ csV01U01 þ s2V11U11 þ csV10U10: ð3:30Þ
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It is sufficient to consider the situation in which U;V ∈
SUð2Þ. This allows us to have

U ¼
�
p −q�

q p�

�
; V ¼

�
r −t�

t r�

�
ð3:31Þ

where jpj2 þ jqj2 ¼ jrj2 þ jtj2 ¼ 1. We then get

Δ ¼ c2prþ csq�t� þ s2p�r� þ csqt

¼ ReðprÞ þ 2csReðqtÞ þ iðc2 − s2ÞImðprÞ ð3:32Þ

and

det T ψ jφ
A ¼ c2s2

Δ2
: ð3:33Þ

The two eigenvalues of T ψ jφ
A are the two solutions of

FðλÞ≡ λ2 − λþ c2s2

Δ2
¼ 0: ð3:34Þ

We denote them as λ− ≤ λþ. Both λ− and λþ are real and
nonnegative if and only if

0 ≤
c2s2

Δ2
≤
1

4
: ð3:35Þ

In this case Δ ∈ R and hence

jΔj ¼ jReðprÞ þ 2csReðqtÞj
≤ jReðprÞj þ 2csjReðqtÞj
≤ jReðprÞj þ ðc2 þ s2ÞjReðqtÞj
¼ jReðprÞj þ jReðqtÞj
≤ jpjjrj þ jqjjtj
¼ cosðα − βÞ ≤ 1: ð3:36Þ

where in the last line we recognize jpj ¼ cos α, jqj ¼ sin α,
jrj ¼ cos β, jtj ¼ sin β. Let us go back to our statement
(3.21). Under the condition that the eigenvalues of T ψ jφ

A are
real and positive,

SðnÞðT ψ jφ
A Þ ≥ SðnÞðTrBðjψihψ jÞÞ ¼ SðnÞðTrBðjφihφjÞÞ

for n > 0

⇔0 ≤ s2 ≤ λ− ≤ λþ ≤ c2 ≤ 1 ðMajorization½27�Þ

⇔Fðc2Þ ¼ c2s2
�

1

Δ2
− 1

�
≥ 0; ð3:37Þ

and the last line follows directly from (3.36).

2. Beyond two qubits

We would like to note that the same statement is not true
in general Hilbert space. Let us see a representative
example in 2-qutrit systems.
Example 2. Consider the following two states.

jψi ¼ 1ffiffiffi
2

p ðj0ij0i þ j1ij1iÞ; ð3:38Þ

jφi ¼ 1ffiffiffi
2

p ðj0ij0i þ j1ij2iÞ: ð3:39Þ

The two states are related by a local basis transformation
and

SðnÞðTrBðjψihψ jÞÞ ¼ SðnÞðTrBðjφihφjÞÞ ¼ log 2 for n > 0:

ð3:40Þ

On the other hand,

T ψ jφ
A ¼

0
B@

1 0 0

0 0 0

0 0 0

1
CA; T ψ jφ

B ¼

0
B@

1 0 0

0 0 1

0 0 0

1
CA:

ð3:41Þ

and hence

SðnÞðT ψ jφ
A Þ ¼ 0 < log 2

¼ SðnÞðTrBðjψihψ jÞÞ ¼ SðnÞðTrBðjφihφjÞÞ
for n > 0: ð3:42Þ

The third dimension plays a crucial role in the distinguish-
ment from 2-qubit cases.
It is easy to understand this difference between 2-qubit

systems and higher dimensional systems. Let us denote the
eigenvalues of TrBðjφihφjÞ as a > b > c. Now in this case
the local unitary transformation only changes the eigen-
space corresponding to b and c. Therefore, by using the
result in the 2-qubit case, the eigenvalues change toward
majorization [29]. On the other hand, if we take the
normalization into consideration and look at the whole
Hilbert space, we can see that the normalization changes
the eigenvalues toward an opposite direction of majoriza-

tion. As a result, we cannot justify whether SðnÞðT ψ jφ
A Þ

is larger than SðnÞðTrBðjψihψ jÞÞ ¼ SðnÞðTrBðjφihφjÞÞ in
general.
We also would like to point out a closely related example

in 4-qubit system:
Example 3. Consider a 4-qubit system, where the qubits

are denoted by A1, A2, B1 and B2, respectively. We regard
the first two qubits as A i.e., A ¼ A1A2 and similarly for the
latter two qubits B ¼ B1B2. For the states
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jψi ¼ ðj0000i þ j0110iÞ=
ffiffiffi
2

p
; ð3:43Þ

jφi ¼ ðj0000i þ j1001iÞ=
ffiffiffi
2

p
; ð3:44Þ

it is straightforward to see SðT ψ jφ
A Þ ¼ 0 and

SðTrBðjψihψ jÞÞ ¼ SðTrBðjφihφjÞÞ ¼ log 2. In this exam-
ple, jφi is obtained from jψi by replacing the Bell pair of
A2B1 with that of A1B2. This implies the entanglement
swapping (or transition) reduces the values of pseudo-
entropy compared with the original amount of quantum
entanglement for each of states.

3. A weaker inequality

Nevertheless, we would like to mention that in general
Hilbert spaces, a weaker bound can be obtained. We
consider

jψi ¼ ðU ⊗ 1Þjφi ð3:45Þ

where the unitary transformation U only acts on the Hilbert
space HA. We assume HA and HB are arbitrary and jφi ∈
HA ⊗ HB can be any quantum state. In this setup, if we set
ρφ ¼ TrBjφihφj, then the transition matrix looks like

T ψ jφ
A ¼ U · ρφ

Tr½U · ρφ�
: ð3:46Þ

By writing the eigenvalues of ρφA and U · ρφA as fσig and
fλig in decreasing order, respectively, the Weyl’s inequality
leads to the relation

Xk
i¼1

jλijp ≤
Xk
i¼1

ðσiÞp; ð3:47Þ

for any kð≤ dimHAÞ.
If we assume the eigenvalues of U · ρφA are non-negative,

then the above inequality gives the weaker bound:

SðnÞðT ψ jφ
A Þ ≥ SðnÞðρφAÞ þ

n
n − 1

loghφjψi: ð3:48Þ

C. Pseudo-entropy as number of bell pairs in class E

In this subsection we would like to present an inter-
pretation of pseudo-entropy as a number of Bell pairs
included in intermediate states by focusing on the class E,
which is supposed to be least exotic. Even though there are
case I and case II in class E (see Fig. 3), the case II can be
reduced to case I via unitary transformation of the basis.
Therefore we can focus on the case I.
For this, let us consider the following states:
Example 4. We choose the two quantum states as

follows

jψ1iAB ¼ cos θ1j00iAB þ sin θ1j11iAB;
jψ2iAB ¼ cos θ2j00iAB þ sin θ2j11iAB: ð3:49Þ

We assume 0 ≤ θ1; θ2 ≤ π
2
or π

2
≤ θ1; θ2 ≤ π in order to be in

class D (i.e., T ψ1jψ2

A is positive semidefinite Hermitian
matrix). The reduced density matrix in each state reads

ρðiÞA ¼ cos2θij0ih0j þ sin2θij1ih1j: ði ¼ 1; 2Þ

The entanglement entropy for each state is found as

SðρðiÞA Þ ¼ −cos2θi log cos2θi − sin2θi log sin2θi: ð3:50Þ

The transition matrix is found as

T ψ1jψ2

A ¼ 1

cosðθ1 − θ2Þ
ðcos θ1 cos θ2j0ih0j

þ sin θ1 sin θ2j1ih1jÞ:

The pseudo-Rényi entropy is computed as

SðnÞðT ψ1jψ2

A Þ

¼ 1

1 − n
log

��
cos θ1 cos θ2
cosðθ1 − θ2Þ

�
n
þ
�
sin θ1 sin θ2
cosðθ1 − θ2Þ

�
n
�
:

The entanglement pseudo-entropy is found as

SðT ψ1jψ2

A Þ ¼ −
�
cos θ1 cos θ2
cosðθ1 − θ2Þ

�
· log

�
cos θ1 cos θ2
cosðθ1 − θ2Þ

�

−
�
sin θ1 sin θ2
cosðθ1 − θ2Þ

�
· log

�
sin θ1 sin θ2
cosðθ1 − θ2Þ

�
:

ð3:51Þ

This is plotted in the left picture of Fig. 4.
When θ1 ¼ θ2, this is reduced to the ordinary entangle-

ment entropy (3.50). Moreover, when θ1þθ2¼π
2
ð2mþ1Þ

(here m is an integer), we always find SðT ψ1jψ2

A Þ ¼ log 2.

FIG. 4. We plot the pseudo-entropy for the two qubit system as
a function θ1 (horizontal axis) and θ2 (depth axis) in the left
graph. The right one shows the pseudo-entropy minus the
averaged entanglement entropy i.e., (3.52). We took the range
0 ≤ θ1;2 ≤ π. The region where no graph is shown gives complex
valued pseudo-entropy.
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This is intriguing because even though the entanglement
entropies for jψ1i and jψ2i are small, the pseudo-entropy
can be large.
It is useful to note that the following difference which

measures such an enhancement:

SðT ψ1jψ2

A Þ − 1

2
ðSðρð1ÞA Þ þ Sðρð2ÞA ÞÞ ð3:52Þ

can be both positive and negative in general as in the right
picture of Fig. 4.

1. Interpretation via quantum entanglement

Now let us consider an interpretation of pseudo-entropy
from the view point of quantum entanglement by extending
the well-known argument [29,30] for the entanglement
entropy. Again we assume two quantum states are in the
form (3.49). We regard jψ1i as the initial state and jψ2i as
the final state of the postselection. We would like to
estimate the averaged number of Bell pairs that could have
been potentially distilled from intermediate states before
the state was actually postselected. More specifically, we
rewrite hψ2jψ1i as

P
nhψ2jnihnjψ1i and consider the

number of Bell pairs that can be distilled from the
intermediate state jni. Since the state would have appeared
with probability pn ¼ ðhψ2jnihnjψ1iÞ=hψ2jψ1i, we take
the average over pn. This protocol is obviously not real
since the postselected state is jψ2i, but not jni. We however
think that this quantity is worth studying from a theoretical
viewpoint since the quantity allows us to assess the amount
of entanglement that is virtually involved in the postse-
lection process.
Motivated by the LOCC interpretation of entanglement

entropy we would like to take the asymptotic limit and
consider the M replicated states

jψ ii⊗M ¼ ðcij00i þ sij11iÞ⊗M; ð3:53Þ

where we defined ci ¼ cos θi and si ¼ sin θi. This is
expanded in the form:

jψ ii⊗M ¼
XM
k¼0

cM−k
i ski

XMCk

a¼1

jPðkÞ
a iAjPðkÞ

a iB;

ði ¼ 1; 2Þ ð3:54Þ

where MCk ¼ M!
ðM−kÞ!k! is the combination factor and we

introduced orthonormal basis states jPðkÞ
a i ðk ¼ 0; 1; � � � ;

M; a ¼ 1; 2; � � � ; MCkÞ for the M qubits such that jPðkÞ
a i

includes M − k j0i-states and k j1i-states as follows

jPð0Þ
1 i ¼ j00 � � � 0i;

jPð1Þ
1 i ¼ j10 � � � 0i;

jPð1Þ
2 i ¼ j01 · · · 0i; � � � ; jPð1Þ

M i ¼ j00 � � � 1i;

For this basis we introduce the projection operators

Πk ¼
XMCk

i¼1

jPðkÞ
i iAhPðkÞ

i j; ð3:55Þ

such that
P

M
k¼0 Πk ¼ 1. This projector Πk projects a given

state into the maximally entangled state

jΨki ¼
1ffiffiffiffiffiffiffiffiffi
MCk

p XMCk

i¼1

jPðkÞ
i iAjPðkÞ

i iB; ð3:56Þ

It is obvious that we can distill log2MCk Bell pairs
from jΨki.
The probability pk of the appearance of the state jΨki in

the transition hψ2jψ1i is computed as

pk ¼
hψ2j⊗MΠkjψ1i⊗M

hψ2j⊗Mjψ1i⊗M ¼ ðc1c2ÞM−kðs1s2Þk
ðc1c2 þ s1s2ÞM

· MCk

Therefore we can estimate the number of Bell pairs which
we could have distilled during the transition hψ2jψ1i as
follows:

N̄ ¼
XM
k¼0

pklog2MCk

¼
XM
k¼0

MCk
ðc1c2ÞM−kðs1s2Þk
ðc1c2 þ s1s2ÞM

log2MCk; ð3:57Þ

By using the Stirling formula n! ∼ nne−nðn → ∞Þ, we find
that the summation over k is localized at the point

k� ¼ M ·
sin θ1 sin θ2
cosðθ1 − θ2Þ

: ð3:58Þ

Thus we obtain

lim
M→∞

N̄
M

¼ −
�
cos θ1 cos θ2
cosðθ1 − θ2Þ

�
· log

�
cos θ1 cos θ2
cosðθ1 − θ2Þ

�

−
�
sin θ1 sin θ2
cosðθ1 − θ2Þ

�
· log

�
sin θ1 sin θ2
cosðθ1 − θ2Þ

�
: ð3:59Þ

This coincides with the entanglement pseudo-entropy
(3.51).
In this way, the averaged number of Bell pairs which

could have been virtually distilled during the post-selection
process coincides with our pseudo-entropy in the class D.
Notice that formally the above argument can be analytically
continued to arbitrary complex valued θ1 and θ2, though its
physical interpretation is less clear.
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D. Violation of subadditivity

Subadditivity and strong subadditivity are important
properties of von Neumann entropy of quantum states.
Considering a density matrix ρ in a multipartite system
whose Hilbert space is factorized as H ¼ HA ⊗ HB ⊗
HC ⊗ � � �, then subadditivity

SðρAÞ þ SðρBÞ − SðρABÞ ≥ 0 ð3:60Þ
and strong subadditivity [31,32]

SðρACÞ þ SðρBCÞ − SðρABCÞ − SðρCÞ ≥ 0 ð3:61Þ
are always satisfied.
It is obvious that neither subadditivity nor strong sub-

additivity holds for pseudo-entropy since it can be complex
in general. However, one may wonder whether they hold if
we restrict our transition matrices to a much more special

class in which T ψ jφ give T ψ jφ
A ; T ψ jφ

B ;…; T ψ jφ
AB ;… whose

eigenvalues are real and nonnegative. The answer to this
question is no. Let us present a counter example.
Example 5. Consider the following two states on

a 3-qubit system H ¼ HA ⊗ HB ⊗ HC:

jψi ¼ ðI ⊗ I ⊗ UÞjφi; ð3:62Þ
jφi ¼ cos αj000i þ sin αj111i; ð3:63Þ

where I is the identity transformation and U is a unitary
transformation which satisfies

Uj0i ¼ cos θj0i þ sin θj1i; ð3:64Þ
Uj1i ¼ − sin θj0i þ cos θj1i: ð3:65Þ

Then it is easy to figure out

jψi ¼ cos θ cos αj000i þ sin θ cos αj001i
þ sin θ sin αj110i þ cos θ sin αj111i ð3:66Þ

and

T ψ jφ
A ¼ TrBCðT ψ jφÞ ¼ cos2αj0ih0j þ sin2αj1ih1j; ð3:67Þ

T ψ jφ
B ¼ TrACðT ψ jφÞ ¼ cos2αj0ih0j þ sin2αj1ih1j; ð3:68Þ

T ψ jφ
AB ¼ TrCðT ψ jφÞ

¼ cos2αj00ih00j þ tan θ cos α sin αj00ih11j
− tan θ cos α sin αj11ih00j þ sin2αj11ih11j:

ð3:69Þ

The eigenvalues of T ψ jφ
A ¼ T ψ jφ

B are

cos2α; sin2α ð3:70Þ

and the eigenvalues of T ψ jφ
AB are

0; 0;
1

2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos 4αþ cos 2θ

1þ cos 2θ

r �
: ð3:71Þ

In a similar manner, we can find that the nonzero

eigenvalues of T ψ jφ
BC and T ψ jφ

AC are (3.70) and the eigenval-

ues of T ψ jφ
C are the same as the nonzero ones of (3.71).

Therefore, in this case, T ψ jφ give T ψ jφ
A ; T ψ jφ

B ;…; T ψ jφ
AB ;…

whose eigenvalues are real and nonnegative if and only if
ðcos 4αþ cos 2θÞ ≥ 0. Now we would like to check if

SðT ψ jφ
A Þ þ SðT ψ jφ

B Þ − SðT ψ jφ
AB Þ is nonnegative or not.

Noticing the symmetry, it is sufficient to look at α ∈
½0; π=4� and θ ∈ ½0; π=2�. Figure 5 shows this region. The

colored part shows ðcos 4αþ cos 2θÞ ≥ 0where SðT ψ jφ
A Þ þ

SðT ψ jφ
B Þ − SðT ψ jφ

AB Þ < 0 in the blue region and SðT ψ jφ
A Þ þ

SðT ψ jφ
B Þ − SðT ψ jφ

AB Þ ≥ 0 in the yellow region.
Due to the existence of the blue region, subadditivity is

violated in this example. Then it is obvious that strong
subadditivity is also violated.

E. Pseudo-entropy for random states

We here provide generic properties of pseudo-entropy by
investigating the pseudo-entropy forHaar random states. A
Haar random state is defined as a pure state drawn from a
Hilbert space uniformly at random according to the
unitarily invariant probability measure H. Such a measure
is unique and is called the Haar measure. A Haar random
state is often denoted by jϕi ∼ H. Due to the unitary

FIG. 5. The region of α ∈ ½0; π=4� and θ ∈ ½0; π=2�. The
colored part shows the region in which all eigenvalues of all

reduced transition matrices are real and nonnegative. SðT ψ jφ
A Þ þ

SðT ψ jφ
B Þ − SðT ψ jφ

AB Þ < 0 in the blue region and SðT ψ jφ
A Þ þ

SðT ψ jφ
B Þ − SðT ψ jφ

AB Þ ≥ 0 in the yellow region.
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invariance of the Haar measure, a Haar random state is
suitable to check typical properties of quantum pure states.
Following this idea, we numerically and analytically

investigate the pseudo-entropy SðT ψ jφ
A Þ when φ and ψ

are independent Haar random states.
We first numerically provide in Fig. 6 the distribution of

pseudo-entropy SðT ψ jφ
A Þ over jψi; jφi ∼ H. As a reference,

we also provide the distribution of usual entanglement
entropy SðφAÞ over jφi ∼ H where φA ≡ TrBjφihφj.
Despite the facts that pseudo-entropy is in general com-
plex-valued and that its absolute value can be arbitrarily
large, the distribution centers around a moderately small
real value. In the case of dimHA ¼ 8 and dimHB ¼ 32, the
value is roughly 3.6, which is larger than but comparable
with the maximum of the entanglement entropy, i.e.,
log dim HA ≈ 2.08. Also, the distribution seems to be
symmetric about the real axis [see also panel (C)]. In panel
(D), we present the distribution of entanglement entropy
over a Haar random state, where we clearly observe that the
distribution highly concentrates around a nearly maximal
value. This phenomena, i.e., most random states are highly
entangled, has been repeatedly pointed out in the literature
[33–38] and is a consequence of the concentration of
measure phenomena [38,39], one of the generic properties
of the Haar measure. Compared to the strong concentration
of entanglement entropy for a random state, the distribution
of pseudo-entropy concentrates rather weakly. This is,
however, likely to be due to the fact that there is no

obvious upper bound on jSðT ψ jφ
A Þj, which is in contrast to

finite range ½0; log½dim HA�� of the entanglement entropy.
We hence expect that concentration also occurs, though it
may be weak, even for pseudo-entropy. We will discuss this
point later. We would like to note that no instances are

found in region Re½SðT ψ jφ
A Þ� < 0 in Fig. 6. This implies that

the probability for a transition matrix given by two Haar

random states to satisfy Re½SðT ψ jφ
A Þ� < 0 is very small.

However, this does not mean that Re½SðT ψ jφ
A Þ� ≥ 0 holds

for all transition matrices. For example, if we take jψi ¼
ðj0iA ⊗ j0iB þ j1iA ⊗ j1iBÞ=

ffiffiffi
2

p
and jφi ¼ ð2j0iA ⊗

j0iB − j1iA ⊗ j1iBÞ=
ffiffiffi
5

p
where fj0iA;…; j7iAg gives a

orthonormal basis of HA and fj0iB;…; j31iBg gives a
orthonormal basis of HB, then we can easily see that the

eigenvalues of T ψ jφ
A are given by f2;−1; 0;…; 0g and

hence Re½SðT ψ jφ
A Þ� ¼ −2 log 2 < 0.

The distribution of pseudo-entropy can be more elaborated
in terms of the Tsallis entropy instead of the von Neumann
entropy. The Tsallis entropy is a generalization of the von
Neumann entropy into a one-parameter family and is defined
by TqðρÞ ¼ ð1 − tr½ρq�Þ=ðq − 1Þ for q ∈ R, where ρ is
normally a density matrix. Similarly to the Rényi entropy,
it converges to thevonNeumann entropy in the limit ofq → 1.
Using the Tsallis entropy, we define the pseudo-Tsallis

entropy TqðT ψ jφ
A Þ for the reduced transition matrix T ψ jφ

A .
By the standard technique, we can show that the average

of the pseudo-Tsallis entropy over Haar random states
jψi; jφi ∼ H exactly coincides with that of the entangle-
ment Tsallis entropy over a Haar random state jφi ∼ H for
any q ∈ Nþnf1g, i.e.,

Ejφi;jψi∼H½TqðT ψ jφ
A Þ� ¼ Ejφi∼H½TqðφAÞ�; ð3:72Þ

where E represents the expectation over random states
specified by the subscript, φA ¼ TrBjφihφj is the reduced
density matrix of jφi in A. See Appendix D of [40] for the
proof. Recalling that the Tsallis entropy for quantum states
takes the values between 0 and ð1 − ðdim HAÞ1−qÞ=
ðq − 1Þ < 1, we readily obtain from (3.72) that, although
the pseudo-Tsallis entropy generally takes complex values
with arbitrarily large absolute values, its average remains
between 0 and ð1 − ðdim HAÞ1−qÞ=ðq − 1Þ. Note however
that this does not imply that higher moments of the
distributions also coincide, which can be explicitly checked
by the same technique used in Appendix D of [40]. Thus, as
far as we are concerned with the pseudo-Tsallis entropy for
random states, higher moments of the distributions are the
factors that differentiate it from the entanglement Tsallis
entropy.
To elucidate this point, we numerically demonstrate in

Fig. 7 the distribution of the entanglement Tsallis entropy
and that of pseudo-Tsallis entropy over Haar random states.
We especially consider q ¼ 2. It is clear that the shapes of
the distributions are rather different: for the entanglement

(a) (d)

(b) (c)

FIG. 6. Distributions of the pseudo-entropy SðT ψ jφ
A Þ over Haar

random states jφi and jψi (panels A, B, and C) and that of the
entanglement entropy SðφAÞ over jφi ∼ H (panel D). They are
obtained for dim HA ¼ 8 and dim HB ¼ 32 with the number of
sampling 655360. In panel (A), we provide the distribution of the
pseudo-entropy. The color-bar on the right shows the correspond-
ing probability for each color. As it is complex-valued in general,
we plot the histogram over its real and imaginary parts. Note that
the black part on the left-hand side implies that no instance was
observed. In panels (B) and (C), the real and imaginary parts of
the pseudo-entropy are plotted, respectively. As a reference, we
also provide the distribution of the entanglement entropy over a
Haar random state in panel (D), where the inset enlarges a non-
trivial part of the distribution.
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Tsallis entropy, the probability density function (PDF) is
basically a Gaussian-shape flanked with rapidly decaying
functions on its both sides (see panel (D) and its inset). In
contrast, the distribution of the pseudo-Tsallis entropy has
much heavier tails and resembles the Cauchy-Lorentz
distribution rather than a Gaussian distribution [see panel
(B) and (C)]. In fact, we numerically confirmed that the

PDF pðRe½T2ðT ψ jφ
A Þ� ¼ tÞ for the real part of the pseudo-

Tsallis entropy with q ¼ 2 to take the value t is given by

pðRe½T2ðT ψ jφ
A Þ� ¼ tÞ ∝ 1

ðt − t0Þ1.8
;

where t0 ≔ 1 −
dim HA þ dim HB

dim Hþ 1
:

We here point out that this PDF of the pseudo-Tsallis
entropy shall indicate that the values should be centered
around its average t0 ∈ ð0; 1Þ, suggesting a weak concen-
tration of the pseudo-Tsallis entropy for random states. We
hence expect that, in the large dimension limit, it is atypical
for the pseudo-Tsallis entropy to take abnormal values such
as complex numbers with large absolute values.
We finally conclude this section with a comment

on a theoretically interesting property of the entanglement
distribution over a random state. It is known that the
PDF for the entanglement entropy over a Haar random state
has two singularities, which divides the distribution into
three entanglement phases with different entanglement
spectra [41–48]. It is natural to ask whether the PDF

pðRe½T2ðT ψ jφ
A Þ� ¼ tÞ for the pseudo-Tsallis entropy also

has any singularity. This question can be analytically
addressed using the technique of random matrix theory,
which is the method used to analyze the PDF for the

entanglement Tsallis entropy in great detail, but we will
leave it as an open problem.

IV. PSEUDO-RÉNYI ENTROPY IN FREE CFT

In this section, we compute pseudo-Rényi entropy for a
free CFT as a simple example of QFT. We consider a
massless scalar field theory in two dimensional Euclidean
space, whose coordinate is w ¼ xþ iτ. We would like to
calculate its pseudo-Rényi entropy with respect to an
interval subsystem A ¼ fðx; τÞjτ ¼ 0; xl ≤ x ≤ xrg by
using the replica method we described in Sec. II D.
Before computing the pseudo-Rényi entropy, let us

briefly review the ordinary calculation of Rényi entropy
of the vacuum state j0i, the detail of which is described in

[8]. We define the density matrix ρð0ÞA ¼ TrB½j0ih0j�, where
B is the complement of A. In terms of the path integral as
expressed in Sec. II D, j0i is

ð4:1Þ

and h0j is

ð4:2Þ

Tracing out on B then

ð4:3Þ

For calculating the Rényi entropy, we need Tr½ðρAÞn�,
which can be computed by replica method. We consider
n sheets and identify the upper side of A on the kth sheet
and the lower side of A on the (kþ 1)th sheet, that is,

ð4:4Þ

The right-hand side of (4.4) is the path integral on the
manifold Σn introduced in Sec. II D. The identification

(a)
(b)

(c)

(d)

FIG. 7. Distributions of the pseudo-Tsallis entropy T2ðT ψ jφ
A Þ

over Haar random states jφi and jψi (panels A, B, and C) and that
of the entanglement Tsallis entropy T2ðφAÞ over jφi ∼ H (panel
D). They are obtained for dim HA ¼ 8 and dim HB ¼ 32 with
the number of sampling 655360. Similarly to Fig. 6, the
distribution of the pseudo-entropy over its real and imaginary
parts is given in panel (A), that only of the real part in panel (B),
that of the imaginary part in panel (C), and that of the entangle-
ment Tsallis entropy over a Haar random state in panel (D). In
panels (B) and (C), we also plot inverse-polynomial functions by
red and blue colors (see the main text).
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between the kth sheet and the (kþ 1)th sheet corresponds
to the multiplication as matrix, especially the (nþ 1)th
sheet and the first sheet to tracing out. By computing this
path integral, the explicit expression of (4.4) becomes

Tr½ðρð0ÞA Þn� ¼ cn

�
xr − xl

ϵ

�
−n2−1

6n

; ð4:5Þ

where ϵ is the cutoff with the dimension of length and now
the central charge is 1. Also note that cn is a constant which
depends on n and cannot be determined by the replica trick.
Thus the nth Rényi entropy is

SðnÞðρð0ÞA Þ ¼ 1

6

�
1þ 1

n

�
log

xr − xl
ϵ

þ log cn
1 − n

: ð4:6Þ

It is important that the vacuum state has the entanglement
between A and B, so we are interested in the variation of the
pseudo-Rényi entropy from the ordinary Rényi entropy of
the vacuum state:

ΔSðnÞA ≡ SðnÞðT ψ jφ
A Þ − SðnÞðρð0ÞA Þ: ð4:7Þ

We will compute this quantity in the following sections.

A. Example 1: Exciting the same space point
with different cutoffs

For the first example, we choose jψi and jφi as

jψi ¼ e−aHCFTOðx ¼ bÞj0i;
jφi ¼ e−a

0HCFTOðx ¼ b0Þj0i; ð4:8Þ

where b (b0) is the excited space point and a (a0) is a cutoff to
avoid UV divergence at b ¼ b0. We can also regard a (a0) as
Euclidean inserting time. The inserted operator is given by

O ¼ e
i
2
ϕ þ e−

i
2
ϕ; ð4:9Þ

and its conformal dimension is h ¼ h̄ ¼ 1=8. This operator
is analogous to a Bell pair in a two qubit system. Note that
this operator creates a Bell pair at the inserted point [24,25].

This can be seen if we decompose the scalar field into the left
moving mode and right moving one as ϕ ¼ ϕR þ ϕL.
We can interpret the operator such that e�iϕL=2j0iL ∼
j�iL and e�iϕR=2j0iR ∼ j�iR. This allows us to regard
ðei

2
ϕ þ e−

i
2
ϕÞj0iLj0iR ∼ jþiLjþiR þ j−iLj−iR, i.e., a Bell

pair. If we choseO ¼ e
i
2
ϕ instead of (4.9), we would always

get the trivial result ΔSð2ÞA ¼ 0.
Note that (4.8) is written in the Schrödinger picture.

When we perform the path integral, the corresponding
operators are inserted at

ðw1; w̄1Þ≡ ðb − ia; bþ iaÞ;
ðw2; w̄2Þ≡ ðb0 þ ia0; b0 − ia0Þ ð4:10Þ

respectively.
Now we consider the case where the same space points

are excited with different cutoffs, i.e., we can parametrize
as w1 ¼ −ia and w2 ¼ ia0, where a; a0 > 0. Let us com-
pute the variation of the second pseudo-Rényi entropy

ΔSð2ÞA by replica method as in [24,25]. The manifold Σ2 is
depicted in Fig. 8. From the formula (2.37), the pseudo-2nd
Rényi entropy is

ΔSð2ÞA ¼ − log

�hOðw1; w̄1ÞO†ðw2; w̄2ÞOðw3; w̄3ÞO†ðw4; w̄4ÞiΣ2

ðhOðw1; w̄1ÞO†ðw2; w̄2ÞiΣ1
Þ2

�
:

To compute the expectation values in the logarithm, we
consider a conformal mapping

w − xl
w − xr

¼ z2: ð4:11Þ

This maps Σ2 to a Riemann surface Σ1. Let zi ∈ Σ1ði ¼
1;…; 4Þ be points mapped by (4.11) from wi ∈ Σ2ði ¼
1;…; 4Þ respectively, then there are the relations

z1 ¼ −z3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w1 − xl
w1 − xr

r
; ð4:12Þ

FIG. 8. The manifold Σ2 for the setting in Sec. IVA. The lower
half expresses jψi and the upper half expresses hφj, both of which
is excited at the same space point but with different cutoffs. The
upper side of the subsystem in the first sheet is identified with the
lower side of the subsystem in the second sheet. These corre-
spond to matrix multiplication and tracing out respectively.
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z2 ¼ −z4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − xl
w2 − xr

r
: ð4:13Þ

In terms of zi, ΔS
ð2Þ
A turns out to be

ΔSð2ÞA ¼ log
�

2

1þ jηj þ j1 − ηj
�
; ð4:14Þ

where η is the cross ratio defined as

η ¼ ðz1 − z2Þðz3 − z4Þ
ðz1 − z3Þðz2 − z4Þ

: ð4:15Þ

When both a and a0 are real (i.e., the Euclidean time
evolution), we always find ΔSð2ÞA ≤ 0. If we set a ¼ a0, the
pseudo-2nd Rényi entropy reduces to the ordinary 2nd
Rényi entropy. Therefore ΔSð2ÞA ¼ 0 when a ¼ a0 [24,25].
Let us investigate the behavior of ΔSð2ÞA in an explicit

example. Figure 9 shows ΔSð2ÞA for subsystems centered at
different points x ¼ xmð≡ xlþxr

2
Þ with length l ¼ 20, where

l≡ xr − xl. We can see that ΔSð2ÞA sharply decreases when
either of the operator insertion points become closer to the
boundary of the interval A. This behavior can be under-
stood from the fact that the pseudo-entropy is reduced when
we consider the entanglement swapping as we saw in
Sec. III B 2. Indeed, when the boundary of A gets close to
one of the operators, the system experiences an entangle-
ment swapping. On the other hand, if we insert an operator
in the middle of the interval A, since the swapping does not
occur near the boundaries of A, this does not contribute

to ΔSð2ÞA .
We can also analyze the real time evolution by setting the

Euclidean times as a ¼ δþ it1 and a0 ¼ δ − it2, where
δð> 0Þ is an infinitesimally small parameter which regu-
larize the local quench. When 0 < xl < t1;2 < xr, we find

ΔSð2ÞA ¼ log 2, which is interpreted as the entanglement
entropy for the Bell pair as in [24,25].

B. Example 2: Exciting different points
with the same cutoff

We consider the same states as (4.8) and this time we
excite two different space points with different cutoffs, i.e.,
w1 ¼ −d − ia, w2 ¼ dþ ia as depicted in Fig. 10. Since
the difference from the previous case is only the location of

the excitations, ΔSð2ÞA is the same as (4.14).

Figure 11 shows the behavior of ΔSð2ÞA as a function of
the center of subsystems xm. We again see that ΔSð2Þ
sharply decreases when an end point of the interval A is
close to either of the two operator insertion points, which
can be interpreted as in the previous example.

C. Example 3: Excitations by different operators

In this section, we would like to consider an example of
excitations at the same space points by different operators,
which is similar to the setup in Fig. 8. We set w1 ¼ −ia and
w2 ¼ ia0, and let two states be

jψi ¼ e−aHCFTÕðx ¼ 0Þj0i;
jφi ¼ e−a

0HCFTOðx ¼ 0Þj0i; ð4:16Þ
where O is same as defined in (4.9) and Õ is defined as

Õ ¼ e
i
2
ϕ þ eiθe−

i
2
ϕ: ð4:17Þ

Its conformal dimension is also h ¼ h̄ ¼ 1=8 and
θ ∈ ½−π; π�. This is analogous to the states in (3.14).

ΔSð2ÞA can be computed by replica method again, we have

FIG. 9. ΔSð2ÞA for subsystems centered at different space points
with length l ¼ 20. Blue line: a ¼ 4, a0 ¼ 6, orange line: a ¼ 2,
a0 ¼ 8, green line: a ¼ 0.1, a0 ¼ 9.9 case.

FIG. 10. The manifold Σ2 for the setting in Sec. IV B.

FIG. 11. ΔSð2ÞA for subsystems centered at different points with
length l ¼ 20. We set the points of excitation at d ¼ 5. Blue line:
a ¼ 5, orange line: a ¼ 2, green line: a ¼ 0.1 case.
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ΔSð2ÞA ¼ − log

�hÕðw1; w̄1ÞO†ðw2; w̄2ÞÕðw3; w̄3ÞO†ðw4; w̄4ÞiΣ2

ðhÕðw1; w̄1ÞO†ðw2; w̄2ÞiΣ1
Þ2

�
:

Computing the expectation values in the logarithm by using
the conformal mapping (4.11),

ΔSð2ÞA ¼ log

�
1þ cos θ

cos θ þ jηj þ j1 − ηj
�
; ð4:18Þ

which reduces to (4.14) when θ ¼ 0. From (4.18), ΔSð2ÞA is
always negative. Figure 12 shows the behavior of ΔSð2ÞA
when we change the phase θ of Õ. The left panel shows
ΔSð2ÞA as functions of the center of subsections xm and the
right as a function of the phase θ. We can see that ΔSð2ÞA
becomes smaller when the “difference” betweenO and Õ is
larger.
In the Lorentzian time evolution, we set a ¼ δþ it and

a0 ¼ δ − it. If we take the limit δ → 0 and assume the range
0 < xl < t < xr, which is equivalent to the limit ðη; η̄Þ →
ð1; 0Þ, we obtain

ΔSð2ÞA ¼ log

�
1þ cos θ
cos θ

�
: ð4:19Þ

This agrees with the previous result (3.17) of a two qubit
system as expected.
Moreover, we can compute the pseudo-3rd Rényi

entropy by replica method. In this case, we consider the
manifold Σ3 composed by three sheets as in the expression
(2.37) at n ¼ 3, which is computed by the map

w − xl
w − xr

¼ z3; ð4:20Þ

then the new coordinates have the following relations:

z1 ¼ e−
2
3
πiz3 ¼ e

2
3
πiz5 ¼

�
w1 − xl
w1 − xr

�
1=3

; ð4:21Þ

z2 ¼ e−
2
3
πiz4 ¼ e

2
3
πiz6 ¼

�
w2 − xl
w2 − xr

�
1=3

: ð4:22Þ

We define cross ratios

ηklij ¼
ðzi − zjÞðzk − zlÞ
ðzi − zkÞðzj − zlÞ

; ð4:23Þ

where the subscripts and superscripts are 1 ≤ i; j; k; l ≤ 6.

In terms of ηklij , ΔS
ð3Þ
A can be computed as

ΔSð3ÞA ¼ 1

2
log
� ffiffiffi

2
p ð1þ cos θÞ32

cos 3
2
θ þ 3 cos θ

2
ðjη3214j2 þ jη1456j2 þ jη5632j2Þ

�
:

ð4:24Þ

The behavior of ΔSð3ÞA is similar to that of ΔSð2ÞA .

Figure 13 shows the behavior of ΔSð3ÞA , which are very
similar to the graphs in Fig. 12.
In the Lorenzian time evolution 0 < xl < t < xr with the

limit δ → 0, we find

ΔSð3ÞA ¼ 1

2
log
� ffiffiffi

2
p ð1þ cos θÞ32

cos 3
2
θ

�
; ð4:25Þ

which again reproduces the two qubit result (3.16) at n ¼ 3.

FIG. 12. The left figure shows the behavior of ΔSð2ÞA as
functions of the center of the interval A i.e., xm. Here, we take
the length of the subsystem to be l ¼ 20. We fix the points of
excitations at a ¼ 3, a0 ¼ 5. Blue line: θ ¼ 0, orange line:
θ ¼ π=3, green line: θ ¼ π=2 case. The right figure shows the

behavior of ΔSð2ÞA as a function of the phase θ at xm ¼ 10 and
l ¼ 20. We also fix the points of excitations at a ¼ 3, a0 ¼ 5.

ΔSð2ÞA diverges at θ ¼ �π.

FIG. 13. The left figure shows the behavior of ΔSð3ÞA as
functions of the center of the interval A i.e., xm. Here, we take
the length of the subsystem to be l ¼ 20. We fix the points of
excitations at a ¼ 3, a0 ¼ 5. Blue line: θ ¼ 0, orange line:
θ ¼ π=3, green line: θ ¼ π=2 case. The right figure shows the

behavior of ΔSð3ÞA as a function of the phase θ at xm ¼ 10 and
l ¼ 20. We also fix the points of excitations at a ¼ 3, a0 ¼ 5.

ΔSð3ÞA diverges at θ ¼ �π.
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V. ASPECTS OF HOLOGRAPHIC PSEUDO-
ENTROPY

In this section we will explore properties of holographic
pseudo-entropy defined by the minimal area formula (2.39)
from various viewpoints including explicit examples.

A. Non-negativeness of holographic
pseudo-(Rényi) entropy

One surprising prediction of the holographic pseudo-
entropy is that this quantity is non-negative in the classical
gravity dual calculation when we assume the bulk metric is
real valued, in spite of the fact that the pseudo-entropy

SðT ψ jφ
A Þ takes complex values for generic choices of jψi

and jφi. Moreover, a further holographic consideration
shows that pseudo-(Rényi) entropies are also non-negative
in holographic computations:

∀n > 0; SðnÞðT ψ jφ
A Þ ≥ 0: ð5:1Þ

To see this, similar to [49], we compute a refined version of
the pseudo-Rényi entropy holographically as

S̃ðnÞðT ψ jφ
A Þ≡ n2

∂
∂n
�
n − 1

n
SðnÞðT ψ jφ

A Þ
�

¼ min
ΓðnÞ
A

�
Area of ΓðnÞ

A

4GN

�
; ð5:2Þ

where ΓðnÞ
A is a codimension-2 cosmic brane with tension

Tn ¼
1

4GN

n − 1

n
: ð5:3Þ

and satisfies ∂ΓðnÞ
A ¼ ∂A. Therefore, S̃ðnÞðT ψ jφ

A Þ is sup-
posed to be nonnegative for any n > 0. Since the pseudo-
Rényi entropy is just given by the following integral

SðnÞðT ψ jφ
A Þ ¼ n

n − 1

Z
n

1

dn0
S̃ðnÞðT ψ jφ

A Þ
n02

; ð5:4Þ

the non-negativity (5.1) is shown.
The inequalities (5.1) give strong restrictions in the sense

that holographic transition matrices belong to (at least)
class ℬ. This can be regarded as a new characterization of
holographic states.

B. Subadditivity and strong subadditivity

Since the holographic pseudo-entropy is non-negative,
we can think of possibilities of other inequalities. It is clear
to confirm the subadditivity expressed as

SðT ψ jφ
A Þ þ SðT ψ jφ

B Þ − SðT ψ jφ
AB Þ ≥ 0: ð5:5Þ

Remember that the subadditivity is not always satisfied
even if the eigenvalues of transition matrices are non-
negative as we saw in Sec. III D.
Next let us turn to the strong subadditivity

SðT ψ jφ
AB Þ þ SðT ψ jφ

BC Þ≥
?
SðT ψ jφ

B Þ þ SðT ψ jφ
ABCÞ ð5:6Þ

In the static background, we can prove the strong sub-
additivity immediately by restricting to a canonical time
slice [50]. In the Lorentzian signature, namely the covariant
holographic entanglement entropy [11], we can employ the
property that the minimal area on a time slice gets smaller
as we deform the time slice away from the one which
includes the true extremal surface, even if the all relevant
extremal surfaces are not on the same time slice, as proved
in [51].
However, in our Euclidean time-dependent setup, if we

allow to deform the time slice to an arbitrary shape, which
is dual to a quantum state via the Euclidean path-integral in
CFT, we will immediately find that the strong subadditivity
(5.6) can be violated as follows [52]. Consider a static AdS3
for simplicity and take a canonical time slice. We define
four points ðP;Q;R; SÞ which are lining up in this order on
the time slice. If we take the subsystems A ¼ ½P;Q�; B ¼
½Q;R� and C ¼ ½R; S�, then the strong subadditivity follows
based on the argument of [50]. However, if we choose a
distorted slice which passes through the points in the order
ðP;Q; S; RÞ, then it is obvious that the strong subadditivity
is violated because the strong subadditivity takes the

opposite “wrong” form SðT ψ jφ
AB Þ þ SðT ψ jφ

BC Þ ≤ SðT ψ jφ
B Þþ

SðT ψ jφ
ABCÞ. This problem might suggest that the notion of

strong subadditivity is not useful in Euclidean setups.
Nevertheless, thinking of possible inequality analogous

to the ordinary strong subadditivity in Lorentzian setups,
we may focus on the strong subadditivity of holographic
pseudo-entropy by restricting the time slice to the canonical
one on the AdS boundary, assuming that the AdS boundary
is the flat space in this paper. Even under this restricted
definition, we cannot derive the strong subadditivity of the
holographic pseudo-entropy because the minimal area gets
larger if we deform the time slice, which prohibits a similar
proof [51]. Let us mention, however, that we did not find
any violation of (5.6) for explicit examples of classical
gravity duals we studied. If we can consider a quantum
mechanical superposition of several classical geometries,
then as we will show in Sec. V F, we will find examples
which violate these inequalities as coefficients of linear
combinations allow complex numbers.

C. A simple example: Janus AdS=CFT

As a simple example, we would like to analyze the
holography for the Janus solutions which are dual to
interface CFTs. We focus on a Janus solution in
AdS3=CFT2 found in [53].
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1. Holographic pseudo-entropy in Janus AdS=CFT

The Janus solution to three dimensional AdS gravity
coupled to a scalar field:

I ¼ 1

16πGN

Z
d3x

ffiffiffi
g

p ðR − ∂aϕ∂aϕþ 2Þ; ð5:7Þ

is given by

ds2 ¼ dρ2 þ fðρÞ dx
2 þ dy2

y2
;

ϕ ¼ ϕ0 þ
1ffiffiffi
2

p log

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2γ2

p
þ ffiffiffi

2
p

γ tanh ρ

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2γ2

p
−

ffiffiffi
2

p
γ tanh ρ

�
;

fðρÞ ¼ 1

2
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2γ2

q
cosh 2ρÞ; ð5:8Þ

where 0 ≤ ρ ≤ ∞. If we set γ ¼ 0, this solution is equiv-
alent to the ordinary Poincare AdS3 solution ds2 ¼
dz2þdτ2þdx2

z2 .
If we write the exactly marginal operator (i.e., dimension

two primary operator) dual to the bulk massless scalar field
ϕ as OðxÞ, then the above Janus solution is dual to a two
dimensional holographic CFT deformed by Jþ

R
dx2OðxÞ

in the region τ > 0 and by J−
R
dx2OðxÞ in the region

τ < 0, where J� ¼ limρ→�∞ϕðρÞ. These two deformations
produce different states hψþj and jψ−i, respectively and the
total gravity partition function is equal to the inner
product hψþjψ−i.
The time slice τ ¼ 0 is equivalent to ρ ¼ 0 in (5.8). By

requiring the usual UV cutoff condition gxx ¼ 1
ϵ2
we find the

cutoff of the y coordinate: y > δ is given by

δ ¼ ϵ ·
ffiffiffiffiffiffiffiffiffi
fð0Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2γ2

p
2

s
· ϵ: ð5:9Þ

When A is a length l interval, the holographic pseudo-
entropy is calculated as the length of geodesic and this
leads to

SðT ψ−jψþ
A Þ ¼ c

3
·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2γ2

p
2

s
· log

l
δ

≃
c
3

�
1 −

γ2

4

�
log

l
ϵ
þ c
12

γ2: ð5:10Þ

Therefore we find the holographic pseudo-entropy is
reduced by Oðγ2Þ compared with the γ ¼ 0 result (i.e.,
the vacuum case jψþi ¼ jψ−i ¼ j0i) due to the interface
perturbation.

2. CFT perturbation analysis

Let us analyze the previous Janus setup from the CFT
viewpoint. In the replica calculation of pseudo-entropy
(look at Fig. 2), we write the exactly marginal perturbation
from ϕ ¼ ϕ− to ϕ ¼ ϕþ as

R
ΣnðþÞ

dx2JOðxÞ, where J ¼
Jþ − J− and Σn is the n − sheeted Riemann surface. Also
we call the upper half of Σn as ΣnðþÞ. The flat complex
plane R2 is denoted by Σ ¼ Σn¼1.
In the path-integral, the pseudo-entropy is computed via

the replica method as follows

SðnÞA ¼ 1

1 − n
log

2
64 he

R
ΣnðþÞ

dx2JOðxÞiΣn

ðhe
R
Σ1ðþÞ

dx2JOðxÞiΣ1
Þ
n

3
75: ð5:11Þ

If we take the difference from the entanglement entropy of
ϕ ¼ ϕ− theory and perform the perturbation with respect to
J up to the quadratic order, we get

ΔSðnÞA ¼ J2

1 − n

�Z
dx2

Z
dy2hOðxÞOðyÞiΣn

− n
Z

dx2
Z

dy2hOðxÞOðyÞiΣ1

�
: ð5:12Þ

The part ½� � �� is estimated as (we introduce the point
splitting cut off ϵ)

½� � �� ¼ a1 log
l
ϵ
þOð1Þ; ð5:13Þ

where a1 > 0 are positive constant and also a1 ∝ n − 1 as
these divergences arise when both x and y are close to one
of two end points of A. The divergences arise when the two
points x and y get closer to each other geometrically.
Though the integrals of the two point function in (5.12)
include Oðl2

ϵ2
Þ terms, they cancel with each other as this

quadratic divergences are also equally present in the flat
space Σ1 ¼ R2. We can explicitly confirm that a logarith-
mic term in (5.13) arises via the nontrivial conformal map
(2.38), which vanishes at n ¼ 1.
Thus we have the estimation (up to an Oð1Þ factor):

ΔSA ∼ −J2 log
l
ϵ
: ð5:14Þ

For the Janus setup the scalar action is normalized such that
J2 ∼ cγ2. Therefore we can reproduce the behavior (5.10).

D. Pseudo-entropy of locally excited states
in holographic CFT

In this subsection we will calculate holographic pseudo-
entropy for locally excited states [24,25] in two dimen-
sional CFTs. In AdS3=CFT2, it is known that the dual
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geodesic lengths in a gravity dual with local excitations
agree with those obtained from the two point functions of
light operators in an excited state with heavy operators in
holographic CFTs [54]. For example, the holographic
entanglement entropy under local quenches [55] can be
perfectly reproduced from the CFT calculations [56].
Therefore, below, we will present results of the pseudo-
entropy computed from a two dimensional holographic
CFT. These are guaranteed to agree with those computed
from the gravity dual using the formula (2.39) and thus we
will omit the gravity dual calculation below.
In the former sections, we perform the replica trick, i.e.,

compute the correlation functions on a replica manifold Σn
to get the pseudo-nth Rényi entropy. In CFT2, the replica
trick admits a so-called twist operator formalism [57]. In
this formalism, instead of computing correlation functions
on Σn, we compute the correlation functions of an n
replicated CFT with twist operators inserted on the edges
of A. More specifically, in our case where scalar primaries
O with conformal dimension ðhO; hOÞ are inserted, we can
compute the variation of the pseudo-nth Rényi entropy
from that in the vacuum state by using the twist operator
formalism:

ΔSðnÞA ¼SðnÞðT ψ jφ
A Þ−SðnÞðTrAc j0ih0jÞ

¼ 1

1−n
log

hOnðz1;z̄1Þσnðz2;z̄2Þσ̃nðz3;z̄3ÞOnðz4;z̄4Þi
hOnðz1;z̄1ÞOnðz4;z̄4Þihσnðz2;z̄2Þσ̃nðz3;z̄3Þi

:

ð5:15Þ

Here, the correlation functions are those in the n replicated
CFT whose central charge is nc, On ≡O ⊗ O ⊗ � � � ⊗ O
is the replicated primary whose conformal weight is
ðnhO; nhOÞ and σnðσ̄nÞ is the nth twist operator with
conformal weight

ðhn; h̄nÞ ¼
�
c
24

�
n −

1

n

�
;
c
24

�
n −

1

n

��
: ð5:16Þ

If we focus on the pseudo-entropy which is given by n → 1
limit, we can regard On as the heavy operator and σn as the
light operator and use the heavy-light 4-point function [54]

to evaluate ΔSðnÞA . As the result, we have

ΔSA ≡ lim
n→1

ΔSðnÞA ¼ lim
n→1

1

1 − n
log

���� η
1−α
2 ð1 − ηαÞ
αð1 − ηÞ

����−4hn

¼ lim
n→1

1

1 − n
log

���� η
1−α
2 ð1 − ηαÞ
αð1 − ηÞ

����
c
6
1−n2
n

¼ c
6
log

���� η
1−α
2 ð1 − ηαÞ
αð1 − ηÞ

����2; ð5:17Þ

where α≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 24hO=c

p
and

η≡ z12z34
z13z24

ð5:18Þ

is the cross ratio.

1. Exciting the Same Space Point with Different Cutoffs

For the first example, let us consider the same setup as in
Sec. IVA, i.e., we consider T ψ jφ for two states

jψi ¼ e−aHCFTOðx ¼ 0Þj0i; ð5:19Þ

jφi ¼ e−a
0HCFTOðx ¼ 0Þj0i: ð5:20Þ

where j0i is the CFT ground state and a (a0) are UV cutoffs
introduced to avoid divergence. Here jψi is a state locally
excited by a primary operatorsO at x ¼ 0. We assumeO is
a scalar primary with conformal weight ðhO; hOÞ. The
corresponding Euclidean path integral setup is shown in
Fig. 14. Let us consider a connected subsystem A ¼
fðx; τÞjτ ¼ 0; xl ≤ x ≤ xrg.
In the current case

z1 ¼ −ia; z2 ¼ xl; z3 ¼ xr; z4 ¼ þia0; ð5:21Þ

z̄1 ¼ þia; z̄2 ¼ xl; z̄3 ¼ xr; z̄4 ¼ −ia0: ð5:22Þ

Figure 15 shows ΔSA for subsystems centered at different
points x ¼ xm with length l ¼ 20.
From this plot, we can see that ΔSA can be both positive

and negative, in contrast with the behavior of free CFT in

which ΔSð2ÞA is always negative (Fig. 9). On the other hand,
if we focus on the case when one of the UV cutoff is very
small (for example, the green line in Fig. 15), we can
observe that ΔSA sharply decreases when the edges of A

approach the excited space point. This is similar to ΔSð2ÞA in
free CFT.

FIG. 14. The Euclidean path integral setup. The orange line
shows the subsystem A.

NAKATA, TAKAYANAGI, TAKI, TAMAOKA, and WEI PHYS. REV. D 103, 026005 (2021)

026005-22



Also note that, no matter how we choose the cutoff, ΔSA
at xm ¼ 0 is always positive. This can be easily understood
from a holographic point of view. If we perform a
conformal transformation and bring the two operator
excitations to infinite past and infinite future respectively,
then they give a Euclidean BTZ black hole microstate in the
bulk with the two edges of A lying on the same time slice
[56]. The geodesic connecting the two edges of A should be
larger in a BTZ black hole geometry than in a global AdS
geometry. This observation immediately gives ΔSA > 0
at xm ¼ 0.

2. Exciting different space points with the same cutoff

As one more example, let us consider the same setup as
in Sec. IV B, i.e., we consider T ψ jφ for two states

jψi ¼ e−aHCFTOðx ¼ −dÞj0i; ð5:23Þ

jφi ¼ e−aHCFTOðx ¼ þdÞj0i: ð5:24Þ

where j0i is the CFT ground state and a is a UV cutoff to
avoid divergence. Here jψi (jφi) is a state locally excited by
a primary operators O on x ¼ −d (x ¼ þd). This is shown
in Fig. 16.
In this case

z1¼−d− ia; z2¼xl; z3¼xr; z4¼dþ ia; ð5:25Þ

z̄1 ¼ −dþ ia; z̄2 ¼ xl; z̄3 ¼ xr; z̄4 ¼ d − ia:

ð5:26Þ

Figure 17 shows ΔSA for subsystems centered at different
points x ¼ xm with length l ¼ 20.
From this plot, we can see that if the cutoff is small, then

ΔSA sharply decreases when one edge of A gets close to

one of the excitations. This is very similar to ΔSð2ÞA ’s
behavior observed in the free CFT (Fig. 11). However, also
in this case, we can see that ΔSA can be both positive and
negative.
Also note that, when the cutoff a is small enough,

ΔSA < 0 at xm ¼ 0. This behavior can be easily understood
from a holographic point of view. Performing a conformal
transformation and bring the two operator excitations to
infinite past and infinite future, then we will get a BTZ
black hole microstate in the bulk. The two edges of A lie on
the same space slice and the geodesic connecting the two
edges of A should be shorter than that in a global AdS
geometry. This observation immediately gives ΔSA < 0 at
xm ¼ 0 when the cutoff a is small enough.
As a concluding remark, ΔSA in two local operator

excited states in a holographic CFT can be both positive

and negative while ΔSð2ÞA in the corresponding setup in the
free CFT is always negative. This behavior in holographic
CFT can be understood from the bulk side. If we bring the
two heavy operators to infinite past and infinite future, they
produce a BTZ black hole in the bulk. Whether ΔSA is
positive or negative roughly depends on where A lies in this
black hole geometry. As we have already seen above, if A

FIG. 15. ΔSA for subsystems centered at different points x ¼
xm with length l ¼ 20. α is set to be α ¼ 1=2. The blue line shows
the a ¼ 4, a0 ¼ 6 case, the orange line shows the a ¼ 2, a0 ¼ 8
case and green line shows the a ¼ 0.1, a0 ¼ 9.9 case.

FIG. 16. The Euclidean path integral setup. The orange line
shows the subsystem A.

FIG. 17. ΔSA for subsystems centered at different points x ¼
xm with length l ¼ 20, d ¼ 5, α ¼ 1=2. The blue line shows the
a ¼ 5 case, the orange line shows the a ¼ 2 case, and the green
line shows the a ¼ 0.1 case.
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lies on a time slice, then ΔSA becomes positive. If A lies on
a space slice, themΔSA becomes negative. However, we do
not know how to interpret this behavior from a CFT point

of view while theΔSð2ÞA ≤ 0 behavior in the free CFT can be
thought as coming from entanglement swapping.

3. Doubly excited states and the ground state

We can also consider the following setup in a similar
manner:

jψi ¼ e−aHCFTOðx ¼ −bÞOðx ¼ bÞj0i; ð5:27Þ

jφi ¼ j0i: ð5:28Þ

Here, j0i is the CFT ground state and a is a UV cutoff to
avoid divergence. jψi is a state locally excited by two
identical primary operatorsO on two different space points
x ¼ −b and x ¼ b. The dynamics of such a state is known
as a double local quench, which is studied in [58,59].
We assume O is scalar primary with conformal weight
ðhO; hOÞ. The corresponding Euclidean path integral setup

is shown in Fig. 18. Let us consider a connected sub-
system A ¼ fðx; τÞjτ ¼ 0; xl ≤ x ≤ xrg.
Here, we are considering the states given by (5.27) and

(5.28). In this case,

z1¼−b− ia; z2¼xl; z3¼xr; z4¼b− ia; ð5:29Þ

z̄1¼−bþ ia; z̄2¼xl; z̄3¼xr; z̄4¼bþ ia: ð5:30Þ

Figure 19 shows ΔSA for subsystems centered at different
points x ¼ xm with length l ¼ 20.

E. Pseudo-entropy for boundary states
in holographic CFTs

From now on, we will focus on the case where one of the
two states is given by the boundary state (or Cardy state).
Such a state is employed to describe e.g., global quantum
quenches [60]. As the most simple example, we can
consider T ψ jφ for two states

jψi ¼ e−aHCFT jBi; ð5:31Þ

jφi ¼ j0i; ð5:32Þ

where a is a UV cutoff to avoid divergence and jBi is a
CFT boundary state. Figure 20 shows the corresponding
Euclidean path integral setup.
The minimal surface whose area computes holographic

entanglement entropy can end on the end-of-the-world
brane in AdS/BCFT [61]. Therefore, in the zero tension
T ¼ 0 case, we have

SA ¼ minfSconA ; SdisA g ð5:33Þ

SconA ¼ c
3
log

l
ϵ

ð5:34Þ

SdisA ¼ c
3
log

2a
ϵ

ð5:35Þ

FIG. 18. The Euclidean path integral setup. The orange line
shows the subsystem A.

FIG. 19. ΔSA for subsystems centered at different points x ¼
xm with length l ¼ 20, b ¼ 5, α ¼ 1=2. The blue line shows the
a ¼ 5 case, the orange line shows the a ¼ 2 case, and the green
line shows the a ¼ 0.1 case.

FIG. 20. The Euclidean path integral setup. The orange line
shows the subsystem A.

NAKATA, TAKAYANAGI, TAKI, TAMAOKA, and WEI PHYS. REV. D 103, 026005 (2021)

026005-24



where l is the length of the subsystem A and ϵ is
the UV cutoff corresponding to the lattice distance.
Figure 21 shows the ΔSA for a subsystem A with different
length.
Notice also in the limit a → 0, we obtain SdisA by setting

a ∼ ϵ. This is consistent with (2.14) because the boundary
state does not have any entanglement under a spacial
decomposition [62].

F. Linearity of holographic pseudo-entropy

For CFT states dual to semiclassical geometries (holo-
graphic states), we expect the entanglement entropy can be
approximated as an expectation value of the so-called area
operator [28,63,64]. Let us consider the linear combination
of holographic states,

jΨii ¼
XM
k¼1

αikjψ iki; ð5:36Þ

and its reduced density matrix ρΨi
A ¼ TrĀjΨiihΨij. Then,

the entanglement entropy gives

SðρΨi
A Þ ≃

hΨij Â
4GN

jΨii
hΨijΨii

¼
XM
k¼1

jαikj2
AðΓψ ik

A Þ
4GN

; ð5:37Þ

where AðΓψ ik
A Þ corresponds to the area of the minimal

surface (homologous to A) in a geometry dual to a holo-
graphic state jψ iki. Note that M is supposed to be a small
number compared with eOðG−1

N Þ [63]. We also assumed
that hψ ikjψ ili ¼ δkl and

P
k jαikj2 ¼ 1. We expect a

version of the linearity of pseudo-entropy for transition

matrix T
ΨijΨj

A ¼ TrĀjΨiihΨjj=hΨjjΨii,

SðT ΨijΨj

A Þ ≃
hΨjj Â

4GN
jΨii

hΨjjΨii

¼ 1P
kα

�
jkαik

X
k

α�jkαik
AðΓψjkjψ ik

A Þ
4GN

; ð5:38Þ

where AðΓψjkjψ ik

A Þ corresponds to the minimal surface
(homologous to A) in a geometry dual to an inner product
hψ jkjψ iki. It means that the holographic pseudo-entropy
computes a weak value of the area operator. Therefore, if
one chooses coefficients cik and cjk appropriately, like
examples of qubit systems, one can easily obtain complex
values even from holographic states.
Here we just illustrate an example of the linear combi-

nation of holographic states which does break the strong
subadditivity for pseudo-entropy (5.6) even when we
restrict to a canonical time slice for the definition of
subsystems, while it holds the positivity. We focus on
the two-dimensional holographic CFT on a cylinder with
periodicity 2π and take a given connected subsystem size as
lA. Let us consider a superposition of two heavy states,

jΨ�i ¼
1ffiffiffi
5

p ðjOH1i � 2jOH2
iÞ; ð5:39Þ

where each OHi
has the conformal dimension hHi

¼ h̄Hi
¼

OðcÞ ≥ c
24
.

The linearity relation (5.38) leads

SðT ΨþjΨ−
A Þ ¼ 5

3

�
−
AðΓH1

A Þ
4GN

þ 4
AðΓH2

A Þ
4GN

�
; ð5:40Þ

where

T ΨþjΨ−
A ¼ TrĀ

jΨþihΨ−j
hΨ−jΨþi

; ð5:41Þ

AðΓHi
A Þ

4GN
¼ c

6
log

�
βHi

πϵ
sinh

�
π

βHi

minðlA; 2π − lAÞ
��

;

ð5:42Þ

βHi
¼ 2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

24hHi
c − 1

q : ð5:43Þ

Each area term describes the area of the minimal surfaces
for (a micro state of) BTZ blackhole with the inverse
temperature βHi

. Strictly speaking, there is another phase
for these pure states [65,66]. In this paper, however, we
neglect this phase just for simplicity. Remarkably, this
linear combination of holographic states leads the breaking
of strong subadditivity for pseudo-entropy, while we

maintain the positivity SðT ΨþjΨ−
A Þ ≥ 0, for example. To

see this, let us define

ΔSSA ¼ SðT ΨijΨj

ABC Þ þ SðT ΨijΨj

B Þ − SðT ΨijΨj

AB Þ þ SðT ΨijΨj

BC Þ:
ð5:44Þ

We plotted ΔSSA for our example in Fig. 22.

FIG. 21. ΔSA for a subsystem A with different length. Here, we
set a ¼ 2.
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VI. GENERALIZATIONS FOR OPERATOR
AND MIXED STATES

Finally, let us consider a possible generalization of the
pseudo-entropy for mixed states. So far, we have seen that

the holographic pseudo-entropy SðT ψ jφ
A Þ computes the

minimal surfaces on the geometry associated with hφjψi.
Based on this observation, it is natural to introduce some
generalizations for mixed states which are holographically
equivalent to entanglement wedge cross sections [67,68] in
the dual geometry. There are several proposals for mixed
state measures dual to this cross-section [67–73], but here
we define a generalization based on a canonical purification
in [71].

A. Operator states for transition matrices

The entanglement entropy for a given purified density
matrix can be regarded as a specific example of so-called
operator entanglement entropy [74,75] (see also [76,77] for
recent applications). Therefore, we first discuss its tran-
sition matrix and pseudo-entropy counterpart. Let us start
from an operator,

X ¼
X
i;j

½X�ijjiAihjAj; ð6:1Þ

which is not necessarily to be Hermitian, X† ≠ X. We can
define a corresponding operator state,

jXi ¼
X
i;j

½X�ijjiAijj�A� i: ð6:2Þ

where jj�i is a complex conjugate of jji. To avoid an
unnecessarily ambiguity from unitary transformations, we
further assumed the above basis jiAi are product states.
Then, one can define any transition matrices for operator

states and compute entanglement entropy for such tran-
sition matrices. From the next section, we are particularly
interested in a specific case that our transition matrix is
given by

T XjX† ¼ jXihX†j
hX†jXi ; ð6:3Þ

where X will be given by a transition matrix between two
holographic states. Here we abused the notation of the
transition matrix. Below, the operators assigned in the
arguments of transition matrices will be assumed to be
corresponding operator states. Note that if we started from a
Hermitian operator X, this reduces to the usual operator
entanglement for X.
Before discussing the transition matrix as (6.3), it is

rather natural to consider the ordinary operator entangle-
ment for a single reduced transition matrix itself. In the rest
part of this subsection, as a warmup exercise, we discuss
entanglement entropy for a given operator state dual to a
reduced transition matrix. The reader who is familiar with
the reflected entropy may skip to the next subsection.

Starting from a given reduced transition matrix T ψ jφ
A , we

can introduce a series of operator states,

jðT ψ jφ
A Þm2i ¼

X
i;j

½ðT ψ jφ
A Þm2 �ijjiAijj�A�i; ð6:4Þ

where m is assumed to be an even integer. We can then
introduce reduced density matrices associated with these
operator states,

ρðmÞ
A ¼ TrA� jðT ψ jφ

A Þm2 ihðT ψ jφ
A Þm2 j: ð6:5Þ

Note that we are loose about the normalization which will
be taken into account later. In what follows, we focus on
m → 1 limit where m is an analytic continuation of an even
integer.

If T ψ jφ
A is a physical state, nothing is what we did, just

purifying and undoing a given state T ψ jφ
A . Therefore, in

such cases, the pseudo-entropy for T ψ jφ
A and the entangle-

ment entropy for (6.5) (with m → 1) does match. A
particularly interesting example is the class E in two qubit
systems [see around (3.49)] where we have a nice inter-
pretation of the pseudo-entropy as counting of Bell pairs.
We stress that the transition matrices are not Hermitian in

general, hence the resulting physical state ρðmÞ
A is not the

original ðT ψ jφ
A Þm in general. We can easily confirm this

discrepancy between ρðmÞ
A and ðT ψ jφ

A Þm from the two qubit
examples which are out of class D.

We can compute nth Rényi entropy for ρðmÞ
A by using the

standard replica trick. Figure 23 shows the replica manifold

for ½ðT ψ jφ
A Þm2 �ij; ½ðT ψ jφ

A Þ†m2 �ij, and ½ρðmÞ
A �ij. In this case, the

global structure of the replica manifold is the same as the
ordinary n-th Rényi entropy. Therefore, we can in principle
reuse the replica trick calculations discussed in the previous
sections. One main difference is that now we have two

FIG. 22. Plots for ΔSSA (with the unit of the central charge c)
defined in (5.44). The regime ΔSSA > 0 shows the breaking of
strong subadditivity. For simplicity, we consider adjacent inter-
vals: A ¼ ½0; π=3�, B ¼ ½π=3;lB�, and C ¼ ½lB;lB þ π=3�. Left
panel: lB dependence with βH1

¼ 1 and βH2
¼ 10. Note that this

state satisfies both positivity and subadditivity of pseudo-entropy.
Right panel: βH2

dependence with lB ¼ 2π=3 and βH1
¼ 1.
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replica numbers m and n both of which will be taken to be
one. From the next subsection, we move to the pseudo-
generalization of the reflected entropy, where we will use
the similar replica trick described above with an extra
complication due to topology of a replica manifold.

B. Pseudo-reflected entropy

Based on the pseudo-entropy for the operator states
introduced in the previous subsection, let us define
“pseudo-reflected entropy” as

SRðT ψ jφ
AB Þ ¼ lim

m→1
lim
n→1

Sðn;mÞ
R ðT ψ jφ

AB Þ; ð6:6Þ

where

Sðn;mÞ
R ðT ψ jφ

AB Þ ¼ SðnÞðT ðT ψ jφ
AB Þm2 jðT ψ jφ†

AB Þm2
AA� Þ: ð6:7Þ

As like the original reflected entropy, we assumed that m is
an analytic continuation of an even integer.
In particular, if B ¼ Ā,

T ψ jφ
AĀ

≡ T ψ jφ ¼ jψihφj
hφjψi ; ð6:8Þ

the pseudo-reflected entropy SRðT ψ jφ
AĀ

Þ reduces to the
double of pseudo-entropy,

SRðT ψ jφ
AĀ

Þ ¼ SðT ψ jφ
A Þ þ SððT ψ jφ

A ÞTÞ ¼ 2SðT ψ jφ
A Þ: ð6:9Þ

In this sense, the pseudo-reflected entropy gives a gener-
alization of the pseudo-entropy for mixed states. We will
argue that holographic pseudo-reflected entropy gives
(double of) the entanglement wedge cross section on the
geometry dual to hφjψi,

SRðT ψ jφ
AB Þ ¼ 2EWðT ψ jφ

AB Þ: ð6:10Þ

We again stress that this definition is different from the
usual operator entanglement for the transition matrix
ðT ψ jφÞ12. For example, taking Hermitian conjugate for
one of two X in (6.2) is crucial to obtain the desired pure
state limit in (6.9).

C. Replica trick

One of the main advantage of reflected entropy is that it
can be computed using the correlation function of certain
twist operators via the replica trick [65,66,71]. This is also
the case for the pseudo-reflected entropy. For concreteness,
let us consider a reduced transition matrix obtained from
two excited states,

T ψ jφ
AB ¼ TrAB

�jψihφj
hφjψi

�
; ð6:11Þ

where

jψi ¼ OHðw5; w̄5Þj0i; jφi ¼ OHðw0; w̄0Þj0i: ð6:12Þ

We will specify the conformal dimension later. Here we
took subregions as A ¼ ½w1; w2�, B ¼ ½w3; w4� and set

w1 ¼ w̄1 ¼ u1; w2 ¼ w̄2 ¼ v1;

w3 ¼ w̄3 ¼ u2; w4 ¼ w̄4 ¼ v2; ð6:13Þ

w0 ¼ a2 þ ib2; w̄0 ¼ a2 − ib2;

w5 ¼ a1 − ib1; w̄5 ¼ a1 þ ib1; ð6:14Þ

Based on [71], it is straightforward to construct the replica
partition function for a series of canonically purified states.
One can define the Rényi version of the reflected entropy
as,

Sðn;mÞ
R ¼ 1

1 − n
log

Zm;n

ðZm;1Þn
; ð6:15Þ

where

Zm;n ¼ TrðT ðmÞ
AA� Þn; ð6:16Þ

T ðmÞ
AA� ¼ TrBB�

�jðT ψ jφ
AB Þ

m
2ihðT ψ jφ†

AB Þm2 j
hðT ψ jφ†

AB Þm2 jðT ψ jφ
AB Þ

m
2 i

�
: ð6:17Þ

The Zm;n corresponds to a partition function on the
manifold described in Fig. 24. Notice that each replica
sheet represents the same one thanks to the Hermitian
conjugate in (6.17). From (6.15), one can obtain

SRðT ψ jφ
AB Þ ¼ lim

m→1
lim
n→1

1

1 − n
log

Zm;n

ðZm;1Þn
; ð6:18Þ

In particular, here we took an analytic continuation of an
even integer m. We can rewrite the Zm;n in terms of the
correlation function of twist operators,

FIG. 23. Left: replica manifolds for matrix elements of ðT ψ jφ
A Þm2

and ðT ψ jφ
A Þ†m2 . Right: One for ρðmÞ

A . Here m is assumed to be an
even integer.
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Zm;n ¼ h0jO⊗mn†
H ðw0; w̄0ÞσgAðu1Þσg−1A ðv1Þ

× σgBðu2Þσg−1B ðv2ÞO
⊗mn
H ðw5; w̄5Þj0i; ð6:19Þ

where we have twist operators whose chiral conformal
dimensions are given by hσgA ¼ hσg−1

A

¼ hσgB ¼ hσg−1
B

¼
nc
24
ðm − 1

mÞ≡ nhm, so as antichiral ones. These twist oper-
ators are essentially different from the ones appeared in the
entanglement entropy because the global structure of the
replica manifold is totally different. As a consequences of
this difference, we have a particularly important OPE
channel,

σg−1A σgB ∼ σgBg−1A þ � � � ; ð6:20Þ

where σgBg−1A has the conformal dimension hσgBg−1
A

¼
h̄σgBg−1A

¼ 2c
24
ðn − 1

nÞ≡ 2hn. Notice that this is the same

correlation function as one for the reflected entropy
[65,66] except for the position of two operators OH

and O†
H.

D. Pseudo-reflected entropy in holographic CFT

Let us focus our analysis on the holographic CFT2. We
specify two excited states in transition matrix with heavy
states whose conformal dimensions are given by
hH ¼ h̄H ¼ OðcÞ ≥ c

24
. In holographic CFT2, the correla-

tion functions are well-approximated by the single con-
formal block. The 6-point correlation functions of our
interest are often referred as heavy-heavy-light-light-light-
light (HHLLLL) correlation functions, whose conformal
blocks under the large c limit are studied in literature. We
apply a conformal map from cylinder to plane,

z ¼ e−iw̃; w̃ ¼ w − w5

w − w0

; ð6:21Þ

so that we get familiar forms of HHLLLL blocks in
literature (refer to [78,79] where the related conformal
blocks are presented explicitly).
We have essentially two classes of nonzero entanglement

wedge cross section. We can classify them with respect to
whether the resulting cross sections have disconnected
pieces or not. We will call these classes as disconnected or
connected phases. The simplest cross section in the con-
nected phase accords with one in the BTZ blackhole (see
left panel of Fig. 25),

SRðT ψ jφ
AB Þ ¼

c
6
log coth

�
αx
4

�
þ ðantiholomorphicÞ;

where the cross ratios x, x̄ are given by

x ¼ ðw̃1 − w̃2Þðw̃3 − w̃4Þ
ðw̃1 − w̃3Þðw̃2 − w̃4Þ

¼ ðu1 − v1Þðu2 − v2Þ
ðu1 − u2Þðv1 − v2Þ

¼ x̄;

ð6:22Þ

and

α ¼ 2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24hH
c − 1

q : ð6:23Þ

Therefore, this cross section does not depend on the
location of heavy states in the Euclidian manifold. It is
rather natural—because except for backreaction of the
geometry, the cross section has no direct connection with
the geodesics created by the heavy operators.
For sufficiently large subsystems, we reach the discon-

nected phase, where the cross section consists of two
disconnected contributions both of which end at the
horizon of blackhole (see right panel of Fig. 25),

SRðT ψ jφ
AB Þ ¼

c
6
log coth

�
αx14
4

�
þ c
6
log coth

�
αx23
4

�
þ ðantiholomorphicÞ: ð6:24Þ

where

x14 ¼
ðw1 −w4Þðw0 −w5Þ
ðw1 −w0Þðw2 −w0Þ

; x23 ¼
ðw2 −w3Þðw0 −w5Þ
ðw2 −w0Þðw3 −w0Þ

;

ð6:25Þ

so as antiholomorphic ones, x̄14 and x̄23. These results are
consistent with the entanglement wedge cross section as is
obvious from the related conformal blocks.

FIG. 24. Replica manifold for computing Zm;n. (The figure

shows the n ¼ 3 case.) Each fixed n corresponds to T ðmÞ
AA� ≡

TrBB�T XjX†
with X ¼ ðT ψ jφ

AB Þ
m
2 , (jXAA�BB� i ¼ jðT ψ jφ

AB Þ
m
2 i). We glue

each label in the figure (each circled number with black back-

ground) such that we obtain TrðT ðmÞ
AA� Þn. It can be rewritten as the

correlator of twist operators as (6.19).
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VII. CONCLUSIONS AND DISCUSSIONS

In this paper, we introduced a novel quantity called
pseudo-entropy motivated by a basic question in
AdS=CFT: what is the CFT quantity dual to the minimal
codimension-2 surface in the bulk AdS which ends on the
boundary when there is no time reversal symmetry. A
Euclidean path integral with time reversal symmetry in
CFT gives a density matrix, while that without time reversal
symmetry can be regarded as a transition matrix. A minimal
codimension-2 surface anchored on a time reversal sym-
metric time slice gives the entanglement entropy of a
reduced density matrix while that does not lie on such a
time slice gives the pseudo-entropy of a reduced transition
matrix. In this sense, pseudo-entropy is a straightforward
generalization of entanglement entropy.
We studied general properties of pseudo-entropy in Sec. II

and then focused on plenty of explicit examples in qubit
systems, free CFT, and holographic setups in Secs. III, IV, V.
In Sec. VI, we introduced the pseudo-reflected entropy
based on the pseudo-entropy for the operator state. In
particular, we argued it is equivalent to double of the
entanglement wedge cross section in the dual geometry.
Pseudo-entropy, introduced in the present paper with the

above motivation and calculations, is a new fundamental
quantity defined for any quantum systems. Therefore we
expect this to open new directions to study quantum
information theory, condensed matter physics and high
energy theory. Below we summarize our conclusions on
these analysis in more details as well as future problems
from a comprehensive point of view.

A. Pseudo-entropy in qubit systems
and operational meaning

We classified the structure of two qubit transition
matrices with the relation to pseudo-entropy in Fig. 3. In

general, the transition matrices T ψ jφ
A are not Hermitian and

are not regular quantum states, which lead to complex
values of pseudo-entropy in general. Nevertheless, this
quantity shares several properties common also to entan-
glement entropy. We also uncovered several useful behav-
iors of pseudo-entropy in qubit systems. In two qubit
systems, we find that the pseudo-entropy always gets
increased under local unitary transformations. However,
this is only a special property of two qubit systems, and we
find the pseudo-entropy in general gets reduced under local
unitary transformations in larger systems especially when
the entanglement swapping occurs. We observed this kind
of reductions of pseudo-entropy in a number of our
examples in CFTs.
We then focus on the class ℬ, i.e., the case where the

pseudo-(Rényi) entropies are all non-negative. Our CFT
examples in this paper fit into this class. In particular,

when the reduced transition matrices T ψ jφ
A and T ψ jφ

B are
Hermitian and positive semidefinite (i.e., the class E), we
showed that the pseudo-entropy can be interpreted as the
averaged number of Bell pairs included in intermediate
states between the initial state and final state. This allows us
to quantitatively investigate the amount of virtual entan-
glement involved in the postselection process. It will be of
interest to consider what physical phenomena follow from
the virtual entanglement behind a given process. It is also
important to know how to measure pseudo-entropy in real
experiments, and to provide a similar interpretation of
pseudo-entropy for general transition matrices.
We have also investigated the pseudo-entropy when both

jψi and jφi are chosen uniformly at random from the whole
Hilbert space. It was observed that the pseudo-entropy
seems to weakly concentrate around a moderately small
real value. This may indicate that, despite the facts that
pseudo-entropy is in general complex-valued and that its
absolute value can be arbitrarily large, it is atypical for
states to take such abnormal values of pseudo-entropy,
especially in the large dimension limit.

B. Holographic pseudo-entropy

Our main motivation of considering pseudo-entropy is the
holographic duality. For a generic transition matrix and a
generic factorization of the Hilbert space, pseudo-entropy
takes complex values. However, as we have seen in Sec. VA,
holographic pseudo-nth Rényi entropy is non-negative for
any n > 0, assuming a single classical gravity background
with a real valued bulk metric. This gives rather strong
restrictions since this implies that, no matter what spatial
factorizationwe take for thewholeHilbert space, the reduced
transition matrix should belong to class ℬ.
Moreover, one may also go further to expect that the

reduced transition matrices in holographic setups have only
real and nonnegative eigenvalues, i.e., they belong to class
C. One way to check this expectation would be to evaluate
weak values of observables other than the area operator.
This is also left as a future problem.

FIG. 25. Two typical phases for the entanglement wedge cross
section in the geometry dual to hφjψi. Left: a connected cross
section. Right: a disconnected cross section. Here we skip
intermediate phases between left and right panels where we
have transition of the entanglement wedge itself.
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Nevertheless, holographic transition matrix generically
do not give Hermitian reduced transition matrices and
hence do not belong to D. Indeed, it is straightforward

to explicitly check Tr½ðT ψ jφ
A Þ2� ≠ Tr½T ψ jφ

A ðT ψ jφ
A Þ†� and

hence T ψ jφ
A ≠ ðT ψ jφ

A Þ†.
As one of the simplest examples,we compute the holo-

graphic pseudo-entropy explicitly for the Janus solution in
AdS3=CFT2, which is dual to two quantum states given by
two different exactly marginal deformations. We showed
that the coefficient of the logarithmic divergence of the
pseudo-entropy is decreased by the Janus perturbation and
that the perturbative analysis in the dual field theory
correctly reproduces this behavior.
Also, we found that transition matrices between two

linear combinations of holographic states are even out of
class A in general as we have seen in Sec. V F. In the
AdS=CFT, this is dual to a quantum mechanical super-
position of two different classical gravity duals. We showed
that in this general case, the holographic pseudo-entropy is
equal to the weak value of the area operator and this
possesses the linearity property.
Since holographic pseudo-entropy is a codimension-2

surface in the bulk, we also expect that it is possible to
account for the holographic pseudo-entropy as Hayward
term or gravity edge modes [80,81] if we focus on the
fixed-area contribution and whether the basis for fixed area-
states is universal or not.

C. Comparisons of pseudo-entropy in free and
holographic CFTs

We found the class ℬ property (i.e., all pseudo-Rényi
entropies take non-negative real values) arises naturally in
general field theories when we prepare the two states jψi
and jφi by Euclidean path-integrals. It is obvious that the
transition matrices constructed by Euclidean path-integrals
with real valued action and external sources at least belong
to the class A because the transition matrices themselves

are also real valued. In addition, TrðT ψ jφ
A Þn > 0 for any

n > 0 in this special case. This means that the pseudo-
Rényi entropies are real valued. Moreover, we found in our
explicit examples that the resulting pseudo-entropy is non-
negative. Indeed, the pseudo-entropy typically follows the
area law as in the standard entanglement entropy in field
theories [5,6]. In the two dimensional massless free scalar
CFT, we calculated pseudo-Rényi entropies when jψi and
jφi are (different) locally excited states and found real
valued pseudo-entropy. In this free theory example, we
always find that the pseudo-entropy gets smaller than that
for the ground state. In particular, the pseudo-entropy is
reduced sharply when the positions of the local operator
excitations get closer to the boundaries of the subsystem A.
We interpret this behavior as the reduction of pseudo-
entropy in the presence of the entanglement swapping.

We studied the pseudo-entropy for similar locally excited
states in holographic CFTs. We again found the reduction
of pseudo-entropy when the positions of the local operators
are close to the boundaries of the subsystem. Moreover, as
opposed to the results in free CFTs, we observed that the
holographic pseudo-entropy can also increase when the
local excitation is close to the center of the subsystem.
This positive contribution seems to be a special feature of
holographic CFTs, which is missing in free CFTs. It is a
longstanding question what kinds of quantum states admit
classical geometry duals and there are many known
restrictions characterizing these states such as the
monogamy of mutual information [82], holographic
entropy cone [83] and holographic entropy arrangement
[84]. For the behaviors of entanglement entropy under local
excitations, it is also known that holographic results show a
characteristic growth [55,56], which is largely different
from the free or integrable CFT results [24,25]. Our study
suggests that pseudo-entropy can be used as another novel
restriction. Also, since the calculation of pseudo-entropy
involves two quantum states, it is clear that this restriction is
independent of those known ones. It will be an intriguing
future direction to pursue this further.
One can also study pseudo-entropy in alternative setups.

One possibly interesting class is the conformal field theory
on a manifold with boundaries (BCFT). We have already
studied one of the simplest examples in Sec. V E while
there are also other setups such as joining quenched state
[85], splitting quenched state [86], etc. left to explore.
It will also be intriguing to explore condensed matter

applications. Pseudo-entropy is expected to provide a new
quantum order parameter which depends both the initial
state and final state. Therefore an important future direction
is to analyze how pseudo-entropy probes quantum proper-
ties of excited states in quantum many-body systems under
topological orders or quantum phase transitions.

D. Subadditivity and strong subadditivity

In Sec. III D, we have seen that even a transition matrix
which gives reduced transition matrices whose eigenvalues
are real and nonnegative, i.e., a transition matrix in class C
for any factorization, do not always satisfy subadditivity
and strong subadditivity. On the other hand, we showed that
holographic transition matrices for a single classical gravity
background satisfy subadditivity and no evidence suggests
that they do not satisfy strong subadditivity. While we leave
the confirmation of strong subadditivity of holographic
pseudo-entropy as a future problem, we would like to note
that these give another restrictions on holographic states
which are independent of those discussed in the former
paragraph.

E. Mixed state generalization

As a mixed state generalization of the pseudo-entropy,
we introduced the pseudo-entropy generalization of
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reflected entropy, motivated by the idea of so-called
operator entanglement, based on the transition matrix
between two operator states. As a concrete example, we
defined the pseudo-reflected entropy where two operator
states are given by a reduced transition matrix and its
Hermitian conjugate. We argued that the pseudo-reflected
entropy is, as the name indicates, holographically equiv-
alent to double of the entanglement wedge cross section in
the dual geometry. Notice that such generalizations are also
complex-valued in general and hence constraint holo-
graphic states. We leave extensive study for more general
operator states as future work. Besides the pseudo-entropy
generalization, we also analyzed the ordinary operator
entanglement for a given transition matrix, whose holo-
graphic interpretation was left as a future problem.

F. Pseudo-complexity?

Motivated by holographic proposals of computational
complexity [87,88], it is also intriguing to explore if we can
define a complexity measure for transition matrices, which
might be called as pseudo-complexity. Please distinguish
this from the pseudo-complexity introduced in [89] (see
also further discussions in [90]), which is a coarse-grained
version of complexity defined for a single quantum state.
On the other hand, our pseudo-complexity is a fined
grained complexity defined for two different quantum
states.
As one simple way to define our pseudo-complexity,

we can employ the canonical purification of any given

(reduced) transition matrix jðT ψ jφ
A Þ12i, explained in Sec. VI

and apply known definitions of complexity in quantum
field theories e.g., [91–97]. However, such a computational
complexity for a pure transition matrix T ψ jφ ≡ jψihφj

hφjψi is
simply given by the sum of complexity for the state jψi and
hφj as the canonical purification is just a direct product of
them. This sum rule looks too simple compared with any

expected gravity duals such as the minimal volume or
gravity action in the gravity duals where nontrivial back-
reactions should be taken into account, depending on the
choices of jψi and hφj. In this sense, other approaches to
CFT duals of volumes, which are based on the information
metric [98] and its suitable modification [99], seem to be
able to capture the above mentioned gravitational back-
reactions even for pure transition matrices. This is because
the information metric and its generalization is based on
two point functions of the form hφjO1O2jψi. More details
of possible definitions of pseudo-complexity and their
gravity duals will be left as a future problem.
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