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Abstract
Moving mirrors have been known as tractable setups modeling Hawking radia-
tion from black holes. In this paper, motivated by recent developments regarding
the black hole information problem, we present extensive studies of moving
mirrors in conformal field theories by employing both field theoretic as well as
holographic methods. Reviewing first the usual field theoretic formulation of
moving mirrors, we construct their gravity dual by resorting to the AdS/BCFT
construction. Based on our holographic formulation, we then calculate the time
evolution of entanglement entropy in various moving mirror models. In doing
so, we mainly focus on three different setups: escaping mirror, which models
constant Hawking radiation emanating from an eternal black hole; kink mirror,
which models an evaporating black hole formed from collapse; and the double
escaping mirror, which models two constantly radiating eternal black holes. In
particular, by computing the holographic entanglement entropy, we show that
the kink mirror gives rise to an ideal Page curve. We also find that an interesting
phase transition arises in the case of the double escaping mirror. Furthermore,
we argue and provide evidence for an interpretation of moving mirrors in terms
of two dimensional Liouville gravity. We also discuss the connection between
quantum energy conditions and the time evolution of holographic entanglement
entropy in moving mirror models.
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1. Introduction

Considerations of black hole evaporation due to Hawking radiation [1, 2] have led to the impor-
tant question whether unitarity is maintained in gravitational physics. A necessary, but not
sufficient property, which may indicate that black hole evaporation is a unitary process, is the
Page curve for the entanglement entropy of the Hawking radiation [3, 4]. Owing to the holo-
graphic fine grained entropy formula [5–8], the Page curve has been obtained for conformal
field theories (CFTs) coupled to gravity [9–11]. Similarly, this has also been realized by direct
Euclidean gravity computations using quantum corrected, boundary-unitarity-imposing sad-
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dles in approximating the gravitational path integral [12, 13]. For further progress along this
direction as well as closely related work refer, for instance, to [14–62].

Even though these studies are interesting and might provide further insights into how the
black hole information paradox should be resolved, they are lacking a proper description of
the Page curve from a fundamental theory of quantum gravity. For example, it has not been
addressed how the structure of the Hilbert space in quantum gravity does actually look like.
This would indeed be needed to explain the unitary behavior of the fine grained entropy during
the evaporation process.

In fact, the mentioned entropy computations do not use the hypothetical quantum state of
the radiation in order to obtain an entropy curve which is consistent with unitarity, see e.g. [63,
64]. Instead, it is the minimization-extremization procedure [5–8] of the generalized entropy
[65–67] over an extended semiclassical bulk region terminating at some codimension-two
surface, which is responsible for the results mentioned above.

Recall that the generalized entropy is a finite quantity, whereas, both the gravitational
entropy as well as the von Neumann entropy defined in the exterior region of the surface
determining the former are separately cutoff dependent. However, combining the two pieces
would result in a cancellation of such divergences and render the generalized entropy to be
cutoff independent and therefore finite [68–73]. This strongly suggests that some of the infor-
mation content present in the full quantum gravity description is captured by the generalized
entropy.

One may consider the latter as being measuring the degrees of freedom in the exterior
region of the dividing black hole horizon surface, where the gravitational part may account for
Planckian degrees of freedom regulated by quantum gravitational effects [68, 69, 74]. How-
ever, it is important reminding that the generalized entropy, as it has originally been introduced
by Bekenstein [65–67], is a purely semiclassical concept. Similarly, this is the case for the
notion of entanglement wedges [7, 75–79], where the latter turn out to be crucial for the recent
arguments regarding the reproduction of the Page curve.

Nevertheless, in order to explain the purification of the radiation and its unitary entropy
evolution, there has to exist a mechanism going beyond semiclassical bulk physics. This should
indeed be responsible for the expected behavior around the Page time and, in particular, for
making the generalized entropy finite and continuously decreasing in the presence of an old
radiating black hole. In fact, just assigning some coarse grained entropy proportional to the
black hole horizon surface area, namely, without addressing whether such degrees of freedom
are quantum correlated among each other, or, lead to extrinsic structures, cannot be sufficient
in addressing the black hole unitarity problem.

Based on algebraic arguments and related reflections on the bulk Hilbert space structure, it
has recently been argued that the purification of the radiation happens via hidden quantum cor-
relations extending across the black hole atmosphere [64]. Such correlations are proposed to be
existent due to the presence of certain, necessarily extended horizon operators in the emergent
bulk spacetime, that are highly quantum correlated with each other and do not belong to the
algebra describing the semiclassical world. During the evaporation process, these atmosphere
correlations, being transferred to the outgoing low energy Hawking radiation, will give rise to
a unitary entropy curve. In fact, using well established theorems and consistency assumptions
one can further argue for the necessity of such near horizon quantum gravitational effects that
start to be revealed around the halfway point [80].

Accordingly, in contrast to the usual thermal state predicted by Hawking, the state of the
radiation would start undergoinga drastic change slightly before half of the black hole has evap-
orated. Particularly, restoring unitarity as proposed in [64] would imply a non-factorized bulk
Hilbert space structure, that is dynamically evolving during the evaporation process. Around
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the halfway point, the entanglement structure of the black hole system, which, by then, will be
maximally correlated with the outgoing Hawking radiation, would necessarily extend across
the atmosphere. Indeed, this is in line with earlier stringy scenarios drawn in [68, 81, 82] which
already strengthened the idea that black holes should be viewed as ordinary quantum systems
as seen from the far distance. However, the mechanism in [64] would be more generically
applicable to any quantum formulation of black hole thermodynamics [83] and may therefore
explain the universal nature of the Bekenstein–Hawking entropy [84].

Taking all these considerations into account, we think that it will be helpful to explore an
alternative approach for studying the information content of black hole radiation. In doing so,
we may presumably be able to connect to the latter aspects in a direct manner, namely, without
entirely ignoring the relevant fine grained properties of the underlying spacetime.

Moving mirrors have been considered as a class of remarkable and tractable models of
Hawking radiation from black holes [2], which are based on quantum field theories defined
on spacetime backgrounds with boundaries [85, 86]. Therefore, unitarity is obvious in mov-
ing mirror models, and we expect that comparisons between the dynamics in such setups
and that of evaporating black holes will be helpful to understand unitarity in quantum grav-
ity. Motivated by this, the computation of entanglement entropy in two dimensional CFTs
with moving mirrors has recently been performed and a Page curve has been derived for
a mirror profile which mimics black hole formation and evaporation [87], both field theo-
retically and holographically. The gravity dual analysis has been achieved by extending the
AdS/CFT duality [88] to the case where the CFT is defined on a manifold with a bound-
ary [89–91]. This extension is known as the AdS/BCFT construction. In holographic CFTs,
which have classical gravity duals, there are two different contributions to holographic entan-
glement entropy [5, 6, 92] in AdS/BCFT. One comes from a connected extremal surface and
the other candidate relies on a disconnected surface which ends on the end-of-the-world brane
extending into the bulk. In [87], it has been found that the entanglement entropy which con-
tributes to the Page curve is the latter (disconnected) one. Contributions from the former
(connected) one were already evaluated in earlier works [93–96]. It is particularly worth men-
tioning that moving mirror examples mostly allow relatively simple and analytical calculations.
This can be taken as an advantage over other approaches to black hole information related
problems.

In this paper, we would like to provide major extensions of our previous analysis presented
in [87]. For doing so, we mainly focus on three different moving mirror setups: (i) escaping mir-
ror, (ii) kink mirror, and (iii) double escaping mirror, which are depicted in figure 1. These can
be regarded as models mimicking constant Hawking radiation from an eternal black hole, black
hole formation and evaporation, and radiation emanating from two black holes, respectively.
After presenting details of field theoretic and holographic realizations of moving mirror setups,
we perform comprehensive investigations of the time evolution of entanglement entropy in all
three setups. Moreover, we present a precise connection between our moving mirror models
and gravity models coupled to CFTs by making use of brane-world holography and the Liou-
ville formulation of two dimensional gravity. For the double escaping mirror, we observe an
interesting, new phase transition behavior in our entanglement entropy calculations. We also
study the properties of energy fluxes in moving mirror models. Particularly, when these give
rise to unitary entropy curves, we find that the quantum null energy condition (QNEC) [97,
98] is saturated, while the null energy condition (NEC) turns out to be violated temporarily.
In fact, this property may be viewed as an explicit realization of more general considerations
[80] which further advocate the mechanism discussed in [64].

The remainder of this paper is organized as follows. In section 2, we explain the description
of moving mirrors in two dimensional CFTs using conformal transformations. In section 3,
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Figure 1. Sketch of the three moving mirror setups: (left) escaping mirror, (center) kink
mirror, and (right) double escaping mirror. They model constant Hawking radiation,
black hole formation and evaporation, and radiation from two black holes, respectively.

we present a comprehensive review of direct analysis of two dimensional free scalar CFT with
a moving mirror in terms of creation and annihilation operators. In section 4, after briefly
reviewing the AdS/BCFT construction, we work out profiles of end-of-the-world branes in the
BTZ black hole background. In section 5, we provide extensive studies of gravity duals of a
single moving mirror and calculate the time evolution of holographic entanglement entropy.
We further give an interpretation of our setups in terms of two dimensional gravity coupled
to a CFT on a half space by referring to brane-world holography and Liouville theory. We
also argue that our moving mirror models are smoothly connected to earlier two dimensional
gravity models that have led to the island picture. In section 6, we analyze the gravity dual of the
double escaping mirror setup. We calculate its holographic entanglement entropy and uncover
an interesting new phase transition. In section 7, we study properties of energy fluxes in moving
mirror CFTs and discuss the connection to well known extensions of the classical NEC, such
as the QNEC. In section 8, we provide conformal field theoretic computations of entanglement
entropy in moving mirror setups. In section 9, we revise our moving mirror analysis as a BCFT,
and make clearer the way how the standard conformal boundary conditions are generalized into
corresponding moving mirror boundary conditions. In section 10, we give a brief summary
and finalize with some further comments. In appendix A, we present details of the gravity dual
associated with a conformal map. In appendix B, we present more entanglement entropy results
computed in CFTs with moving mirrors.

2. Moving mirror in two dimensional CFTs

In this section, we introduce the conformal map method and discuss its application in the
context of various mirror profiles.

2.1. Radiation from moving mirror

In a typical moving mirror setup, one initially places a mirror at x = 0, so that the physical
space is given by x > 0. The location of the mirror moves according to x = Z(t), as sketched
in the left picture in figure 2. In such a setup, we expect the production of right moving radiation
quanta giving rise to some energy flux Tuu [85].

6
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Figure 2. Sketch of conformal map from the moving mirror setup (left) to a standard
setup of BCFT with a straight line boundary at x̃ = 0 (right). The dotted lines correspond
to the null lines in the coordinates (t, x) and (̃t, x̃).

2.2. Conformal map method

A systematic method to analyze moving mirrors in two dimensional CFTs can be achieved by
employing conformal transformations. We would like to consider a conformal map from the
original moving mirror setup, see left picture in figure 2, here described by the following null
coordinates

u = t − x, v = t + x, (2.1)

into the standard simple setup with a static mirror, see right picture in figure 2. The latter is
described by the new coordinates

(ũ, ṽ) = (̃t − x̃, t̃ + x̃), (2.2)

so that the static boundary will be situated at x̃ = 1
2 (ṽ − ũ) = 0.

Since we are mainly interested in the radiation emitted by the moving mirror, we would like
to consider the most simple case, in which only the right-movers are excited. In this case, these
coordinates are related by a chiral conformal transformation of the following form

ũ = p(u), ṽ = v, (2.3)

where the introduced function p in (2.3) will be determined by the profile of the mirror x = Z(t)
as follows

t + Z(t) = p (t − Z(t)) . (2.4)

If we rewrite the relation (2.4) in terms of the functions f (u) ≡ p−1(u), we end up with

ũ − f (ũ)
2

= Z

(
ũ + f (ũ)

2

)
,

p(u) − u
2

= Z

(
u + p(u)

2

)
. (2.5)

Since the state in (ũ, ṽ) corresponds to the CFT vacuum, we would have Tũũ = Tṽṽ = 0.

7



Class. Quantum Grav. 38 (2021) 224001 I Akal et al

Therefore, after performing the conformal transformation (2.3), we can evaluate the energy
flux expressed in terms of Schwarzian derivatives5, which takes the form

Tuu =
c

24π

(
3
2

(
p′′(u)
p′(u)

)2

− p′′′(u)
p′(u)

)
, (2.6)

with c being the central charge of the underlying CFT.
Note that, since Tvv and Tuv are vanishing, we have Ttt = Tuu + Tvv − 2Tuv = Tuu.

2.3. Mirror trajectories

As mentioned, in the following, we would like to discuss some explicit examples for the mirror
profiles in the light of the conformal map method.

2.3.1. Rindler observer. Consider the following function

Z(t) =
√

t2 + α2, (2.7)

which is analogous to the boundary experienced by some Rindler observer. In such a case, we
find

p(u) = −α2

u
. (2.8)

Since this is a global conformal transformation, we find the trivial result

Tuu = 0. (2.9)

2.3.2. Perturbed Rindler observer. Consider now the following function

p(u) = −α2

u
− γu. (2.10)

We get the profile

Z(t) =
tγ −
√

t2 + α2 − γα2

γ − 1
≈
√

t2 + α2 + β

[
−t +

2t2 + α2

2
√

t2 + α2

]
+O(γ2). (2.11)

The energy stress tensor reads as follows

Tuu =
c

12π
· 3γα2

(γu2 − α2)2
. (2.12)

5 Here, we use the standard formula for the conformal transformation of the energy stress tensor,

Tuu =

(
dũ
du

)2

Tũũ +
c

12
{ũ, u},

where

{ũ, u} =
(∂3

u ũ)(∂uũ) − 3
2 (∂2

u ũ)2

(∂uũ)2
.

8
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Figure 3. Depicted is the profile of the escaping mirror trajectory (left) and that of
the energy stress tensor Tuu(u) multiplied by 48π (right). The blue and orange curves
correspond to β = 1 and β = 0.3, respectively.

2.3.3. Escaping mirror. Let us now consider

p(u) = −β log(1 + e−u/β), (2.13)

where we have introduced a positive parameter β, which will play the role of an effective
temperature of the radiation. Note that in the limit u →∞, we have

p(u) 	 −βe−u/β, (2.14)

while in the past time limit u →−∞, we have

p(u) 	 u. (2.15)

The mirror trajectory is described by

t(u) =
p(u) + u

2
, Z(u) =

p(u) − u
2

, (2.16)

which is plotted in the left panel of figure 3. In the past time limit u →−∞, we have the static
mirror, i.e.

Z 	 0, (2.17)

while in the late time limit u →∞, we find

Z 	 −t − βe−2t/β. (2.18)

The energy stress tensor reads

Tuu =
c

48πβ2

(
1 − 1

(1 + eu/β)2

)
. (2.19)

It is particularly worth mentioning that the late time limit looks thermal Tuu 	 c
48πβ2 , similar

to as one would get from a thermal density matrix with temperature 1
2πβ .
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Figure 4. Shown is the profile of the kink mirror trajectory (left) and that of the energy
stress tensor Tuu(u) multiplied by 48π (right). We have set u0 = 4. The blue and orange
curves correspond to β = 0.5 and β = 0.1, respectively.

Here, it is useful to consider the (infinite temperature) limit β → 0. In this case, the mirror
trajectory develops a kink of the form

Z(t) 	 −tθ(t), (2.20)

as we can see in figure 3, and the energy flux is written in terms of the step function θ, i.e.

Tuu =
c

48πβ2
θ(t). (2.21)

2.3.4. Kink mirror. We now consider the following extended function

p(u) = −β log(1 + e−u/β) + β log(1 + e(u−u0)/β), (2.22)

where we assume β > 0 and u0 > 0.
This corresponds to a moving mirror trajectory x = Z(t), which develops a kink-like shape

as depicted in the left panel of figure 4. In the β → 0 limit, the mirror profile is described by

Z(t) 	

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 (t < 0)

−t
(

0 � t � u0

2

)
−u0

2

(
t >

u0

2

) . (2.23)

The corresponding energy flux obtained by plugging (2.22) into (2.6) is plotted in the right
panel of figure 4.
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2.4. Perturbation

In general, by using (2.5) we can write the following relation

Ż =
p′ − 1
p′ + 1

⇒ Z = p(t − Z) − t (2.24)

in order to obtain Z(t) from a given function p(u), where the dot and prime denote t and u
derivatives, respectively.

Similarly, we may find p(u) from Z(t) by solving the following equation

p′ =
1 + Ż

1 − Ż
⇒ p = 2Z

(
u + p

2

)
+ u. (2.25)

For instance, let us assume that p in (2.3) is of the form

p(u) = s(u) + λg(u), (2.26)

where s and g are some arbitrary functions and λ is some real parameter.
Starting from the general expression in (2.26) and assuming λ � 1, we may expand (2.24),

so that

Ż 	 s′ − 1
s′ + 1

+ λ
2g′

[s′ + 1]2
+O(λ2). (2.27)

2.4.1. Example 1. Let us consider the first term in (2.26) to be given by

s(u) = αu. (2.28)

Then, according to (2.27), we get

Ż 	 α− 1
α+ 1

+ λ
2g′

[α+ 1]2
. (2.29)

Using the relation

du 	 2
1 + α

dt, (2.30)

which follows from the relation in (2.16), then (2.29) can be integrated as follows

Z(t) 	
[
α− 1
α+ 1

]
t +

λ

α+ 1
g

(
2t

α+ 1

)
. (2.31)

2.4.2. Example 2. As another example, let us now assume that

s(u) = −α2

u
(2.32)

determines the first term in (2.26). Then, we get

Ż 	 α2 − u2

α2 + u2
+ λ

2g′u4

[α2 + u2]2
. (2.33)

11
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We may write the following relation

du 	 2u2

α2 + u2
dt ⇒ u − α2

u
= 2t. (2.34)

Re-expressing the lhs of (2.33) by making use of (2.34), we get

Z′ 	 α2 − u2

2u2
+ λ

g′u2

α2 + u2
. (2.35)

After integrating the latter, we find the general solution

Z(u) 	 −1
2

[
u +

α2

u

]
+ λ

∫ u

dy
y2g′(y)
α2 + y2

. (2.36)

By using the relation

u(t) = t −
√
α2 + t2, (2.37)

which is deduced from the right equation in (2.34), we finally find

Z(t) 	
√

t2 + α2 + λ

∫ u(t)

dy
y2g′(y)
α2 + y2

, (2.38)

where u(t) is given in (2.37).
For instance, if we have λ→ 0, the expression (2.38) for Z(t) becomes identical to (2.7). If

we set g(u) = −u as in (2.10), we find

∫ u(t)

dy
−y2

α2 + y2
= α arctan

(
u(t)
α

)
− u(t), (2.39)

which approaches the rhs of (2.11) if one identifies the small expansion parameter λ with β.
For instance, we may choose the function

g(y) = α2y +
y3

3
(2.40)

appearing in (2.26) and further assume (2.32). Then, by using the solution in (2.38), we find

Z(t) 	
√

t2 + α2 + λ
[t −

√
α2 + t2]3

3
, (2.41)

where

p(u) 	 −α2

u
+ λ

[
uα2 +

u3

3

]
, (2.42)

which leads to the following energy stress tensor

Tuu = − λc
12π

· 10u2α2 + 3α4 − 2u6λ+ u4α2λ

[α2 + u2[u2 + α2]]2
. (2.43)

As it is expected from the discussion in section 2.3.1, the latter vanishes for λ→ 0.

12
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3. Direct analysis of massless free scalar CFT

In the present section, we discuss the explicit quantization of a free massless scalar field in two
dimensional flat spacetime with a moving mirror. We first calculate the expectation value of the
energy momentum tensor. Afterwards, we work out the relevant Bogoliubov coefficients for
the escaping mirror profile modeling a one sided eternal black hole, and compute the particle
production rate. Lastly, we comment on connections to gravitational setups.

3.1. Energy momentum tensor

In two dimensional free massless scalar field theory, the energy momentum tensor is given by
[86]

Ttt = Txx =
1
2

[
(∂tφ)2 + (∂xφ)2

]
,

Ttx = Txt =
1
2

[(∂tφ) (∂xφ) + (∂xφ) (∂tφ)] .

(3.44)

The field equation reads6

∂2Φ

∂u∂v
= 0. (3.45)

The scalar field Φ shall satisfy the reflection boundary condition, i.e.

Φ(t, Z(t)) = 0, (3.46)

where Z(t) denotes the moving boundary of the spatial direction, cf section 2.2.
A complete set of positive frequency modes, i.e. solutions to (3.45) and (3.46), is given by

φω = H(ωv) + G(ωu), (3.47)

where ω = |k|, with H and G being arbitrary functions. More specifically, we may write the
incoming mode as

φin
ω′ (t, x) = i(4πω′)−1/2

(
e−iω′v − e−iω′(2τu−u)

)
. (3.48)

For simplicity, we consider a single moving boundary, where the mirror location is deter-
mined by 2τ u − u = p(u), see section 3.3 for a more general setup. The variable τ u is defined by
the mirror trajectory through τ u − Z(τ u) = u, cf [85]. An incoming mode function describing
Minkowski spacetime with a static boundary would correspond to τ u = u, hence

φin
ω′ (t, x) = (πω′)−1/2 sin(ω′x)e−iω′t. (3.49)

The field Φ can be expanded in terms of the incoming mode

Φ(t, x) =
∫ ∞

0
dω′
[
aω′φin

ω′ + a†
ω′φ

in∗
ω′

]
. (3.50)

Here, aω′ and a†
ω′ are the standard annihilation and creation operators, such that a|0〉in = 0,

where |0〉in is the incoming vacuum state at I−.

6 Here, Φ is used to denote an on-shell configuration of the scalar field φ.
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Alternatively, Φ can also be expanded in terms of the outgoing mode

Φ(t, x) =
∫ ∞

0
dω
[
bωφ

out
ω + b†

ωφ
out∗
ω

]
, (3.51)

where bω and b†
ω correspond to the annihilation and creation operators defined with respect to

the outgoing vacuum state at I+.
The outgoing mode can be expressed as

φout
ω (t, x) = i(4πω)−1/2

(
e−iω f (v) − e−iωu

)
, (3.52)

where f (u) = p−1(u).
So, forming a complete set, one can expand the positive frequency modes φout

ω at I+ in
terms of the positive frequency modes φin

ω′ at I−, means

φout
ω =

∫
dω′ [α∗

ωω′φin
ω′ − βωω′φin∗

ω′
]

, (3.53)

where

αωω′ =
(
φout
ω ,φin

ω′
)

, βωω′ = −
(
φout
ω ,φin∗

ω′
)

(3.54)

are the corresponding Bogoliubov coefficients, which will be discussed in more detail below.
Similarly, one may construct

φin
ω′ =

∫
dω
[
αωω′φout

ω + βωω′φout∗
ω

]
. (3.55)

The scalar product introduced in (3.54) normalizing the mode functions is defined as

(φ1,φ2) = −i
∫
Σ

[
φ1∂μφ

∗
2 − (∂μφ1)φ∗

2

]
dΣμ, (3.56)

where Σ is a Cauchy surface. The mode functions are orthonormal with respect to the scalar
product in (3.56), i.e.

(φω ,φω′) = δ(ω − ω′), (φω ,φ∗
ω′) = 0. (3.57)

In general, we have

〈Tμν〉 =
∫ ∞

0
dω Tμν

[
φω ,φ∗

ω

]
. (3.58)

According to the integrand above, the expressions in (3.44) should be evaluated as bilinear
forms on the mode functions φω and their complex conjugates.

Since (3.58) is divergent, one may use the point splitting regularization method. Namely,
instead of evaluating both modes,φω andφ∗

ω , in (3.58) at the same point (t, x), one may evaluate
φ∗
ω at (t + ε, x), where ε is taken to be an infinitesimally small shift parameter.

Therefore, focusing on the expectation value for the energy momentum tensor at I+, the
factors that need to be inserted into (3.58), where we use the mode function in (3.48), take the

14
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form

∂φin
ω

∂t
(t, x) =

( ω
4π

)1/2 (
e−iωv − p′(u)e−iωp(u)

)
,

∂φin
ω

∂x
(t, x) =

( ω
4π

)1/2 (
e−iωv + p′(u)e−iωp(u)

)
,

∂φin∗
ω

∂t
(t + ε, x) =

( ω
4π

)1/2 (
eiω(v+ε) − p′(u + ε)eiωp(u+ε)

)
,

∂φin∗
ω

∂x
(t + ε, x) =

( ω
4π

)1/2 (
eiω(v+ε) + p′(u + ε)eiωp(u+ε)

)
.

(3.59)

By using (3.58), we get the following expectation value for the energy momentum tensor

〈Ttt〉 = 〈Txx〉 =
1

4π

∫ ∞

0
dω
[
eiωε + p′(u)p′(u + ε)eiω(p(u+ε)−p(u))

]
,

〈Ttx〉 = 〈Txt〉 =
1

4π

∫ ∞

0
dω
[
eiωε − p′(u)p′(u + ε)eiω(p(u+ε)−p(u))

]
.

(3.60)

Finally, evaluating the integrals in (3.60) gives rise to [86]

〈Ttt〉 = − 1
2πε2

− 〈Ttx〉,

〈Ttx〉 =
1

24π

[
p′′′

p′
− 3

2

(
p′′

p′

)2
]
+O(ε).

(3.61)

3.2. Renormalized energy flux

After having obtained the expectation values (3.61), what remains to be done is taking the limit
ε→ 0. This leads to the following renormalized expectation value for the energy stress tensor,
cf e.g. [85],7

〈Ttt〉ren = lim
ε→0

[
〈Ttt〉 − 〈Ttt〉no MM

]
=

1
24π

[
3
2

(
p′′

p′

)2

− p′′′

p′

]
. (3.62)

Here, it has been used that

〈Ttt〉no MM = − 1
2πε2

, (3.63)

which corresponds to the value obtained in flat spacetime without a moving boundary, i.e.
p(u) = u, see section 3.1.

The renormalized energy flux at I+ from (3.62) should be understood as

〈Ttt〉ren ≡ 〈Ψ|Ttt|Ψ〉 − 〈0|Ttt|0〉, (3.64)

with

|Ψ〉 = U|0〉 (3.65)

7 We would like to note, that other than in the present section 4, we denote the renormalized vacuum expectation value
〈Tμν〉ren simply as Tμν throughout this paper.
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being the final state, where |0〉 = |0〉in corresponds to the vacuum state at I+. Here, U is a
unitary operator.

3.3. General mode function

Consider a general positive frequency solution to (3.45) of the form

φin
ω (t, x) = i(4πω)−1/2

(
e−iωq(v) − e−iωp(u)

)
. (3.66)

We calculate 〈Tμν〉 in the same way as in (3.61). This leads to

〈Ttt〉 = 〈Txx〉 = − 1
4π

[
p′(u)p′(u + ε)

(p(u + ε) − p(u))2
+

q′(v)q′(v + ε)
(q(v + ε) − q(v))2

]

= − 1
4π

[
2
ε2

+
1
6

[
p′′′

p′
− 3

2

(
p′′

p′

)2
]
+

1
6

[
q′′′

q′ − 3
2

(
q′′

q′

)2
]
+O(ε)

]
,

〈Ttx〉 = 〈Txt〉 =
1

4π

[
p′(u)p′(u + ε)

(p(u + ε) − p(u))2
− q′(v)q′(v + ε)

(q(v + ε) − q(v))2

]

=
1

4π

[
1
6

[
p′′′

p′
− 3

2

(
p′′

p′

)2
]
− 1

6

[
q′′′

q′ − 3
2

(
q′′

q′

)2
]
+O(ε)

]
,

(3.67)

where we have used

p′(u)p′(u + ε)
(p(u + ε) − p(u))2

=
1
ε2

+
1
6

[
p′′′

p′
− 3

2

(
p′′

p′

)2
]
+O(ε). (3.68)

As before, we take the limit ε→ 0, which results in

〈Ttx〉 = 〈Txt〉 =
1

4π

[
1
6

[
p′′′

p′
− 3

2

(
p′′

p′

)2
]
− 1

6

[
q′′′

q′ − 3
2

(
q′′

q′

)2
]]

. (3.69)

For the remaining components, we again distract the 〈0|Ttt|0〉 and 〈0|T xx|0〉 contributions
as in (3.64), and find the following renormalized energy flux

〈Ttt〉ren = 〈Txx〉ren = − 1
4π

[
1
6

[
p′′′

p′
− 3

2

(
p′′

p′

)2
]
+

1
6

[
q′′′

q′ − 3
2

(
q′′

q′

)2
]]

(3.70)

after taking the limit ε→ 0.

3.4. Bogoliubov coefficients

Let us write down the Bogoliubov coefficients more explicitly. We consider an incoming mode
of the general form

φin
ω′ (t, x) = i(4πω′)−1/2

(
e−iω′v − e−iω′p(u)

)
, (3.71)

and an outgoing mode

φout
ω (t, x) = i(4πω)−1/2

(
e−iω f (v) − e−iωu

)
, (3.72)

where f = p−1.
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Using the definitions in (3.54), we obtain the following integral representations for the
coefficients,

αωω′ = −i(2π)−1(ω′ω)−1/2
∫ ∞

0
dx sin ω′x

[
(ω f ′ + ω′)eiω f − (ωp′ + ω′)eiωp

]

= (2π)−1

(
ω′

ω

)1/2∫ ∞

0
dx
[
e−iω′x+iω f (x) + eiω′x+iωp(−x)

]
(3.73)

and

βωω′ = i(2π)−1(ω′ω)−1/2
∫ ∞

0
dx sin ω′x

[
(ω f ′ − ω′)e−iω f − (ωp′ − ω′)e−iωp

]

= (2π)−1

(
ω′

ω

)1/2∫ ∞

0
dx
[
e−iω′x−iω f (x) + eiω′x−iωp(−x)

]
. (3.74)

Note that the scalar product has been calculated on the t = 0 slice by performing integration
by parts.

3.5. Thermal spectrum

Now, consider the escaping mirror profile from section 2.3.3. We may approximate the inverse
function of the asymptotic form (2.14) as

f (v) 	 − 1
B

ln[−Bv/A]. (3.75)

By using the expression (3.74), we get

|βωω′ |2 =
(
4π2ωω′)−1

e−πω/B|Γ(1 + iω/B)|2 = 1
2πBω′

(
1

eω/kBT − 1

)
, (3.76)

where B = 2πkBT . This precisely matches with the well known black body spectrum charac-
teristic for black hole radiation as obtained by Hawking [2].

The average number of particles found at future null infinity I+ with frequency ω follows
from evaluating the integral

in〈0|Nout
ω |0〉in =

∫ ∞

0
dω′ |βωω′ |2. (3.77)

3.6. Reinforcing the analogy

The analogy between moving mirrors and black hole radiation in a gravitational setup becomes
more clear if one directly compares the exact Bogoliubov coefficients on both sides. In the
following, we briefly comment on two such examples.

Indeed, as we have encountered in section 3.5, moving mirrors commonly give rise to a
thermal radiation spectrum. An appropriately chosen setup, mimicking an eternally radiating
black hole, for instance, leads to a constant thermal flux of particles, see section 2.3.3.

A precise matching between the Bogoliubov coefficients on both sides, however, may fur-
ther support our expectations put forward in section 5.6. In there, we argue that the moving
mirror setup may indeed be interpreted as a field theory coupled to gravity, thus providing a
direct connection to two dimensional (quantum) gravity.
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Figure 5. Left: Penrose diagram of a black hole formed from a collapsing null shell (yel-
low thick line). This scenario may be modeled by the escaping mirror from section 2.3.3.
Right: Penrose diagram of the formation and evaporation of a black hole. This scenario
may be modeled by the kink mirror from section 2.3.4. The region behind the event
horizon is colored in green.

3.6.1. Collapsing null shell. A well studied case is the example of a black hole that is formed
from a collapsing null shell, cf figure 5 left. Consider, for instance, the following mirror
profile [99]

Z(t) = −t − W(2e−2κt)
2κ

, (3.78)

where we have introduced the W Lambert function8. The profile (3.78) is equivalent to the
function

p(u) = − 1
κ

e−κu. (3.79)

In this situation, the underlying integrals for the Bogoliubov coefficients are exactly solvable,
and one arrives at the following two expressions

αωω′ = − i
2πκ

√
ω

ω′

[
− i
κ

(ω − ω′)

]−iω/κ

Γ

(
iω
κ

)
,

βωω′ = − 1
2πκ

√
ω

ω′

[
− i
κ

(ω + ω′)

]−iω/κ

Γ

(
iω
κ

)
.

(3.80)

8 The Lambert function (also known as the product logarithm) is defined to be the inverse relation of the map

f : z �→ z exp(z),

where, in general, z ∈ C. It follows

z = W(z) exp(W(z)).

Here, we consider the case where the argument is real.
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Here, Γ denotes the standard Gamma function. For simplicity, we have used ω′ � ω.
Similar to what we have already seen in section 3.5, for the spectrum one finds

|βωω′ |2 =
1

2πκω′

(
1

e2πω/κ − 1

)
. (3.81)

Interestingly, the expressions (3.80) indeed precisely match with the coefficients obtained for
a collapsing null shell in 1 + 1 dimensions, cf e.g. [100]. Here, the acceleration parame-
ter κ in (3.78) would play the role of the black hole’s surface gravity and thus its Hawking
temperature.

We should note that the coefficients (3.80) approximate the one obtained for the escaping
mirror in section 2.3.3. The latter will therefore describe the same situation as well. Accord-
ingly, the kink mirror profile introduced in section 2.3.4 would then model Hawking radiation
of an evaporating black hole that has initially formed from collapse.

Quite importantly, this would even include nontrivial back-reacting effects which are
expected to be necessary for unitarity. The diagram describing this scenario is sketched in
the right panel of figure 5.

3.6.2. CGHS black hole. A second profile which highlights a close similarity between a mov-
ing mirror setup and black hole radiation in a two dimensional gravitational theory is described
by the following function

Z(t) = − 1
κ

arcsinh

(
eκt

2

)
, (3.82)

see e.g. [101].9 As in the example before, one can explicitly compute the corresponding Bogoli-
ubov coefficients. The one which determines the produced particle spectrum takes the form

βωω′ =
1

2πκ

√
ω′

ω
B

(
− i(ω + ω′)

κ
, 1 +

iω
κ

)
, (3.83)

such that

|βωω′ |2 =
1

4π2κ2

ω′

ω

∣∣∣∣B
(

i(ω + ω′)
κ

, 1 − iω
κ

)∣∣∣∣
2

. (3.84)

Here, we have used the notation B(x, y) ≡ Γ(x)Γ(y)
Γ(x+y) . Using again ω′ � ω, the latter gives rise to

the usual thermal spectrum

|βωω′ |2 =
1

2πκω′

(
1

eω/kBT − 1

)
, (3.85)

where κ = 2πkBT .
More interestingly, (3.83) precisely coincides with the Bogoliubov coefficient which is

found for the radiating black hole in the well known CGHS model [102],

|βωω′ |2 =
1

4π2Λ2

ω′

ω

∣∣∣∣B
(

i(ω + ω′)
Λ

, 1 − iω
Λ

)∣∣∣∣
2

, (3.86)

namely, if Λ is identified with the acceleration parameter κ in (3.82), cf e.g. [103].

9 In fact, in the late time limit, this approaches the trajectory of the escaping mirror introduced before.
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3.7. Entangled pair production

For later analysis of entanglement entropy in the presence of a moving mirror, it is useful to
examine the entangled pair production.

In particular, we would like to locate the region where the entangled pairs are created due
to the moving mirror. This can be estimated by calculating the correlation function between
the Hawking pair operator

∫
dw ain†

ω ain†
ω and a pair of scalar field operators, i.e.

in〈0|φ(u1, v1)φ(u2, v2)
∫

dw ain†
ω ain†

ω |0〉in

= − 1
2π

∫
dw

1
ω

[
e−iω(v1+v2) − e−iω(v1+p(u2))

− e−iω(p(u1)+v2) + e−iω(p(u1)+p(u2))
]

=
1

2π
ln

[
(p(u1) + p(u2) − iε)(v1 + v2 − iε)
(v1 + p(u2) − iε)(p(u1) + v2 − iε)

]
. (3.87)

As can be seen, the overlap gets divergent when v1 + p(u2) = 0 or v2 + p(u1) = 0. This
behavior can be explained if entangled pairs are produced at

v + p(u) = 0, (3.88)

and if they are propagating in opposite directions at the speed of light.

4. AdS/BCFT in Poincaré AdS3

In what follows later, we will construct the gravity dual of CFTs in the presence of moving
mirrors by employing the AdS/BCFT duality [90, 91]. As a preparation, in this section, we
would like to review the AdS/BCFT construction in Poincaré AdS, and present a calculation
of holographic entanglement entropy in a simple moving mirror setup, which does not generate
any energy flux. As it is mainly the case in this paper, we focus on two dimensional BCFT.

4.1. AdS/BCFT construction

Consider a BCFT on a two dimensional manifoldΣ with a boundary∂Σ. Its gravity dual, based
on AdS/BCFT, can be constructed as follows.

First, we consider an extension of ∂Σ to a two dimensional surface Q in a three dimensional
bulk. This surface Q is also called the end-of-the-world brane in recent contexts.

To preserve the boundary conformal invariance on ∂Σ, we impose the following Neumann
boundary condition

Kab − habK = −T hab (4.89)

on the surface Q. The parameter T is the tension of the end-of-the-world brane Q and is mono-
tonically related to the degrees of freedom of a given BCFT which depends on the boundary
condition on ∂Σ. The gravity dual of the BCFT is given by the three dimensional space called
M, which is defined by a region enclosed by Q and Σ. Refer to figure 6 for a sketch.

The metric of M is determined by solving the Einstein equation with the negative cosmolog-
ical constant, which is standard in AdS/CFT, with the boundary condition (4.89) imposed on
Q. Note that this construction can be generalized to scenarios, where ∂Σ consists of multiple
disconnected boundaries as well as to the higher dimensional cases.
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Figure 6. A simple example of AdS/BCFT dual to a two dimensional CFT defined in

the region |x1| �
√

γ2 + x2
0. The blue region in Poincaré AdS3 is the gravity dual of the

BCFT, enclosed by the brane Q. We show the connected and disconnected geodesics.
The disconnected geodesic, which departs from a point in the red shaded region, goes
beyond the Poincaré patch.

We can also extend the holographic entanglement entropy [5, 6, 92] to AdS/BCFT setups.
Consider a subsystem A defined as an interval on a time-slice of BCFT. The entanglement
entropy SA is computed by the following formula [90, 91]

SA = min
{

Scon
A , Sdis

A

}
, (4.90)

where

Scon
A =

L(Γcon
A )

4GN
, Sdis

A =
L(Γdis

A )
4GN

. (4.91)

Here, Scon
A and Sdis

A are the holographic entanglement entropies, which are proportional to the
connected and disconnected geodesic lengths, denoted by L(Γcon

A ) and L(Γdis
A ), respectively.

The surface Γcon
A is the geodesic, which connects the two end points of the interval A. On

the other hand, Γdis
A is the union of the two disconnected geodesic curves which connects each

of the two end points of A with a point on the surface Q. The latter point is determined by
minimizing the geodesic length. Refer to figure 6 for a sketch of such geodesics.

4.2. General solutions in three dimensional bulk spacetime

In general, to determine of the metric of the gravity dual M, we need to solve a complicated
back-reaction problem in general relativity. However, in our three dimensional setups, where
we consider pure gravity without any matter fields, we can easily find the shape of the surface
Q and the metric of M. This is essentially so, because any solution to the Einstein equations in
three dimension is locally equivalent to Poincaré AdS3, i.e.

ds2 = L2 dz2 + dx2
1 − dx2

0

z2
. (4.92)

The general solution to (4.89) takes the form

(z − α)2 + (x1 − a)2 − (x0 − b)2 = γ2. (4.93)
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When we consider the region inside this surface (4.93), this is dual to the two dimensional
BCFT on

(x1 − a)2 − (x0 − b)2 � γ2 − α2. (4.94)

Note that this is identical to the simple moving mirror example in (2.7), where the energy flux
is vanishing.

In this case, the tension of the surface (4.93) is given by

T =
α

γL
. (4.95)

This is depicted in figure 6. If we consider the outside region of (4.93), it is dual to the BCFT
on (x1 − a)2 − (x0 − b)2 � γ2 − α2, and its tension is given by T = − α

γL .
The standard BCFT corresponds to the values of the tension given by T L < 1. At least

mathematically, we can consider also the region T L � 1, where the surface Q is floating in the
bulk AdS. This exotic case has been discussed in [104], and was argued to be dual to a certain
analytical continuation of the BCFT, e.g. a two dimensional CFT on a disk with an imaginary
radius.

Nevertheless, from the bulk gravity viewpoint, we do not observe any obvious problem in
the presence of such an end-of-the-world brane having tension T L > 1, which is still timelike,
though the boundary ∂Σ of the BCFT becomes spacelike.

4.3. Holographic entanglement entropy for a simple moving boundary

We now want to compute the holographic entanglement entropy of a given subregion in the
BCFT. We would like to focus on the vanishing brane tension case, i.e. T = 0, for simplicity.
By setting a = 0 and b = 0, and making use of translation invariance, the end-of-the-world
brane Q in Poincaré AdS is described by

z2 + x2
0 − x2

1 = γ2. (4.96)

The gravitational spacetime in the bulk ends on the brane Q, which is holographically dual to
the CFT living on the region |x1| �

√
γ2 + x2

0. This is depicted in figure 6.
The geodesic length D12 between (z, x0, x1) = (z1, t1, x1) and (z, x0, x1) = (z2, t2, x2) is given

by the standard formula

D12 = cosh−1

(
(x1 − x2)2 − (t1 − t2)2 + z2

1 + z2
2

2z1z2

)
. (4.97)

We choose the subsystem A to be an interval x1 ∈ [l1, l2] at time x0 = t. We further
consider −

√
γ2 + t2 < l1 < l2 <

√
γ2 + t2.

The connected geodesic, which exists at any time, determines the contribution to the
holographic entanglement entropy, which reads

Scon
A =

c
3

log
l2 − l1

ε
, (4.98)

where ε denotes the UV cutoff.
As we explained before, in AdS/BCFT, disconnected geodesics, which end on the brane Q,

are allowed. In the current setup, we can consider a geodesic Γdis
A which connects the boundary
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point (ε, x, t) and a point (
√
γ2 + s2 − y2, y, s) on the brane Q. Its length takes the form

D 	 log
γ2 + s2 − y2 + (x − y)2 − (t − s)2

ε
√
γ2 + s2 − y2

. (4.99)

By extremalizing D with respect to s and y, we find

y =
2γ2 x

x2 + γ2 − t2
, s =

2γ2t
x2 + γ2 − t2

. (4.100)

At first sight, to have a spacelike geodesic, which leads to the inequality γ2 + s2 − y2 +
(x − y)2 − (t − s)2 � 0, we might require

x2 + γ2 − t2 � 0. (4.101)

This covers only a part of the region of the space Σ where the BCFT is defined.
However, this argument is based on the assumption that the geodesic ends on a point on

Q within the Poincaré patch. If we take into account the possibility that the geodesic ends on
an extended surface of Q in the global patch, then we can actually find that we still can have
a spacelike geodesic with the desired property. The geodesic length will be given by (4.100),
with
√
γ2 + s2 − y2 being replaced by −

√
γ2 + s2 − y2.

The geodesic length for the solution in (4.100) leads to the following holographic entangle-
ment entropy

Sdis
A =

c
6

log
t2 − l21 + γ2

εγ
+

c
6

log
t2 − l22 + γ2

εγ
, (4.102)

resulting from the two disconnected geodesics.
Here, we have assumed the extension to global AdS3 as we have mentioned before. Notice

that the expression in (4.102) is still correct even when the inequality (4.101) gets violated.
In this way, the holographic entanglement entropy is obtained from (4.90), where the con-

nected and disconnected geodesic results in (4.91) are computed as in (4.98) and (4.102),
respectively. It is easy to observe that the disconnected solution Sdis is favored when

t2 + γ2 − l21 + l22
2

� (l2 − l1)

√
γ2 +

(l1 + l2)2

4
. (4.103)

This results in a phase transition between Sdis
A and Scon

A as depicted in figure 7.

4.4. AdS/BCFT for the BTZ black hole

As a next holographic moving mirror example, let us consider setups of AdS/BCFT in BTZ
black hole backgrounds, i.e.

ds2 = −(r2 − r2
0)dt2 + L2 dr2

r2 − r2
0

+ r2dx2. (4.104)

In order to find the correct end-of-the-world branes Q, we can employ the fact that the
BTZ spacetime can be mapped into Poincaré AdS3 discussed in section 4 via the following
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Figure 7. Time evolution of holographic entanglement entropy in the AdS/BCFT setup
(4.96). We plot the entropy, with the UV divergence being subtracted by setting ε = 1, as
a function of time t. We set γ = 1. The left and right graphs correspond to a subsystem
A chosen to be given by [0, 0.9] and [−2.5, 2.5], respectively.

coordinate transformations

x0 − x1 = −e
r0
L (x−t)

√
1 − r2

0

r2
,

x0 + x1 = e
r0
L (x+t)

√
1 − r2

0

r2
,

z =
r0

r
e

r0
L x.

(4.105)

4.4.1. Static surfaces. We can map the solution in (4.93) for a = b = 0 via the transformation
(4.105) and obtain a static profile for the surface Q in BTZ. When LT < 1, with a translation
in x direction, we find

r(x) =
r0T L√

1 − T 2L2 sinh r0x
L

, (4.106)

as depicted in figure 8. When LT = 1, we obtain

r(x) = 2r0γe−
r0x
L . (4.107)

When LT > 1, we get

r(x) =
r0T L√

T 2L2 − 1 cosh r0x
L

. (4.108)

This brane Q does not extend to the AdS boundary at r = ∞, as opposed to the cases where
T L � 1. In each case, i.e. LT < 1, LT = 1, and LT > 1, we realize that the world volume of
Q is identical to AdS2, R1,1, and dS2, respectively.

4.4.2. Time dependent surfaces. Next, we would like to turn to the general time depen-
dent surface Q in the BTZ black hole background. This is parameterized by three parameters
(α, a, b), and the profile of Q is explicitly given by
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Figure 8. Shown are characteristic profiles for the end-of-the-world brane Q in the BTZ
background depending on the value of LT .

e2
r0
L x − 2α

r0

r
e

r0
L x − 2a cosh

r0t
L

e
r0 x
L

√
1 − r2

0

r2
+ 2b sinh

r0t
L

e
r0x
L

√
1 − r2

0

r2

= γ2 + b2 − a2 − α2. (4.109)

This is time dependent when either a �= 0 or b �= 0.
At the AdS boundary z = 0, we have

e2
r0
L x − 2a cosh

r0t
L

e
r0x
L + 2b sinh

r0t
L

e
r0 x
L = γ2 + b2 − a2 − α2. (4.110)

It is useful to introduce the relation between the Poincaré AdS3 coordinates and the BTZ
coordinates,

x0 + x1

x0 − x1
= −e

2r0t
L ,

z2 + x2
1 − x2

0 = e
2r0x

L ,√
z2 + x2

1 − x2
0

z
=

r
r0
.

(4.111)

Remember that the outside horizon region for the BTZ black hole corresponds to the right
wedge defined by x1 − x0 > 0, and x0 + x1 > 0 in Poincaré AdS3.

We can classify the time dependent behavior of the boundary surface Q according to the
values of the four parameters (α, γ, a, b). They are qualitatively different depending on the fact
whether the absolute value of the tension T = α

γL is larger or smaller than 1/L. Therefore,
below, we focus on the two different examples: (i) vanishing tension T = 0 case, where we
choose the values α = 0 and γ = 2, and (ii) the case T = 2/L, where we choose the values
α = 4 and γ = 2.

In the former case (i), there are five classes, depending on how the right wedge region
(x1 − x0)(x1 + x0) > 0 is situated relative to the boundary surface Q at the AdS boundary
z = 0, as depicted in figure 9. The profiles of Q at various values for the time t are plotted in
figure 10.
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Figure 9. Shown are five different classes of the brane Q with T = 0 at the AdS bound-
ary z = 0 of the BTZ background. The purple curve describes Q at z = 0. The green
region is the patch covered by the outside horizon region of the BTZ black hole.

In the latter case (ii) with T = 2, depending on the location of the right wedge relative to
the boundary surface Q at the AdS boundary z = 0 and the center z = α, we can classify the
profiles of Q into seven classes as depicted in figure 11. Note that the surface Q looks as a
spacelike boundary at z = 0, while it becomes a timelike curve at z = α. The profiles of Q for
various values of time t are plotted in figure 12. A special feature of the exotic scenario with
tension T L > 1 is that a floating brane is possible, see case (e) in figure 12.

5. Radiation from holographic moving mirror

In this section, starting with introducing the general procedure, we first focus on a setup with
a moving mirror and construct its holographic dual. We discuss the dual bulk geometry and
provide a gravitational interpretation in the light of brane-world holography. We will discuss
two different setups: (i) escaping mirror, which models Hawking radiation from a black hole
and (ii) kink mirror, which mimics black hole formation and evaporation.

5.1. Gravity dual of conformal map

Consider the Poincaré metric in AdS3

ds2 =
dη2 − dU dV

η2
, (5.112)

which is dual to the vacuum of CFT2. For simplicity, we have set the AdS radius to unity. A
conformal transformation of the type

ũ = p(u), ṽ = q(v), (5.113)
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Figure 10. Plots of the brane Q for five different examples corresponding to the five
classes in figure 9 with T = 0. The horizontal and vertical axes correspond to the x and
r directions, respectively. We have setα = 0 and γ = 2 with L = r0 = 1. The parameters
(a, b) we have chosen are indicated in each plot. The blue, orange, green, red and purple
curves correspond to t = −6,−3, 0, 3, 6. In the cases (b), (d) and (e), the curves have time
reversal symmetry, i.e. t →−t. Therefore, we only plot these curves for t = −6,−3, 0.

is dual to the following coordinate transformation in AdS3

U = p(u) +
2z2(p′)2q′′

4p′q′ − z2 p′′q′′ ,

V = q(v) +
2z2(q′)2 p′′

4p′q′ − z2 p′′q′′ ,

η =
4z(p′q′)3/2

4p′q′ − z2 p′′q′′ ,

(5.114)

which is known as the so-called Bañados map [105–107]. The metric expressed in terms of
the coordinates (u, v, z) reads

ds2 =
dz2

z2
+ T+(u)(du)2 + T−(v)(dv)2 −

(
1
z2

+ z2T+(u)T−(v)

)
du dv, (5.115)

where

T+(u) =
3(p′′)2 − 2p′p′′′

4p′2
, T−(v) =

3(q′′)2 − 2q′q′′′

4q′2 (5.116)

are the chiral and anti-chiral energy stress tensor, respectively.

5.2. Moving mirror in AdS/BCFT

As previously discussed, a single moving mirror is described by the conformal map (2.3) from
a half plane. The gravity dual is simply obtained by employing the metric in (5.115). Since we
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Figure 11. Shown are the seven classes of the brane Q with T = 2/L at the AdS bound-
ary z = 0 of the BTZ background. The purple and red curves describe Q at z = 0 and
z = α, respectively. The green region is the patch covered by the outside horizon region
of the BTZ black hole.

consider the case q(v) = v, the metric (5.115) becomes the plane wave metric given by

ds2 =
dz2

z2
+ T+(u)(du)2 − 1

z2
du dv, (5.117)

where

T+(u) =
3(p′′)2 − 2p′p′′′

4p′2
. (5.118)

Hence, according to the relations (5.114), the coordinate transformation, which maps into
Poincaré AdS3, takes the form

U = p(u),

V = v +
p′′(u)
2p′(u)

z2,

η = z
√

p′(u).

(5.119)

It is also useful to introduce the coordinates T and X such that

U = T − X, V = T + X. (5.120)

Using the AdS/BCFT formulation, the mirror is dual to the brane Q located at x = Z(t),
where u = t − x and v = t + x are equivalent to the equation

X + λη = 0, (5.121)

with λ being related to the tension T of the brane as follows (below we set L = 1)

λ =
T√

1 − T 2
. (5.122)
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Figure 12. The plots of the brane Q in seven different scenarios corresponding to the
classes in figure 11 with T = 2/L. The horizontal and vertical axes correspond to the
x and r directions, respectively. We have set α = 2 and γ = 4 with L = r0 = 1. The
parameters (a, b) we have chosen are indicated in each plot. The blue, orange, green,
red and purple curves correspond to t = −2,−1, 0, 1, 2. For the plots (b), (d) and (e),
the curves have time reversal symmetry, i.e. t →−t, hence, we only plot them for
t = −2,−1, 0.

This is equivalent to

v = p(u) − p′′

2p′
z2 − 2λz

√
p′. (5.123)

Note that the induced metric on Q describes AdS2 geometry,

ds2 =
(1 + λ2)dη2 − dT2

η2
. (5.124)

5.3. Holographic entanglement entropy for escaping mirror

After having constructed the gravity dual of the moving mirror in CFT2, we would first like
to holographically investigate the AdS/BCFT description for the escaping moving boundary
example introduced in (2.13).

The gravity dual for the escaping mirror in CFT2 is obtained from the following region of
Poincaré AdS3

V − U + 2λη > 0, (5.125)

as depicted in the left panel of figure 13, where the condition (5.125) arises in AdS/BCFT due
to the presence of the end-of-the-world brane Q.
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Figure 13. Sketch of the coordinate transformation in (5.119) mapping from Poincaré
AdS3 (left) to the gravity dual of a single moving mirror (red curve) depicted in the right
panel. We can extend the geometry such that the brane Q (gray, transparent) is extended
to the region U > 0 denoted by the dashed plane in the left panel.

Figure 14. The left picture describes the calculation of holographic entanglement
entropy in AdS/BCFT. The blue curve in the middle shows the holographic entangle-
ment entropy SA as a function of time for β = 1, where we have set ε = 1. The red
graph describes the approximation (5.128). The right picture sketches the energy flux
Tuu under the time evolution of the moving mirror.

First, let us evaluate the holographic entanglement entropy. We choose the subsystem A to
be a semi-infinite line (x > x0) at time t. By considering the disconnected geodesic Γ,10 which
starts from x = x0 at time t and ends on the brane Q extended to U > 0, we can holographically
calculate the entanglement entropy by employing the Poincaré AdS3 description as follows

SA =
c
6

log
V0 − U0

ε
√

p′(u0)
+ Sbdy =

c
6

log
v0 − p(u0)
ε
√

p′(u0)
+ Sbdy, (5.126)

where U0 = p(u0), V0 = v0 = x0 + t, and u0 = −x0 + t are the coordinates of the end point P
of the geodesic ΓA. Sbdy denotes the boundary entropy given in terms of the tension T as [90,
91] (we set L = 1)

Sbdy =
c
6

log

√
1 + T
1 − T . (5.127)

Refer to the left panel of figure 14, where the time evolution of this entanglement is plotted in
the center.

10 For the semi-infinite interval, the holographic entanglement entropy (4.90) is determined by the disconnected
geodesic.
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If we fix the end point of the subsystem A, i.e. x0, at late time t →∞, we can approximate
(5.126) as follows

SA 	 c
12β

(t − x0) +
c
6

log
t
ε
+ Sbdy. (5.128)

Refer to the middle picture in figure 14.
It is intriguing to note that this consists of a sum of a term linearly growing in t and a term

with logarithmic growth. The former linear one can easily be understood by remembering that
the energy flux is present uniformly for u > 0. Refer to the right panel in figure 14.

Next, it is useful to move the end point x0 as a function of time. In particular, we take the
distance between x0 and the null trajectory to be a constant ξ0,

x0(t) = −t + ξ0. (5.129)

In the late time limit u →∞, we find the following time evolution for the entanglement entropy

SA =
c
6

log

(
ξ0 + βe−(t−x0(t))/β

)√
1 + e(t−x0(t))/β

ε
+ Sbdy. (5.130)

In the late time regime,

ξ0 � βe−(2t−ξ0)/β , (5.131)

we find a linear growth, i.e.

SA 	 c
6β

t +
c
6

log
ξ0

ε
+ Sbdy. (5.132)

Refer to the left graphs in figure 15. Note that the condition (5.131) is equivalent to

v + p(u) > 0. (5.133)

Therefore, we may conclude that the entangled pair production occurs along the spacelike
curve v + p(u) = 0. This matches with our previous estimation of entangled pair production
in the free scalar field theory given by (3.88). The propagation of the entangled pairs results
in the linear growth of the entanglement entropy (5.132). This scenario is sketched in the right
panel of figure 15.11

5.4. Geometry of gravity dual

Even though, expressed in terms of the (U, V , η) coordinates, the gravity dual is given by the
region (5.125), the gravity dual in terms of the coordinates (u, v, z) only covers the region
U < 0 in Poincaré AdS3. This is so, since U = p(u) is always negative for any u, as we can
see from (2.13).

To see how the global spacetime structure is affected, let us first consider the AdS boundary
geometry, i.e. z = 0, where the CFT is defined on. The coordinates (u, v) are embedded into
(U = ũ, V = ṽ) as sketched in figure 16.

11 It may seem problematic that the entangled pair production occurs along a spacelike surface far from the mirror
itself. However, it can be understood in the following way. Although the excitation originates in the moving mirror,
quasi-particles arise as a collective phenomenon of the excitation and hence can be distant from the mirror. In other
words, it in general takes time for the excitation to behave like quasi-particles.
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Figure 15. Left: time evolution of holographic entanglement entropy, where the end
point of the subsystem A is chosen to be x0 = −t + ξ0. The blue, yellow and green curves
correspond to the values ξ0 = 0.1, ξ0 = 0.01 and ξ0 = 0.001, respectively, where we
have set β = 1. Right: the quasi-particle picture of entanglement growth for the escaping
mirror profile in (2.13). The red thick curve is the mirror trajectory x = Z(t), or equally
v = p(u). The purple dashed curve corresponds to the space like curve defined by v +
p(u) = 0. The black dashed lines are the null lines described by the coordinates (2.1).
The production of the entangled particles (red and yellow dots) occurs along the purple
curve.

Figure 16. The global spacetime structure for the escaping mirror setup. The left and
right pictures describe spacetime in terms of the (u, v) and (ũ, ṽ) coordinates, respec-
tively. The upper green region shown in the right panel cannot be captured in the left
plot. The equivalent regions on both sides are identified with the same coloring. The
right global structure, for which the corresponding Penrose diagram is depicted on the
left in figure 17, is similar to the usual black hole diagram drawn in the right panel of the
latter. Pair creation mainly occurs on the codimension one surface defined by v + p = 0
(purple curve). After the conformal map, the purple line gets projected onto the positive
horizontal axis x̃ � 0 as shown in the right panel.

As can be seen, the region U > 0 is missing in the (u, v) spacetime. This is analogous to the
existence of an horizon in a black hole geometry. Indeed, the latter is the reason why we can
mimic Hawking radiation in the moving mirror setup. This is consistent with what we have
previously discussed by studying the mode functions, see section 3.

Now, let us consider the bulk geometry. Note that the brane Q is also extended to U > 0,
which is missing in the (u, v) coordinate. This is important in our calculation of holographic

32



Class. Quantum Grav. 38 (2021) 224001 I Akal et al

Figure 17. Penrose diagram for global spacetime structure of moving mirror setup (left)
and black hole geometry (right).

Figure 18. We plot the surface Q shape at fixed values z, where β = 1. The horizontal
and vertical coordinates are x and t. We have set λ = 0. The blue, yellow, green and red
curves correspond to z = 0, z = 3, z = 6 and z = 9, respectively.

entanglement entropy. The induced metric on Q is described by

ds2 =
dz2

z2
+

(
p′′

zp′
+

2λ
√

p′

z2

)
du dz +

(
p′′2

4p′2
− p′

z2
+

λp′′

z
√

p′

)
du2. (5.134)
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Figure 19. Depicted are null geodesics on the surface Q. We plot the left moving (5.135)
(left) and right moving (5.136) (right) geodesics separately. The horizontal axis is the z
direction and the vertical one is labeled by u.

This is equivalent to the AdS2 metric (5.124) via the coordinate transformation (5.119) by
extending to the region U > 0.

The brane Q, which for small z looks as in figure 3, now changes its profile as z increases.
This situation is depicted in figure 18. In the β → 0 limit, the brane Q at a fixed value of z
develops a kink shape.

Although we can transform the metric on the two dimensional spacetime of Q, which is
described by the metric (5.134), into AdS2, it only covers a lower half of Poincaré AdS2. To
understand the global embedding, let us consider the null geodesics in the metric (5.134), which
are given by (here, we choose λ = 0 and focus on X = 0 for simplicity)

zL =
−p(u) + s√

p′(u)
, (5.135)

zR =
p(u) + s√

p′(u)
, (5.136)

and correspond to η = −T + s and η = T + s, respectively. Here, s is an arbitrary constant.
These null geodesics are plotted in figure 19.

This shows that in the (u, z) metric coordinates of (5.134), the region z > −p(u)√
p′(u)

is not con-

nected to the future of the boundary as depicted in the left panel of figure 24. Hence, we may
conclude that the geometry of Q has a causal horizon much like a black hole.
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Figure 20. The left sketch shows the behavior of the energy flux Tuu. The profile of the
brane Q is depicted in the right panel. We have chosen z = 0, 1, 2, 3 and β = 1/3. We
have shifted the x coordinate such that the center of the trajectory is located at the origin.

5.5. Holographic entanglement entropy for kink mirror

Next, we would like to compute the entanglement entropy for the kink mirror (2.22), which
models black hole formation and evaporation. Note that in this case, we have an energy flux
Tuu �= 0 in a limited spacetime region, as depicted in the left panel of figure 20.

The gravity dual is obtained by performing the coordinate transformation (5.119). As before,
the dual geometry is simply mapped into half Poincaré AdS3, i.e. V − U + 2λη > 0. The pro-
file of the end-of-the-world brane Q in the (x, t) plane at a fixed value of z is depicted in the
right panel of figure 20.

The time evolution of holographic entanglement entropy for the semi-infinite, but static
subregion A = [x0,∞], can be computed from the expression given in (5.126). In particular, if
we consider a non-static, semi-infinite subregion A = [x0,∞], where x0 = Z(t) + 0.1, we end
up with the ideal Page curve [4] depicted in figure 21.12

On the other hand, taking the subregion A to be a finite interval, we obtain two different
peaks, see figure 22. The first one arises, if only the right moving particles are crossing the
subregion A, see right panel of figure 23. The second peak appears, when only the reflected
particles cross the subregion A. As can be seen from figure 22, the disconnected result Sdis

A gives
the dominant contribution according to the general formula (4.90) when the boundary entropy
is smaller than a certain value (we set it to be vanishing in the plot). When the boundary entropy
gets larger, the connected phase becomes dominant. For a more detailed discussion, we would
like to refer to [87].

In figure 23, we provide an interpretation for the observed evolution of entanglement entropy
in figure 20 in terms of the propagation of entangled radiation quanta created by the kink
mirror.

12 We should emphasize that if the subregion A is taken to be a static, semi-infinite line as illustrated in figure 23, the
entropy curve gets altered due to remaining vacuum quantum correlations, i.e. the final value is increased compared
to the original value.
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Figure 21. Time evolution of holographic entanglement entropy in the presence of a
non-static, semi-infinite subregion A = [x0,∞] with x0 = Z(t) + 0.1, cf [87]. We have
set β = 1 and u0 = 20. Only Sdis

A is shown, since Scon
A never dominates in this case.

Figure 22. Time evolution of holographic entanglement entropy in the presence of a
non-static, finite subregion A = [x0, x1] with x0 = Z(t) + 0.1 and x1 = Z(t) + 40, cf
[87]. We have set β = 1 and u0 = 20. The orange curve and the blue curve show the
disconnected entropy Sdis

A , i.e. (4.102), and connected entropy Scon
A , i.e. (4.98), respec-

tively. For simplicity, we have set the boundary entropy as Sbdy = 0. This can, however,
take any value in (−∞,∞).

5.6. Gravitational interpretation via brane-world and Liouville theory

In the AdS/BCFT, the CFT on a manifold M with a boundary ∂M is dual to the bulk gravity
spacetime enclosed by the end-of-the-world brane Q such that ∂Q = ∂M. However, there is
another equivalent description, namely the CFT on M may be seen as coupled to a dynamical
gravity sector defined on Q along the interface ∂M. This directly follows from considerations
based on brane-world holography [11, 108–110]. The boundary geometry of the gravity dual
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Figure 23. Sketch of propagation of entangled pairs created by the moving mirror (red
thick curve). The red dot describes a point where an entangled pair is created. The par-
ticles will propagate at the speed of light in the left and right direction. In the left panel,
the escaping mirror profile in (2.13) is depicted. In this case, one partner of the pair
propagates to the right and can be picked up in the subsystem A (blue interval), while
the other one goes to the left and can never reach the subsystem A. The right picture
describes the kink mirror setup in (2.22). In this case, at early time t = t1, the subsystem
A may capture only one partner of the entangled pair (red arrow). However, at later time
t = t2, the initially left moving partner (yellow arrow) is reflected off the mirror and can
reach the subsystem A.

of our escaping mirror setup is depicted in the right panel of figure 24. In this subsection, we
would like to present an interpretation of our moving mirror setup as a CFT coupled to gravity
in two dimensions.

Namely, for arriving at this understanding, we can regard the surface Q in AdS/BCFT,
where we impose the Neumann boundary condition, as the brane in a brane-world setup.
This is so, simply, because their mathematical treatment is equivalent in the context of
AdS/CFT. This suggests that our two dimensional BCFT, which describes a moving mirror
field theory, can be interpreted as a two dimensional CFT coupled to two dimensional grav-
ity along an interface, which is geometrically identical to the mirror trajectory as depicted in
figure 25.

Consider a setup of AdS3/CFT2, whose metric looks like

ds2 =
dz2 − e2φdu dv

z2
. (5.137)

In the boundary limit z → 0, its dual is a two dimensional CFT on a curved space

ds2 = −e2φdu dv. (5.138)

In our AdS/BCFT setup, we impose the Dirichlet boundary condition in the right half of
the space, while the Neumann condition is imposed in the other left part. In the latter,
the gravity gets dynamical. In the presence of a matter CFT with a large central charge
c, the two dimensional gravity dynamics is described by Liouville theory whose action is
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Figure 24. Global spacetime structure of gravity dual of our escaping mirror setup in
form of a Penrose diagram. We have chosen λ = 0 for simplicity. The left and right trian-
gle describe the surface Q (AdS2), where the brane-world two dimensional gravity lives
on, and the asymptotic AdS boundary, where the BCFT lives on, respectively. The gray
shaded region below the T = −η line is the causal past of the moving mirror spacetime
in the original (u, v) coordinates. We also show our choice of the subsystem A and the
appearance of its entanglement island in the calculation of entanglement entropy.

Figure 25. The brane-world interpretation of the AdS/BCFT setup implies that the
BCFT setup of moving mirrors in the left picture can be regarded as a CFT coupled
to a gravity along the interface, as shown in the right picture.

given by13

SL =
c

24π

∫
dtdx
[
(∂tφ)2 − (∂xφ)2 − μe2φ

]
. (5.139)

The standard AdS/BCFT setup, corresponding to the static mirror, given by (5.121) and
(5.124), allows us to identify

13 Here, the Liouville mode contributes to the total partition function Z of the CFT coupled to gravity as Z ∝ eSL .
Therefore, there is an overall minus sign in front of the action. This means that it can actually be identified with the
timelike Liouville CFT, rather than a standard Liouville theory.
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μ =
1

ε2λ2
, (5.140)

where ε is the UV cutoff of the radial coordinate of AdS, i.e. η > ε in this case. Indeed, the
solution to the equation of motion in Liouville theory reads

e2φ =
4λ2ε2

(V − U)2
, (5.141)

which satisfies the expected boundary condition e2φ = 1 along the interface X = −λε, which
is the intersection between the UV cutoff surface at η = ε, and the surface Q at X + λη = 0.

Now, we move on to a general profile of a moving mirror, where the coordinate is written
as (u, v) = (t − x, t + x), and the mirror trajectory is given by v = p(u). In this case, we can
find the solution to the Liouville equation as follows

e2φ =
4λ2ε2 p′(u)
(v − p(u))2

. (5.142)

In this case, the interface between the CFT and gravity is given by

v = p(u) − 2λε
√

p′(u), (5.143)

which we obtain by setting z = ε in (5.123). In the limit ε→ 0, this indeed coincides with the
mirror trajectory.

However, note that we need to match the state in gravity with that in the CFT along the
interface. The energy stress tensor of the Liouville sector is provided by the standard formula

T (LV)
uu =

c
12π

(
∂uφ

2 − ∂2
uφ
)

,

T (LV)
vv =

c
12π

(
∂vφ

2 − ∂2
vφ
)
. (5.144)

For the gravity background (5.142), the energy stress tensor is found as

T (LV)
uu =

c
24π

(
3p′′

2

2p′2
− p′′′

p′

)
, T (LV)

vv = 0. (5.145)

This indeed matches with the energy stress tensor of the moving mirror BCFT given by (2.6). In
this way, we can determine the dynamics of the system. The latter consists of a two dimensional
CFT coupled to gravity in two dimensions along the interface for which we solve the Liouville
equation and impose that the energy stress tensor is continuous along it.

It is also intriguing to consider the holographic calculation of entanglement entropy. Recall
that in AdS/BCFT, this is given by the formula (4.90). When the subsystem A is semi-infinite,
as we have seen, the disconnected contribution is always favored. From the viewpoint of the 2D
gravity interpretation, this disconnected one is equivalent to the presence of an island [9–11],
refer to figure 24. In this way, in our model, where the CFT on a half plane line is coupled to
2D gravity, we always have an island region. One may think this situation is a bit different from
the earlier models of evaporating black holes [9–11, 111], where a phase transition between
the case without an island and that with an island explains the Page curve behavior. As we
will clearly see in the next subsection, we actually find that our model and earlier models are
naturally connected, if we view them from the viewpoint of AdS/BCFT.
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It is also useful to note that when λ is very large, the 2D gravity gets weakly coupled, where
the boundary entropy of the BCFT [104]

Sbdy =
1

4G(Q)
N

=
1

4GN
arcsinh(λ), (5.146)

gets large. Here, G(Q)
N is the effective Newton constant of 2D gravity on Q. On the other hand,

when λ is small, the gravity gets strongly coupled and its entropy is decreased, which may be
interpreted as a reflective mirror in a CFT.

5.7. Comparison with earlier island models via AdS/BCFT

In earlier models of evaporating black holes using the island prescription14 [9–11, 111], the
turning point at the Page time t = tP typically corresponds to a phase transition between
a phase without island and that with an island. On the other hand, considering our model
describing the moving mirror, in the 2D gravitational description, explained in the previ-
ous section, there is always an island region. Thus, one may be puzzled with these two
totally different-looking situations. However, if we consider these setups holographically based
on AdS/BCFT, we can understand that they are actually smoothly connected as we will
see below.

To see this, consider the setup of an eternal two dimensional black hole coupled to two
CFTs on half lines, whose island prescription is given in [111]. This is depicted in the
upper pictures in figure 26. We can construct its gravity dual via AdS/BCFT. It is simply
given by cutting an eternal BTZ spacetime along a surface Q, which splits the x direction
into two parts as in (4.106). For vanishing tension T = 0, the surface Q is simply given
by x = 0, as depicted in the lower pictures in figure 26. Similar to the gravity dual of a
global quantum quench [112], the holographic entanglement entropy then will grow linearly
for t < tP, where the connected geodesic Γcon

A is favored. On the other hand, for later times,
i.e. t > tP, the disconnected geodesic Γdis

A will be dominating, and the entropy becomes con-
stant. The disconnected geodesics end on the brane Q, which indeed opens up the island
region.

Now, let us take a Z2 quotient of the previous setup, such that two CFTs on half spaces are
identified. This transforms an eternal black hole into a single sided black hole, as depicted in
figure 27. Its gravity dual now contains an extra brane Q′, which arises due to the Z2 quotient,
and is identical to the end-of-the-world brane in [112], in addition to the original brane Q.
In this gravity dual setup, the holographic entanglement entropy again experiences a phase
transition as depicted in the lower pictures of figure 27. At early time, the geodesic ΓA, which
ends on the extra brane Q′ is favored, and this gives rise to a linear growth of the entanglement
entropy. At late time t > tP, the geodesic ΓA, which ends on the original brane Q, becomes
dominating and the entanglement entropy saturates. Note that in this single sided setup, the
geodesic ΓA always ends on one of the end-of-the-world branes Q or Q′. This means that there
always exists an island region, if we also count the hidden island region, see lower pictures of
figure 27, which appears on the extra brane Q′. In this way, we can always find an island region,
if we apply brane-world holography to the brane Q′ as well. Also note, that this construction
is qualitatively similar to [11]. Thus, we can conclude that our model, describing 2D gravity

14 As pointed out in [20], depending on the details of the model, there can exist more than two phases, where the
turning point is not always at the phase transition point of emergence of an island.
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Figure 26. We sketch the gravity dual and computation of entanglement entropy in two
BCFTs coupled to an eternal AdS2 black hole. The two-dimensional description, sum-
marized in the upper Penrose diagrams, is identical to the setup of [111]. The gravity
dual via the AdS/BCFT is given by the lower pictures, where Q corresponds to the
brane in AdS/BCFT which is dual to the boundary of the BCFT. The two BCFTs are
entangled, which is dual to the Einstein–Rosen bridge in the gravity side. At early time,
the connected geodesic is favored and there is no island region. However, at late time,
the disconnected one becomes dominant and an island region appears. Accordingly, the
entanglement entropy SA initially grows linearly, and at the Page time t = tP it saturates,
as sketched in the right graph.

coupled to a CFT on a half space, is smoothly connected to earlier island models of evaporating
single sided black holes.

6. Double escaping mirror

In this section, we generalize the previous results to the case of two oppositely placed moving
mirrors in the CFT. After explaining how they can be mapped to a much more simple setup
in the CFT, we construct the corresponding gravity duals of them. There are two types of
gravity duals, namely, depending on how one chooses the boundary conditions on the mirrors.
Finally, we will consider a holographic CFT with two oppositely escaping mirrors as a concrete
example, and discuss our findings.

6.1. Conformal map: from double moving mirrors to strips

The trajectories of the two mirrors can be described by x = Z1(t) and x = Z2(t). We would
like to conformal map these two trajectories into x̃ = L/2 and x̃ = −L/2, so that the resulting
manifold is a strip with width L. See figure 28 for a sketch. The corresponding map is given by

ũ = p(u), ṽ = q(v), (6.147)
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Figure 27. We sketch the gravity dual and computation of entanglement entropy in a
BCFT coupled to single sided AdS2 black holes. This setup is obtained from the double
sided one in figure 26 via a Z2 quotient in the spacial coordinate. Its gravity dual is
given by introducing an extra end-of-the-world brane Q′. The holographic entanglement
entropy is dominated by a geodesic which ends on Q′ initially. At late time, the one which
ends on Q is preferred and an island region appears. The time evolution of entanglement
entropy SA is similar to the one in the double sided example.

Figure 28. Sketch of conformal map from a double moving mirror setup (left) to a
standard setup of BCFT with two straight line boundaries, i.e. a strip (right).

where the functions p and q are determined by

L = q (t + Z1(t)) − p (t − Z1(t)) ,

−L = q (t + Z2(t)) − p (t − Z2(t)) .
(6.148)

In particular, if we assume Z1 = −Z2, then we have p = q.
Under the conformal transformation, the energy stress tensor reads

Tuu =
c

12π
3(p′′)2 − 2p′p′′′

4p′2
+ p′2Tũũ,

Tvv =
c

12π
3(q′′)2 − 2q′q′′′

4q′2 + q′2Tṽṽ ,

(6.149)
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Figure 29. Two types of gravity duals for a strip. The left panel shows the confined
configuration, and the right panel shows the deconfined configuration.

where Tũũ (Tṽṽ) is the energy stress tensor for a strip and depends on the details of the boundary
conditions. When the two boundaries of the strip have exactly the same conformal boundary
conditions, the energy stress tensor is identical to that of a cylinder and Tũũ = Tṽṽ = − πc

48L2 . In
this case,

Tuu =
c

12π

(
3(p′′)2 − 2p′p′′′

4p′2
− π2 p′2

4L2

)
,

Tvv =
c

12π

(
3(q′′)2 − 2q′q′′′

4q′2 − π2q′2

4L2

)
.

(6.150)

6.2. Gravity duals: confined and deconfined configurations

Now, let us consider the gravity dual of a double moving mirror setup. As we have discussed
in the former subsection, since a double moving mirror setup can be mapped to a strip, it is
sufficient to consider the gravity dual of a strip and perform a proper Bañados map to it to
obtain the gravity dual of a double moving mirror.

According to AdS/BCFT, there are two types of gravity duals for a strip [90, 91]. One is
the confined configuration given by a portion of global AdS3 with one end-of-the-world brane
Q. The other one is the deconfined configuration given by a portion of Poincare AdS3 with
two end-of-the-world branes Q1 and Q2. See figure 29 for a sketch. If the two boundaries of
the strip have the same conformal boundary condition imposed on, then both configurations
are allowed as on-shell configurations. In this case, the confined configuration has a smaller
action and is hence physical. On the other hand, if the two boundaries of the strip have different
boundary conditions, then only the deconfined configuration is allowed. Note that the confined
configuration breaks supersymmetry in the bulk [91].

6.2.1. Confined configuration: geometry and holographic entanglement entropy. The con-
fined bulk configuration for a strip is given by a portion of global AdS3, whose metric can
be expressed as

ds2 = −
(

1 +
(πη

2L

)2
)2 dT2

η2
+

dη2

η2
+

(
1 −
(πη

2L

)2
)2 dX2

η2
, (6.151)
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This can be related to the standard global AdS3 metric

ds2 = −
(

R2 +
π2

L2

)
dT2 +

dR2

R2 + π2

L2

+ R2dX2, (6.152)

with

R =
1
η
−
( π

2L

)2
η. (6.153)

The end-of-the-world brane Q is located at

R cos

(
πX
L

)
=

π

L
T√

1 − T 2
. (6.154)

Performing a proper bulk coordinate transformation, the Bañados formalism [105] guar-
antees that the bulk metric of a holographic double moving mirror setup can be expressed as

ds2 =
dz2

z2
+ T+(u)(du)2 + T−(v)(dv)2 −

(
1
z2

+ z2T+(u)T−(v)

)
du dv, (6.155)

where

T+(u) =
3(p′′)2 − 2p′p′′′

4p′2
− π2 p′2

4L2
, T−(v) =

3(q′′)2 − 2q′q′′′

4q′2 − π2q′2

4L2
. (6.156)

The exact expression of this coordinate transformation is complicated and discussed in
appendix A. However, it is essential that

U = p(u) +O(z2),

V = q(v) +O(z2),

η = z
√

p′q′ +O(z2). (6.157)

Therefore, the holographic entanglement entropy can be computed in the global coordinates
(T, X, R) with the UV cutoff deformed by a Weyl factor

√
p′q′. For an interval A, whose

two edges are given by (u, v) = (u1, v1) and (u, v) = (u2, v2), respectively, the holographic
entanglement entropy is given by (4.90), i.e.

SA = min
{

Scon
A , Sdis

A

}
, (6.158)

where

Scon
A =

c
6

log

[
(2L/π)2

ε2
√

p′ (u1) p′ (u2) q′ (v1) q′ (v2)

∣∣∣sin
( π

2L
(ũ1 − ũ2)

)
sin
( π

2L
(ṽ1 − ṽ2)

)∣∣∣] ,

(6.159)

Sdis
A =

c
6

log

[
(2L/π)2

ε2
√

p′ (u1) p′ (u2) q′ (v1) q′ (v2)

∣∣∣cos
( π

2L
(ũ1 − ṽ1)

)
cos
( π

2L
(ũ2 − ṽ2)

)∣∣∣]

+ 2Sbdy. (6.160)
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6.2.2. Deconfined configuration: geometry and holographic entanglement entropy. The
deconfined bulk configuration for a strip is given by a portion of Poincaré AdS3 with metric

ds2 =
dη2 − dU dV

η2
. (6.161)

Let us use Q1 (Q2) to denote the brane attached on x̃ = L/2 (x̃ = −L/2). In this case, Q1 is
located at

(X − L/2) − λ1η = 0, (6.162)

and Q2 is located at

(X + L/2) + λ2η = 0, (6.163)

where λi is related to the tension Ti of Qi as

λi =
Ti√

1 − T 2
i

. (6.164)

Performing the Bañados map (5.114), the deconfined bulk metric for a double moving mirror
is given by (5.115). In this case, the holographic entanglement entropy can be evaluated in
a similar way as in the single moving mirror cases. However, since we have one more end-
of-the-world brane on which a disconnected Ryu–Takayanagi (RT) surface can end, we get
more candidates. For an interval A, whose two edges are given by (u, v) = (u1, v1) and (u, v) =
(u2, v2), respectively, the holographic entanglement entropy is given by

SA = min
{

Scon
A , Sdis,11

A , Sdis,12
A , Sdis,21

A , Sdis,22
A

}
, (6.165)

where

Scon
A =

c
12

log

[
(ũ1 − ũ2)2(ṽ1 − ṽ2)2

ε4 p′ (u1) p′ (u2) q′ (v1) q′ (v2)

]
, (6.166)

Sdis,i j
A =

c
12

log

[(
−ũ1 + ṽ1 + (−1)iL

)2(−ũ2 + ṽ2 + (−1) jL
)2

ε4 p′ (u1) p′ (u2) q′ (v1) q′ (v2)

]
+ Sbdy,i + Sbdy, j. (6.167)

Here, Sdis,i j
A is the disconnected entanglement entropy evaluated with the help of two discon-

nected RT surfaces: one connecting (u1, v1) and Qi, and another one connecting (u2, v2) and
Q j. This feature leads to interesting phase transitions in the time evolution.

6.3. Confined holographic double escaping mirror

As a concrete example, let us consider a double moving mirror, which can be mapped to a strip
−L/2 � x̃ � L/2 with

ũ = p(u) = −β log(1 + e−u/β),

ṽ = q(v) = −β log(1 + e−v/β). (6.168)
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Figure 30. The left picture shows the two opposite trajectories for the double escaping
mirror setup. The picture in the middle plots the energy stress tensor Tuu as a function
of retarded time u. The right picture shows the energy density Tuu + Tvv as a function
of t (depth) and x (horizontal). We have used β = 1 and L = 20.

Plugging these relations into (6.148), we get the two mirror trajectories given by

x = ±Z(t), (6.169)

where

Z(t) = β log

(
eL/β − 1

)
et/β +

√(
eL/β − 1

)2
e2t/β + 4eL/β

2
. (6.170)

We can see that in the early time limit t →−∞,

Z(t) =
L
2

, (6.171)

while in the late time limit t →∞,

Z(t) = t +
L
2
+ β log

(
2 sinh

L
2β

)
. (6.172)

This setup realizes a double escaping mirror. See the left panel of figure 30 for a plot of the
mirror trajectory.

In this subsection, let us first discuss the holographic double escaping mirror in the confined
configuration. In this case, the energy stress tensor can be obtained by plugging the conformal
map into (6.150):

Tuu =
c

12π

(
eu/β
(
2 + eu/β

)
4β2(1 + eu/β)2

− π2

4L2

(
1

1 + eu/β

)2
)

,

Tvv =
c

12π

(
ev/β
(
2 + ev/β

)
4β2(1 + ev/β)2

− π2

4L2

(
1

1 + ev/β

)2
)
.

(6.173)

See the middle and the right panels of figure 30.
The holographic entanglement entropy for a single interval A can be also computed straight-

forwardly by plugging the conformal map into (6.158)–(6.160). The explicit form is compli-
cated, but it is useful to see how it behaves at late time. We will discuss this in several cases
and show the corresponding numerical results.
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Figure 31. Sketches for different setups with double escaping mirrors and plots for
holographic entanglement entropy in each case. Here, we consider the confined bulk
configuration. The green solid line shows subsystem A on a time slice, and the green
shaded region shows the ‘worldsheet’ of A. The left column shows the case, where two
edges of A are fixed. The middle column shows the case, where two edges of A comove
with the mirror trajectory. The right column shows the case, where one edge of A is fixed
and the other one comoves. In all the plots, the blue (orange) curve shows the time evolu-
tion of Scon

A (Sdis
A ), and β = 1, L = 20, ε = 0.1. For simplicity, we have set the boundary

entropy as Sbdy = 0. This can, however, take any value in (−∞,∞). How the interval is
chosen is shown in each plot.

6.3.1. Single interval with two edges fixed. Let us start with the most simple case. Let A be a
single interval x0 � x � x0 + l with two edges fixed. In the late time limit t →∞, the leading
contribution reads

Scon
A =

c
3

log

(
2β
ε

sinh
l

2β

)
+ · · · , (6.174)

Sdis
A =

c
3

t
β
+ · · · . (6.175)

Therefore, Scon
A dominates at late time. Note that the entanglement entropy at late time is similar

to that in a thermal state with temperature 1/(2πβ). Refer to the left column in figure 31 for a
sketch and numerical plot of such a setup.

6.3.2. Single interval with two comoving edges. Let us now consider A taken to be a single
interval −Z(t) + ξ0 � x � Z(t) − ξ0 with two edges comoving with the mirrors. In this setup,
the whole system is divided into mirrors and ‘heat bath’. In the late time limit t →∞, the
leading contribution turns out to be
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Scon
A =

c
3

t
β
+ · · · , (6.176)

Sdis
A =

c
3

t
β
+ · · · . (6.177)

Therefore, which RT surface dominates depends on how one chooses other parameters, espe-
cially, the boundary entropy Sbdy. For example, in the large tension limit T → 1, Sbdy goes to
infinity and the connected RT surface dominates. In this case, A does not have an island on the
end-of-the-world brane Q. Refer to the middle column in figure 31 for a sketch and numerical
plot of such a setup.

6.3.3. Single interval with one fixed edge and one comoving edge. As the last setup, let A be
a single interval x0 � x � Z(t) − ξ0. One edge of A is fixed and the other one comoves with
the mirror. In the late time limit, the leading contribution is

Scon
A =

c
6

t
β
+ · · · , (6.178)

Sdis
A =

c
3

t
β
+ · · · . (6.179)

It is clear that Scon
A dominates at late time. Refer to the right column in figure 31 for a sketch

and numerical plot of such a setup.

6.4. Deconfined holographic double escaping mirror

We would like to move on to the holographic double escaping mirror in the deconfined
configuration. In this case, the energy stress tensor turns out to be

Tuu =
c

12π
eu/β
(
2 + eu/β

)
4β2(1 + eu/β)2

,

Tvv =
c

12π
ev/β
(
2 + ev/β

)
4β2(1 + ev/β)2

,

(6.180)

since Tũũ = Tṽṽ = 0. See figure 32. The behavior is very similar to that in the confined case,
see figure 30.

Plugging the conformal map into (6.165)–(6.167), we can get the holographic entanglement
entropy for a single interval A. One can easily find that the leading contribution at late time is
the same as that in the confined case. Therefore, we will not repeat it here. On the other hand,
one crucial feature of the deconfined case, which differs from the confined case, is that there
are two end-of-the-world branes and hence two boundary entropy values to tune. This feature
generates colorful phase transitions in the process sketched in the middle.

In the double escaping mirror case, we can set Sbdy,1 � Sbdy,2 without loss of generality
thanks to the symmetry. For simplicity, let us consider a symmetric A with −x1(t) = x2(t) �
x � x1(t). In this case, although there are five candidates in (6.165), it is sufficient to consider
Scon

A , Sdis,11
A , Sdis,12

A . Refer to figure 33 for numerical plots of different setups. Here, we have set
Sbdy,1 = Sbdy,2 = 0. We can see that the behavior is very similar to the confined case in figure 31,
as we expect.

Let us then tune the boundary entropy and see what happens. Refer to figure 34 for a con-
crete example. Here, the two edges of A comove with the two moving mirrors. The boundary
entropies are tuned such that Scon

A , Sdis,11
A and Sdis,12

A dominate in order.
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Figure 32. Energy stress tensor in the deconfined case. The picture on the left plots the
energy stress tensor Tuu as a function of u. The right picture shows the energy density
Tuu + Tvv as a function of t (depth) and x (horizontal). We have used β = 1 and L = 20.

Figure 33. Holographic entanglement entropy in different setups. Here, we consider the
deconfined bulk configuration. We have set β = 1, L = 20, ε = 0.1. In all the plots, the
blue, orange and green curves show Scon

A , Sdis,11
A and Sdis,12

A respectively. For simplicity,
we have set the boundary entropy as Sbdy,1 = Sbdy,2 = 0. These can, however, take any
value in (−∞,∞). How the interval is chosen is shown in each plot.

Let us focus on the specific example shown in figure 34, and consider what happens in the
gravity dual. In this example, we choose 0 < Sbdy,1 < Sbdy,2, and the boundary entropy is fine
tuned.

By applying brane-world holography, we can regard this setup as gravity on Q1 and Q2

coupled to a heat bath CFT in the middle. At early time, the entanglement entropy is given
by the connected RT surface and hence no island exists on the brane. As time evolves, the
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Figure 34. Holographic entanglement entropy for the heat bath. Boundary entropies are
tuned, such that Scon

A , Sdis,11
A and Sdis,12

A dominate in order. Here, β = 1, L = 20, ε = 0.1.
Sbdy,1 = 0.36c, Sbdy,2 = 1.33c.

disconnected RT surface, which ends on Q1, dominates. In this case, the island is a finite interval
on Q1 sandwiched by the two end points of the disconnected RT surface. At late time, the
disconnected RT surface, which has one end point on Q1 and another on Q2, dominates. In this
case, the island becomes almost the whole part of the two branes.

To understand this kind of behavior, we should note three features of the double escap-
ing mirror setup. First of all, the left moving energy flux from the right boundary is exactly
the same as the right moving energy flux from the left boundary. If we regard the radi-
ation as information leakage from the boundary to the middle region, then this implies
that the leaking speed from the two boundaries are exactly the same. The second point is,
that the radiation from the left boundary can never reach the right boundary and vice
versa in the double escaping mirror setup. As a result, the two boundaries do not inter-
act through the released radiation. The third point is, that the only difference between the
two boundaries is the boundary entropy, which quantifies degrees of freedom localized on
the boundary.

With these in mind, we can understand the phase transition behavior as follows. Initially,
the middle interval of the CFT does not contain knowledge about the information localized
on the two boundaries. As the mirrors move, the middle interval receives information through
the radiation. The leaking rate is the same. Therefore, it simply takes more time to recover the
information initially localized on boundary 2 than that on boundary 1.

7. Unitarity and entropy

In this section, we further elaborate on the time evolution of holographic entanglement entropy
and the outgoing energy flux in the moving mirror setup. By making use of our previous find-
ings, we show that a unitary entropy curve implies a violation of the NEC in a finite time
window, while the QNEC turns out to be saturated.
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7.1. Entropy evolution

Consider the kink mirror introduced in section 2.3.4. In general, the holographic entanglement
entropy (4.90) is computed from either the disconnected geodesic, leading to

Sdis
A =

c
6

log
v − p(u)
ε
√

p′(u)
+

c
6

log
v′ − p(u′)
ε
√

p′(u′)
, (7.181)

or the connected one, which gives

Scon
A =

c
6

log
(v′ − v)(p(u) − p(u′))

ε2
√

p′(u)p′(u′)
, (7.182)

where (u, v) and (u′, v′) are the two end points of the subsystem A.
As we have discussed in section 5.5, taking the latter to be a non-static, semi-infinite interval,

the entropy SA gives rise to a unitary entropy curve [87]. This is depicted in figure 21. Recall that
in this case, the holographic entanglement entropy is always determined by the disconnected
geodesic, SA = Sdis

A .

7.2. Energy inequalities

The kink mirror can alternatively be described by

p(u) = β log
1 + e

u−u0
β

1 + e−
u
β

, (7.183)

cf section 2.3.4.
In the high temperature limit, i.e. β → 0, the (renormalized) energy flux (2.6), cf section 3.2,

takes the approximate form

Tuu 	 c
48πβ2

θ(u)θ(u0 − u) + f (u), (7.184)

where the function f (u) gives a negative contribution and explicitly reads

f (u) 	 − c

16πβ2 cosh2
(

x
β

) . (7.185)

After integrating over −∞ < u < ∞, we find∫ ∞

−∞
du Tuu =

c
24π

(
u0

2β2
− 3

β

)
, (7.186)

where the first and second term in the rhs arise from the step function and the negative function
f in (7.184), respectively.

Since β � u0 is assumed, we find that that the averaged NEC, i.e.∫
du Tuu � 0, (7.187)

51



Class. Quantum Grav. 38 (2021) 224001 I Akal et al

is satisfied. Importantly, the energy fluxes both saturate the QNEC15

2πTuu = ∂2
u SA +

6
c

(∂uSA)2,

2πTvv = ∂2
vSA +

6
c

(∂vSA)2.

(7.188)

Note that Tvv = 0.

7.3. Energy flux and entropy

By rewriting the energy flux in the first line of (7.188) in a more convenient way, and integrating
over a small interval around some value u0/2, we find the following expression

2π
∫ u0/2+δ

u0/2−δ

du Tuu exp

(
6
c

SA

)
=
[
e

6
c SA∂uSA

]u0/2+δ

u0/2−δ
, (7.189)

where β � δ � u0 has been assumed.
We take the subregion A to be a semi-infinite line for which we get a unitary entropy curve

as discussed in section 5.5. Choosing u0 appropriately, the rhs of (7.189) will become negative,
so Tuu < 0.

Nevertheless, to show that unitarity in the sense above implies a negative energy flux, we
may more generally proceed as follows. Namely, we may first assume that the averaged NEC
is satisfied and

2π
∫ ∞

−∞
du Tuu < ∞ (7.190)

holds due to energy conservation. Plugging the first line in (7.188) into (7.190), we first find
that

S′
A(u) = 0 (u →±∞). (7.191)

15 The QNEC provides a local constraint on the expectation value of the null projected energy stress tensor, 〈Tkk〉,
which in its general form reads

2π〈Tkk〉 � 1√
h

S′′,

where

〈Tkk〉 ≡ 〈Tμνkμkν〉 ∀ k2 = 0.

Here, the primes denote ordinary derivatives with respect to an affine parameter along the corresponding generator on
the null hypersurface, and h corresponds to the determinant of the induced metric on the boundary of the entangling
region [97, 98].
Notably, in two dimensional CFT, the QNEC takes the stronger form [97, 113]

2π〈Tkk〉 � S′′ +
6
c

(S′)2.

52



Class. Quantum Grav. 38 (2021) 224001 I Akal et al

Then, using (7.190) and (7.191) and rewriting the energy flux which, in the present case,
saturates the QNEC, leads to the following integral condition16

∫ ∞

−∞
du Tuu exp

(
6
c

SA

)
= 0. (7.192)

In other words, what we find is that there must exist some u so that in a certain time window
the energy flux violates the NEC.

8. Entanglement entropy from CFT calculation

In this section, we would like to explain how to compute the entanglement entropy of a single
interval A = {x|x1 � x � x2} from the CFT side in moving mirror setups. After explaining
the general method, we will see how the computation on the CFT side matches with that on
the bulk gravity side studied in the former sections for holographic CFT. We will also study
entanglement entropy in free Dirac fermion as another explicit example. Finally, we will ana-
lytically study the entanglement entropy for a fixed interval in (single) escaping mirror setups,
and compare the results with a famous class of dynamics in CFT, known as quantum quenches
[117]. Results for more setups are presented in appendix B.

8.1. Calculation method in general CFT

As usual, let us use c to denote the central charge of the CFT. The nth entanglement Rényi
entropy can be evaluated by following the so-called twist operator formalism [118, 119], so

S(n)
A =

1
1 − n

log〈σn(t, x1)σ̄n(t, x2)〉, (8.193)

where the conformal weights of the twist operators σn and σ̄n are

hn = h̄n =
c

24

(
n − 1

n

)
. (8.194)

Here, the twist operator and its correlation function are defined in a n-replicated theory of the
original CFT. This theory is also a CFT itself, whose central charge is nc and the twist operators
act as primaries in it.

As in the former sections, we introduce the following null coordinates

u = t − x, v = t + x. (8.195)

In order to evaluate the correlation function, let us perform the following conformal transfor-
mation

ũ = p(u), ṽ = q(v) (8.196)

16 This relation has previously been obtained in a moving mirror setup by referring to a renormalized notion of entan-
glement entropy [93], see also [95, 96] for related discussions. However, we should note that (7.192) is a direct
consequence of the fact that the energy stress tensor precisely saturates the QNEC.
Here, we want to emphasize that our derivation of (7.192) is based on the holographic entanglement entropy (4.90),
which is determined by the corresponding minimal surface in the constructed bulk dual. The holographic entanglement
entropy, of course, saturates the QNEC as one expects from considerations in the dual field theory. Refer, for instance,
to [114, 115] for further works on the saturation of the QNEC and, particularly, for its connection with states which
are dual to Bañados geometries [116].
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to map the original setup to a static mirror setup which is parameterized by

ũ = t̃ − x̃, ṽ = t̃ + x̃. (8.197)

Remember that for single moving mirror setups, the static mirror setup was defined on the right
half plane (RHP). For double moving mirror setups, this region becomes a strip.

A primary operator O(u, v) transforms as

Õ(ũ, ṽ) =

(
dũ
du

)−hO(dṽ
dv

)−h̄O
O(u, v) (8.198)

under the conformal transformation, where hO (h̄O) is the chiral (anti-chiral) conformal
dimension of O. Accordingly,

〈σn(t, x1)σ̄n(t, x2)〉 =
(

p′(u1)p′(u2)
)hn
(
q′(v1)q′(v2)

)h̄n × 〈σ̃n

(̃
t1, x̃1
)
˜̄σn

(̃
t2, x̃2
)
〉staticmirror,

(8.199)

where we have introduced

ui = t − xi, vi = t + xi, (8.200)

ũi = p(ui), ṽi = q(vi), (8.201)

t̃i =
ũi + ṽi

2
, x̃i =

−ũi + ṽi

2
, (8.202)

for i = 1, 2.
The two point function 〈σσ〉static mirror can be computed via a ‘mirror method’17, i.e. fill in the

region behind the mirror (boundary) with the mirror image and compute it as if the boundary
does not exist. For example, 〈σσ〉RHP 	

√
〈σσσσ〉

R1,1 . The details will be explained in the
following sections.

8.2. Holographic CFT

For simplicity, we first consider single moving mirror setups. In holographic CFT, the two
point function of twist operators on the RHP can be reduced to some two point functions on
R1,1

〈σ̃n

(̃
t1, x̃1
)
˜̄σn

(̃
t2, x̃2
)
〉RHP

= max

⎧⎪⎨
⎪⎩
〈σ̃n

(̃
t1, x̃1
)
˜̄σn

(̃
t2, x̃2
)
〉R1,1

g2(1−n)
(
〈σ̃n

(̃
t1, x̃1
)
˜̄σn

(̃
t1,−x̃1

)
〉R1,1〈σ̃n

(̃
t2,−x̃2

)
˜̄σn

(̃
t2, x̃2
)
〉R1,1

)1/2
. (8.203)

Here, the two candidates correspond to the connected/disconnected channel contributions,
respectively. g > 0 is a constant which depends on the boundary condition on the mirror.
This allows us to evaluate the entanglement Rényi entropy in a single moving mirror setup

17 This is also called a ‘doubling trick’. One may doubt whether the mirror method or doubling trick can be applied
to the moving mirror setups, since they are not conventional BCFTs. A rigorous formulation for CFT with moving
mirrors and a justification of the mirror method will be given in section 9.
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according to

S(n)
A = min

{
S(n),con

A , S(n),dis
A

}
, (8.204)

where

S(n),con
A =

1
1 − n

log
[(

p′(u1)p′(u2)
)hn
(
q′(v1)q′(v2)

)h̄n

× 〈σ̃n

(̃
t1, x̃1
)
˜̄σn

(̃
t2, x̃2
)
〉
R1,1

]

=
c

24

(
1 +

1
n

)
log

[
(ũ1 − ũ2)2(ṽ1 − ṽ2)2

ε4 p′(u1)p′(u2)q′(v1)q′(v2)

]

≡ c
24

(
1 +

1
n

)
log Fcon,

S(n),dis
A =

1
1 − n

log
[(

p′(u1)p′(u2)
)hn
(
q′(v1)q′(v2)

)h̄n

× g2(1−n)
(
〈σ̃n

(̃
t1, x̃1
)
˜̄σn

(̃
t1,−x̃1

)
〉
R1,1

× 〈σ̃n

(̃
t2,−x̃2

)
˜̄σn

(̃
t2, x̃2
)
〉
R1,1

)1/2
]

=
c

24

(
1 +

1
n

)
log

[
(ũ1 − ṽ1)2(ũ2 − ṽ2)2

ε4 p′(u1)p′(u2)q′(v1)q′(v2)

]
+ 2 log g

=
c

24

(
1 +

1
n

)
log Fdis + 2Sbdy (8.205)

are the candidates for the entanglement entropy computed from the connected/disconnected
channels of the twist operators’ correlation function. The entanglement entropy SA is given by
the n → 1 limit in these expressions.

The above results are justified when assuming vacuum block dominance in holographic
BCFT [33]. Clearly, computing the contribution from the connected (disconnected) channel
corresponds to evaluating the connected (disconnected) RT surface in the gravity dual.

Double moving mirror setups can be discussed in a similar way by replacing ‘right
half plane’ with ‘strip’, and ‘R1,1’ with ‘cylinder’ in the discussion above. As a result, the
entanglement entropy will be given by (6.165)–(6.167).

8.3. Free Dirac fermion CFT

Let us consider the free Dirac fermion CFT as another concrete example.
For single moving mirror setups, by performing the described mirror method, we can

compute the two point function of twist operators on the RHP as follows18

〈σ̃n

(̃
t1, x̃1

)
˜̄σn

(̃
t2, x̃2

)
〉RHP =

(
〈σ̃n

(̃
t2,−x̃2

)
˜̄σn

(̃
t1,−x̃1

)
σ̃n

(̃
t1, x̃1

)
˜̄σn

(̃
t2, x̃2

)
〉
R1,1

)1/2

∝
(

(ũ1 − ṽ2)(ṽ1 − ũ2)
(ũ1 − ũ2)(ṽ1 − ṽ2)(ũ1 − ṽ1)(ũ2 − ṽ2)

)2hn

. (8.206)

18 See, for example, section 3.1.5 of [120] for the correlation functions of twist operators in free Dirac CFT.
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Since the central charge is c = 1 for the Dirac fermion, we have

S(n)
A =

1
24

(
1 +

1
n

)
log

[
1

ε4 p′(u1)p′(u2)q′(v1)q′(v2)

×
(

(ũ1 − ũ2)(ṽ1 − ṽ2)(ũ1 − ṽ1)(ũ2 − ṽ2)
(ũ1 − ṽ2)(ṽ1 − ũ2)

)2
]

≡ 1
24

(
1 +

1
n

)
log F, (8.207)

where ε is a UV cutoff corresponding to the lattice distance. The entanglement entropy is given
by the n → 1 limit.19

For double moving mirror setups, if we impose the same boundary condition on the two
boundaries of the strip, then

〈σ̃n

(̃
t1, x̃1
)
˜̄σn

(̃
t2, x̃2
)
〉strip

=
(
〈σ̃n

(̃
t2,−x̃2

)
˜̄σn

(̃
t1,−x̃1

)
σ̃n

(̃
t1, x̃1
)
˜̄σn

(̃
t2, x̃2
)
〉cylinder

)1/2

∝
(( π

2L

)2 cos
(

π
2L (ũ1 − ṽ2)

)
cos
(

π
2L (ṽ1 − ũ2)

)
sin
(

π
2L (ũ1 − ũ2)

)
sin
(

π
2L (ṽ1 − ṽ2)

)
cos
(

π
2L (ũ1 − ṽ1)

)
cos
(

π
2L (ũ2 − ṽ2)

))2hn

.

(8.208)

Here, we map the double mirror setup to a strip with width −L/2 � x̃ � L/2. Accordingly,
the entanglement Rényi entropy in a double moving mirror setup is given by

S(n)
A =

1
24

(
1 +

1
n

)
log

[
(2L/π)4

ε4 p′(u1)p′(u2)q′(v1)q′(v2)

×
(

sin
(

π
2L (ũ1 − ũ2)

)
sin
(

π
2L (ṽ1 − ṽ2)

)
cos
(

π
2L (ũ1 − ṽ1)

)
cos
(

π
2L (ũ2 − ṽ2)

)
cos
(

π
2L (ũ1 − ṽ2)

)
cos
(

π
2L (ṽ1 − ũ2)

) )2
]

,

(8.209)

and the entanglement entropy follows from taking the limit n → 1 limit.

8.4. Fixed interval in escaping mirror and quantum quenches

Let us here analytically study the entanglement entropy of a fixed interval A = [x1, x2] in a
(single) escaping mirror setup both for holographic CFT and the free Dirac fermion.

As introduced in section 2.3.3, an escaping mirror can be mapped to a RHP via

ũ = p(u) = −β log(1 + e−u/β), (8.210)

ṽ = q(v) = v. (8.211)

19 See [121] for a computation of entanglement entropy in single moving mirror setups for free Dirac fermion CFT
via an alternative method.
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The mirror trajectory is given by

ũ − ṽ = 0 ⇔ x = −β sinh−1

(
et/β

2

)
≡ Z(t). (8.212)

It is straightforward to find out that

p′(u) =
e−u/β

1 + e−u/β
, (8.213)

q′(v) = 1. (8.214)

Now, we can continue with studying the entanglement entropy SA.

8.4.1. Holographic CFT. For a holographic CFT, plugging the previous relations into (8.205),
we find

Fcon =
1
ε4

· 1 + e−(t−x1)/β

e−(t−x1)/β
· 1 + e−(t−x2)/β

e−(t−x2)/β
·
[(

β log
1 + e−(t−x2)/β

1 + e−(t−x1)/β

)
(x2 − x1)

]2
, (8.215)

Fdis =
1
ε4

· 1 + e−(t−x1)/β

e−(t−x1)/β
· 1 + e−(t−x2)/β

e−(t−x2)/β

×
[(

t + x1 + β log(1 + e−(t−x1)/β)
)(

t + x2 + β log(1 + e−(t−x2)/β)
)]2

. (8.216)

We would like to study some typical limits of this result.
Firstly, at early times, i.e. t < 0 � x1 < x2 � −t, we obtain

Scon
A ≈ c

3
log

x2 − x1

ε
, (8.217)

Sdis
A ≈ c

6
log

2x1

ε
+

c
6

log
2x2

ε
+ 2Sbdy. (8.218)

Secondly, the intermediate behavior for times 0 < x1 � t � x2 and a large interval A turns
out to be given by

Scon
A ≈ c

12β
(t − x1) +

c
3

log
x2

ε
, (8.219)

Sdis
A ≈ c

12β
(t − x1) +

c
6

log
t
ε
+

c
6

log
2x2

ε
+ 2Sbdy. (8.220)

Finally, at late times, i.e. 0 < x1 < x2 � t, we get

Scon
A ≈ c

6
log

x2 − x1

ε
+

c
6

log

(
2β
ε

sinh
(x2 − x1)

2β

)
, (8.221)

Sdis
A ≈ c

12β
(2t − x1 − x2) +

c
3

log
t
ε
+ 2Sbdy. (8.222)
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8.4.2. Free Dirac fermion. For the free Dirac fermion, plugging the conformal transformation
above into (8.207), gives

ũ = p(u) = −β log(1 + e−u/β), (8.223)

ṽ = q(v) = v, (8.224)

and we get,

F =
1
ε4

· 1 + e−(t−x1)/β

e−(t−x1)/β
· 1 + e−(t−x2)/β

e−(t−x2)/β
·
[(

β log
1 + e−(t−x2)/β

1 + e−(t−x1)/β

)
(x2 − x1)

]2

×
[ (

t + x1 + β log(1 + e−(t−x1)/β)
) (

t + x2 + β log(1 + e−(t−x2)/β)
)(

t + x1 + β log(1 + e−(t−x2)/β)
) (

t + x2 + β−1 log(1 + e−(t−x1)/β)
)]2. (8.225)

Some typical limits are discussed below.
Let us begin by noting that the initial behavior of the entanglement entropy can be read out

by studying the case, where t < 0 � x1 < x2 � −t. In this limit, we get

SA ≈ 1
6

log
(x2 − x1)2 · 4x1x2

(x1 + x2)2 · ε2
. (8.226)

Note that, in a static mirror setup, the entanglement entropy reads

Sstatic
A =

1
6

log
(x2 − x1)2 · 4x1x2

(x1 + x2)2 · ε2
. (8.227)

The initial behavior of the entanglement entropy in the moving mirror setup coincides with
that in the static mirror setup.

Let us now consider the intermediate behavior for a large interval A when 0 < x1 � t � x2.
We find

F ≈ 1
ε4

· e(t−x1)/β · 1 · (2tx2)2, (8.228)

and hence

SA ≈ 1
12β

(t − x1) +
1
6

log
t
ε
+

1
6

log
2x2

ε
. (8.229)

Note that there is both a linear time evolution and a logarithmic time evolution in this
intermediate limit.

Finally, at late times, i.e. 0 < x1 < x2 � t, we find

F ≈ 1
ε4

· e(t−x1)/β · e(t−x2)/β ·
[
β
(

e−(t−x2)/β − e−(t−x1)/β
)

(x2 − x1)
]2

=
β2

ε4
· (x2 − x1)2 ·

(
2 sinh

(x2 − x1)
2β

)2

, (8.230)

and therefore,

SA =
1
6

log
x2 − x1

ε
+

1
6

log

(
2β
ε

sinh
(x2 − x1)

2β

)
. (8.231)
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Here, we would like to note that the latter can be written as

SA =
1
2

( EE at vacuum + EE at temperature 1/(2πβ) ). (8.232)

This is because only the chiral sector is heated up by the radiation caused by the moving mirror.

8.4.3. Comparison with quantum quenches. Comparing the behavior of the entanglement
entropy in holographic CFT and that for the free fermion, a common feature is that the
intermediate behavior for 0 < x1 � t � x2 and a large interval behaves like

SA =
c

12β
t +

c
6

log
t
ε
+ · · · = πc

6
1

2πβ
t +

c
6

log
t
ε
+ · · · . (8.233)

Here, 1/(2πβ) is the effective temperature in the escaping mirror setup, as we have seen in the
previous subsection. Let us compare this with another class of dynamics that is called quantum
quench.

First of all, a linear time evolution is a typical feature of a global quench setup [117, 122].
In general, a global quench leads to some dynamics for which one first prepares an initial state,
which is the ground state of a gapped Hamiltonian, and then lets it evolve under a gapless
Hamiltonian. In CFT, a global quench can be simulated as

|ψ(t)〉 = N e−itHe−αH|B〉, (8.234)

where H is the CFT Hamiltonian, |B〉 is a boundary state [123], α is a cutoff, and N is a
normalization factor. For a fixed interval A = [x1, x2], and 0 < x1 � t � x2, one has

SA =
πc
6α

t + · · · = 4 · πc
6

1
4α

t + · · · , (8.235)

Here, 1/(4α) is known as the effective temperature in the global quench setup.
Comparing (8.233) and (8.235), we can see that the radiation emitted from an escaping

mirror and that in a global quench setup is similar. It is also straightforward to understand the
factor 4 in the following way. After a global quench, left moving radiation and right moving
radiation is emitted from all the spatial points and moves at the speed of light. Therefore, there
are four origins for the entanglement generation. One is the radiation generated in A with the
left moving mode being outside and the right moving mode being inside. The other three are
given by swapping ‘left’ and ‘right’, and/or changing ‘in A’ to ‘outside of A’ in the previous
description. On the other hand, in the escaping mirror setup, there is only one origin for the
entanglement generation. The radiation is always generated outside of A (next to the mirror),
and only the right moving mode goes into A.

Second, a logarithmic time evolution proportional to log(t/ε) is known as a typical feature in
a local joining quench setup [124, 125]. A local joining quench is achieved by preparing first
two ground states on two semi-infinite intervals, and then joining them together, i.e. letting
them evolve under a CFT Hamiltonian on an infinite line. This setup can be expressed as

|ψ(t)〉 = N e−itHe−αH(|0〉L ⊗ |0〉R), (8.236)

where α is again a cutoff. For a fixed interval A = [x1, x2], and 0 < x1 � t � x2, we have

SA =
c
6

log
t
α
+

c
6

log
t
ε
+ · · · . (8.237)
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In holographic CFT, these two terms can be understood as a shock wave effect and a joining
effect, respectively [107, 126]. Here, the shock wave effect means that the joining dynamics
causes a shock wave which stretches the RT surface in the bulk gravity, and the joining effect
means that the bulk gradually becomes connected and produces more entanglement between
the left side and the right side. In more general language, the log(t/α) comes from a shock
produced by a local excitation, while the log(t/ε) occurs, because A can be entangled with
more region after joining the two sides together.

Comparing (8.233) and (8.237), we can see that the second terms have the same form.
Therefore, the second term of (8.233) should be understood as a sort of ‘joining effect’. This
is indeed the case, since the moving mirror enlarges the system and produces more region for
A to be entangled with.

Having these observations in mind, an escaping mirror can be qualitatively regarded as a
sequence of local joining quenches, i.e. joining infinitesimal intervals to a semi-infinite inter-
val successively. This will push the boundary farther and farther. This sequence collectively
generates a global quench-like radiation which gives the linear t term, while the log(t/ε) term
can be understood as a joining effect.

It is an interesting future direction to study the relation between moving mirrors and
quantum quenches in more detail.

9. Radiative BCFT

In this section, we formally define our CFT as a particular generalization of (Euclidean) BCFT.

9.1. Generalization of BCFT

A normal BCFT can be specified by the position of the boundary, which can be described by
a solution of the following equation,20

G(z) = z̄, (9.238)

where with the reality condition z̄ = z∗, the real part of its solution is linearly dependent on the
imaginary part. In other words, the profile of the BCFT is encoded in the function G(z). For
example, a CFT on a upper half plane (UHP) is specified by G(z) = z, whose solution leads to
the boundary on a real axis.

In any CFT, we have a stress tensor field T(z), therefore we also have to determine the
boundary condition on T(z). We usually assume that there is no energy and momentum flux on
the boundary, which leads to the boundary condition

T(z) − T̄ (̄z) = 0, on G(z) = z̄. (9.239)

This condition breaks a part of conformal symmetry. Nevertheless, we can make use of the
conformal ward identity by using the ‘mirror method’. This is a brief summary of a systematic
approach to a normal BCFT [123].

Let us focus on our case. In our setup, we have the ‘radiative boundary’, which means that
the right-moving radiation and left-moving radiation do not cancel with each other and conse-
quently break the condition (9.239). Alternatively, we have non-trivial stress tensors associated

20 The solution to this equation can be expressed by

x = Z(t).

60



Class. Quantum Grav. 38 (2021) 224001 I Akal et al

to the radiation, which we will denote as⎧⎪⎨
⎪⎩

T(z) =
c

12
R(z),

T̄ (̄z) =
c

12
R̄(̄z),

(9.240)

in particular, which do not need to satisfy the condition R(z) = R̄(̄z). In this case, we cannot rely
on the mirror method. Therefore, we have to introduce a new approach to calculate a correlator.
One may also wonder if one can construct a consistent BCFT with any R(z), R̄(̄z). We answer
these questions in the following subsections.

9.2. Calculation method

In practical calculations in a CFT, we usually treat holomorphic and anti-holomorphic con-
formal maps independently. Even though these generators do not map R2 to R2, this map is
still a well-defined map on C2. For example, if we are interested in CFT in Minkowski space,
we consider the Wick rotation of a CFT in Euclidean space. This Wick rotation leads to inde-
pendent parameters z and z̄ beyond the reality z̄ = z∗. Even though the CFT looses the reality
condition, as we have seen in many studies, this Lorentzian CFT works well.

Here, we also treat holomorphic and anti-holomorphic parts independently in a similar way,
in order to accomplish calculations of radiative BCFT correlators. Let us consider conformal
maps w = f (z) and w̄ = g(̄z), where g is not necessarily equal to f ∗. Under this map, the stress
tensor is transformed as

T(z) =

(
d f (z)

dz

)2

T ′(w) +
c

12
{ f , z}, (9.241)

where { f , z} is the Schwarzian derivative. If we consider particular conformal maps f and g,
which satisfy

{ f , z} = R(z),

{g, z̄} = R̄(̄z),
(9.242)

then the profile of the radiative BCFT can be re-expressed as

• Position of boundary

G ◦ f −1(w) = g−1(w̄), (9.243)

• Boundary condition on T

T ′(w) − T̄ ′(w̄) = 0. (9.244)

In particular, we have T ′(w) = T ′(w̄) = 0. The boundary condition (9.244) is just the same
as (9.239), which means that we can utilize the mirror method for this CFT analytically con-
tinued from the radiative BCFT. Note that the condition (9.242) does not uniquely determine
f and g, because we have an ambiguity attributed to Möbius transformations.

When we evaluate a BCFT correlator, we usually map our CFT to a CFT on an UHP for
convenience. Here, we also parallel this approach. This transformation can be realized by a
real map h(w) and h∗(w̄). To avoid cumbersome expressions, we will redefine the function f
by a combination of f and h (and g by g and h∗). That is, we redefine f and g such that

G ◦ f −1(w) = g−1(w̄), (9.245)
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which has the solution w = w̄. If we assume that G is an analytic function, then we can
conclude

G ◦ f −1 = g−1. (9.246)

Above, we show this condition by an explicit calculation. We can also explain it in simpler
words. What we did in the above derivation is:

• Consider a conformal map preserving the ‘degeneracy’ of the solution of (9.238),
• Map it into the usual BCFT framework by the conformal map.

9.3. Possible radiation

Let us answer the following question: ‘which R and R̄ are allowed from the consistency condi-
tion of BCFT?’. For this, we would like to introduce the chain rule of the Schwarzian derivative,

{ f ◦ g, z} = { f , g(z)}
(

dg(z)
dz

)2

+ {g, z}. (9.247)

By this chain rule, we can show

R(z) = R̄(̄z)

(
dG(z)

dz

)2

+ {G, z}, (9.248)

where we have used (9.242) and

{ f , z} = {g, z̄}
(

dG(z)
dz

)2

+ {G, z}. (9.249)

That is, only R̄(̄z) can be freely chosen, and R(z) is uniquely fixed by R̄(̄z). If the condition
(9.248) is not satisfied, then G(z) = z̄ (with the reality condition z̄ = z∗) has no solution, so it
does not make sense.

In this article, we mainly focus on the chiral radiation R̄(̄z) = 0. This assumption allows us
to simplify the expression of the chiral radiation as

R(z) = {G, z}. (9.250)

9.4. Correlation function

Now, since we have a general calculation method for the radiative BCFT, we can evaluate
correlators. We first map a correlator in the radiative BCFT into the usual BCFT by using the
prescription above,

〈
∏

i

Oi(zi, z̄i)〉rad =

(
d f −1(wi)

dwi

)hi(dg−1(w̄i)
dw̄i

)h̄i

〈
∏

i

Oi(wi, w̄i)〉UHP

=

(
dG(z)

dz

)h̄i(
d f (zi)

dzi

)hi
(

d f (̄zi)
d̄zi

)h̄i
〈
∏

i

Oi(wi, w̄i)〉UHP.

(9.251)
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This result means that we can decompose the contribution from the boundary into two
parts, i.e. shape of the boundary and polarization of radiation. For example, if we consider
entanglement entropy in the radiative BCFT, the general expression can be written as

SA = lim
n→1

1
1 − n

log

(
〈
∏

i

σn(wi, w̄i)〉UHP

)
− c

12
log

(
dG(z)

dz

)

+
c

12
log

(
d f (zi)

dzi

d f (̄zi)
dz̄i

)
. (9.252)

The first part is just the universal contribution. The second part represents the dependence
on the shape of the boundary, and the third part represents the dependence on the polarization
of the radiation.

9.5. Boundary state

We can interpret our state as ‘descendants’ of Cardy states. Let us consider the most simple
case. Our generalized boundary is obtained by a chiral conformal map, which means that the
corresponding boundary state can be expressed by, for example,

eεLk |B〉, (9.253)

where ε is an infinitesimal positive number and |B〉 is the Cardy state. We can show that
this state has non-zero energy flux in the following way. The Cardy state is composed of the
Ishibashi states,

| j〉〉 ≡
∑

N

| j; N〉 ⊗ U| j; N〉, (9.254)

where | j; N〉 is a state in the Verma module j labeled by N, and U is an antiunitary operator.
For a general state | j; a〉 ⊗ U| j; b〉, we can show

〈 j; a| ⊗ U〈 j; b|(Ln − L̄−n)Lk| j〉〉 = 〈 j; a|[Ln, Lk]| j; b〉 �= 0. (9.255)

It means that states like (9.253) have non-zero flux.
What we have evaluated just reads like

〈0|O(z, z̄) . . . eεLk |B〉. (9.256)

This type of correlators can be evaluated by the Ward identity. This is the mechanism for
generalizing a boundary with vanishing flux to a radiative boundary, and the reason why we
have used the ward identity in our calculation.

It might be possible to think of attaching Virasoro generators on boundary states as the
‘boundary graviton excitation’ in the 2D-gravity dual to the 1D boundary. This interpretation
would provide a new understanding of the connection to the welding setup [13].

10. Summary and discussion

In this paper, we have extended our previous studies presented in [87] in several new directions.
Starting with a review of moving mirrors in two dimensional CFTs, we have extensively dis-
cussed how the problem can be tackled by using the technology of conformal transformations.
This has been done for the case of various mirror profiles which capture essential features of
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black hole physics. Particularly, we have considered three different scenarios, which we have
named escaping mirror, kink mirror, and double escaping mirror, see figure 1. Specifically, the
double escaping mirror has appeared as a novel setup which was not discussed in our previous
analysis in [87].

One of our main goals in the present work was to make the connection between the physics
of moving mirrors and black hole radiation more evident. For doing so, we have first read-
dressed certain examples for which the Bogoliubov coefficients can be computed in an explicit
way. The fact, that those do perfectly match with the one obtained in well studied gravitational
backgrounds, can indeed be considered as further support for interpreting field theories in the
presence of moving mirrors as gravitational setups.

In order to strengthen these claims, we have particularly made use of the AdS/BCFT con-
struction. By focusing first on the single moving mirror case, we have been able to compute
the entanglement entropy holographically for various scenarios which mimic essential features
of Hawking radiation. In particular, we have shown that our setups can indeed be understood
as a CFT coupled to two dimensional gravity. This understanding has found major support by
relations to brane-world holography and, especially, by an interesting reformulation in terms of
Liouville theory. In addition, this novel understanding has allowed us to argue that our moving
mirror models are closely related to previously studied two dimensional gravitational setups
which have led to the island picture.

By employing our holographic construction of the moving mirror CFT, we have in detail
studied the double escaping mirror. From the point of view of brane-world holography, this
setup precisely corresponds to the situation, where two dynamically gravitating end-of-the-
world branes are individually radiating into an enclosed spacetime region. Specifically, we have
calculated the holographic entanglement entropy for a finite subregion situated between the two
gravitational sectors, and uncovered an interesting new phase transition between differently
extending minimal surfaces determining the entropy.

In addition, we have also discussed properties of the produced energy flux in our moving
mirror setups and examined the connection to energy conditions. More specifically, for setups
which give rise to a unitary entropy curve, we have seen that while the QNEC is always sat-
urated, the NEC turns out to be temporarily violated as a consequence of nontrivial quantum
effects.

In order to verify our holographic constructions and the related entanglement entropy cal-
culations, we have also given a detailed conformal field theoretic analysis in the corresponding
moving mirror setups. In addition to these confirmations, we have discussed how a usual CFT
with a moving mirror may be regarded as a BCFT. In particular, we have clarified how the
usual conformal boundary condition would need to be generalized in form of a new moving
mirror boundary condition.

We would like to note that the simplicity of our holographic moving mirror models would
allow to compute many interesting quantities without much difficulty for various gravitating
systems. For instance, as we have explicitly done in the present work, this simplification turned
out be extremely helpful in dealing with the situation, where two gravitational systems are
considered. By employing the double escaping mirror, we have been able to treat this problem
analytically, without the necessity of handling complicated technicalities such as the conformal
welding problem as well as the appearance of replica wormholes. The former is known to be
difficult to solve in general. Recently, a setup of two entangled gravitating systems has also
been studied in [60].

One interesting aspect, that we want to particularly highlight, is the proposed connection
between two dimensional (quantum) gravity and moving mirrors. Starting with the earlier work
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by Davies and Fulling, quantum field theories in the presence of moving mirrors have gener-
ally been accepted as being tractable toy models mimicking certain features of black hole
radiation. Since then, there have been worked out a lot of interesting results in the literature
along this direction. However, here, we have pushed this picture even further. Namely, we
have argued and provided evidence that such field theoretic constructions may indeed be inter-
preted as proper gravitational setups describing the physics of evaporating black holes from
the perspective of a far distant observer. Nevertheless, there is still one big issue, which has
not been taken into account in moving mirror models. This is the black hole singularity. It will
be a very intriguing future problem to treat the effect of black hole singularity in a moving
mirror setup.

Let us finally note that the moving mirror constructions, as we have introduced here, may
also provide a simple framework for exploring intriguing aspects of non-equilibrium processes,
which are of high interest in condensed matter physics.

All in all, there are many interesting questions along these lines to which we would like to
come back in future work.
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Appendix A. More on gravity dual of conformal map

In section 5.1, the Bañados map (5.114) is introduced as a gravity dual of a conformal
map. A shortage of this map is that it requires the metric in the (U, V , η) coordinates to
be Poincaré AdS3. On the other hand, we sometimes need to map a setup to another one
which is not necessarily Poincaré AdS3. For example, in section 6, we map a double moving
mirror setup to a strip, whose gravity dual can be global AdS3 when the confined configu-
ration is picked. To this end, we would like to slightly extend the Bañados map (5.114) in
the present section.
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Let us consider three CFT coordinate choices (u0, v0), (u1, v1) and (u2, v2), which are
connected to each other via

u0 = f (u1), v0 = g(v1), (A.257)

u1 = p(u2), v1 = q(v2). (A.258)

The gravity dual of the CFT in terms of (ui, vi) can be parameterized by (ui, vi, zi), where the
coordinates (ui, vi) are identified with the bulk coordinates at zi = 0.

If the metric of the gravity dual of the CFT expressed in the (u0, v0) coordinates is Poincaré,
i.e.

ds2 =
dz2

0 − du0dv0

z2
0

, (A.259)

then the gravity dual in the (u1, v1, z1) coordinates is described by the metric

ds2 =
dz2

1

z2
1

+ T+,1(u1)(du1)2 + T−,1(v1)(dv1)2 −
(

1
z2

1

+ z2
1T+,1(u1)T−,1(v1)

)
du1dv1, (A.260)

where

T+,1(u1) =
3( f ′′)2 − 2 f ′ f ′′′

4 f ′2
, T−,1(v1) =

3(g′′)2 − 2g′g′′′

4g′2 , (A.261)

and the bulk coordinates are related by

u0 = f (u1) +
2z2

1( f ′)2g′′

4 f ′g′ − z2
1 f ′′g′′ ,

v0 = g(v1) +
2z2

1(g′)2 f ′′

4 f ′g′ − z2
1 f ′′g′′ ,

z0 =
4z1( f ′g′)3/2

4 f ′g′ − z2
1 f ′′g′′ .

(A.262)

By definition, the bulk coordinate transformation (A.262) coincides with the boundary CFT’s
conformal map (A.257) at z1 = 0.

Similarly, the gravity dual in the (u2, v2, z2) coordinates is given by

ds2 =
dz2

2

z2
2

+ T+,2(u2)(du2)2 + T−,2(v2)(dv2)2 −
(

1
z2

2

+ z2
2T+,2(u2)T−,2(v2)

)
du2dv2, (A.263)

where

T+,2(u2) =
3(( f ◦ p)′′)2 − 2( f ◦ p)′( f ◦ p)′′′

4( f ◦ p)′2
, (A.264)

T−,2(v2) =
3((g ◦ q)′′)2 − 2(g ◦ q)′(g ◦ q)′′′

4(g ◦ q)′2
. (A.265)
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and the bulk coordinates are related by

u0 = ( f ◦ p)(u2) +
2z2

2(( f ◦ p)′)2(g ◦ q)′′

4( f ◦ p)′(g ◦ q)′ − z2
2( f ◦ p)′′(g ◦ q)′′

,

v0 = (g ◦ q)(v2) +
2z2

2((g ◦ q)′)2( f ◦ p)′′

4( f ◦ p)′(g ◦ q)′ − z2
2( f ◦ p)′′(g ◦ q)′′

,

z0 =
4z2(( f ◦ p)′(g ◦ q)′)3/2

4( f ◦ p)′(g ◦ q)′ − z2
2( f ◦ p)′′(g ◦ q)′′

.

(A.266)

Combining these two maps, we can get a map between (u1, v1, z1) and (u2, v2, z2). Although
the exact map is complicated, it is essential that

u1 = p(u2) +O(z2
2),

v1 = q(v2) +O(z2
2),

z1 = z2

√
p′q′ +O(z2

2).

(A.267)

This asymptotic behavior plays a crucial role when computing the holographic entanglement
entropy, since it tells us how the UV cutoff should be deformed under the conformal transfor-
mation. This is, however, almost trivial on the CFT side. This just tells how Weyl factors are
counted under a conformal transformation.

When T+,1 = T−,1 = −π2/4L2, f and g can be chosen to be

f (u1) = ei πL u1 , g(u1) = e−i πL v1 . (A.268)

Accordingly,

T+,2(u) =
3(p′′)2 − 2p′p′′′

4p′2
− π2 p′2

4L2
, T−,2(v) =

3(q′′)2 − 2q′q′′′

4q′2 − π2q′2

4L2
. (A.269)

When the setup expressed in terms of (u1, v1) is a (Lorentzian) strip, this choice of f and g
means transforming it to a Euclidean strip and then mapping it to a half plane.

A.1. Bañados map at leading order

In many situations, the asymptotic behavior at the asymptotic boundary of AdS spacetime is
sufficient to evaluate physical quantities such as holographic entanglement entropy. To this
end, it is sufficient to apply the original Bañados map (5.114) to the leading order of the bulk
direction.

Let us again take global AdS3 as an example. Here, we use the metric

ds2 = −dT2

ζ2
+

dζ2

ζ2
(

1 − π2ζ2

L2

) + 1 − π2ζ2

L2

ζ2
dX2, (A.270)
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Figure 35. Entanglement entropy (regularized by c) under time evolution in the (sin-
gle) escaping mirror setup for holographic CFT (upper half) and free fermion (lower
half). The left column corresponds a fixed interval A = [0.1, 10]. The right column cor-
responds a comoving interval A = [Z(t) + 0.1, Z(t) + 10]. In the plots for holographic
CFT, the blue curve and the orange curve show the connected entanglement entropy and
the disconnected entanglement entropy (where the boundary entropy is set to Sbdy = 0
for simplicity), respectively. We have set β = 1, ε = 0.1.

which is related to the metric (6.152) via ζ = 1/R. The asymptotic behavior at ζ ∼ 0 is
Poincaré AdS3, so we can perform the Bañados map (5.114) at leading order of ζ. Writing
U = T − X and V = T − X, and applying the coordinate transformation (5.114), we find that
the metric behaves in the boundary limit z → 0 as

ds2 	 dz2

z2
+ T+(u)(du)2 + T−(v̄)(dv)2 −

(
1
z2

+ z2T+(u)T−(v)

)
du dv

+
π2

L2
p′q′dz2 − π2

4L2
(q′dv − p′du)2 +O(z2)

	 dy2

y2
+

(
T+(u) − π2

4L2
p′2
)

du2 +

(
T−(u) − π2

4L2
q′2
)

(v̄)(dv)2

−
(

1
y2

+ y2T+(u)T−(v)

)
du dv +O(y),
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Figure 36. Entanglement entropy (regularized by c) under time evolution in the (single)
kink mirror setup for holographic CFT (upper half) and free fermion (lower half). The
left column corresponds a fixed interval A = [0.1, 40]. The right column corresponds
a comoving interval A = [Z(t) + 0.1, Z(t) + 40]. In the plots for holographic CFT, the
blue curve and the orange curve show the connected entanglement entropy and the dis-
connected entanglement entropy (where the boundary entropy is set to Sbdy = 0 for
simplicity), respectively. We have set β = 1, u0 = 20, ε = 0.1.

where we have introduced the coordinate transformation

y = z +
π2

4L2
p′q′y3 + · · ·. (A.271)

Although this coordinate transformation is not exact, it allows us to read out the asymptotic
behavior including the holographic energy stress tensor. Here, the holographic energy stress
tensor T̂± is given by

T̂+(u) = T+(u) − π2

4L2
p′2,

T̂−(u) = T−(u) − π2

4L2
q′2,

(A.272)

where T± is given by the previous one introduced in (5.116). This agrees with the CFT result
(6.150) and the result (A.269) obtained from the exact map.
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Figure 37. Entanglement entropy in a double escaping mirror setup for holographic CFT
(the second row) and free fermion (the third row). The left column shows the case, where
two edges of A comove with the mirror trajectory. The middle column shows the case,
where two edges of A comove with the mirror trajectory. The right column shows the
case, where one edge of A is fixed and the other one comoves. We have set β = 1, L = 20,
ε = 0.1.

Appendix B. More on entanglement entropy

In this appendix, we present more results for entanglement entropy in both holographic CFT
and free Dirac fermion in different setups.

B.1. Escaping mirror

Plugging the following conformal transformation into (8.205) and (8.207),

ũ = p(u) = −β log(1 + e−u/β), (B.273)

ṽ = q(v) = v, (B.274)

SA can be computed in the holographic CFT and for the free Dirac fermion, respectively, see
figure 35.
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B.2. Kink mirror

For the (single) kink mirror, plugging the following conformal transformation into (8.205) and
(8.207),

ũ = p(u) = −β log(1 + e−u/β) + β log(1 + e(u−u0)/β), (B.275)

ṽ = q(v) = v, (B.276)

SA can be computed in holographic CFT and free Dirac fermion CFT, respectively. Refer to
figure 36. The behavior can be qualitatively explained by the quasi-particle picture depicted
in figure 23. Comoving intervals experience a Doppler effect and hence the two peaks have
different widths.

B.3. Double escaping mirror

Plugging the following conformal transformation into (6.165)–(6.167) and (8.209),

ũ = p(u) = −β log(1 + e−u/β), (B.277)

ṽ = q(v) = −β log(1 + e−v/β), (B.278)

SA can be computed in holographic CFT (for the confined configuration) and free Dirac
fermion, respectively. Refer to figure 37. A part of figure 37 has already been shown in
figure 31.
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