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1 Introduction

In this paper, we examine strong/weak dualities in two dimensional conformal field theories
(CFTs). In general, strong/weak dualities are quite useful, for instance, to examine strongly
coupled physics from weakly coupled theories. A rare solvable example was proposed by
Fateev-Zamolodchikov-Zamolodchikov (FZZ) [1], and their duality states an equivalence
between Witten’s cigar model [2] and so-called sine-Liouville theory. The cigar model can
be described by the coset

sl(2)k
u(1) . (1.1)
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The level k is related to the inverse of curvature and the sigma model description is suitable
for large k. On the other hand, the sine-Liouville theory is described by a bosonic field φ
with background charge and another bosonic field X with X ∼ X + 2π

√
k. The theory

includes interaction terms

Vint = 2πλ(eφ/b(2)+i
√
kX̃ + eφ/b(2)−i

√
kX̃) , (1.2)

where b(2) = 1/
√
k − 2 and X̃ represents the dual of X. The interaction terms do not grow

rapidly when b(2) is large enough. From this, we can see that the FZZ-duality is an example
of strong/weak duality. See [3] for more details of the FZZ-duality and its application to
holography.

In this paper, we generalize the FZZ-duality by replacing the coset model (1.1) with

sl(N + 1)k
sl(N)k × u(1) . (1.3)

The central charge is

c = k((N + 1)2 − 1)
k −N − 1 − k(N2 − 1)

k −N
− 1 . (1.4)

The symmetry of the coset model (1.3) is given by a one parameter quotient of the W∞-
algebra [4]. Recently, W-algebras and especially the W∞-algebra play important roles in
theoretical physics. For instance, subsectors of four dimensional gauge theories are known
to be described by Toda field theories with certain W-algebra symmetry [5, 6]. Moreover,
the coset model (1.3) is essentially the one appearing in the higher spin holography [7] or
its supersymmetric extension [8].

This connection to the cosets relevant to higher spin (super-)gravity is our first main
motivation. The second motivation is a conformal field theory derivation of dualities and
trialities of corner vertex operator algebras (VOAs). Recall that at the corner of interfaces
of four dimensional supersymmetric gauge theories with gauge groups U(N1),U(N2) and
U(N3) there is a VOA, called the YN1,N2,N3-algebra [9]. This vertex algebra is parameterized
by a parameter ψ (for the associated CFT it is the inverse of the coupling constant), which
is the level of the associated W-algebra shifted by the dual Coxeter number.1

The triality conjecture of [9] asserts that YN1,N2,N3-algebras are invariant under per-
mutations of the labels where the coupling constant also changes appropriately. Especially
the YN1,N2,N3-algebra at coupling ψ coincides conjecturally with the YN2,N1,N3-algebra at
coupling ψ−1. I.e. if one of the theories is strongly coupled (small ψ) the other one is
weakly coupled (large ψ). The triality conjecture is a theorem if one of the labels is
zero [4]. The simplest example, the YN,0,0-algebra is the WN -algebra of sl(N) and the
isomorphism between YN,0,0-algebra and Y0,N,0-algebra is Feigin-Frenkel duality [11], while
the isomorphism between YN,0,0-algebra and Y0,0,N -algebra is the coset realization of the
WN -algebra [12]. The YN,1,0-algebra is a coset of the Feigin-Semikhatov algebra of sl(N+1)
and the isomorphism between YN,1,0-algebra and Y1,N,0-algebra is the Feigin-Semikhatov

1W-algebras are usually defined as quantum Hamiltonian reductions, that is certain BRST-cohomologies,
of affine vertex algebras. The level of the W-algebra is the level of the affine vertex algebra and this was
first introduced in generality in [10].
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duality [13], proven in [14]. It is expected that the dualities and trialities of the vertex
algebras of protected operators at corners and junctions lift to dualities of spaces of confor-
mal blocks and thus providing a picture that contains the quantum geometric Langlands
correspondence [15–17].

It is thus desirable to give conformal field theory derivations of the dualities and
trialities of Y -algebras. Especially, one would like to not only have an isomorphism of
VOAs, but additional correspondences as e.g. a matching of correlation functions. Our
higher rank FZZ-duality is precisely this for the case of the Y0,N,N+1-algebras. Moreover,
the YN1,N2,N3-algebras are conjecturally the same as the WN1,N2,N3-algebras of Bershtein,
Feigin and Merzon [18], see also [19, 20]. The latter act on the cohomology of moduli spaces
of spiked instantons of Nekrasov [21]. It is thus also desirable to get a conformal field theory
perspective on the conjectural relation between YN1,N2,N3-algebras andWN1,N2,N3-algebras.
The latter are characterized as intersections of kernels of screening charges acting on a free
field theory, i.e. they have a nice description in terms of a theory with free kinetic terms
and interaction terms. The dual theory that we get is a theory with free kinetic terms
and interaction terms and the holomorphic part of our interaction terms are precisely
the screening charges of the WN,0,N+1-algebra [20], i.e. our formalism naturally relates
Y0,N,N+1-algebra to WN,0,N+1-algebra.

The WN,0,N+1-algebra is called as W(sl(N +1|N))-algebra in [18, 19] due to its sl(N +
1|N) structure. The W(sl(N+1|N))-algebra is closely related to the N = 2 WN+1-algebra,
which is obtained as a Hamiltonian reduction of sl(N + 1|N) current algebra. However,
note that the two algebras are different. The N = 2 WN+1-algebra is identified as the
symmetry algebra of sl(N + 1|N) Toda field theory, and it is believed to be realized by
the CPN Kazama-Suzuki coset model as well [22, 23].2 From this fact, we can also think
of a supersymmetric version of our higher rank FZZ-duality, but its detailed analysis is
postponed to future work.

In this paper, we explicitly derive the duality with the coset model (1.3) for N = 2, 3
by extending the proof of the original FZZ-duality in [26]. In the proof of FZZ-duality, the
sl(2) factor of the coset (1.1) described by sl(2) Wess-Zumino-Novikov-Witten (WZNW)
model is reduced to Liouville field theory by applying the analysis of [27], which is a path
integral derivation of (generalized) Ribault-Teschner relation [28, 29]. We further utilize
the self-duality of Liouville field theory, which is the key point for the nature of strong/weak
duality. There have been several works on generalizations of the reduction method [30–
32]. Recently, big progress was made in [33], and the result enables us to do the current
generalizations of FZZ-duality. In order to directly apply the procedure of [26], we may
want to reduce the sl(N+1) factor of the coset (1.3) to sl(N+1) Toda field theory. If this is
possible, then the self-duality of the Toda field theory can be applied. However, its difficulty
has been recognized, see, e.g., [32, 34]. We can avoid this difficulty by not directly reducing
the WZNW model to the Toda field theory but instead using intermediate theories with
non-regular type of W-algebra symmetry [33]. A famous example of non-regular W-algebra

2This Conjecture is proven in the case N = 2 [24] and by Lemma 7.12 of [25] both theories have the
same type of minimal strong generators.

– 3 –



J
H
E
P
0
2
(
2
0
2
1
)
1
4
0

is given by Bershadsky-Polyakov (BP-)algebra [35, 36]. We make use of the intermediate
theories in the following way. The method of [27] and its generalizations heavily rely on
the free field realizations of algebras. For non-regular W-algebras, it was noticed that
several free field realizations are available [37, 38]. The reduction then becomes possible
by replacing its free field realization with a convenient one for the intermediate theories.
Throughout this paper, we assume that the theories are defined on a genus zero Riemann
sphere. It is an interesting open problem to deal with theories on more generic surfaces.

The paper is organized as follows. In the next section, we start by examining the
symmetry of the coset model, which is also underlying the duality. In section 3, we study
the coset model (1.3) with N = 2. We develop a free field realization of the coset algebra
by following [39, 40], which is necessary to apply the reduction method of [27, 33]. In
section 4, we derive a generalized FZZ-duality with the coset (1.3) for N = 2. In this
case, the annoying issue associated with higher rank algebra does not arise and the original
reduction method of [27] and the self-duality of sl(3) Toda field theory can be applied
straightforwardly. Massaging the theory obtained in this way, we derive a duality between
the coset model (1.3) with N = 2 and a generalized sine-Liouville theory with an sl(3|2)
structure. In section 5, we generalize the analysis by considering the coset model (1.3) with
N = 3. A free field realization of the coset algebra can be obtained in a way similar to the
N = 2 case. However, the original reduction method of [27] cannot be applied directly. We
overcome this difficulty by utilizing the technique of [33] briefly explained above and derive
the dual theory with an sl(4|3) structure. In section 6, we conclude this paper and further
discuss open problems and future directions. In appendix A, we explain an N = 2 version
of higher rank FZZ-duality based on the results of [22, 23]. In appendix B, we summarize
useful results on free field realizations of BP-algebra in [33].

2 Symmetry algebra

As explained in the introduction, a class of VOA denoted by YN1,N2,N3 [ψ] was introduced
in [9] through brane junctions. There are three types of definitions of the algebra, but
the equivalence of the algebras defined in the three ways is still a conjecture if all labels
are non-zero. The first one is directly obtained from the brane junction picture, and the
symmetry algebra of the coset model (1.3) is identified as Y0,N,N+1[ψ] with

ψ = −k +N + 1 (2.1)

after decoupling a u(1)-sector [9]. The second one is realized by a truncation of a W1+∞[λ]-
algebra, which will be explained in the next subsection. The equivalence of these two
realizations if one of the three labels is zero has been proven in [4]. The third one is given
by an intersection of kernels of screening charges in a free field theory, which is actually the
definition of WN1,N2,N3 mentioned in the introduction. This screening realization has been
proven to coincide with the coset definition in a special series of cases [14]. The algebra
Y0,N,N+1[ψ] is dual to YN,0,N+1[ψ−1] [4], and the conjectural screening charges for a free
field realization of the algebra YN,0,N+1[ψ−1] are provided in subsection 2.2.
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2.1 Truncation of W∞-algebra

In this subsection, we realize the coset algebra by a one-parameter subquotient of the
W∞[λ]-algebra [4]. Since sl(N) with level k may be regarded as su(N) with level −k,3 we
rewrite the coset (1.3) via level-rank duality as

su(N + 1)−k
su(N)−k × u(1) '

su(−k)N × su(−k)1
su(−k)N+1

. (2.2)

If −k = L with integer L ≥ 2, then the symmetry of the coset is known to be the usual
WL-algebra. However, we are interested in the parameter regime of −k < −N − 1 now,
thus the symmetry is an “analytic continuation” of the algebra. The extended algebra is
a W∞-algebra called as W∞[λ] parametrized by λ and a central charge c. It is rigorously
constructed by Andrew Linshaw [41]. For the coset (1.3), λ = −k and the central charge
is (1.4). It is sometimes convenient to combine a u(1)-sector to form W1+∞[λ].

The algebra W∞[λ] has a spin s current W(s) with s = 2, 3, . . . for generic value of λ.
An ideal forms at λ = L with integer L ≥ 2 and WL-algebra with the truncation of spin
as s = 2, 3, . . . L can be obtained by dividing the ideal. The operator product expansions
(OPEs) among generators are unique up to the two parameters λ, c mentioned above. The
algebra is known to have a triality relation [41, 42] and it is useful to introduce three
parameters λ1, λ2, λ3 satisfying [43]

1
λ1

+ 1
λ2

+ 1
λ3

= 0 . (2.3)

One of them is identified with λ in W∞[λ] and the central charge is related as

c = (λ1 − 1)(λ2 − 1)(λ3 − 1) . (2.4)

In order to read off the parameters λj from the OPEs, it is convenient to focus on the
normalization independent combination of coefficients given by

(C4
33)2C0

44
(C0

33)2 . (2.5)

Here Ckij represents the coefficient of operator product expansion of W(i)W(j) in front of
W(k). We further set W(0) = 1. The quantity is related to λi by

(C4
33)2C0

44
(C0

33)2 = 144(c+ 2)(λ1 − 3)(λ2 − 3)(λ3 − 3)
c(5c+ 22)(λ1 − 2)(λ2 − 2)(λ3 − 2) . (2.6)

In the current case, we may set (see, e.g., (2.19) of [44])

λ1 = −k , λ2 = − k

k −N − 1 , λ3 = k

k −N
, (2.7)

3For the discussion of vertex operator algebras, the elements of Lie algebras are assumed to take complex
values.
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which leads to

(C4
33)2C0

44
(C0

33)2 = 1
2k2(5N+11)−k(N(5N+39)+22)+17N(N+1) (2.8)

× 144(k−1)(k+3)(N+1)(2k−3N)(k−N−1)(k−N)(2k−N)(4k−3(N+1))
(k+1)(k+2)N(k−2N)(2k−N−1)(3k−2(N+1)) .

We will utilize this to check whether theories have expected symmetries in the analysis
below.

Above, we have argued that the algebra W∞[λ] can be truncated to WL at λ = L.
More generically, it is known that there is a truncation when λj with j = 1, 2, 3 satisfy

N1
λ1

+ N2
λ2

+ N3
λ3

= 1 (2.9)

with non-negative integer Nj [44, 45]. The truncated algebra is supposed to be YN1,N2,N3 [ψ]-
algebra. For the symmetry algebra of the coset model (1.3), the non-negative integers Nj

should be set as
N1 = 0 , N2 = N , N3 = N + 1 . (2.10)

2.2 Intersection of kernels of screening charges

Screening charges for free field realization of YN1,N2,N3 [ψ]-algebra were proposed in [20] by
extending the previous works of [18, 19]. In this subsection, we explicitly obtain screening
charges for YN,0,N+1[ψ−1]-algebra by following their construction. There are many equiva-
lent ways to express them but here we use the one resemble to those for sl(N + 1|N) Toda
field theory explained in appendix A.

For YN1,N2,N3 [ψ]-algebra, we introduce (N1 + N2 + N3) free bosons with labels φ(κ)
j

(κ = 1, 2, 3, j = 1, 2, . . . , Nκ). The OPEs of the free bosons are normalized as

φ
(κ)
j (z)φ(κ′)

j′ (0) ∼ − hκ
h1h2h3

δκ,κ
′
δj,j′ ln z . (2.11)

For our purpose, we set N1 = N,N2 = 0, N3 = N + 1 and (see, e.g., (1.2) of [20])

h1 = i
√
k −N − 1 , h2 = i√

k −N − 1
, h3 = −i k −N√

k −N − 1
. (2.12)

The expression of free field realization is determined by the order of free bosons. We choose
the one corresponding to the order φ(3)

1 φ
(1)
1 φ

(3)
2 . . . φ

(1)
N φ

(3)
N+1. In this case, the screening

charges are given by
Ql =

∮
dwVl(w) (2.13)

for l = 1, 2, . . . , 2N with the screening operators as

V2j−1(w) = e−h1φ
(3)
j +h3φ

(1)
j , V2j(w) = e−h3φ

(1)
j +h1φ

(3)
j+1 (2.14)

for j = 1, 2, . . . , N .
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Among (2N+1) free bosons, we decouple a linear combination,
∑N+1
j=1 φ

(3)
j +

∑N
j=1 φ

(1)
j ,

which generates a u(1)-sector. For this, we redefine the free fields as

φj = −i(φ(3)
j − φ

(3)
j+1) (j = 1, 2, . . . , N) ,

ϕj = i

√
k −N

k −N − 1(φ(1)
j − φ

(1)
j+1) (j = 1, 2, . . . , N − 1) ,

χ =

√
N(N + 1)

2k

− h1
N + 1

N+1∑
j=1

φ
(3)
j + h3

N

N∑
j=1

φ
(1)
j

 .

(2.15)

The OPEs among these fields are

φi(z)φj(0) ∼ −G(N+1)
ij ln z , ϕi(z)ϕj(0) ∼ G(N)

ij ln z , χ(z)χ(0) ∼ 1
2 ln z , (2.16)

where G(N+1)
ij is the Cartan matrix of sl(N+1). We will use its inverse denoted by G(N+1)ij

as well. With these new fields, the screening operators are given by

V1 = e
φ1/b(N+1)−ϕ1/b(N)+

√
2k

N(N+1)χ ,

V2 = e
(φ1−φ2)/b(N+1)+ϕ1/b(N)−

√
2k

N(N+1)χ ,

V3 = e
(φ2−φ1)/b(N+1)+(ϕ1−ϕ2)/b(N)+

√
2k

N(N+1)χ ,

V4 = e
(φ2−φ3)/b(N+1)+(ϕ2−ϕ1)/b(N)−

√
2k

N(N+1)χ , (2.17)
...

V2N−1 = e
(φN−φN−1)/b(N+1)+ϕN−1/b(N)+

√
2k

N(N+1)χ ,

V2N = e
φN/b(N+1)−ϕN−1/b(N)−

√
2k

N(N+1)χ ,

where we have set
b(a) = 1√

k − a
(2.18)

with a = N,N + 1. The indices of φj and ϕj are raised as

φi = G(N+1)ijφj , ϕi = G(N)ijϕj . (2.19)

In subsequent sections, we shall see that the free field realization corresponds to the theory
dual to the coset model (1.3) for explicit examples.

3 Coset model

In this section, we examine the coset model (1.3) with focusing on the N = 2 case given
by

sl(3)k
sl(2)k × u(1) . (3.1)
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In the next subsection, we explain the first order formulation of sl(3) WZNW model and
the free field realization of sl(3) current algebra. In subsection 3.2, we obtain an action de-
scribing the coset model (3.1) and a free field realization of coset algebra. In subsection 3.3,
we explain the spectral flow automorphism of sl(N + 1) current algebra.

3.1 First order formulation of WZNW model

For the proof of FZZ-duality in [26], the reduction method of [27] was utilized, where the
analysis relies on a free field realization of sl(2) current algebra. This implies that a free
field realization of coset algebra is necessary in order to apply the analysis to the current
case. In this and next subsections, we review the method developed in [39, 40] and apply
it to the coset (3.1).

The symmetry algebra of the coset (1.3) can be constructed from sl(N+1) currents by
dividing the denominator algebra, sl(N)× u(1). The strategy of [39, 40] is first expressing
the sl(N+1) currents by free fields and then reducing the field space such as to be orthogonal
to the denominator one. We thus start from a free field realization of sl(3) current algebra.
We use the first order formulation of sl(3) WZNW model corresponding to a free field
realization,4

S = 1
2π

∫
d2w

G(3)
ij

2 ∂φi∂̄φj +
b(3)
4
√
gR(φ1 + φ2) +

3∑
α=1

(βα∂̄γα + β̄α∂γ̄α)


− 1

2πk

∫
d2w

[
eb(3)φ1(β1 − γ2β3)(β̄1 − γ̄2β̄3) + eb(3)φ2β2β̄2

]
.

(3.2)

Here we set b(3) = 1/
√
k − 3 as in (2.18) with a = 3 and use the Cartan matrix and its

inverse expressed as

G
(3)
ij =

(
2 −1
−1 2

)
, G(3)ij =

(
2/3 1/3
1/3 2/3

)
. (3.3)

The worldsheet metric is denoted as gµν with g = det gµν and the worldsheet curvature as
R. In terms of OPEs, the free fields satisfy

φi(z)φj(0) ∼ −G(3)
ij ln |z|2 , γα(z)βα′(0) ∼ δα,α′

z
. (3.4)

The generators of the sl(3) current algebra can be written in terms of the free fields as
(see, e.g., [47])

e1 = β1 , e2 = β2 − γ1β3 , e3 = β3 ,

h1 = b−1
(3)∂φ1 + 2γ1β1 − γ2β2 + γ3β3 ,

h2 = b−1
(3)∂φ2 − γ1β1 + 2γ2β2 + γ3β3 .

(3.5)

4The action can be derived from a particular parametrization of group element as in (2.7) of [32]. Here,
φ1, φ2 takes real values, while γα and γ̄α are related by complex conjugations. See, e.g., [46] for the analogues
case of sl(2) in [27].
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Here and in the following, the normal ordering prescription is assumed for the products of
fields. The other generators f1, f2, f3 can be expressed in a similar manner. The energy-
momentum tensor is given by

T = −1
2G

(3)
ij ∂φ

i∂φj + b(3)∂
2(φ1 + φ2)−

3∑
α=1

∂γαβα . (3.6)

3.2 First order formulation of coset model

Following [39, 40], we perform a projection of the numerator algebra, sl(3), into a subsector
orthogonal to the denominator algebra, sl(2)×u(1). The generators of sl(2) and u(1) current
algebras may be denoted as {ĥ, ê, f̂} and ĥ′. The Cartan subalgebras are generated by

ĥ = h1 + h2 , ĥ′ = h1 − h2 . (3.7)

For the generators of sl(2), we choose ê = e3, which determines f̂ as well.5 We introduce
two free bosons by

ĥ = 2b−1
(2)∂ϕ̂+ 2γ3β3 , ĥ′ = 2

√
3k∂χ̂ , (3.8)

where b(2) = 1/
√
k − 2 as in (2.18) with a = 2. This implies that the free bosons satisfy

∂ϕ̂(z)∂ϕ̂(0) ∼ − 1
2z2 , ∂χ̂(z)∂χ̂(0) ∼ − 1

2z2 . (3.9)

We define the coset theory by considering the subsector orthogonal to ϕ̂, χ̂, γ3, β3, γ̄3, β̄3.
For the ghost part with γ3, β3, γ̄3, β̄3, we simply decouple it from the rest.

Let us check that the first order formulation of the coset theory possesses the correct
symmetry algebra. The free fields are φ1, φ2 and the ghost systems (γj , βj) with j =
1, 2. We require that the symmetry currents do not have non-trivial OPEs with ϕ̂, χ̂ and
commute with the interaction terms

S1 =
∫
d2web(3)φ1β1β̄1 , S2 =

∫
d2web(3)φ2β2β̄2 . (3.10)

There are no spin-one currents satisfying these conditions. We find a spin-two current,
which is the energy-momentum tensor,

T = −1
2G

(3)
ij ∂φ

i∂φj + b(3)∂
2(φ1 + φ2)−

2∑
i=1

∂γiβi

+ ∂ϕ̂∂ϕ̂− b(2)∂
2ϕ̂+ ∂χ̂∂χ̂ .

(3.11)

Its central charge reproduces (1.4) with N = 2. In a similar way, we find a spin-three
current and a spin-four current. The ratio of OPE coefficients in (2.6) reproduces (2.8)
with N = 2.

5This choice is different from that of standard coset construction in [48], but the algebras obtained in
the two ways are argued to be isomorphic with each other [39, 40]. In the current case, the algebra of the
coset reproduces the expected one as will be checked below.
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We shall examine the correlation functions of the coset theory. The vertex operators
of the sl(3) WZNW model are expressed in the form

V (z) = P (γα, γ̄α)eb(3)(j1φ1+j2φ2) , (3.12)

where P (γα) is a function of γα, γ̄α with α = 1, 2, 3. In the coset theory, we consider a
subsector orthogonal to ϕ̂, χ̂ and decouple γ3, β3, γ̄3, β̄3. We then introduce counter parts
ϕ, χ with negative kinetic terms so as to cancel the contributions from ϕ̂, χ̂.6 The action
of the coset theory is now

S = 1
2π

∫
d2w

G(3)
ij

2 ∂φi∂̄φj − ∂ϕ∂̄ϕ− ∂χ∂χ+ 1
4
√
gR

(
b(3)(φ1 + φ2)− b(2)ϕ

)
+ 1

2π

∫
d2w

[ 2∑
i=1

(βi∂̄γi + β̄i∂γ̄i)−
1
k

(eb(3)φ1β1β̄1 + eb(3)φ2β2β̄2)
]
. (3.13)

We consider vertex operators of the form

Ψ(z) = γ−j1−l−m1 γ−j2−l+m2 γ̄−j1−l−m̄1 γ̄−j2−l+m̄2 eb(3)(j1φ1+j2φ2)e2b(2)lϕ+2
√

3
k

(mχL+m̄χR) .
(3.14)

Here we have decomposed as χ(z, z̄) = χL + χR.7

3.3 Spectral flow

As in [26], we need to include the effects of spectral flow automorphism of sl(N + 1)
current algebra. We are using the notation such that commutation relations among mode
expansions of generators are given by

[hin, hjm] = −2knδi,jδn+m,0 , [hin, ejm] = G
(N+1)
ij ejn+m ,

[hin, f jm] = −G(N+1)
ij f jn+m , [ein, f jm] = −δi,jhin+m + knδi,jδn+m,0 .

(3.15)

The same commutation relations are satisfied even after the changes

ρ{Sj}(ein) = ein−Si , ρ{Sj}(f in) = f in+Si , ρ{Sj}(hin) = hin + kSiδn,0 (3.16)

for i = 1, 2, . . . , N . The commutation relations among new generators fix the action of ρ{Sj}

to the other generators. From this, we can see that sl(N + 1) current algebra possesses
N -parameter family of spectral flow automorphism.

6The coset sl(2)/u(1) can be obtained by the decomposition sl(2) ⊂ sl(2)/u(1)× u(1). This implies that
the correlator of the coset is obtained from that of sl(2) WZNW model divided by that of u(1) theory. The
inverse of correlator in the u(1) theory can be computed with the opposite sign in the kinetic term. The
same technique can be applied directly for the theory of χ. It seems natural to expect that the same is true
for the theory of ϕ, but this is something to be confirmed.

7We may define the dual field χ̃(z, z̄) via χ̃ = −i
∫ z,z̄ ∗dχ, where ∗dχ denotes the Hodge dual of the

differential dχ. Then the decomposition is such that χ(z, z̄) = χL(z, z̄) + χR(z, z̄) and χ̃(z, z̄) = χL(z, z̄)−
χR(z, z̄). See, e.g., [26].
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In the rest of this subsection, we focus on the N = 2 case and express ρS1,S2 ≡ ρ{Sj}.
We define a state |S1, S2〉 satisfying

ρS1,S2(eαn)|S1, S2〉 = 0 , ρS1,S2(fαn )|S1, S2〉 = 0 , ρS1,S2(hin)|S1, S2〉 = 0 (3.17)

with α = 1, 2, 3, i = 1, 2 and n = 0, 1, 2, . . .. We may decompose the state in terms of free
fields as

|S1, S2〉 = |S1, S2〉(β,γ) ⊗ |S1, S2〉φ . (3.18)

Here we require

β1,n−S1 |S1, S2〉(β,γ) = β2,n−S2 |S1, S2〉(β,γ) = β3,n−S1−S2 |S1, S2〉(β,γ) = 0 , (3.19)
γ1,n+S1 |S1, S2〉(β,γ) = γ2,n+S2 |S1, S2〉(β,γ) = γ3,n+S1+S2 |S1, S2〉(β,γ) = 0 (3.20)

for n = 0, 1, 2, . . . and
|S1, S2〉φ = e(S1φ1(0)+S2φ2(0))/b(3) |0〉φ . (3.21)

We denote the corresponding operator as vS1,S2(ξ) inserted at w = ξ. The insertion of
this operator puts a restriction on the domain of integration over β1, β2, β3 such that they
have zeros of order S1, S2, S1 + S2, respectively. Moreover, it also induces the insertion of
e(S1φ1+S2φ2)/b(3)(ξ). See [26] for more details in the N = 1 case. In the following, we assume
that S1, S2 ≥ 0, which may be realized by utilizing the Weyl symmetry of sl(3) Lie algebra
when only one of the vertex operators inserted has non-zero S1, S2 as in (4.4) below.

4 A generalized FZZ-duality

Now that we have a first order formulation of the coset model (3.1), we can apply the
method of [26, 27] to derive a duality. We review the analysis of [33] on the reduction
from sl(3) WZNW model to sl(3) Toda field theory in the next subsection, and we apply
the reduction procedure to the coset theory in subsection 4.2. We rewrite the correlators
such that they can be interpreted as those of the dual theory with an sl(3|2) structure in
subsection 4.3.

4.1 Reduction from WZNW model

In [33], we have explored correspondences of theories with different W-algebra symmetry.
In this subsection, we review a result on the reduction from sl(3) WZNW model to sl(3)
Toda field theory. The relation of correlation functions obtained by the reduction procedure
is generically complicated. However, as shown in [33], a simplification occurs if we consider
a restricted setup where vertex operators are of specific from. In order to obtain the first
order formulation realization of the coset theory, we decouple a ghost system (γ3, β3), and
this is exactly the condition where the simplification occurs.

In our construction of coset theory, we use the vertex operators of the form (3.14). It
is convenient to rewrite them as

Ψν(zν) = Φν(zν)V ϕ,χ
lν ;mν ,m̄ν (zν) , V ϕ,χ

lν ;mν ,m̄ν (zν) = e2b(2)l
νϕ+2

√
3
k

(mνχL+m̄νχR) , (4.1)
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where Φν(zν) is given in terms of a Mellin transform as

Φν(zν) =
∫
d2µν1d

2µν2
|µν1 |2|µν2 |2

(µν1)lν+mν (µ̄ν1)lν+m̄ν (µν2)lν−mν (µ̄ν2)lν−m̄νVν(zν) , (4.2)

Vν(zν) = |µ1|2j
ν
1 |µ2|2j

ν
2 eµ

ν
1γ1+µν2γ2−µ̄ν1 γ̄1−µ̄ν2 γ̄2eb(3)(jν1φ1+jν2φ2) . (4.3)

The pre-factor |µ1|2j
ν
1 |µ2|2j

ν
2 in Vν(zν) is chosen such that the expressions obtained later

become simpler. We examine the correlation functions of sl(3) WZNW model and apply
the results to the case of coset theory in next subsection.

The correlation functions of sl(3) WZNW model can be written in the path integral
formulation as〈

N∏
ν=1

Vν(zν)vS1,S2(ξ)
〉

=
∫
Sj ,ξ
Dφ1Dφ2

[ 3∏
α=1
D2βαD2γα

]
e−S

N∏
ν=1

Vν(zν)e(S1φ1+S2φ2)/b(3)(ξ) .
(4.4)

As in the case of the original FZZ-duality in [26], we consider the correlation functions
with the insertion of vS1,S2(ξ) in order to deal with a generic type of coset correlators.8

The domain of integration for βα, β̄α is then restricted as described above. Here the action
is (3.2) and the vertex operators are of the form (4.3). Since the vertex operators do not
depend on γ3, γ̄3, we can integrate out γ3, β3, γ̄3, β̄3. Then, we can simply set β3 = β̄3 = 0,
and the action reduces to a part appearing in (3.13).

With this setup, we can integrate out γ1, γ2, γ̄1, γ̄2. This results in the constraints

∂̄βi(w) = −2π
N∑
ν=1

µνi δ
(2)(w − zν) , ∂β̄i(w) = 2π

N∑
ν=1

µ̄νi δ
(2)(w − zν) (4.5)

with i = 1, 2. Solving the equations, we have

βi(w) = −
N∑
ν=1

µνi
w − zν

(4.6)

and similarly for β̄i. Because of the insertion of vS1,S2(ξ), βi should have a zero of order Si
at w = ξ. This leads to the constraints

N∑
ν=1

µνi
(ξ − zν)n = 0 (4.7)

8In the correlation function of sl(2)k/u(1) coset, the total u(1)-charges are known to be violated up to
|
∑

ν
mν | = |

∑
ν
m̄ν | = k

2S ≤
k
2 (N − 2), see, e.g., [49]. In order to realize this violation, we need to insert

an identity operator 1 = vS(ξ)e−
√
kSχ as explained in [26]. Since we can construct analogues identity

operators including vS1,S2 (ξ) for the current coset as in (4.14) below, the generic type of coset correlator
should include the insertion of identity operator with some S1, S2.
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for n = 0, 1, . . . , Si. Noticing that a holomorphic one-form with N poles should have (N−2)
zeros on a Riemann sphere, we can rewrite (4.6) as9

βi(w) = −ui
(w − ξ)Si

∏N−2−Si
p=1 (w − yip)∏N

ν=1(w − zν)
≡ −uiBi(w; zν , yip) . (4.8)

This equation defines the transformation of variables from µνi to yip.
Inserting (4.8) into the action (3.2) with β3 = 0, the coefficients of interaction terms

have now coordinate dependence. We remove the coordinate dependence by shifting φi as

φi + 1
b(3)

ln |uiBi|2 → φi (4.9)

with i = 1, 2. The shifts yield several contributions from the kinetic terms of φi among
others, and the correlation function (4.4) becomes of the form〈

N∏
ν=1

Vν(zν)vS1,S2(ξ)
〉

(4.10)

= |ΘN |2
2∏
i=1

Si∏
n=0

δ(2)
(

N∑
ν=1

µνi
(ξ − zν)n

)〈
N∏
ν=1

Ṽν(zν)
N−2−S1∏
p=1

Ṽb(y1
p)

N−2−S2∏
p=1

Ṽb(y2
p)
〉
.

The right hand side is computed with the action of sl(3) Toda field theory,

S = 1
2π

∫
d2w

G(3)
ij

2 ∂φi∂̄φj + 1
4
√
gR

(
b(3) + b−1

(3)

)
(φ1 + φ2) + 1

k
(eb(3)φ1 + eb(3)φ2)

 .
(4.11)

Later we use the self-duality of sl(3) Toda field theory under the exchange of b(3) ↔ b−1
(3).

The modified vertex operators are

Ṽν(zν) = e
b(3)(jν1 +b−2

(3))φ1+b(3)(jν2 +b−2
(3))φ2 , Ṽb(yip) = e−φ

i/b(3) . (4.12)

The pre-factor is computed as

ΘN = u

2− 2S1+S2
3b2(3)

1 u

2−S1+2S2
3b2(3)

2

×

 ∏
ν<ν′

zνν′

 2
b2(3)

∏
ν,p,i

(zν − yip)

− 1
b2(3)

∏
p,p′

(y1
p − y2

p′)

 1
3b2(3)

 ∏
p<p′,i

yipp′

 2
3b2(3)

,

(4.13)

where zνν′ = zν − zν′ and yipp′ = yip − yip′ . See [26, 27] for more details on the reduction
procedure in the case of sl(2) WZNW model.

9In order for the equations (4.8) to make sense, we may need to set 0 ≤ S1, S2 ≤ N − 2. There is a
similar bound, 0 ≤ S ≤ N − 2, for the sl(2) case, and this is related to the bound of u(1)-charge violation
discussed in footnote 8. We expect that similar bounds exist even in the current case, but we cannot say
anything concrete without further investigations.
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4.2 Reduction from coset theory

We apply the reduction relation from sl(3) WZNW model to the case with the coset theory
by following the analysis of [26]. In order to do so, we need to add free bosons ϕ, χ and
use the vertex operators (4.1) with (4.2) and (4.3). In the coset theory, we may insert an
identity operator10

1 = vS1,S2(ξ)e−(S1+S2)ϕ/b(2)(ξ)e−
√

k
3 (S1−S2)(χL+χR)(ξ) , (4.14)

which uses the spectral flow operator vS1,S2(ξ) as mentioned above.
Here we perform the reduction procedure in the previous subsection, where the pa-

rameters µνi , µ̄νi are replaced by yip, ȳip with i = 1, 2. The Jacobian due to the change of
variables is [26, 28, 29]

N∏
ν=1

d2µνi
|µνi |2

Si∏
n=0

δ(2)
(

N∑
ν=1

µνi
(ξ − zν)n

)

=
∏N
ν<ν′ |zνν′ |2

∏N−2−Si
p<p′ |yipp′ |2∏N

ν=1
∏N−2−Si
p=1 |zν − yip|2

d2ui
|ui|4+2Si

N−2−Si∏
p=1

d2yip

(4.15)

for each i = 1, 2. Because of the transformation of (4.2), the pre-factors with uiBi, ūiB̄i
remain. In order to remove them, we further shift ϕ, χ as

ϕ+ 1
2b(2)

[
ln |u1B1|2 + ln |u2B2|2

]
→ ϕ ,

χL + 1
2

√
k

3 [ln(u1B1)− ln(u2B2)]→ χL ,

χR + 1
2

√
k

3
[
ln(ū1B̄1)− ln(ū2B̄2)

]
→ χR .

(4.16)

The coset correlation function is now written as〈
N∏
ν=1

Ψν(zν)
〉

=
∫ 2∏
i=1

∏N−2−Si
p=1 d2yip

(N−2−Si)!
(4.17)

×
〈

N∏
ν=1

Ṽν(zν)V ϕ,χ

lν−b−1
(2);m

ν ,m̄ν
(zν)

N−2−S1∏
p=1

Ṽb(y1
p)V

ϕ,χ
1

2b2(2)
; k6 ,

k
6
(y1
p)
N−2−S2∏
p=1

Ṽb(y2
p)V

ϕ,χ
1

2b2(2)
;− k6 ,−

k
6
(y2
p)
〉
.

The right hand side is evaluated by the action

S = 1
2π

∫
d2w

G(3)
ij

2 ∂φi∂̄φj − ∂ϕ∂̄ϕ− ∂χ∂χ+ 1
4
√
gR

(
Qφ(φ1 + φ2)−Qϕϕ

)
+ 1
k

∫
d2w

[
eb(3)φ1 + eb(3)φ2

]
. (4.18)

10As argued in footnote 8, we may insert an identity operator 1 = vS(ξ)e−
√
kSχ in the correlation

functions of sl(2)/u(1) coset. In terms of the decomposition sl(2) ⊂ sl(2)/u(1) × u(1), the spectral flow
action to the sl(2) part can be reproduced from the corresponding action only to the Cartan part, i.e., the
u(1) part, see, e.g., [50]. We can obtain 1 = vS(ξ)e−

√
kSχ by considering the identity operator 1 for the

sl(2)/u(1) part and taking the “inverse” of the u(1) part. The identity operator in (4.14) can constructed
in a similar manner from the decomposition sl(3) ⊂ sl(3)/(sl(2)× u(1))× sl(2)× u(1).
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The background charges are

Qφ = b(3) + 1
b(3)

, Qϕ = b(2) + 2
b(2)

. (4.19)

The division by (N−2−Si)! comes from (N−2−Si)!-fold map between µνi and yip, see [26]
as well. Moreover, note that the pre-factor ΘN is canceled with similar factors generated
due to the shifts (4.16).

4.3 Dual theory

In the previous subsection, we have expressed the N -point function of the coset model (3.1)
as in the right hand side of (4.17). In this subsection, we rewrite the correlation function
such as to be the N -point function of the theory dual to the coset model (3.1) by follow-
ing [26].

Firstly, we utilize the self-duality of sl(3) Toda field theory, which is an essential point
to obtain a strong/weak duality. Instead of (4.18), we use11

S = 1
2π

∫
d2w

G(3)
ij

2 ∂φi∂̄φj − ∂ϕ∂̄ϕ− ∂χ∂χ+ 1
4
√
gR

(
Qφ(φ1 + φ2)−Qϕϕ

)
+ λ

∫
d2w

[
eφ1/b(3) + eφ2/b(3)

]
, (4.20)

where b(3) in the interaction terms is replaced by 1/b(3).
Secondly, we treat the vertex operators inserted at w = yip as interaction terms.

Namely, we express the correlation function as〈
N∏
ν=1

Ψν(zν)
〉

=
〈

N∏
ν=1
Vν(zν)

〉
, Vν(zν) = Ṽν(zν)V ϕ,χ

lν−b−2
(2);m

ν ,m̄ν
(zν) . (4.21)

The action for the right hand side is now

S = 1
2π

∫
d2w

G(3)
ij

2 ∂φi∂̄φj − ∂ϕ∂̄ϕ− ∂χ∂χ+ 1
4
√
gR

(
Qφ(φ1 + φ2)−Qϕϕ

)
+ λ

∫
d2w

4∑
i=1

Vi

(4.22)

with four interaction terms

V1 = eφ1/b(3) , V2 = eφ2/b(3) ,

V3 = e−φ
1/b(3)+ϕ/b(2)+

√
k
3χ , V4 = e−φ

2/b(3)+ϕ/b(2)−
√

k
3χ .

(4.23)

In this way, we can relate the N -point function of the coset model (3.1) with the N -point
function of a theory with the action (4.22).

11The coefficient λ in front of the interaction terms can be set arbitrary by shifting φi. This also shifts
the overall normalization of vertex operators, which are neglected thorough this paper. Other coefficients
in interaction terms appearing below will be set in similar ways.
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Finally, we rewrite the action (4.22) such that the interaction terms (4.23) become the
same as the screening charges in (2.17). For this, we change the fields as

(k − 3)φ1 + (k − 2)φ2 −
2

b(2)b(3)
ϕ→ φ1 ,

(k − 2)φ1 + (k − 3)φ2 −
2

b(2)b(3)
ϕ→ φ2 ,

1
b(2)b(3)

(φ1 + φ2)− (2k − 5)ϕ→ ϕ .

(4.24)

Under these changes, the action (4.22) becomes

S = 1
2π

∫
d2w

G(3)
ij

2 ∂φi∂̄φj − ∂ϕ∂̄ϕ− ∂χ∂χ+ 1
4
√
gR

(
b(3)(φ1 + φ2)− b(2)ϕ

)
+ λ

∫
d2w

4∑
i=1

Vi

(4.25)

with interaction terms

V1 = e
((k−3)φ1+(k−2)φ2− 2

b(3)b(2)
ϕ)/b(3)

, V2 = e
((k−2)φ1+(k−3)φ2− 2

b(3)b(2)
ϕ)/b(3)

,

V3 = eφ
1/b(3)−ϕ/b(2)+

√
k
3χ , V4 = eφ

2/b(3)−ϕ/b(2)−
√

k
3χ .

(4.26)

They are still different from the screening charges in (2.17). For the original FZZ-
duality, reflection relations are applied to interaction terms in order to obtain the sine-
Liouville theory with (1.2). We would like to act reflections also in the current case. Let
us focus on a combination of interaction terms

V3V4 ∼ e2φ/b(3)−2ϕ/b(2) ≡ e−2iφ′ . (4.27)

Here we set
φ = 1

2(φ1 + φ2) , φ⊥ = 1
2
√

3
(φ1 − φ2) ,

φ′ = i

b(3)
φ− i

b(2)
ϕ , ϕ′ = i

b(2)
φ− i

b(3)
ϕ .

(4.28)

The background charges for φ′ and ϕ′ are

Qφ′ = i , Qϕ′ = 2i
b(3)
b(2)
− i

b(2)
b(3)

. (4.29)

The vertex operator of the form Vα = e2αφ′ satisfies a reflection relation due to the inter-
action term (4.27) as Vα = R(α)Vi−α. Using the reflection relation, the vertex operator
Vν = ṼνV

ϕ,χ

lν−b−2
(2);mν ,m̄ν

in (4.21) can be replaced by12

Vν(zν) = eb(3)(jν2φ1+jν1φ2)e2b(2)l
νϕ+2

√
3
k

(mνχL+m̄νχR) . (4.30)
12If we use the reflection relation, then we need to insert the factor R(α). In this paper, we neglect it

since it can be removed by changing the overall factor.
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In a similar way, the interactions V1, V2 in (4.26) are replaced by V1 = e−φ1/b(3)+2ϕ/b(2) , V2 =
e−φ2/b(3)+2ϕ/b(2) with the reflection relation. Further acting the reflections by V3 and V4,
respectively, the interaction terms become

Ṽ1 = V3 = eφ
1/b(3)−ϕ/b(2)+

√
k
3χ ,

Ṽ2 = V2 = e(φ1−φ2)/b(3)+ϕ/b(2)−
√

k
3χ ,

Ṽ3 = V1 = e(φ2−φ1)/b(3)+ϕ/b(2)+
√

k
3χ ,

Ṽ4 = V4 = eφ
2/b(3)−ϕ/b(2)−

√
k
3χ .

(4.31)

They are the same as the screening operators in (2.17) with N = 2 as desired.13

We can explicitly check that the dual theory has the same symmetry algebra as that
of the coset model (3.1). The symmetry generators of the theory are written by the four
fields (φ1, φ2, ϕ, χ) and their OPEs with Ṽi should be given by total derivatives. There are
no spin-one currents satisfying these conditions. We find a spin-two current, which is the
energy-momentum tensor,

T = −1
2G

(3)
ij ∂φ

i∂φj + b(3)∂
2(φ1 + φ2) + ∂ϕ∂ϕ− b(2)∂

2ϕ+ ∂χ∂χ . (4.32)

Its central charge reproduces (1.4) with N = 2. In a similar way, we find a spin-three
current and a spin-four current. The ratio of OPE coefficients in (2.6) reproduces (2.8)
with N = 2.

5 A higher rank generalization

In the previous sections, we have examined the coset model (1.3) with N = 2 and its
duality. In this section, we extend the analysis for the coset (1.3) with N = 3,

sl(4)k
sl(3)k × u(1) . (5.1)

In the N = 2 case, the reduction procedure itself was rather straightforward. Namely, we
just integrated the ghost sector and performed the shifts of other fields. It turns out that
the situation is more complicate for a higher rank case. A main point of [33] was to utilize
a map between different free field realizations for same non-regular W-algebra, and the
same technique is needed for the current case as we explain in this section.

5.1 First order formulation of coset model

As in the previous case, we start by finding out a first order formulation of the coset model.
For this, we first express the sl(4) current algebra in terms of free fields and then consider

13It might be convenient to redefine X̃ = X̃L−X̃R = −i(χL+χR) in order to compare with the interaction
terms of sine-Liouville theory in (1.2). Here we choose to use χL, χR to make the sl(N + 1|N) structure
clearer.
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the subsector orthogonal to the denominator algebra of the coset (5.1). We use the action
of sl(4) WZNW model in the first order formulation,

S = 1
2π

∫
d2w

G(4)
ij

2 ∂φi∂̄φj +
b(4)
4
√
gR

3∑
i=1

φi +
6∑

α=1
(βα∂̄γα + β̄α∂γ̄α)


− 1

2πk

∫
d2w

[
eb(4)φ1 |β1|2 + eb(4)φ2 |β2 − γ1β4|2 + eb(4)φ3 |β3 − γ2β5 − γ4β6|2

]
,

(5.2)

see, e.g., (5.2) of [33]. Here we set b(4) = 1/
√
k − 4 as in (2.18) with a = 4 and use

G
(4)
ij =

 2 −1 0
−1 2 −1
0 −1 2

 , G(4)ij =

3/4 1/2 1/4
1/2 1 1/2
1/4 1/2 3/4

 . (5.3)

Among the sl(4) currents, the Cartan directions are generated by

h1 = b−1
(4)∂φ1 + 2γ1β1 − γ2β2 + γ4β4 − γ5β5 + γ6β6 ,

h2 = b−1
(4)∂φ2 − γ1β1 + 2γ2β2 − γ3β3 + γ4β4 + γ5β5 ,

h3 = b−1
(4)∂φ3 − γ2β2 + 2γ3β3 − γ4β4 + γ5β5 + γ6β6 .

(5.4)

In order to construct the coset theory, we identify the generators of sl(3) subalgebra
with

ê1 = β4 − γ3β6 , ê2 = β3 , ê3 = β6 , ĥ1 = h1 + h2 , ĥ2 = h3 . (5.5)

The other generators f̂1, f̂2, f̂3 can be constructed from the above generators. The gener-
ator of u(1) subalgebra is

ĥ′ = h1 − 2h2 − h3 . (5.6)

We introduce new fields by

b−1
(3)∂ϕ̂1 = b−1

(4)(∂φ1 + ∂φ2) + γ1β1 + γ2β2 ,

b−1
(3)∂ϕ̂2 = b−1

(4)∂φ3 − γ2β2 + γ5β5 ,

2
√

6k∂χ̂ = b−1
(4)(∂φ1 − 2∂φ2 − ∂φ3) + 4(γ1β1 − γ2β2 − γ5β5) .

(5.7)

We then consider the subspace orthogonal to ϕ̂1, ϕ̂2, χ̂ and neglect the ghost systems
(γα, βα) with α = 3, 4, 6.

Introducing new fields ϕ1, ϕ2, χ to cancel the contributions from ϕ̂1, ϕ̂2, χ̂, the action
of the coset theory is given by

S = 1
2π

∫
d2w

G(4)
ij

2 ∂φi∂̄φj −
G

(3)
ij

2 ∂ϕi∂̄ϕj − ∂χ∂̄χ


+ 1

2π

∫
d2w

1
4
√
gR

(
b(4)

3∑
i=1

φi − b(3)

2∑
i=1

ϕi
)

+
∑

α=1,2,5
(βα∂̄γα + β̄α∂γ̄α)


− 1

2πk

∫
d2w

[
eb(4)φ1 |β1|2 + eb(4)φ2 |β2|2 + eb(4)φ3 |γ2β5|2

]
.

(5.8)
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Here one may notice that an interaction term depends on γ2, γ̄2, which makes difficult to
integrate β2, β̄2 out. The vertex operators are of the form

Ψ(z) =

 ∏
α=1,2,5

γrαα γ̄
r̄α
α

 eb(4)(j1φ1+j2φ2+j3φ3)eb(3)(l1ϕ1+l2ϕ2)+2
√

6
k

(mχL+m̄χR) (5.9)

with

r1 = −j1 − l1 −m, r2 = −j2 + j3 − l1 + l2 +m, r5 = −j3 − l2 +m (5.10)

and similarly for r̄1, r̄2, r̄5.
The spectral flow operator v{Si}(ξ) can be constructed as explained in subsection 3.3.

In the current case, there are three parameters Si with i = 1, 2, 3. Here we choose the pa-
rameters such that βα with α = 1, 2, 5 have zeros of order Si with i = 1, 2, 3, respectively, at
w = ξ after the insertion of the operator. Along with them, there are similar requirements
for βα (α = 3, 4, 6). It induces the insertion of e

∑3
i=1 Siφ

i/b(4)(ξ) at the same time.

5.2 Reduction from coset theory

We compute the correlation functions of coset theory with vertex operators of the
form (5.9). It is convenient to express them as

Ψν(zν) =
∫
d2µν2
|µν2 |2

(µν2)−rν2 (µ̄ν2)−r̄ν2 Ψ̃ν(zν) , (5.11)

Ψ̃ν(zν) = Φν(zν)V ϕ1,ϕ2,χ
lν1 ,l

ν
2 ;mν ,m̄ν (zν) (5.12)

with rν2 as in (5.10). Here we have defined Φν(zν) as

Φν(zν) =
∫
d2µν1d

2µν5
|µν1 |2|µν5 |2

(µν1)lν1+mν (µ̄ν1)lν1+m̄ν (µν5)lν2−mν (µ̄ν5)lν2−m̄νVν(zν) , (5.13)

Vν(zν) = |µν1 |2j
ν
1 |µν5 |2j

ν
3 e
∑

α=1,2,5(µναγα−µ̄ναγ̄α)
eb(4)(jν1φ1+jν2φ2+jν3φ3)(zν) , (5.14)

and V ϕ1,ϕ2,χ
lν1 ,l

ν
2 ;mν ,m̄ν (zν) as

V ϕ1,ϕ2,χ
lν1 ,l

ν
2 ;mν ,m̄ν (zν) = eb(3)(lν1ϕ1+lν2ϕ2)+2

√
6
k

(mνχL+m̄νχR) . (5.15)

We first focus on the part of sl(4) WZNW model. The vertex operators do not have
any dependence on γ3, γ4, γ6, which means that we can set βα = 0 with α = 3, 4, 6. We
would like to perform the reduction procedure by integrating out (γα, βα) with α = 1, 2, 5.
However, as noticed above, it is difficult to do so for (γ2, β2) because of the existence of
γ2 in an interaction term of (5.8). In this subsection, we only consider the correlation
functions of Ψ̃ν(zν) in (5.12). We will later perform the integration over (γ2, β2).

We thus start from the correlation functions of sl(4) WZNW model in the form of〈
N∏
ν=1

Vν(zν)v{Sj}(ξ)
〉

=
∫
Sj ,ξ

[ 3∏
i=1
Dφi

] ∏
α=1,2,5

D2βαD2γα

 e−S N∏
ν=1

Vν(zν)e
∑3

i=1 Siφ
i/b(4)(ξ) ,

(5.16)
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where S denotes the action of sl(4) WZNW model in (5.2) with βα = 0 (α = 3, 4, 6). We
integrate out γi, βi (i = 1, 5) and keep γ2, β2 as it is for a while. We also set S2 = 0. Taking
care of the insertion of v{Sj}(ξ), we find that β1, β5 are replaced by functions as

β1(w) = −
N∑
ν=1

µν1
w − zν

= −u1
(w − ξ)S1

∏N−2−S1
p=1 (w − y1

p)∏N
ν=1(w − zν)

≡ −u1B1(w; zν , y1
p) ,

β5(w) = −
N∑
ν=1

µν5
w − zν

= −u3
(w − ξ)S3

∏N−2−S3
p=1 (w − y3

p)∏N
ν=1(w − zν)

≡ −u3B3(w; zν , y3
p) .

(5.17)

There are also constraints as
N∑
ν=1

µν1
(ξ − zν)n = 0 (n = 0, 1, . . . , S1) ,

N∑
ν=1

µν5
(ξ − zν)n = 0 (n = 0, 1, . . . , S3) .

(5.18)

As before, we remove functions in interaction terms by shifting fields as

φ1 + 1
b(4)

ln |u1B1| → φ1 , φ3 + 1
b(4)

ln |u3B3| → φ3 . (5.19)

There are several contributions from the kinetic terms in particular and the correlation
function (5.16) becomes〈

N∏
ν=1

Vν(zν)v{Sj}(ξ)
〉

= |ΘN |2
S1∏
n=0

δ(2)
(

N∑
ν=1

µν1
(ξ − zν)n

)
S3∏
n=0

δ(2)
(

N∑
ν=1

µν5
(ξ − zν)n

)

×
〈

N∏
ν=1

Ṽν(zν)
N−2−S1∏
p=1

Ṽb(y1
p)

N−2−S3∏
p=1

Ṽb(y3
p)
〉
.

(5.20)

The right hand side is evaluated with the action

S = 1
2π

∫
d2w

G(4)
ij

2 ∂φi∂̄φj + 1
4
√
gR((b(4) + b−1

(4))(φ
1 + φ3) + b(4)φ

2)


+ 1

2π

∫
d2w

[
β2∂̄γ2 + β̄2∂γ̄2 + 1

k

(
eb(4)φ1 − eb(4)φ2 |β2|2 + eb(4)φ3 |γ2|2

)]
.

(5.21)

The vertex operators are modified as

Ṽν(zν) = eµ
ν
2γ2−µ̄ν2 γ̄2eb(4)(jν1φ1+jν2φ2+jν3φ3)+(φ1+φ3)/b(4) (5.22)

and the inserted vertex operators are

Ṽb(y1
p) = e−φ

1/b(4) , Ṽb(y3
p) = e−φ

3/b(4) . (5.23)

The pre-factor is computed as

ΘN = u

3− 3S1+S3
4b2(4)

1 u

3−S1+3S3
4b2(4)

3 (5.24)

×

 ∏
ν<ν′

zνν′

 2
b2(4)

[∏
p,ν

(zν − y1
p)(zν − y3

p)
]− 1

b2(4)

∏
p,p′

(y1
p − y3

p′)

 1
4b2(4)

∏
p<p′

y1
pp′y

3
pp′

 3
4b2(4)

.
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We then apply the analysis to our coset theory with the action (5.8) and the vertex
operators of the form (5.12). For the coset correlation function, we may insert an identity
operator

1 = v{Sj}(ξ)e−(S1ϕ1+S3ϕ2)/b(3)(ξ)e−(S1−S3)
√

k
6 (χL+χR)(ξ) . (5.25)

Applying the reduction produce for the part of sl(4) WZNW model, the parameters µν1 , µν5
are mapped to y1

p, y
3
p. We further shift ϕ1, ϕ2, χ as

ϕ1 + 1
b(3)

ln |u1B1|2→ϕ1 , ϕ2 + 1
b(3)

ln |u3B3|2→ϕ2 , (5.26)

χL+ 1
2

√
k

6 [ln(u1B1)− ln(u3B3)]→χL , χR+ 1
2

√
k

6
[
ln(ū1B̄1)− ln(ū3B̄3)

]
→χR

in order to remove u1Bν1 , u1Bν5 appearing in (5.12) with (5.13). The correlation function is
now expressed as 〈

N∏
ν=1

Ψ̃ν(zν)
〉

=
〈

N∏
ν=1

Ṽν(zν)V ϕ1,ϕ2,χ

lν1−b
−2
(3),l

ν
2−b

−2
(3);m

ν ,m̄ν
(zν)

〉
. (5.27)

The right hand side is evaluated with the action

S = 1
2π

∫
d2w

G(4)
ij

2 ∂φi∂̄φj −
G

(3)
ij

2 ∂ϕi∂̄ϕj − ∂χ∂̄χ


+ 1

2π

∫
d2w

[
1
4
√
gR

( 3∑
i=1

Qφ,iφ
i −

2∑
i=1

Qϕ,iϕ
i

)
+ β2∂̄γ2 + β̄2∂γ̄2

]

+ 1
2π

∫
d2w

[1
k

(
eb(4)φ1 − eb(4)φ2 |β2|2 + eb(4)φ3 |γ2|2

)
+ 2πλ(V1 + V2)

]
,

(5.28)

where

Qφ,1 = Qφ,3 = b(4) + 1
b(4)

, Qφ,2 = b(4) , Qϕ,1 = Qϕ,2 = b(3) + 1
b(3)

(5.29)

and

V1 = e−φ
1/b(4)+ϕ1/b(3)+

√
k
6 (χL+χR) , V2 = e−φ

3/b(4)+ϕ2/b(3)−
√

k
6 (χL+χR) . (5.30)

In order to obtain (5.27), we have regarded the vertex operators inserted at w = y1
p, y

3
p as

interaction terms as before.

5.3 Interpretation as extended BP-theory

As mentioned above, we have to deal with γ2 in an interaction term of the action (5.28) in
order to go furthermore. We would like to apply the technique developed in [33]. For this,
it is convenient to make a change of variables as

x = φ1 + 2
3φ2 + 1

3φ3 , x1 = φ2 , x2 = φ3 . (5.31)
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The action is now

S = 1
2π

∫
d2w

3
8∂x∂̄x+

G
(3)
ij

2 ∂xi∂̄xj −
G

(3)
ij

2 ∂ϕi∂̄ϕj − ∂χ∂̄χ


+ 1

2π

∫
d2w

[
1
4
√
gR

(
Qxx+

2∑
i=1

Qx,ix
i −

2∑
i=1

Qϕ,iϕ
i

)
+ β2∂̄γ2 + β̄2∂γ̄2

]

+ 1
2π

∫
d2w

[
1
k

(
−eb(4)x1 |β2|2 + eb(4)x2 |γ2|2

)
+ 2πλ

2∑
i=0

Vi

]
.

(5.32)

The background charges are

Qx = 3
2b(4) + 1

b(4)
, Qx,1 = b(4) , Qx,2 = b(4) + 1

b(4)
,

Qϕ,1 = Qϕ,2 = b(3) + 1
b(3)

,
(5.33)

and the interaction terms are

V0 = e(x− 2
3x1− 1

3x2)/b(4) ,

V1 = e−
3
4x/b(4)+ϕ1/b(3)+

√
k
6 (χL+χR) ,

V2 = e−( 1
4x+ 1

3x1+ 2
3x2)/b(4)+ϕ2/b(3)−

√
k
6 (χL+χR) .

(5.34)

We would like to evaluate correlation functions of the vertex operators of the
form (5.11). From the relation of correlation functions (5.27) and the change of vari-
ables (5.31), the vertex operators are now given by

Ψ′ν(zν) =
∫
d2µν2
|µν2 |2

(µν2)−rν2 (µ̄ν2)−r̄ν2 Ṽν(zν)V ϕ1,ϕ2,χ

lν1−b
−2
(3),l

ν
2−b

−2
(3);m

ν ,m̄ν
(zν) (5.35)

with

Ṽν(zν) = eµ
ν
2γ2−µ̄ν2 γ̄2e

(b(4)j
ν
1 + 1

b(4)
)x+(b(4)(jν2−

2
3 j
ν
1 )+ 1

3b(4)
)x1+(b(4)(jν3−

1
3 j
ν
1 )+ 2

3b(4)
)x2

. (5.36)

As seen in appendix B, the first two interaction terms in the action (5.32) correspond
to screening operators of BP-algebra in a free field realization. Following [33], we shall
remove the γ2-dependence of interaction term by exchanging the free field realizations of
BP-algebra.

For V0, we have used the self-duality with respect to a Liouville field, which may require
explanation. Let us go back to the action (5.28) and perform the change of variables as

φ′1 = 1
2φ1 , φ′2 = 1

2φ1 + φ2 , φ′3 = φ3 . (5.37)

Then the new field φ′1 does not have any non-trivial OPEs with the other new fields and its
background charge is Q = b(4) + b−1

(4). The term e2b(4)φ
′
1 can be regarded as the interaction

term of Liouville field theory with φ′1. Therefore, applying the self-duality of the Liouville
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field theory, the interaction term can be replaced by e2φ′1/b(4) . Going back to the original
fields φi and applying the change of variables in (5.31), we arrive at the expression with V0
in (5.34).

We shall treat the theory with the action (5.32) as an extension of the theory with
BP-algebra symmetry. The action of the BP-theory is

S = 1
2π

∫
d2w

G(3)
ij

2 ∂xi∂̄xj + 1
4
√
gR

2∑
i=1

Qx,ix
i


− λ

∫
d2w

[
eb(4)x1 |β2|2 − eb(4)x2 |γ2|2

]
,

(5.38)

where Qx,1, Qx,2 are given in (5.33). The interaction terms correspond to screening
charges (B.4) in a free field realization of BP-algebra. In particular, the spin-one cur-
rent for the BP-algebra is written in terms of free fields as

H = 1
b(4)

(∂x2 − ∂x1)− γ2β2 , (5.39)

see (B.5). We would like to move to the theory corresponding to the other free field
realization of BP-algebra. From the expression of screening operators in (B.6), the action
should be given by

S = 1
2π

∫
d2w

G(3)
ij

2 ∂xi∂̄xj + 1
4
√
gR

2∑
i=1

Qx,ix
i


− λ

∫
d2w

[
eb(4)x1 |β2|2 − eb(4)x2

]
.

(5.40)

In this case, the spin-one current for the BP-algebra is expressed as

H = 1
b(4)

∂x1 + γ2β2 , (5.41)

see (B.7).
In order to move from one description with (5.38) to the other one with (5.40), we

should change the vertex operators such as to behave in the same way under the action of
BP-algebra generators. In the current analysis, we neglect overall factors, so it is enough
to have the same charge with respect to the spin-one current H. For more details, see
appendix B and [33]. For V1 and V2, we can use the same vertex operators since they have
the same H-charge for the both descriptions. For V0 and Ψ′ν , we should replace them by

V ′0 =
∫
d2µ2
|µ2|2

|µ2|
− 2

3b2(4) eµ2γ2−µ̄2γ̄2e(x− 2
3x1− 1

3x2)/b(4) , (5.42)

Ψ′′ν(zν) =
∫
d2µν2
|µν2 |2

(µν2)−r̃ν2 (µ̄ν2)−¯̃rν2 Ṽν(zν)V ϕ1,ϕ2,χ

lν1−b
−2
(3),l

ν
2−b

−2
(3);m

ν ,m̄ν
(zν) (5.43)

with
r̃ν2 = lν1 − lν2 −mν + jν1 − jν2 , ¯̃rν2 = lν1 − lν2 − m̄ν + jν1 − jν2 (5.44)

in order to have the same H-charges after the change of description.
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5.4 Reduction from extended BP-theory

Now we can use the action, where the interaction terms do not depend on γ2. Thus,
we can integrate (γ2, β2) out and apply the reduction procedure. During the change of
description, one of the interaction terms, V0, is replaced by V ′0 in (5.42), which has now
γ2-dependence. We are implicitly treating the interaction term V ′0 in a perturbative way.
Namely, we insert vertex operators at w = zν and integrate over µν2 , where we have set
ν = n + 1, n + 2, . . . , n + s. The theory may be regarded as a theory with BP-algebra
symmetry but gauged by its u(1) subalgebra generated by H. For the vertex operators at
w = zν , the H-charge is canceled by the one generated by

Ĥ = 1
4b(4)

∂x− 1
b(3)

(∂ϕ1 − ∂ϕ2) +

√
k

6∂χL . (5.45)

With the interpretation, an identity operator may be represented as

1 = vS2(ξ)e−S2x/(4b(4))(ξ)eS2(ϕ1−ϕ2)/b(3)(ξ)e−S2
√

k
6 (χL+χR)(ξ) . (5.46)

Here vS2(ξ) induces the insertion of eS2x1/b(4)(ξ) and puts a restriction on the domain of
integration over β2 such as to have a zero of order S2 at w = ξ.

Integration over γ2, β2 leads to the replacement

β2(w) = −
N+s∑
ν=1

µν2
w − zν

= −u2
(w − ξ)S2

∏N+s−2−S2
p=1 (w − y2

p)∏N+s
ν=1 (w − zν)

≡ −u2B(w; zν , y2
p) (5.47)

subject to the constraints
N+s∑
ν=1

µν2
(ξ − zν)n = 0 (5.48)

for n = 0, 1, . . . , S2. We then perform the shifts of fields as

x1 + 1
b(4)

ln |u2B2|2 → x1 , x− 1
3b(4)

ln |u2B2|2 → x ,

ϕ1 −
1
b(3)

ln |u2B2|2 → ϕ1 , ϕ2 + 1
b(3)

ln |u2B2|2 → ϕ2 ,

χL + 1
2

√
k

6 ln(u2B2)→ χL , χR + 1
2

√
k

6 ln(ū2B̄2)→ χR .

(5.49)

The correlation function is now summarized as〈
N∏
ν=1

Ψν(zν)
〉

=
〈

N∏
ν=1
Vν(zν)

〉
, (5.50)

where the action for the right hand side is

S = 1
2π

∫
d2w

3
8∂x∂̄x+

G
(3)
ij

2 ∂xi∂̄xj −
G

(3)
ij

2 ∂ϕi∂̄ϕj − ∂χ∂̄χ

 (5.51)

+ 1
2π

∫
d2w

[
1
4
√
gR

(
Qxx+

2∑
i=1

Qx,ix
i −

2∑
i=1

Qϕ,iϕ
i −Qχχ

)
+ 2πλ

6∑
i=1

Vi

]
.
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The background charges are

Qx =
3b(4)

2 + 3
4b(4)

, Qx,1 = b(4) + 1
b(4)

, Qx,2 = b(4) + 1
b(4)

,

Qϕ,1 = b(3) , Qϕ,2 = b(3) + 2
b(3)

, Qχ =

√
k

6

(5.52)

and the interaction terms are

V1 = e−
3
4x/b(4)+ϕ1/b(3)+

√
k
6 (χL+χR) ,

V2 = e−( 1
4x+ 1

3x1+ 2
3x2)/b(4)+ϕ2/b(3)−

√
k
6 (χL+χR) ,

V3 = V ′0 = e
3
4x/b(4)+ϕ1/b(3)−ϕ2/b(3)−

√
k
6 (χL+χR) ,

V4 = ex1/b(4) ,

V5 = ex2/b(4) ,

V6 = e( 1
4x−

2
3x1− 1

3x2)/b(4)−ϕ1/b(3)+ϕ2/b(3)+
√

k
6 (χL+χR) .

(5.53)

Here we have put V ′0 back to the action. For V4, V5, we have used the self-duality of sl(3)
Toda field theory. The vertex operators are now of the form

Vν(zν) = e
(b(4)j

ν
1 + 3

4b(4)
)x+(b(4)(jν2−

2
3 j
ν
1 )+ 1

b(4)
)x1+(b(4)(jν3−

1
3 j
ν
1 )+ 1

b(4)
)x2

× e
b(3)((lν1−

2
3b2(3)

)ϕ1+(lν2−
4

3b2(3)
)ϕ2)+2

√
6
k

((mν− k
12 )χL+(m̄ν− k

12 )χR)
.

(5.54)

In order to make the interaction terms to be of the form (2.17), we rotate fields and
perform reflections as in the N = 2 case. We first move from (x, x1, x2) to (φ1, φ2, φ3)
by (5.31) and then perform the rotations of fields as

(k − 4)φ1 + (k − 4)φ2 + (k − 3)φ3 −
1

b(3)b(4)
(ϕ1 + ϕ2)→ φ1 ,

(
2− k

2

)
φ1 + (k − 3)φ2 +

(
k

2 − 2
)
φ3 + 2

3b(3)b(4)
(ϕ1 − ϕ2)−

√
2k
3

1
b(4)

χ→ φ2 ,

(3k
2 − 5

)
φ1 +

(
k

2 − 2
)
φ3 −

1
3b(3)b(4)

(5ϕ1 + ϕ2) +

√
2k
3

1
b(4)

χ→ φ3 , (5.55)

1
b(3)b(4)

(1
2φ1 + 2φ2 + 2

3φ3

)
+
(

1− k

3

)
ϕ1 +

(
6− 5k

3

)
ϕ2 −

√
2k
3

1
b(3)

χ→ ϕ1 ,

1
2b(3)b(4)

(3φ1 + φ3) +
(

6− 5k
3

)
ϕ1 +

(
1− k

3

)
ϕ2 +

√
2k
3

1
b(3)

χ→ ϕ2 ,

−

√
k

6
1

4b(4)
(φ1 − 2φ2 − φ3) +

√
k

6
1

3b(3)
(ϕ1 − ϕ2) +

(
1− k

6

)
χ→ χ .
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The action is now

S = 1
2π

∫
d2w

G(4)
ij

2 ∂φi∂̄φj −
G

(3)
ij

2 ∂ϕi∂̄ϕj − ∂χ∂̄χ


+ 1

2π

∫
d2w

[
1
4
√
gR

( 3∑
i=1

b(4)φ
i −

2∑
i=1

b(3)ϕ
i

)
+ 2πλ

6∑
i=1

Ṽi

] (5.56)

with interaction terms

Ṽ1 = V1 = eφ
1/b(4)−ϕ1/b(3)+

√
k
6 (χL+χR) ,

Ṽ2 = e(φ1−φ2)/b(4)+ϕ1/b(3)−
√

k
6 (χL+χR) ,

Ṽ3 = e(φ2−φ1)/b(4)+(ϕ1−ϕ2)/b(3)+
√

k
6 (χL+χR) ,

Ṽ4 = V6 = e(φ2−φ3)/b(4)+(ϕ2−ϕ1)/b(3)−
√

k
6 (χL+χR) ,

Ṽ5 = e(φ3−φ2)/b(4)+ϕ2/b(3)+
√

k
6 (χL+χR) ,

Ṽ6 = V2 = eφ
3/b(4)−ϕ2/b(3)−

√
k
6 (χL+χR) .

(5.57)

Here Ṽ2, Ṽ3, Ṽ5 are obtained from V5, V4, V3, respectively, by performing certain reflection
relations as before. This form of interaction terms is the same as that in (2.17) as desired.
Similarly, the vertex operators can be put in a nice form as

Vν(zν) = eb(4)(jν3φ1+jν2φ2+jν1φ3)+b(3)(lν2ϕ1+lν1ϕ2)+2
√

6
k

(mνχL+m̄νχR) (5.58)

by applying a sequence of reflection relations.

6 Conclusion and discussions

In this paper, we generalized the FZZ-duality by replacing (1.1) with a higher rank
coset (1.3). A proof of the original FZZ-duality was given by applying the reduction
method of [27]. For the higher rank generalizations, we made use of an extended version of
the reduction method recently developed in [33]. We first find out an free field realization
of the coset algebra by following the analysis of [39, 40]. We then applied the reduction
method to the coset model for N = 2, 3 and derived the higher rank FZZ-duality between
the coset model and the theory with an sl(N + 1|N) structure. For the N = 3 case, we
adopted a technique of [33] by exchanging the free field realizations of BP-algebra. During
the process, we applied the self-duality of Toda field theory, which was the key point to
derive strong/weak dualities.

The theory dual to the coset model (1.3) with generic N should be given by

S = 1
2π

∫
d2w

G(N+1)
ij

2 ∂φi∂̄φj −
G

(N)
ij

2 ∂ϕi∂̄ϕj − ∂χ∂̄χ


+ 1

2π

∫
d2w

1
4
√
gR

 N∑
j=1

b(N+1)φ
j −

N−1∑
j=1

b(N)ϕ
j

+ 2πλ
2N∑
l=1

Vl

 ,
(6.1)
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where the interaction terms are as in (2.17). We can see that the theory reduces to the
one obtained in this paper for N = 2, 3 (and also the sine-Liouville theory for N = 1 if we
use X̃ = X̃L− X̃R = −i(χL +χR)). It is an important open problem to give a proof of the
higher rank FZZ-dualities. We expect that a generalized version of the technique utilized
for N = 3 is necessary in order to achieve this.

We would like to consider the following open problems and future directions. Firstly,
we have not discussed the spectra of coset theories and, for instance, we have not specified
the regions for the parameters appearing in (3.14). The information was not used for the
comparison of correlation functions. However, the problem of spectra itself is quite impor-
tant, and in particular, we would like to know whether unitary theories can be constructed
from the coset theories or not. Furthermore, our construction of coset theories may not be
well formulated as discussed in footnotes 5 and 6. We would like to derive our expressions of
coset theories as gauge fixed forms of gauged WZNW models. In [26], the correspondence
among correlation functions was derived even including all pre-factors. It might be useful
to give a derivation of duality with keeping all pre-factors in the current case as well. A
non-trivial point may arise from the map between the free field realizations of BP-algebra.
We would like to examine the theory with BP-algebra symmetry furthermore in order to
understand the map more closely.

In appendix A, we discuss an N = 2 supersymmetric version of our duality. We would
like to extend the current analysis to the supersymmetric case as mentioned in the introduc-
tion. The duality might be derived by following the analysis of [51], where the N = 2 super-
symmetric version of the original FZZ-duality was proven as a mirror symmetry. This ver-
sion of duality was utilized to examine singular Calabi-Yau geometry [52, 53], and its higher
rank generalizations may be useful for similar purposes. In this paper, we have examined
correlation functions only on a Riemann sphere. On the other hand, the FZZ-duality was
extended for higher genus Riemann surfaces in [26]. Similar extensions would be straight-
forward even for higher rank cases. Moreover, the FZZ-duality was generalized for the
worldsheet of disk topology in [54]. However, it seems to be difficult to extend the analysis
for higher rank cases, since we do not know much about boundary Toda-like field theories.

Our results can be viewed as a conformal field theoretic version of special cases of
duality of YN1,N2,N3-algebras where the first two labels are interchanged. These algebras
however enjoy a triality and it is of course desirable to get a conformal field theoretic
derivation of the complete triality at least in certain low rank cases. We aim to address
this issue in future work.

An important and quite complicated open question are dualities involving the small
and large N = 4 superconformal algebras. Note that the small and large N = 4 super-
conformal algebras coincide with certain cosets involving d(2, 1;α) (and psl(2|2)) at level
one [55] and the question is if one can derive N = 4 superconformal field theories from
WZNW theories of d(2, 1;α) (and psl(2|2)) at level one. This is relevant for the AdS/CFT
correspondence which is a an interesting example of strong/weak duality, namely string
theory on strongly curved AdS space corresponds to weakly coupled CFT. Recently, it
was argued that “tensionless” superstrings on AdS3×S3×T4 with one unit of NSNS-flux is
dual to the undeformed symmetric orbifold of T4, see, e.g., [56–58]. The match of correla-
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tion functions was confirmed recently in [59–62], and, in particular, the reduction method
of [26, 27] from sl(2) WZNW model to Liouville field theory was utilized in [61]. Some mod-
ifications of the higher rank generalizations developed in [33] and this paper might be useful
for investigating the AdS/CFT correspondence involving higher dimensional AdS strings.
Higher spin gravity may be able to describe (a part of) tensionless strings. The analysis in
this paper would be useful to study CFT dual to higher spin gravity as mentioned in the
introduction. Making use of higher spin holography with N = 4 supersymmetry [63, 64]
or N = 3 supersymmetry [8, 65, 66], we would like to examine possible relations between
superstrings and higher spin gravity.
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A Supersymmetric dualities

In this appendix, we explain an N = 2 supersymmetric version of our higher rank dualities.
We consider the Kazama-Suzuki model [67, 68] of the form

sl(N + 1)k × so(2N)1
sl(N)k−1 × u(1) , (A.1)

which can be regarded as the N = 2 supersymmetric extension of the coset model (1.3).
The symmetry of the coset model is believed to be the N = 2 WN+1-algebra [22, 23]. From
this, we can expect that the coset model (A.1) is dual to the sl(N + 1|N) Toda field theory
with the same symmetry algebra. In the following, we provide screening charges for the
N = 2 WN+1-algebra, which correspond to interaction terms of the Toda field theory.

We can choose a purely odd simple root system for sl(N + 1|N) Lie superalgebra.
We may introduce two orthogonal bases εj (j = 1, 2, . . . , N + 1) and δj (j = 1, 2, . . . , N)
satisfying

εi · εj = δi,j , δi · δj = −δi,j . (A.2)
The odd simple roots are expressed as

α2j−1 = εj − δj , α2j = δj − εj+1 (A.3)

with j = 1, 2, . . . , N .
We introduce free bosons xa and free fermions ψa satisfying

xa(z)xb(0) ∼ −δa,b ln z , ψa(z)ψb(0) ∼ δa,b
z
. (A.4)

There are background charges for the bosonic fields such that screening charges are of
dimension one. We prepare xa, ψa with a, b = 1, 2, . . . , 2N + 1 but a pair of certain combi-
nation decouples at the end. Screening operators are now expressed as [22, 23]

Vl = αl · ψeαl·x/b(N+1) (A.5)

with l = 1, 2, . . . , 2N and b(N+1) given in (2.18) with a = N + 1.
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We may redefine the bosonic fields by

φi = (εi − εi+1) · x (i = 1, 2, . . . , N) ,
ϕi = (δi − δi+1) · x (i = 1, 2, . . . , N − 1) ,

χ = 1
N + 1

N+1∑
i=1

εi · x−
1
N

N∑
i=1

δi · x .

(A.6)

We can check that they are orthogonal to the decoupled mode,
∑N+1
i=1 εi ·x−

∑N
i=1 δi ·x. The

OPEs among these fields are given by (2.16). The screening operators are now expressed as

V1 = α1 · ψe(φ1−ϕ1+χ)/b(N+1) ,

V2 = α2 · ψe(φ1−φ2+ϕ1−χ)/b(N+1) ,

V3 = α3 · ψe(φ2−φ1+ϕ1−ϕ2+χ)/b(N+1) ,

V4 = α4 · ψe(φ2−φ3+ϕ2−ϕ1−χ)/b(N+1) , (A.7)
...

V2N−1 = α2N−1 · ψe(φN−φN−1+ϕN−1+χ)/b(N+1) ,

V2N = α2N · ψe(φN−ϕN−1−χ)/b(N+1) .

B Free field realizations of BP-algebra

In this appendix, we summarize the results in section 2 of [33] on the BP-algebra and its
free field realizations. The BP-algebra is generated by a spin-one current H(z), two spin-
3/2 bosonic currents G±(z), and a spin-two current T (z), which is the energy momentum
tensor. The non-trivial OPEs among them are [36]

T (z)T (0)∼
1
2c

z4 + 2T (0)
z2 + ∂T (0)

z
,

T (z)G±(0)∼
3
2G
±(0)
z2 + ∂G±(0)

z
, T (z)H(0)∼ H(0)

z2 + ∂H(0)
z

,

H(z)H(0)∼−
1
3(2k−3)

z2 , H(z)G±(0)∼±G
±(0)
z

, (B.1)

G+(z)G−(0)∼ (k−1)(2k−3)
z3 − 3(k−1)H(0)

z2

+
3HH(0)+(k−3)T (0)− 3

2(k−1)∂H(0)
z

.

The central charge is
c = 6(k − 3) + 25 + 24

k − 3 . (B.2)

In order to realize the algebra in terms of free fields, we prepare two free bosons xj
(j = 1, 2) and a ghost system (γ, β) satisfying

xi(z)xj(0) ∼ −G(3)
ij ln z , γ(z)β(0) ∼ 1

z
. (B.3)
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There are two types of screening charges for the same BP-algebra. A type of screening
charges are given by [36]

Q1 =
∮
dweb(3)x1β , Q2 =

∮
dweb(3)x2γ . (B.4)

The generators should commute with these screening charges, and in particular, the spin-
one current is

H = 1
b(3)

(∂x2 − ∂x1)− γβ . (B.5)

The index of xj is raised by G(3)ij , where the expression of G(3)ij can be found in (3.3).
Another type of screening charges are [33, 37, 38]

Q1 =
∮
dweb(3)x1β , Q2 =

∮
dweb(3)x2 . (B.6)

In this case, the spin-one current is obtained as

H = 1
b(3)

∂x1 + γβ . (B.7)

In the main context, the energy momentum tensor is given by the twisted one

Tt(z) = T (z) + 1
2∂H(z) . (B.8)

With respect to Tt(z), the conformal dimensions of G+(z) and G−(z) become one and two,
respectively. In particular, the generators have integer modded expansions as

Tt(z) =
∑
n∈Z

Ln
zn+2 , H(z) =

∑
n∈Z

Hn

zn+1 ,

G+(z) =
∑
n∈Z

G+
n

zn+1 , G−(z) =
∑
n∈Z

G−n
zn+2 .

(B.9)

Primary states with respect to the algebra are defined such as to satisfy the conditions

Ln|c2, c3,m〉 = G±n |c2, c3,m〉 = Hn|c2, c3,m〉 = 0 (B.10)

for n = 1, 2, 3, . . .. The representation of the primary state is labeled by the eigenvalues of
the second-order and third-order Casimir operators denoted as c2, c3. Here the second-order
Casimir operator is given by L0 and the expression of the third-order Casimir operator can
be found in [33]. The other parameter m is defined by

H0|c2, c3,m〉 = m|c2, c3,m〉 , (B.11)

and in particular
G±0 |c2, c3,m〉 ∝ |c2, c3,m± 1〉 . (B.12)

In terms of free fields, the primary states may be expressed by vertex operators as

|c2, c3,m〉 ∝ lim
z→0

Vj1,j2,α(z)|0〉 , Vj1,j2,α(z) = γαeb(3)(j1φ1+j2φ2) . (B.13)
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The parameters c2, c3 are independent of both of α and the choice of free field realizations,
see [33] for explicit expressions. The other parameter m depends on both of α and the
choice of free field realizations. For the free field realization with (B.4), the eigenvalue of
H is given by

m = −j2 + j1 + α . (B.14)

For the other realization with (B.6), the eigenvalue of H is

m = −j1 − α . (B.15)

These results imply that we should replace α↔ −2j1 + j2 − α when we exchange the free
field realizations.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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