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1 Introduction

In this paper, we examine dualities in two dimensional conformal field theory admitting ex-
tended symmetry with higher spin currents, i.e., W-algebra symmetry. These W-algebras
play important roles in recent theoretical physics. For examples, subsectors of four dimen-
sional gauge theories are known to be organized by W-algebras [1, 2], and three dimensional
higher spin gravity is supposed to be holographic dual to Wn minimal model [3].
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One of the aims of this paper is to derive correspondences of correlation functions
of primary operators between conjectural dual theories. Combined with the match of
symmetry algebra, we can thus show equivalences of conformal field theories. The most
fundamental example may be the conjectural equivalence between the coset model1

SL(n)k ⊗ SL(n)−1
SL(n)k−1

(1.1)

and sl(n) Toda field theory with generic k. We note that we use the standard conformal
field theory convention for the level; this convention differs by a minus sign from the one
often used in mathematics. The duality may be regarded as an analytic continuation of
the coset realization of Wn minimal model. The coset realization was believed to be true
for a long time but it was proven only rather recently [4]. Another famous example of
(strong/weak) duality may be the Fateev-Zamolodchikov-Zamolodchikov (FZZ-)duality [5]
between SL(2)k/U(1) coset describing two dimensional cigar model [6] and sine-Liouville
theory proven in [7]. Among others, it was applied to a holographic duality in [8]. In a
previous work, we examined extended FZZ-duality involving higher rank coset [9]

SL(n+ 1)k
SL(n)k ⊗U(1) (1.2)

and derived correlator correspondences for n = 2, 3. We consider the generalized duality
to be important since the coset appears as a dual of higher spin (super-)gravity [3, 10]. In
this paper, we complete the derivation for generic n. We also examine other closely related
dualities mentioned below.

In [7], a proof of the original FZZ-duality was given by utilizing the reduction method
of sl(2) Wess-Zumino-Novikov-Witten (WZNW) model to Liouville field theory [11–13]. In
order to apply the reduction method, it is important to realize the coset SL(2)/U(1) in terms
of product theory SL(2)×U(1)× (BRST ghosts) in the BRST formalism [14–16] and express
the SL(2) part in a first order formulation. This construction may thus be viewed as a “first
order formulation” of a coset model. In our previous paper [9], we generalized the analysis
by using an extended reduction method from sl(n) WZNW model developed in [17, 18],
see also [19, 20] for previous works. For a first order formulation of coset model (1.2), we
utilized the analysis of [21, 22]. However, only the idea and some explicit examples were
given in the literature. This is one of the reasons why we could only derive correlator
correspondences for n = 2, 3. The main idea of [21, 22] is to express both the denominator
and numerator algebras in terms of Wakimoto free field realizations with free bosons and
(β, γ)-systems [23]. It is not difficult to deal with Cartan directions described by free
bosons. However, the parts involving (β, γ)-systems are essentially non-abelian, and it is
the part difficult to deal with. The proposal is that some (β, γ)-systems from the numerator
algebra cancel with those of the denominator algebra. Indeed, we can see that the central
charge of energy momentum tensor matches with the original coset model. However, it
was just a conjecture that the coset algebra obtained in this way is isomorphic to the one

1The coset may be regarded as an analytic continuation of (SU(n)−k⊗SU(n)1)/SU(n)−k+1 with positive
integer −k. In particular, SL(n)−1 is described simply by n complex fermions.
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obtained from the usual Goddard-Kent-Olive (GKO) construction [24]. In particular, we
do not know how to obtain the interaction terms (or screening operators). Another aim
of this paper is to establish the first order formulation of coset model by utilizing the
BRST formulation [14–16] and Kugo-Ogima method [25]. We reproduce the cancellation
mechanism among (β, γ)-systems and provide the method to give correct interaction terms.
In particular, the equivalence to the GKO construction is kept in a manifest way.

The method developed above is not only useful to derive the correlator correspon-
dences with the coset (1.2) of generic n but also strong enough to derive other correlator
correspondences like the fundamental case with (1.1). We also examine the correlator
correspondences for the dualities between the coset

SL(n)k ⊗ SL(n)1
SL(n)k+1

(1.3)

and a theory with a gl(n|n)-structure, see, e.g., [26]. In [27] a different series of generalized
FZZ-duality involving a Heisenberg coset of a theory with subregular W-algebra symmetry
was also derived. That type of generalized FZZ-duality is also called Feigin-Semikhatov
duality [28] and it is studied from the vertex operator algebra (VOA) perspective in [29, 30].
The VOAs serve as symmetry algebras of the conformal field theories and the matchings
of symmetry algebras for these dual theories are realized as dualities of VOAs. These
VOA dualities were conjectured by Gaiotto and Rapčák via brane junction realization of
VOAs [31]. The VOAs are denoted as Yn1,n2,n3 [ψ] if it is realized as a corner of interfaces
between four dimensional gauge theories with gauge group U(n1), U(n2) and U(n3). The
parameter ψ is related to a coupling constant of gauge theories. The VOAs are subject to
duality relations like

Yn1,n2,n3 [ψ] ' Yn2,n3,n1

[ 1
1− ψ

]
' Yn3,n1,n2

[
1− 1

ψ

]
. (1.4)

These Gaiotto-Rapčák conjectures are a Theorem if at least one of the three labels
is zero [32]. Among the dualities, a strong/weak one is realized by Yn1,n2,n3 [ψ] '
Yn2,n1,n3 [ψ−1]. The equivalence between the coset (1.1) and sl(n) Toda field theory cor-
responds to Yn,0,0 ' Y0,0,n. Moreover, those involving (1.2) and (1.3) are related to
Y0,n,n+1 ' Yn,0,n+1 and Y0,n,n ' Yn,0,n, respectively. We remark that the duality ana-
lyzed in [27] is related to Y0,1,n ' Y1,0,n. In this way, we realize some of Gaiotto-Rapčák
dualities among VOAs in terms of two dimensional conformal field theory.

We also derive correlator correspondences involving additional fermionic fields. Ex-
plicitly, we examine another fundamental duality between the coset

SL(2)k ⊗ SL(2)−2
SL(2)k−2

(1.5)

and N = 1 super Liouville theory with generic k. This can be regarded as an analytic
continuation of the coset realization of N = 1 minimal model by [24]. Note that the coset
has supersymmetry since SL(2)−2 is realized by three free fermions. We also introduce
additional fermions to the coset (1.2) as

SL(n+ 1)k ⊗ SO(2n)1
SL(n)k−1 ⊗U(1) . (1.6)
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The coset is a Kazama-Suzuki model [33, 34] with N = 2 superconformal symmetry, and
it was proposed to be dual to a N = 2 higher spin supergravity [10]. It was conjectured
in [35, 36] that the coset is dual to sl(n|n + 1) Toda field theory. The simplest case with
n = 1 was proven as a mirror symmetry [37] and in a way similar to the original FZZ-
duality in [38]. The fermionic FZZ duality was utilized to examine singular Calabi-Yau
geometry [39] or its dual picture of NS5-branes [40]. We also analyze the coset (1.3) with
additional fermions.

1.1 Organization of the paper

The paper is organized as follows. In the next section, we start by reviewing symmetry
algebras and the BRST formulation of coset models in order to prepare for later sections.
In particular, we explain the analysis of [45], which shows the equivalence to the GKO con-
struction of coset model. In section 3, we develop a first order formulation of coset models
and derive correlator correspondences between the coset (1.1) and sl(n) Toda field theory.
In subsection 3.1, we illustrate our strategy to construct the first order formulation of coset
model and derive correlator correspondences for the simplest but non-trivial example with
n = 2. In subsection 3.2, we then generalize the analysis to the cases with generic n. In
subsection 3.3, we consider N = 1 supersymmetric case but with n = 2. In section 4, we
derive correlator correspondences for higher rank FZZ-duality with generic n by utilizing
the first order formulation developed in section 3. In section 5 we generalize the analysis
to the case with N = 2 superconformal symmetry. Section 6 is devoted to conclusion and
discussions. In appendix A, we derive the map among different free field realizations of
Bershadsky-Polyakov algebra [46, 47] found in [48, 49] as field redefinition. This map was
a crucial point of the extended reduction method in [9, 18]. In appendix B, we analyze
correlator correspondences between the coset (1.3) and a theory with a gl(n|n)-structure
and the case with additional fermions. The analysis is almost the same as in the cases of
higher rank FZZ duality and its supersymmetric generalization.

2 G/H cosets

In this section we review symmetry and BRST-formulation of G/H cosets.

2.1 Symmetry algebras of G/H cosets

In general, it is a difficult problem to precisely determine the full symmetry algebra of a
given coset. If gk is the symmetry algebra of a WZNW theory for the Lie group G and
hk is the subalgebra corresponding to the subgroup H, then the chiral algebra of the coset
G/H theory at level k is the subalgebra of gk commuting with the action of hk. A chiral
algebra is called of type (h1, . . . , hs) if it is strongly generated by s-fields of conformal weight
h1, . . . , hs and of course one requires that these fields are a minimal generating set. Strongly
generated means that every field of the chiral algebra is a normally ordered polynomial in
the generating ones and their iterated derivatives. A general theory of relating the type of
coset chiral algebras to orbifolds of free theories has been developed in [41].
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For example the coset (1.5) has the same strong generating type as the SL(2)-orbifold
of three free fermions (in the adjoint representation of SL(2)). The latter is of type (3/2, 2)
with the spin 3/2-field being fermionic and the spin two field being the energy-momentum
field. It is easy to show that the only superalgebra of this type and at central charge c is
the N = 1 superconformal algebra at central charge c, and this is in fact the simplest case
of a uniqueness Theorem of minimal W-superalgebras [42].

For more general cosets it is much more difficult to determine the chiral algebra and
we now recall results that are relevant to us. Most importantly the GKO-coset of type
SL(n) (1.1) has indeed the Wn-algebra, that is the principal W-algebra of sl(n), as sym-
metry algebra [4].

The coset algebra of (1.2) coincides with a coset of a W-superalgebra of sl(n + 1|n).
The W-superalgebra has bosonic fields of spin 2, 3, . . . , n + 1 together with a gl(n) chiral
algebra and 2n fermionic fields of conformal weight (n + 2)/2 and the coset by the gl(n)
algebra has same symmetry algebra as (1.2). The levels shifted by the respective dual
Coxeter numbers are inverse to each other and so this is a strong/weak duality. This coset
duality is a special case of the Gaiotto-Rapčák triality conjecture [31] and is proven in [32].
The coset (1.3) is closely related to this one and the symmetry algebra coincides in this case
with the chiral algebra of a gl(n)-coset of a W-superalgebra of gl(n|n). Again the critically
shifted levels of the two theories are inverses of each other; moreover this duality is also
contained in the Gaiotto-Rapčák triality conjecture [31] that is proven in [32]. For the
supersymmetric version one currently only knows that the symmetry algebra of the coset
has the same type as the principal W-superalgebra of gl(n|n) [43]; a full proof is in addition
under current investigation. The situation of the Kazama-Suzuki coset (1.6) is similar. It is
known [41] that the type is indeed (1, 3/2, 3/2, 2, 2, 5/2, 5/2, 3, 3, . . . , n+1/2, n+1.2, n+1),
that is the same as the principal W-superalgebra of sl(n + 1|n). A proof that algebras
coincide is however only known for n = 1, 2 [44].

2.2 BRST formulation of G/H cosets

Applying previous works [7, 9, 27, 38], we relate correlation functions of coset models to
those of dual theories. For this, it is useful to express a coset model G/H by a gauged
WZNW model in the BRST formulation developed in [14–16]. In the formulation, the coset
model is described by a product theory G × H× (BRST ghosts), and physical states are
obtained as elements of the cohomology of BRST charge. In this section, we collect useful
results about the BRST formulation of G/H coset models to prepare for later sections. In
particular, we outline the analysis on the equivalence between the BRST formulation and
GKO construction by [24] given in [16] for abelian H and extended in [45] for non-abelian
H. This procedure has a mathematical counterpart that is developed by Frenkel, Garland
and Zuckerman [50] and is summarized in section 2 of [51].

For simplicity of explanation, let us assume that G is a simple group, though it is
straightforward (and will be used) for arbitrary reductive G. We denote the action of the
WZNW model at level k by SWZNW

k [g] =
∫
d2zLWZNW

k [g] with g ∈ G. Then the theory has
the symmetry of current algebra generated by J(z) = JA(z)tA, J̄(z̄) = J̄A(z̄)tA, where the
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tA form a basis of Lie algebra g of the group G. The mode expansions satisfy

[JAm, JBn ] = ifABCJ
C
m+n + k

2mδm,−ng
AB , (2.1)

where fABC are structure constants of g and gAB is a metric on G. We have similar
commutation relations for J̄An .

Now we would like to gauge a subgroup H of G. We assume again that H is a simple
group and denote the level for H by kH . In the BRST formulation, the effective action is
given by

S = SWZNW
k [g] + SWZNW

−kH−2cH [h̃] + (BRST ghosts) , (2.2)

where h̃ ∈ H and cH is the dual Coxeter number of H. Let I be an index set, such that
{xa|a ∈ I} is a basis of the Lie algebra h of H. The BRST ghosts have the same indices
as h and are denoted by ca(z), ba(z). They are Grassmann odd fields and their conformal
dimensions are 0, 1, respectively. Their operator product expansions (OPEs) are

ca(z)ba′(w) ∼ δ a′
a

z − w
. (2.3)

In the GKO construction, the physical states are obtained by the condition

Jan |phys〉 = 0 (2.4)

for n > 0. Here Jan are generators of the subsector hkH ⊂ gk and in particular the level is
given by kH . On the other hand, in the BRST formulation, there are additional currents
J̃a with level kH̃ = −kH − 2cH from the action SWZNW

−kH−2cH [h̃]. Using these two types of
currents, the BRST charge for the holomorphic part can be defined as

Q =
∮

dz

2πi

[
ca(z)(Ja(z) + J̃a(z))− i

2f
ad
eca(z)cd(z)be(z)

]
. (2.5)

Here and in the followings, the normal ordering prescription is assumed for any product
of fields and Einstein’s summation convention is in place. The physical state condition is
then expressed as

Q|phys〉 = 0 . (2.6)

In fact since Q is nilpotent, Q2 = 0, the physical states are obtained as the elements of
Q-cohomology.

The energy momentum tensor is given by Sugawara construction as

T (z) = 1
k + cG

JA(z)JA(z)− 1
kH + cH

J̃a(z)J̃a(z)− ba(z)∂ca(z)

≡ TG(z) + T̃H(z) + T gh(z) .
(2.7)

Note that the energy momentum tensor in the GKO construction is TGKO = TG − TH . It
was shown in [16] that the above one can be written as T = TGKO + T tot, where T tot was
shown to be BRST exact as

T tot(z) = TH(z) + T̃H(z) + T gh(z) = 1
kH + cH

[Q, ba(z)(Ja(z)− J̃a(z))] . (2.8)
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In particular, the total energy momentum tensor has zero central charge. We may also
define total currents by

J tot,a(z) = [Q, ba(z)] = Ja(z) + J̃a(z) + Jgh,a(z) . (2.9)

We can check that the currents generate the affine Lie algebra h0 at level zero. Here we
have defined h2cH currents at level 2cH by Jgh,a = ifadeb

e(z)cd(z).
The equivalence between the GKO construction and the BRST formulation was shown

in [16] for abelian H and it was extended in [45] for non-abelian H as mentioned above. In
the following, we explain the result of [45]. We would like to study the solutions to the phys-
ical condition (2.6). Generic states may be constructed from primary states |RG, RH̃ , 0〉
satisfying

JAn |RG, RH̃ , 0〉 = J̃an |RG, RH̃ , 0〉 = 0 (2.10)

for n > 0. The labels RG, RH̃ denote the representations of G, H̃, respectively. For the
ghost sector, we assign

can|RG, RH̃ , 0〉 = 0 (n ≥ 1) , ban|RG, RH̃ , 0〉 = 0 (n ≥ 0) . (2.11)

Generic states |s〉 are constructed by acting with negative modes on the primary states.
Consider the eigenstates |s〉 of J tot,i

0 of eigenvalue (or weight) µtot,i, that is

J tot,i
0 |s〉 = µtot,i|s〉 . (2.12)

Here i labels the Cartan subalgebra of h and runs over i = 1, 2, . . . , rh with rh the rank of
h. We assume that the physical state condition Q|s〉 = 0 is satisfied. If µtot,i 6= 0, then we
can write

|s〉 = 1
µtot,i [Q, b

i
0]|s〉 = 1

µtot,iQb
i
0|s〉 . (2.13)

Therefore, non-trivial elements in the cohomology have to come from the sector with zero
weights, that is µtot,i = 0 for all i = 1, 2, . . . , rh.

Instead of considering the BRST charge Q defined in (2.5), we consider the cohomology
of Q̂ defined as [45]2

Q = Q̂+Mib
i
0 + c0,iJ

tot,i
0 . (2.14)

As argued above, we restrict ourselves to the sector with zero eigenvalue states of J tot,i
0 as

J tot,i
0 |s〉 = 0 (2.15)

2In [45] the BRST charge Q is decomposed as in (2.14) in order to show the equivalence between
the GKO construction and the BRST formulation. The Hilbert space is actually doubled in the BRST
formulation due to the degeneracy of vacua in ghost system, which can be avoided by assigning the extra
condition (2.16), see [45] for more details. We shall implicitly use the result by choosing physical states of
the GKO construction as non-trivial elements of the BRST cohomology.
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for all i = 1, 2, . . . , rh. The operator Q̂ is nilpotent if its action is restricted to this sector.
We also study the cohomology of Q̂ on the relative space

bi0|s〉 = 0 (2.16)

for all i = 1, 2, . . . , rh. Then, the non-trivial elements of the relative cohomology are given
by states |φ〉 with the following properties [45]. They have zero ghost number and no action
of J̃a−n with n > 0. Moreover, they satisfies

Jan |φ〉 = ban|φ〉 = can|φ〉 = 0 (2.17)

for n > 0. This is the same as the physical condition in the GKO construction (2.4) along
with the decoupling of other sectors.

We may study some implications of the analysis. Firstly, we observe that the condition
J tot,i

0 |φ〉 = 0 implies that

µi + µ̃i + 2ρi = 0 . (2.18)

Here ρ is the Weyl vector defined as usual

ρ = 1
2
∑
α∈∆+

α , (2.19)

where the sum is over all positive root α ∈ ∆+. Moreover, µi, µ̃i are weights with respect
to h. We consider

Ltot
0 |phys〉 =

[ 1
kH + cH

(C(h)− C(h̃)) +NJ +NJ̃ +Ngh

]
|phys〉 . (2.20)

Here NJ , NJ̃ , Ngh are the number operators of Jan , J̃an and BRST ghosts, respectively, and
they are zero for physical states as mentioned above. Here, C(h), C(h̃) are the second-
order Casimir operators of the Lie algebras generated by Ja0 and J̃a0 , respectively. As
argued around (2.13), non-trivial elements of cohomology are given by eigenstates with
zero eigenvalues. Thus we have to set

C(h) = C(h̃) . (2.21)

3 Toda field theories form coset models

In the previous section, we reviewed generic properties of BRST formulation of G/H cosets.
One of the aims of this paper is to establish the conjectured method of [21, 22]. For this,
we adopt a first order formulation for G and H WZNW models and observe cancellations
among (β, γ)-fields. In this section, we establish the method using the BRST formulation
and apply it to the coset of the type (1.1). In order to illustrate our procedures, we first
examine the simplest but non-trivial example,

SL(2)k ⊗ SL(2)−1
SL(2)k−1

(3.1)

and relate it to Liouville field theory. In subsection 3.2, we generalize the analysis to the
coset (1.1) with generic n, and in subsection 3.3 we introduce N = 1 supersymmetry to
the case with (3.1).
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3.1 Liouville field theory from coset model

Applying the BRST formulation reviewed in the previous section, the action for the
coset (3.1) consists of four parts as

S = SWZNW
k [φ, β, γ] + Sψ[ψ] + SWZNW

−k+5 [φ̃, β̃, γ̃] + Sbc[ba, ca] . (3.2)

The action is invariant under BRST transformation and physical states are obtained as
non-trivial elements of BRST cohomology.

The first and third actions describe sl(2) WZNW models at the level k and −k + 5,
respectively. An important point here is to use the first order formulation of the sl(2)
WZNW model at level k. The action is given by

SWZNW
k [φ, γ, β] = 1

2π

∫
d2w

(
∂φ∂̄φ− β∂̄γ − β̄∂γ̄ + b

4
√
gRφ+ λββ̄e2bφ

)
(3.3)

with b = 1/
√
k − 2. The conformal weights of (β, γ) are (1, 0). Here gµν is the background

metric and g = det gµν . Moreover, R is the curvature of the worldsheet. We take the
metric as ds2 = |ρ(z)|2dzdz̄ with ρ(z) = 1 for almost all the cases. The symmetry is the
sl(2) current algebra generated by

J+ = β , J3 = b−1∂φ− βγ , J− = βγγ − 2b−1γ∂φ+ k∂γ . (3.4)

For the third summand of the action in (3.2), we denote the generators of the current
algebra by J̃a with a = ±, 3.

The second factor in the numerator of (3.1) corresponds to a pair of free fermions.
The action may be given by

Sψ[ψ] = 1
2π

∫
d2w

[
ψ+∂̄ψ− + ψ̄+∂ψ̄−

]
, (3.5)

where the conformal weights of (ψ+, ψ−) are (1/2, 1/2). It is convenient to bosonize the
free fermions by

ψ± = e±i
√

2HL
, HL(z)HL(0) ∼ −1

2 ln z (3.6)

and similarly for ψ̄± written by HR. We further define H = HL +HR. The sl(2) current
generators are given by

J+
ψ = −e2iHL

, J3
ψ = i∂HL , J−ψ = e−2iHL

. (3.7)

The final term of the action is for the BRST ghosts, and in the current case it can be
written as

Sbc[ba, ca] = 1
2π

∫
d2w

∑
a=±,3

[
ba∂̄ca + b̄a∂c̄a

]
, (3.8)

where the conformal weights of (ba, ca) are (1, 0). We may define sl(2) current generators
as

J+
bc = −

√
2(b+c3 + b3c−) , J3

bc = b+c+ − b−c− , J−bc =
√

2(b−c3 + b3c+) . (3.9)
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With the BRST ghosts, the BRST charge (2.5) can be written as

Q =
∮

dz

2πi

[
ca(z)

(
Ja(z) + Jaψ(z) + J̃a(z) + 1

2J
a
bc(z)

)]
. (3.10)

One can explicitly verify that Q2 = 0.

3.1.1 Primary states

We examine correlation functions of the coset model in the BRST formulation. In partic-
ular, we show that every N -point function of the coset (3.1) can be mapped to an N -point
function of Liouville field theory. It is well known that the symmetry of both side agrees
with each other, and hence we just need to examine correlation functions of primary op-
erators. In this section, we examine primary states in the coset model (3.1) and reduce it
to those of Liouville field theory. We follow the arguments in the section 4 of [52], which
is based on the analysis of [25]. We consider primary operators in the BRST formulation
of the coset (3.1). For this, it is enough to consider the vertex operators of the form

V = P(γ, γ̃)e2bjφe2isHe2b̃̃φ̃ (3.11)

with an arbitrary function P of γ, γ̃ (and anti-holomorphic counterparts) and b̃ =
1/
√
−k + 3. In the following, we show that the same correlation function can be obtained

by projecting β, γ and β̃, γ̃, see [53] for a similar analysis.
We first define an operator

Nβγ = −
∞∑

m=−∞
β−mγm , [βm, γn] = δm,−n , (3.12)

which counts the number of β minus the number of γ. With this, we can decompose the
BRST generator as

Q = Q1 +Q0 +Q−1 , (3.13)

where the subscript represents the eigenvalue of Nβγ . In particular, we have

Q1 =
∞∑

m=−∞
β−mc+,m , (3.14)

which satisfies (Q1)2 = 0. We further define

R =
∞∑

m=−∞
γ−mb

+
m , (3.15)

which leads to

S = {Q1, R} =
∞∑
m=1

β−mγm +
∞∑
m=0

γ−mβm −
∞∑
m=1

b+−mc+,m +
∞∑
m=0

c+,−mb
+
m . (3.16)

The eigenvalue of S is not necessary a non-negative number, but this does not cause any
problems for the restricted form of vertex operators as in (3.11). For the operators of the
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form (3.11), S simply counts the number of γ in the function P. Since S commutes with
Q1, we can consider the eigenfunction of S in the cohomology of Q1 as S|φ〉 = s|φ〉. As
argued around (2.13), non-trivial elements in the cohomology of Q1 should come from the
sector with s = 0, i.e., without γ-dependence in the vertex operators.

Above, we have shown that a non-trivial element of Q1-cohomology does not depend
on γ. We then map the cohomology of Q1 to that of Q. In order to do so, we introduce
another operator

U = {Q0 +Q−1, R} . (3.17)

If S|φ〉 = 0, then the state

|φ′〉 = (1− S−1U + S−1US−1U − · · · )|φ〉 (3.18)

is also annihilated by S+U . As in the argument above, the only non-trivial elements of Q-
cohomology come from the states satisfying (S+U)|φ′〉 = 0. Thus we can map a non-trivial
element of the Q1-cohomology without any BRST ghosts to an element of Q-cohomology.3

3.1.2 Correlation functions

Conversely, a vertex operator in Q-cohomology may be put in the form of (3.18). Note
that S−1U always decreases the eigenvalue of the operator Nβ,γ defined in (3.12). On the
other hand, β in the action (3.3) can be replaced by (see section 9 of [4] as well)

β(w)−
∮
w

dz

2πib
+(z)Q(w) = e2iHL(w)− β̃(w) +

√
2(b+c3(w) + b3c−(w)) . (3.19)

Therefore, the total action (3.2) is in the same cohomology class as an action that contains
no operator increasing the Nβ,γ-eigenvalue. With this choice we can safely use vertex
operators without γ.

We can obtain more restrictions on the vertex operators, which come from the physical
conditions (2.6). The total currents in (2.9) become

J tot,3
m ≡ {Q, b3m} = J3

m + J3
ψ,m + J̃3

m + J3
bc,m (3.20)

and the total energy momentum tensor in (2.8) is

Ltot
m ≡ {Q,

1
k − 3

∑
n

(Jam+n + Jaψ,m+n − J̃am+n)b−n,a} . (3.21)

Considering the vertex operator of the form

V = γ̃m ¯̃γm̄e2bjφe2isHe2b̃̃φ̃ , (3.22)
3Here we remark that the cohomology of Q1 is not isomorphic to the cohomology of Q since the operator

S defined in (3.16) does not always have non-negative eigenvalues. The current analysis is enough if the
vertex operators in the BRST formulation of the coset (3.1) do not include any BRST ghosts. However, if
we want to analyze the equivalence of Hilbert space of two dual theories, then the current analysis need to
be at least modified.

– 11 –



J
H
E
P
1
2
(
2
0
2
1
)
1
4
4

the conditions corresponding to (2.18) and (2.21) become

−j −m+ s− ̃+ 1 = 0 , −(j − s)(j − s− 1)
k − 3 + ̃(̃− 1)

k − 3 = 0 . (3.23)

We have also conditions with m replaced by m̄. The solution is

̃ = 1− j + s , m = 0 , (3.24)

that is, we should use the vertex operator of the form

V = e2bjφe2isHe2b̃(1−j+s)φ̃ . (3.25)

In particular, there is no dependence on γ̃ and BRST ghosts, and hence we can neglect β̃
and BRST ghosts in (3.19).

As in (3.25), there are three fields φ,H, φ̃ involved now. The action for them is

S[φ,H, φ̃] = 1
2π

∫
d2w

[
∂φ∂̄φ+ ∂H∂̄H + ∂φ̃∂̄φ̃+

√
gR
4 (bφ+ b̃φ̃) + λe2bφ+2iH

]
. (3.26)

Rotating the fields as

bφ+ iH = b′φ′ , −iφ+ bH = b′H ′ , b′ =

√
3− k
k − 2 , (3.27)

the action becomes

S[φ′, H ′, φ̃] = 1
2π

∫
d2w

[
∂φ′∂̄φ′ + ∂H ′∂̄H ′ + ∂φ̃∂̄φ̃

]
+ 1

2π

∫
d2w

[√
gR
4

(
Qφ′φ

′ +QH′H
′ +Qφ̃φ̃

)
+ λe2b′φ′

] (3.28)

with the background charges

Qφ′ = b′ + 1/b′ , QH′ = −ib̃ , Qφ̃ = b̃ . (3.29)

The vertex operator (3.25) is now changed as

V = e2((b′+1/b′)j−1/b′s)φ′e−2ib̃(j−s)H′e2b̃(1−j+s)φ̃ . (3.30)

For N -point functions, we can see that the contributions from H ′ and φ̃ cancel out.4 In
the language of [21, 22], the field space spanned by φ,H is restricted to be orthogonal to
that spanned by H ′. We thus end up with the Liouville correlation function as〈

N∏
ν=1

Vν(zν)
〉
, Vν(zν) = e2((b′+1/b′)jν−1/b′sν)φ′(zν) (3.31)

with the action

S[φ′] = 1
2π

∫
d2w

[
∂φ′∂̄φ′ +

√
gR
4 (b′ + 1/b′)φ′ + λe2b′φ′

]
. (3.32)

In this way, we have shown that the computation of correlation functions of the coset (3.1)
reduces to that of (3.31) with the action of Liouville field theory in (3.32).

4The cancellation occurs up to the coefficients coming from the use of reflection relation. The same is
true for the arguments below.
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3.2 Higher rank generalization

In this subsection, we examine the coset (1.1) with generic n and derive sl(n) Toda field
theory as in the case with n = 2. The action in the BRST formulation is similar to (3.2)
and given by

S = SWZNW
k + Sψ + SWZNW

−k+1+2n + Sbc . (3.33)

We explain each part below.
The WZNW model based on sl(n) Lie algebra at level k is represented by SWZNW

k . As
in the case of sl(2), we use the action in the first order formulation as (see, e.g., [22])

SWZNW
k = 1

2π

∫
d2w

[
G

(n)
ab

2 ∂φa∂̄φb −
n∑
i>j

(βi,j ∂̄γi,j + β̄i,j∂γ̄i,j) + b

4
√
gR

n−1∑
a=1

φa
]

+ λ

2π

∫
d2w

n−1∑
j=1

Vj+1,j .

(3.34)

Here G(n)
ab is the Cartan matrix of sl(n) and a = 1, 2, . . . , n− 1. The inverse of the matrix

is defined by G(n)abG
(n)
bc = δac and the index is raised as φa = G(n)abφb. Moreover, we set

b = 1/
√
k − n. The indices i, j run over i, j = 1, 2, . . . , n. The interaction terms are

Vj+1,j =
∣∣∣∣∣βj+1,j +

j−1∑
l=1

βj+1,lγj,l

∣∣∣∣∣
2

ebφj (3.35)

with j = 1, 2, . . . , n − 1. In the case with n = 2, the interaction term includes only β,
so we just had to take care of that term. However, in the current case, the interaction
terms depend on γi,j as well. We will see below that they do not cause any problems. The
symmetry of this model is sl(n) current algebra. Among the generators, Ji,j with i < j are
given by

Ji,j = βj,i +
n∑

l=j+1
γl,jβl,i . (3.36)

The Cartan direction is generated by

Ha = Ĥa − Ĥa+1 (3.37)

with

Ĥa = b−1∂ϕa +
a−1∑
l=1

γa,lβa,l −
n∑

l=a+1
γl,aβl,a . (3.38)

The free bosons are introduced as φa = ϕa − ϕa+1 with ϕa(z)ϕb(0) ∼ −δa,b ln |z|2. The
other currents Ji,j with i > j are fixed so as to reproduce the OPEs. For the third term,
we use b̃ = 1/

√
−k + 1 + n and J̃i,j , H̃a for sl(n) currents.
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The second factor in the numerator of the coset (1.1) is described by n pairs of free
fermions. We may use its action as

Sψ = 1
2π

∫
d2w

n∑
j=1

[
ψ+
j ∂̄ψ

−
j + ψ̄+

j ∂ψ̄
−
j

]
(3.39)

with conformal weight 1/2 for ψ±j and similarly for ψ̄±j . We may bosonize the free
fermions by

ψ±j = e±iY
L
j , Y L

i (z)Y L
j (0) ∼ −δi,j ln z (3.40)

and similarly for ψ̄±j written by Y R
j . We further define Yj = Y L

j + Y R
j . The sl(n) currents

are given by

Jψi,j = −ψ+
i ψ
−
j (i < j) , Ha = ψ+

a ψ
−
a − ψ+

a+1ψ
−
a+1 (3.41)

and similarly for Jψi,j with i > j.
The action for BRST ghosts may be written as

Sbc = 1
2π

∫
d2w

 n∑
i 6=j

(
bi,j ∂̄ci,j + b̄i,j∂c̄i,j

)
+
n−1∑
a=1

(
ba∂̄ca + b̄a∂c̄a

) , (3.42)

where the conformal weights of (bi,j , ci,j) and (ba, ca) are (1, 0). The sl(n) currents con-
sisting of BRST ghosts are denoted as Jbci,j and Hbc

a . With these BRST ghosts, the BRST
charge (2.5) becomes

Q =
∮

dz

2πi

n∑
i 6=j

[
cj,i(z)

(
Ji,j(z) + Jψi,j(z) + J̃i,j(z) + 1

2J
bc
i,j(z)

)]

+
∮

dz

2πi

n−1∑
a=1

[
ca(z)

(
Ha(z) +Hψ

a (z) + H̃a(z) + 1
2H

bc
a (z)

)]
.

(3.43)

As in the case with n = 2, we consider the correlation functions of vertex operators of
the form

V = P(γi,j , γ̃i,j)ebj·ϕeis·Y eb̃̃·ϕ̃ . (3.44)

In order for
∑n
l=1 ϕl and

∑n
l=1 ϕ̃l decouple,

∑n
l=1 j

l =
∑n
l=1 ̃

l = 0 have to be satisfied.
Moreover, we decompose the BRST charge Q = Q1 +Q0 +Q−1 by the eigenvalues of the
operator

Nβγ = −
n∑
i<j

∞∑
m=−∞

βj,i,−mγj,i,m . (3.45)

As shown above, we can construct a map between the elements of Q1-cohomology and
those of Q-cohomology. Moreover, we replace βj,i in the interaction term (3.35) by

βj,i(w)−
∮

dz

2πib
+
i,j(z)Q(w) = ei(Yi−Yj)(w)− β̃j,i(w)− Jbci,j(w) . (3.46)
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A difference from the case with n = 2 is the dependence of γi,j in the interaction
terms (3.35). However, they only decrease the eigenvalue of Nβγ in (3.45). Removing
all βj,i by applying (3.46), there are no fields raising the eigenvalue of Nβγ . Thus we can
safely neglect all the terms including γi,j in the interaction terms along with the vertex
operators of the form (3.44). We further require the conditions Htot,a

0 = 0 and Ltot
0 = 0

corresponding to (2.18) and (2.21). Then the vertex operator can be restricted to the form

V = ebj·ϕeis·Y eb̃(2ρ−j+s)·ϕ̃ , (3.47)

where ρ is the Weyl vector defined in (2.19).
The effective action to evaluate correlation functions is

S = 1
4π

∫
d2w

[
∂ϕ · ∂̄ϕ+ ∂Y · ∂̄Y + ∂ϕ̃ · ∂̄ϕ̃+

√
gR
2

n−1∑
a=1

(bφa + b̃φ̃a)
]

+ λ

2π

∫
d2w

n−1∑
j=1

eb(ϕj−ϕj+1)+i(Yj−Yj+1) .

(3.48)

We rotate the fields as

bϕj + iYj = b′ϕ′j , −iϕ+ bY = b′Y ′ , b′ =

√
1 + n− k
k − n

. (3.49)

We further define φ′a = ϕ′a−ϕ′a+1 and Ya = Y ′a−Y ′a+1. Here we should notice that
∑n
l=1 Y

′
l

decouples as well. The action is now

S = 1
2π

∫
d2w

[
G

(n)
ab

2
(
∂φ′a∂̄φ′b + ∂Ya∂̄Yb + ∂φ̃a∂̄φ̃b

)]

+ λ

2π

∫
d2w

[√
gR
4

n−1∑
a=1

(
Qφ′φ

′a +QYY ′a +Qφ̃φ̃
a
)

+
n−1∑
a=1

eb
′φ′a

] (3.50)

with the background charges

Qφ′ = b′ + 1/b′ , QY ′ = −ib̃ , Qφ̃ = b̃ . (3.51)

The vertex operator (3.25) is

V = e((b′+1/b′)j−1/b′s)·ϕ′e−ib̃(j−s)·Y
′
eb̃(2ρ−j+s)·ϕ̃ . (3.52)

The contributions from Y ′ and ϕ̃′ cancel out up to reflection relations, which effectively
project the field space spanned by ϕj , Yj to that spanned only by ϕ′j . We then arrive at
the correlation function〈

N∏
ν=1

Vν(zν)
〉
, Vν(zν) = e((b′+1/b′)jν−1/b′sν)·ϕ′(zν) (3.53)

with the action of sl(n) Toda field theory as

S[φ′, ψ] = 1
2π

∫
d2w

[
G

(n)
ab

2 ∂φ′a∂̄φ′b +
√
gR
4 (b′ + 1/b′)

n−1∑
a=1

φ′a + λ
n−1∑
a=1

eb
′φ′a

]
. (3.54)

In this way, we have shown that the N -point functions of primary operators in the BRST
formulation of the coset can be reduced to the N -point functions as in (3.53) with the
action of sl(n) Toda field theory (3.54).
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3.3 N = 1 super Liouville theory from coset model

We then examine the N -point functions of the coset

SL(2)k ⊗ SL(2)−2
SL(2)k−2

(3.55)

and reduce them to those of N = 1 super Liouville theory. The factor SL(2)−1 in the
coset (3.1) is now replaced by SL(2)−2, which can be described by adjoint fermions ψ±, ψ3.
The action for the coset is almost same as (3.2) and given by

S = SWZNW
k [φ, β, γ] + Sψ[ψ] + SWZNW

−k+6 [φ̃, β̃, γ̃] + Sbc[ba, ca] . (3.56)

The differences are the second action for the adjoint fermions, which may be expressed as

Sψ[ψ] = 1
2π

∫
d2w

[
ψ+∂̄ψ− + 1

2ψ
3∂̄ψ3 + ψ̄+∂ψ̄− + 1

2 ψ̄
3∂ψ̄3

]
(3.57)

and the shift of level for the third action. The conformal weights of fermions are 1/2 and
the fermions are bosonized by

ψ± = e±i
√

2HL
, HL(z)HL(0) ∼ −1

2 ln z (3.58)

and similarly for ψ̄± written by HR. We further define H = HL +HR. The sl(2) current
generators are given by

J+
ψ =

√
2ψ+ψ3 , J3

ψ = ψ+ψ− , J−ψ =
√

2ψ−ψ3 . (3.59)

With this replacement, the BRST charge is of the same form as (3.10).
Let us consider the case where all vertex operators are in the NSNS-sector. Then the

vertex operators can be put in the form

V = P(γ, γ̃)e2bjφei
√

2sHe2b̃̃φ̃ (3.60)

as in (3.11) but now with b̃ = 1/
√
−k + 4. We further replace β in SWZNW

k by

β(w)−
∮
w

dz

2πib
+(z)Q(w) =

√
2ψ3ei

√
2HL(w)− β̃(w) +

√
2(b+(w)c3(w) + b3(w)c−(w)) .

(3.61)

Then, we can use a non-trivial element of Q1-cohomology as a vertex operator such as

V = e2bjφei
√

2sHe2b̃(1−j+s)φ̃ (3.62)

as before. Here we have used the constraints as in (3.23).
The effective action to evaluate correlation functions is

S = 1
2π

∫
d2w

[
∂φ∂̄φ+ ∂H∂̄H + ∂φ̃∂̄φ̃+

√
gR
4 (bφ+ b̃φ̃) + 1

2(ψ∂̄ψ + ψ̄∂ψ̄)
]

+ λ

π

∫
d2w ψψ̄e2bφ+i

√
2H ,

(3.63)
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where ψ = ψ3 and ψ̄ = ψ̄3. Rotating the fields as

2bφ+ i
√

2H = b′φ′ , −i
√

2φ+ 2bH = b′H ′ ,
√

2φ̃ = φ̃′ , b′ =

√
4− k
k − 2 , (3.64)

the action is now

S = 1
4π

∫
d2w

[
∂φ′∂̄φ′ + ∂H ′∂̄H ′ + ∂φ̃′∂̄φ̃′ +

√
gR
4

(
Qφ′φ

′ +QH′H
′ +Qφ̃′ φ̃

′
)]

+ 1
4π

∫
d2w

[
ψ∂̄ψ + ψ̄∂ψ + 4λψψ̄eb′φ′

] (3.65)

with the background charges

Qφ′ = b′ + 1/b′ , QH′ = −i
√

2b̃ , Qφ̃′ =
√

2b̃ . (3.66)

The vertex operator (3.62) becomes

V = e((b′+1/b′)j−1/b′s)φ′e−i
√

2b̃(j−s)H′e
√

2b̃(1−j+s)φ̃′ . (3.67)

For N -point function, we can see that the contributions from H ′ and φ̃′ cancel out as
before. Therefore, we end up with the correlation function as〈

N∏
ν=1

Vν(zν)
〉
, Vν(zν) = e((b′+1/b′)jν−1/b′sν)φ′(zν) (3.68)

with the action of N = 1 super Liouville theory given by

S[φ′, ψ] = 1
4π

∫
d2w

[
∂φ′∂̄φ′ +

√
gR
4 (b′ + 1/b′)φ′ + ψ∂̄ψ + ψ̄∂ψ̄ + 4λψψ̄eb′φ′

]
. (3.69)

In this way, we have reduced the N -point functions of primary operators in the BRST
formulation of the coset (3.55) to the N -point functions (3.68) with the action of N = 1
super Liouville theory (3.69).

4 Higher rank FZZ-duality

In our previous paper [9], we examined higher rank FZZ-duality between the coset (1.2) and
a theory with an sl(n|n+1)-structure. In that paper, however, we only succeeded to derive
correlator correspondences for the cases with n = 2, 3 due to our limited understanding of
the methods of [21, 22]. In the previous section, we established these methods for simple
but important examples. In this section, we derive correlator correspondences for higher
rank FZZ-duality for all n by applying the BRST-method to these examples.

4.1 A first order formulation of coset model

In order to specify which (β, γ)-systems cancel with each other, we have to choose a proper
free field realization of the numerator algebra. Namely, we construct a free field realization
of affine sl(n+ 1) such that the embedding of affine sl(n) becomes simpler. We first review
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a free field realization used in subsection 3.2 for sl(n) subalgebra with slightly different
notation and then find out that for sl(n+ 1) by extending it.

We introduced n free bosons ϕa and n(n− 1)/2 pairs of (βi,j , γi,j)-systems with i > j.
The conformal weights of (βi,j , γi,j) are (1, 0), respectively. Among n free bosons ϕa, one
linear combination decouples though. The non-trivial OPEs of these fields are

ϕa(z)ϕb(0) ∼ −δa,b ln |z|2 , βi,j(z)γk,l(0) ∼ δi,kδj,l
z

. (4.1)

The currents Jsl(n)
i,j with i > j are constructed as

J
sl(n)
i,j = βi,j −

j−1∑
l=1

βl,iγl,j . (4.2)

The Cartan subalgebra is generated by

Hsl(n)
a = Ĥsl(n)

a − Ĥsl(n)
a+1 , Ĥsl(n)

a = −b−1
(n)∂ϕa −

a−1∑
l=1

γa,lβa,l +
n∑

l=a+1
γl,aβl,a . (4.3)

Here we set b(n) = 1/
√
k − n. The other generators Jsl(n)

i,j (i < j) are determined by
requiring the correct OPEs with these currents.

We then look for a free field realization of affine sl(n+ 1). For this, we introduce a free
boson ϕn+1 and n additional pairs (βn+1,j , γn+1,j) with j = 1, 2, . . . , n satisfying

ϕn+1(z)ϕn+1(0) ∼ − ln |z|2 , βn+1,i(z)γn+1,j(0) ∼ δi,j
z
. (4.4)

The conformal weights of (βn+1,j , γn+1,j) are (1, 0), respectively. We would like to obtain
a special free field realization such that Ji,j = J

sl(n)
i,j for i > j. We find that

Jn+1,i = βn+1,i −
i−1∑
l=1

γi,lβn+1,l (4.5)

is consistent with the OPEs with Ji,j = J
sl(n)
i,j . This also fixes the Cartan generators.

Among them, we find

Ha = Ĥa − Ĥa+1 , Ĥa = −b−1
(n+1)∂ϕa −

a−1∑
l=1

γa,lβa,l +
n+1∑
l=a+1

γl,aβl,a . (4.6)

Here we set b(n+1) = 1/
√
k − n− 1. We also have

Z = − 1
b(n+1)(n+ 1)

(
n∂ϕn+1 −

n∑
a=1

∂ϕa

)
−

n∑
l=1

γn+1,lβn+1,l . (4.7)

The screening charges are also constructed such as to commute with these currents.
We find

Ql =
∫
dzVl(z) (4.8)
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with

Vl =
(
βl+1,l −

n∑
j=l+2

βj,lγj,l+1 − βn+1,lγn+1,l+1

)
eb(n+1)(ϕl−ϕl+1) (4.9)

for l = 1, 2, . . . , n− 1 and

Vn = βn+1,ne
b(n+1)(ϕn−ϕn+1) . (4.10)

We then move to find a first order formulation of the coset (1.2) by applying the
method developed in the previous section. We have observed that this effectively reduces
the method proposed by [21, 22] expect for the interaction terms. Namely, we consider the
field space orthogonal to the denominator factors SL(n) × U(1). For this, we first neglect
(βi,j , γi,j) without βn+1,j (≡ βj) and γn+1,j (≡ γj). We then introduce free bosons

Ĥa = b−1
(n)∂ϕ̂a +

a−1∑
l=1

γa,lβa,l −
n∑

l=a+1
γl,aβl,a , Z =

√
kn

n+ 1∂ϕ̂n+1 (4.11)

with a = 1, 2, . . . , n, and consider the orthogonal space to φ̂a = ϕ̂a− ϕ̂a+1 (a = 1, 2, . . . , n−
1) and ϕ̂n+1 as well. Instead of doing so, we introduce χj for j = 1, 2, . . . , n− 1 and η with
the opposite sign in front of the kinetic terms. The corresponding action is

S = 1
2π

∫
d2w

G(n+1)
ab

2 ∂φa∂̄φb −
G

(n)
ij

2 ∂χi∂̄χj − 1
2∂η∂̄η −

n∑
j=1

(
βj ∂̄γj + β̄j∂γ̄j

)
+ 1

2π

∫
d2w

[√
gR
4

(
b(n+1)

n∑
a=1

φa − b(n)

n−1∑
j=1

χj
)

+ λ
n∑
l=1

Vl

] (4.12)

with

Vl = |βlγl+1|2eb(n+1)φl (l = 1, 2, . . . , n− 1) , Vn = |βn|2eb(n+1)φn . (4.13)

Here we set φa = ϕa − ϕa+1. We consider the vertex operator of the form

Ψ(z) =
[
n∏
i=1

γαii γ̄
ᾱi
i

]
eb(n+1)

∑n

a=1 jaφae
b(n)

∑n−1
j=1 ljχje

√
n(n+1)

k
(mηL+m̄ηR)

, (4.14)

where

αi = −ji + ji−1 − li + li−1 −m. (4.15)

Here we set j0 = l0 = ln = 0. We define ᾱi by replacing m with m̄.

4.2 Application of reduction method

Now that we have a first order formulation of the coset model (1.2), we could apply the
analysis in [7, 9]. We consider the correlation function of the form〈

N∏
ν=1

Ψν(zν)
〉
. (4.16)

– 19 –



J
H
E
P
1
2
(
2
0
2
1
)
1
4
4

We use the coset action (4.12) and the vertex operator of the form (4.14). It would be
convenient to rewrite the vertex operators as

Ψν(zν) = Φν(zν)V χ;η
ν (zν) , V χ;η

ν (zν) = e
b(n)

∑n−1
j=1 l

ν
j χje

√
n(n+1)

k
(mνηL+m̄νηR)

, (4.17)

where Φν is defined as

Φν(zν) =
∫ [ n∏

a=1

d2µνa
|µνa|2

(µνa)−jνa+jνa−1−α
ν
a(µ̄νa)−jνa+jνa−1−ᾱ

ν
a

]
Vν(zν) , (4.18)

Vν(zν) =
[
n∏
a=1
|µνa|2(jνa−jνa−1)

]
e
∑n

a=1(µνaγa−µ̄νaγ̄a)e
∑n

a=1 j
ν
aφa (4.19)

with jν0 = 0. As closely explained in [7, 9], we can introduce the identity operator in the
coset model. In the current first order expression, it is given by

1 = v{Sj}(ξ)e
∑n−1

j=1 (Sj+1−Sj)χj/b(n)e
−
√

k
n(n+1) (

∑n

j=1 Sjη)
, (4.20)

where v{Sj}(ξ) restricts the domain of integration over βj to have a zero of order Sj and
extra insertion e

∑n

a=1(Sa−Sa+1)φa/b(n+1) with Sn+1 = 0 at w = ξ. Moreover, we have set
η = ηL + ηR. If the interaction terms in (4.12) do not include γa, then we can integrate it
out and βa can be replaced by a function defined by

N∑
µ=1

µνa
w − zν

= ua
(w − ξ)Sa

∏N−2−Sa
p=1 (w − yap)∏N

ν=1(w − zν)
= uaBa (4.21)

subject to constraints
n∑
ν=1

µνa
(w − ξ)n = 0 (4.22)

for n = 0, 1, . . . , Sa. Since it is not the case in general, we need some tricks as in [9].
From the interaction terms of the action (4.12), we can see that γ1 does not appear.

Thus we can integrate γ1 out and β1 can be replaced by a function u1B1 defined in (4.21).
We shift the fields as

φ1 + 1
b(n+1)

|u1B1|2 → φ1 ,

χ1 + 1
b(n)
|u1B1|2 → χ1 ,

ηL +
√

k

n(n+ 1) |u1B1|2 → ηL

(4.23)

and similarly for ηR as in the previous works. Essentially there are two contributions
coming from kinetic terms. The first one is the change of vertex operator with the removal
of µν1 and the shift of parameters as

Vν(zν)→ Vν(zν) =
[
n∏
a=2
|µνa|2(jνa−jνa−1)

]
e
∑n

a=2(µνaγa−µ̄νaγ̄a)eb(n+1)
∑n

a=1 j
ν
aφa+φ1/b(n+1) (4.24)
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and

V χ;η
ν (zν)→ V χ;η

ν (zν) = e
b(n)

∑n−1
j=1 l

ν
j χj−χ

1/b(n)e

√
n(n+1)

k

(
(mν− k

n(n+1) )ηL+(m̄ν− k
n(n+1) )ηR

)
.

(4.25)

The other is the extra insertion of vertex operators

Vb(y1
p) = e

−φ1/b(n+1)+χ1/b(n)+
√

k
n(n+1)η (4.26)

for p = 1, 2, . . . , N − 2− S1. We regard this term as an interaction term as in [7, 9]. This
is possible since the integration over µν1 in (4.18) becomes that over y1

p via the change of
variables (4.21).

We can integrate γ1 out, but we cannot do so γa with a 6= 1 at least naively. Here we
take a route to treat an interaction term perturbatively as suggested in [18]. Let us focus
on the following two interaction terms;

V2 = |β2γ3|2eb(n+1)φ2 , V1 = |γ2|2eb(n+1)φ1 . (4.27)

As explained in appendix A, we can change the vertex operator with γ2 to that without
γ2 by field redefinitions. Then, we perform a self-duality of Liouville field theory with the
interaction term. After that, we come back to the original fields. The interaction term V1
now becomes5

V1 = |γ2|2(k−n−1)eφ1/b(n+1)

=
∫
d2µ2
|µ2|2

|µ2|2(−k+n+1)eµ2γ2−µ̄2γ̄2eφ1/b(n+1) .
(4.28)

Treating this term perturbatively, we can integrate γ2 out and β2 is replaced by a function
u2B2 defined in (4.21). In order to remove the function (or µν2), we shift the variables as

φ1 −
1

b(n+1)
|u2B2|2 → φ1 , φ2 + 1

b(n+1)
|u2B2|2 → φ2 ,

χ1 −
1
b(n)
|u2B2|2 → χ1 , χ2 + 1

b(n)
|u2B2|2 → χ2 ,

ηL +
√

k

n(n+ 1)u2B2 → ηL

(4.29)

and similarly for ηR. The term V1 becomes

V1 → V1 = e
(φ1−φ1+φ2)/b(n+1)+(χ1−χ2)/b(n)−

√
k

n(n+1)η

= e
φ1/b(n+1)+(χ1−χ2)/b(n)−

√
k

n(n+1)η ,

(4.30)

5Here the formula is up to overall factor. The same is true for other cases.
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which can be put back as one of interaction terms. The change of vertex operator with the
removal of µν2 and the shift of parameters is

Vν(zν)→ Vν(zν) =
[
n∏
a=3
|µνa|2(jνa−jνa−1)

]
e
∑n

a=3(µνaγa−µ̄νaγ̄a)eb(n+1)
∑n

a=1 j
ν
aφa+φ2/b(n+1) (4.31)

and

V χ;η
ν (zν)→ V χ;η

ν (zν) = e
b(n)

∑n−1
j=1 l

ν
j χj−χ

2/b(n)e

√
n(n+1)

k

(
(mν− 2k

n(n+1) )ηL+(m̄ν− 2k
n(n+1) )ηR

)
.

(4.32)

The other is the extra insertions of vertex operators

Vb(y2
p) = e

(φ1−φ2)/b(n+1)−(χ1−χ2)/b(n)+
√

k
n(n+1)η (4.33)

for p = 1, 2, . . . , N − 2− S2, which are regarded as interaction terms.
In a similar manner, we can integrate γa for all a. The vertex operator is now

Ψν(zν)→Ψν(zν) (4.34)

= e
b(n+1)

∑n

a=1 j
ν
aφa+φn/b(n+1)+b(n)

∑n−1
j=1 l

ν
j χj+

√
n(n+1)

k

(
(mν− k

n+1 )ηL+(m̄ν− k
n+1 )ηR

)
.

The interaction terms are

Vl = e
(φl−φl+φl+1)/b(n+1)+(χl−χl+1)/b(n)−

√
k

n(n+1)η

= e
−(φl−1−φl)/b(n+1)+(χl−χl+1)/b(n)−

√
k

n(n+1)η

(4.35)

for l = 2, 3, . . . , n− 2 and

V ′l = e
(φl−1−φl)/b(n+1)−(χl−1−χl)/b(n)+

√
k

n(n+1)η (4.36)

for l = 2, 3, . . . , n− 1. Moreover, we have

V1 = e
φ1/b(n+1)+(χ1−χ2)/b(n)−

√
k

n(n+1)η ,

Vn−1 = e
−(φn−2−φn−1)/b(n+1)+χn−1/b(n)−

√
k

n(n+1)η ,

Vn = eφn/b(n+1)

(4.37)

and

V ′1 = e
−φ1/b(n+1)+χ1/b(n)+

√
k

n(n+1)η ,

V ′n = e
(φn−1−φn)/b(n+1)−χn−1/b(n)+

√
k

n(n+1)η .

(4.38)

For Vn, we have performed a self-duality of Liouville field theory. The kinetic terms are
similar to those of (4.12). Only differences are no (βi, γi) now and the shifts of background
charges for φn and η as

Qφn = b(n+1) + b−1
(n+1) , Qη =

√
kn

n+ 1 . (4.39)
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4.3 Structure of the dual theory

As explained in [9] (see also [26, 54, 55]), the symmetry algebra of the dual theory should be
given by Yn,0,n+1[ψ−1]-algebra with ψ = −k+ n+ 1 after decoupling a u(1) subalgebra. In
order to express it, we introduce φ(1)

j with j = 1, 2, · · · , n and φ(3)
j with j = 1, 2, · · · , n+ 1.

The normalization is

φ
(1)
j (z)φ(1)

l (0) ∼ − 1
h2h3

δj,l ln z , φ
(3)
j (z)φ(3)

l (0) ∼ − 1
h1h2

δj,l ln z (4.40)

with

h1 = i
√
k − n− 1 , h2 = i√

k − n− 1
, h3 = −i k − n√

j − n− 1
. (4.41)

We may consider the free field realization corresponding to the ordering

φ
(1)
1 φ

(3)
1 φ

(1)
2 · · ·φ

(1)
n φ(3)

n φ
(3)
n+1 . (4.42)

The screening operators are

V ′l = e−h3φ
(1)
l

+h1φ
(3)
l (l = 1, 2, . . . , n) ,

Vl = e−h1h
(3)
l

+h3φ
(1)
l+1 (l = 1, 2, . . . , n− 1) , Vn = e−h1(h(3)

n −φ
(3)
n+1) .

(4.43)

We can check that they reproduce the interaction terms obtained in the previous subsection
using the coordinate transformation in [9]. The Gram matrix has a correspondence to the
Dynkin diagram of sl(n+ 1|n), whose simple root system consists of 2n− 1 fermionic roots
and one bosonic root.

It might be useful to map to the free field realization given in [9]. For this we replace
φ

(κ)
j by φ′(κ)

j . The ordering is denoted as

φ′
(3)
1 φ′

(1)
1 φ′

(3)
2 · · ·φ

′(3)
n φ′(1)

n φ′
(3)
n+1 . (4.44)

The screening operators are

V ′l = e−h1φ′
(3)
l

+h3φ′
(1)
l , Vl = e−h3h′

(1)
l

+h1φ′
(3)
l+1 (4.45)

for l = 1, 2, . . . , n. Its Gram matrix has a correspondence to the Dynkin diagram of
sl(n + 1|n), whose simple root system consists of 2n fermionic roots. We can check that
this map can be done by applying the reflection relation of [7] to the interaction terms.
Explicitly, we need to use the reflection to Vn w.r.t. V ′n and Vl w.r.t. V ′l and V ′l+1 and act
a rotation of fields.

The current vertex operator may be put into the form6

V = e
∑n

j=1 a
(1)
j φ

(1)
j +

∑n+1
l=1 a

(3)
l
φ

(3)
l . (4.46)

6Using the decoupled U(1), we have set a
(3)
n+1 = 0.
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Applying the reflections by V ′l for all l and acting the same rotation of fields, the vertex
operator can be mapped to

V = e
∑n

j=1 a
′(1)
j φ′

(1)
j +

∑n+1
l=1 a′

(3)
l
φ′

(3)
l . (4.47)

The momenta a(κ)
j and a′(κ)

j are related as

a′
(1)
j = a

(1)
j + i

k − n√
k − n− 1

, a′
(3)
j = a

(3)
j + i

√
k − n− 1 . (4.48)

Going back to the original coordinate system, we find

Ψν(zν) = e
b(n+1)

∑n

a=1 j
ν
aφa+b(n)

∑n−1
j=1 l

ν
j χj+

√
n(n+1)

k
(mνηL+m̄νηR) (4.49)

as one may have expected.

5 Fermionic higher rank FZZ-duality

In this section, we derive correlator correspondences between the CPn Kazama-Suzuki
coset (1.6) and sl(n|n + 1) Toda field theory as conjectured in [35, 36]. For small n, it
was actually possible to derive correlator correspondences if the trick used around (5.22)
was recognized. Anyway, it was not possible to analyze the cases with generic n before
elaborating the method of [21, 22]. In particular, we have learned how to incorporate
fermions in the interaction terms as was done in subsection 3.3.

5.1 A first order formulation of super coset model

We describe the coset (1.6) in the BRST formulation by applying the method developed
in section 3. The factor SO(2n)1 can be described by Dirac fermions ψ±j (j = 1, 2, . . . , n)
with conformal weight 1/2. The generators of sl(n)−1 can be obtained by these fermions as

Jψi,j = ψ+
j ψ
−
i (i > j) , Ĥψ

a = −ψ+
a ψ
−
a , (5.1)

and similarly for Jψi,j with i < j. We frequently use its bosonized formulation as

ψ±j = e±iY
L
j , Y L

i (z)Y L
j (0) ∼ −δi,j ln z . (5.2)

We also introduce Y R
j in a similar manner. For the super coset, we neglect (βi,j , γi,j) except

for βn+1,j ≡ βj and γn+1,j ≡ γj as in the case of bosonic coset. However, in the current
case, we need to introduce slightly different bosons as

Ĥa + Ĥψ
a = b−1∂ϕ̂a +

a−1∑
l=1

γa,lβa,l −
n∑

l=a+1
γl,aβl,a , (5.3)

Z +
n∑
l=1

ψ+
l ψ
−
l = b−1

√
n

n+ 1∂ϕ̂n+1 . (5.4)
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Here and in the following, we set b = b(n+1). We then consider the orthogonal space to
φ̂a = ϕ̂a − ϕ̂a+1 (a = 1, 2, . . . , n − 1) and ϕ̂n+1. As before, we instead introduce χj for
j = 1, 2, . . . , n− 1 an η with the opposite sign in the kinetic terms.

The corresponding action is now

S = 1
2π

∫
d2w

[
G

(n+1)
ab

2 ∂φa∂̄φb −
G

(n)
ij

2 ∂χi∂̄χj − 1
2∂η∂̄η +

b
√
gR
4

(
n∑
a=1

φa −
n−1∑
j=1

χj
)]

+ 1
2π

∫
d2w

[
n∑
j=1

(
−βj ∂̄γj − β̄j∂γ̄j + ψ+

j ∂̄ψ
−
j + ψ̄+

j ∂ψ̄
−
j

)
+ λ

n∑
l=1

Vl

]
(5.5)

with

Vl = |ψ+
l ψ
−
l+1 + βlγl+1|2eb(n+1)φl (l = 1, 2, . . . , n− 1) , Vn = |βn|2ebn+1φn . (5.6)

As in subsection 3.2, βl+1,l is replaced by the expression in (3.46), which yields the terms
involving fermions ψ+

l ψ
−
l+1, and the terms including γi,j except for i = n+ 1 are neglected.

Here vertex operators are assumed to be independent of BRST ghosts as well. More
precisely speaking, we consider the vertex operator of the form7

Ψ(z) =
[
n∏
i=1

Γαii Γ̄ᾱii

]
e
b(
∑n

a=1 jaφa+
∑n−1

j=1 ljχj+
√
n(n+1)(mηL+m̄ηR))

, (5.7)

where

Γ1 = γ1 , Γi = γi + ψ+
i−1ψ

−
i (i = 2, 3, . . . , n) . (5.8)

Moreover, we set

αi = −ji + ji−1 − li + li−1 −m (5.9)

and similarly for ᾱi as before. Here we have set j0 = l0 = ln = 0.

5.2 Application of reduction method

Now we have a first order formulation of the Kazama-Suzuki coset (1.6), we can apply the
reduction methods developed in [7, 9, 38]. We consider the correlation function of the form〈

N∏
ν=1

Ψν(zν)
〉
. (5.10)

The effective action is given by (5.5) and the vertex operators are rewritten as

Ψν(zν) = Φν(zν)V χ;η
ν (zν) , V χ;η

ν (zν) = e
b(
∑n−1

j=1 l
ν
j χj+
√
n(n+1)(mνηL+m̄νηR))

, (5.11)

7The form of Γi may be explained as an eigenfunction of Laplace operator as in [19].
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where Φν is defined as

Φν(zν) =
∫ [ n∏

a=1

d2µνa
|µνa|2

µ
−jνa+jνa−1−α

ν
a

a µ̄
−jνa+jνa−1−ᾱ

ν
a

a

]
Vν(zν) , (5.12)

Vν(zν) =
[
n∏
a=1
|µνa|2(jνa−jνa−1)

]
e
∑n

a=1(µνaΓa−µ̄νaΓ̄a)e
∑n

a=1 j
ν
aφa (5.13)

with jν0 = 0. We could insert an identity operator as in the bosonic case. In the current
case, it can be expressed as

1 = v{Sj}(ξ)e
∑n−1

j=1 (Sj+1−Sj)χj/b|ei
∑n

j=1 Y
L
j |2e

− 1√
n(n+1)

(
∑n

j=1 Sj(ηL+ηR))/b
. (5.14)

As before the spectral flow operator v{Sj}(ξ) restricts the domain of integration over βj to
have a zero of order Sj and extra insertion e

∑n

a=1(Sa−Sa+1)φa/b with Sn+1 = 0 at w = ξ.
Since Γ1 = γ1, integration over γ1, β1 can be done as in the bosonic case. We shift

the fields

φ1 + 1
b
|u1B1|2 → φ1 , χ1 + 1

b
|u1B1|2 → χ1 ,

ηL + 1
b

1√
n(n+ 1)

|u1B1|2 → ηL , Y L
1 + i ln u1B1 → Y L

1

(5.15)

and similarly for ηR, Y R
1 . Essentially there are two contributions. The vertex operators are

changed as

Vν(zν)→ Vν(zν) = |eiY L1 |2
[
n∏
a=2
|µa|2(ja−ja−1)

]
e
∑n

a=2(µaνΓa−µ̄aν Γ̄a)eb
∑n

a=1 j
ν
aφa+φ1/b (5.16)

and

V χ;η
ν (zν)→ V χ;η

ν (zν) = e
b
∑n−1

j=1 l
ν
j χj−χ

1/b
e
b
√
n(n+1)((mν− 1

n(n+1)b2
)ηL+(m̄ν− 1

n(n+1)b2
)ηR)

.

(5.17)

The other is the extra insertions of vertex operators

Vb(y1
p) = e

(−φ1+χ1+ 1√
n(n+1)

η)/b
|e−iY L1 |2 (5.18)

for p = 1, 2, . . . , N − 2− S1.
Now the interaction term V1 becomes

V1 = |ψ+
1 ψ
−
2 + γ2|2ebφ1 . (5.19)

We may change the variable as

Γ2 = γ2 + ψ+
1 ψ
−
2 → γ2 . (5.20)

This changes V1 as

V1 = |γ2|2ebφ1 , (5.21)
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but the kinetic term becomes

−β2∂̄γ2 → −β2∂̄(γ2 − ψ+
1 ψ
−
2 ) = −β2∂̄γ2 − (∂̄β2)ψ+

1 ψ
−
2 . (5.22)

The final equality is up to total derivative. Now we can proceed as in the bosonic case.
We shift the variables as

φ1 −
1
b
|u2B2|2 → φ1 , φ2 + 1

b
|u2B2|2 → φ2 , χ1 −

1
b
|u2B2|2 → χ1 ,

χ2 + 1
b
|u2B2|2 → χ2 , ηL + 1

b

1√
n(n+ 1)

u2B2 → ηL , Y L
2 + i ln u2B2 → Y L

2

(5.23)

and similarly for ηR, Y R
2 . The operator V1 becomes

V1 → V1 = e
(φ1+χ1−χ2− 1√

n(n+1)
η)/b
|eiY L1 − eiY L2 |2 , (5.24)

which can be put back as one of interaction terms. Notice that from (5.22) there are
insertions of

e−ψ
−
2 ψ

+
1 = 1− ψ−2 ψ

+
1 = 1− e−iY L2 +iY L1 , (5.25)

where the vertex operators are inserted. The vertex operators are changed as

Vν(zν)→ Vν(zν) = |ψ+
1 ψ

+
2 |

2
[
n∏
a=3
|µνa|2(jνa−jνa−1)

]
e
∑n

a=3(µνaΓa−µ̄νaΓ̄a)eb
∑n

a=1 j
ν
aφa+φ2/b (5.26)

and

V χ;η
ν (zν)→ V χ;η

ν (zν) = e
b
∑n−1

j=1 l
ν
j χj−χ

2/b
e
b
√
n(n+1)

(
(mν− 2

n(n+1)b2
)ηL+(m̄ν− 2

n(n+1)b2
)ηR
)
.

(5.27)

The other is the extra insertions of vertex operators

Vb(y2
p) = e

(φ1−φ2−χ1+χ2+ 1√
n(n+1)

η)/b
|e−iY L2 |2 (5.28)

for p = 1, 2, . . . , N − 2− S2.
Similarly, we integrate out βa, γa for a = 3, 4, . . . , n. The vertex operators are now

Ψν(zν)→Ψν(zν) (5.29)

=
n∏
l=1
|ψ+
l |

2e
b
∑n

a=1 j
ν
aφa+φn/b+b

∑n−1
j=1 l

ν
j χj+b

√
n(n+1)

(
(mν− 1

(n+1)b2
)ηL+(m̄ν− 1

(n+1)b2
)ηR
)
.

The interaction terms are

Vl = e
(−φl−1+φl+χl−χl+1− 1√

n(n+1)
η)/b
|ψ+
l − ψ

+
l+1|

2 (5.30)

for l = 2, 3, . . . , n− 2 and

V ′l = e
(φl−1−φl−χl−1+χl+ 1√

n(n+1)
η)/b
|ψ−l |

2 (5.31)
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for l = 2, 3, . . . , n− 1. Moreover, we have

V1 = e
(φ1+χ1−χ2− 1√

n(n+1)
η)/b
|ψ+

1 − ψ
+
2 |

2 ,

Vn−1 = e

(
−φn−2+φn−1+χn−1− 1√

n(n+1)
η
)
/b
|ψ+
n−1 − ψ

+
n |2 ,

Vn = eφn/b

(5.32)

and

V ′1 = e

(
−φ1+χ1+ 1√

n(n+1)
η
)
/b
|ψ−1 |

2 ,

V ′n = e

(
φn−1−φn−χn−1+ 1√

n(n+1)
η
)
/b
|ψ−n |2 .

(5.33)

For Vn, we have performed a self-duality of Liouville field theory. The kinetic terms are
similar to those of (5.5). Only differences are no (βi, γi) now and the shifts of background
charges for φn, η, Yi as

Qφn = b+ b−1 , Qη =
√

n

n+ 1b
−1 , QY = i . (5.34)

5.3 Structure of the dual theory

We have written down correlation functions of the super coset (1.6) in terms of a different
theory. In this subsection, we show that the dual theory is indeed sl(n|n + 1) Toda field
theory in [35, 36].

As obtained in the previous section, we have two types of interaction terms Vl, V ′l with
l = 1, 2, . . . , n. We split the interaction terms Vl (more precisely speaking the corresponding
screening operators) into two parts as

Vl = Vl,1 − Vl,2 (5.35)

with

Vl,1 = e

(
−φl−1+φl+χl−χl+1− 1√

n(n+1)
η
)
/b
ψ+
l+1 , Vl,2 = e

(
−φl−1+φl+χl−χl+1− 1√

n(n+1)
η
)
/b
ψ+
l

(5.36)

for l = 1, 2, . . . , n− 1. Here we have set φ0 = χn = 0. We can check that the Gran matrix
for V ′l and Vl,1 are the same as that in the bosonic case. This implies that there is a
special transformation of fields such that the fermions (or Yl) are removed from the set of
screening operators. It was shown that this is indeed the case for the fermionic FZZ-duality
in [38]. After the transformation, we can apply the same reflection relations and change of
variables as in the bosonic case. We then obtain screening operators such as

V ′l = e

(
−φl−1+φl+χl−1−χl+ 1√

n(n+1)
η
)
/b
ψ−l , Vl,1 = e

(
φl−φl+1−χl−1+χl− 1√

n(n+1)
η
)
/b
ψ+
l (5.37)

with φ0 = χ0 = φn+1 = χn = 0. For the other set of screening operators Vl,2, the Gram
matrix with V ′l are different from that for the bosonic case. This implies that the fermions
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(or Yl) cannot be decoupled by a transformation of fields. Even so, we can perform the
same reflection relations and change of variables as in the bosonic case, and the final result
turns out to be quite simple as

Vl,2 = e

(
φl−φl+1−χl−1+χl− 1√

n(n+1)
η
)
/b
ψ+
l+1 (5.38)

for l = 1, 2, . . . , n − 1 and Vn,2 = 0. Indeed, V ′l and Vl = Vl,1 − Vl,2 are the fermionic
screening operators obtained in [35, 36].

For the vertex operator, we again perform the same reflection relations and change of
variables as in the bosonic case. The vertex operators become

Ψν(zν) = e
b
(∑n

a=1 j
ν
aφa+

∑n−1
j=1 l

ν
j χj+
√
n(n+1)(mνηL+m̄νηR)

)
(5.39)

as one may have expected.

6 Conclusion and discussions

In this paper, we derived correlator correspondences among two dimensional conformal field
theories with W-algebra symmetry. Combined with the matchings of symmetry algebra,
we can thus show the equivalences of dual theories. We examined several examples, and
the most fundamental one may be the duality between the coset (1.1) and sl(n) Toda
field theory, which can be regarded as an analytic continuation of coset realization of Wn

minimal model proven rather recently in [4]. Another important example is higher rank
FZZ-duality analyzed in [9]. In this paper, we extended the derivation of the correlator
correspondences to all n. We also analyzed related coset models and those with additional
fermions. We examined dualities related to those of VOAs conjectured by Gaiotto-Rapčák
via brane junction picture in [31]. We have realized some dualities of VOAs in terms of
two dimensional conformal field theory, and it would be important to realize all of them.
The triality of Gaiotto and Rapčák extends to orthosymplectic groups [31, 56] and this
is important since even spin algebras and superalgebras with N = 1 supersymmetry are
covered by orthosymplectic cosets. In addition to their appearance as corner VOAs of
orthosymplectic gauge theories these coset models also appear as duals to N = 1 higher
spin theories [57]. There are other related dualities, such as, those constructed by combining
the fundamental brane junctions as suggested in [31, 58], the Fateev’s duality in [59], and
so on. They deserve further investigation in the current context as well.

We derived the correlator correspondences by utilizing a first order formulation of
coset model, which is a simple way to described the coset algebra like free field realizations
of affine Lie algebras. We developed the method by expressing the coset model in the
BRST formulation [14–16] and applying the Kugo-Ogima method [25]. The result not only
reproduces the previous proposal by [21, 22] but also provides a way to find out proper
interaction terms. In particular, the equivalence between the first order formulation and
the GKO construction is kept manifest, which follows the equivalence between the BRST
formulation and the GKO construction shown in [45]. The correlator correspondences
between the coset (1.1) and sl(n) Toda field theory are direct consequence of the first order
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formulation. On the other hand, the correlator correspondences for higher rank FZZ-
duality are more involved and required the reduction methods developed in [13, 17, 18].
In this paper, we applied the first order formulation of coset models to realize dualities in
two dimensional conformal field theory. However, the formulation itself is a fundamental
method to investigate properties of coset models. Therefore, we expect that there should
be more applications of the current formulation.

In this paper, we have examined only correlation functions on a Riemann sphere, and it
would be interesting to extend the analysis to generic surfaces. It would be not so difficult
to examine Riemann surfaces of higher genus, see, e.g., [7]. However, it would be rather
involved to treat Riemann surfaces with boundaries. The original FZZ-duality on a disk
was investigated in [38], and it would be nice if one could understand dualities involving
D-branes in a systematic way. As mentioned at the beginning of the introduction, W-
algebras play important roles in several places of theoretical physics. In fact, one of our
prime purposes to initiate this project is to understand the properties of conformal field
theories dual to extended higher spin gravities as analyzed in [60–62]. In particular, it
would be important to incorporate extended supersymmetry to see the relation between
superstrings and higher spin gravities, see [63, 64] for N = 4 supersymmetry and [65, 66] for
N = 3 supersymmetry. The Gaiotto-Rapčák VOAs are conjectured to be isomorphic to the
algebras of [54] (see also [26, 55]), and the algebras were shown in [67] to be the symmetry of
moduli spaces of spiked instantons by Nekrasov. Therefore, the understanding of Gaiotto-
Rapčák dualities would lead to an extension of Alday-Gaiotto-Tachikawa conjecture [1, 2]
relating four dimensional gauge theories and two dimensional conformal field theories with
W-algebra symmetry.
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A Relation among two Bershadsky-Polyakov theories

One of the important facts used in [9, 18] is that there are two types of free field realizations
for the same Bershadsky-Polyakov algebra [46, 47] as found in [48, 49]. In particular,
we constructed actions corresponding to these free field realizations and proposed a map
between correlation functions evaluated by these two actions. In this appendix, we show
that the map can be actually obtained simply by a rotation of fields. It is expected that
a similar story holds also for more complicated examples of non-regular W-algebras as
analyzed in [18], and we would like to return to this important issue in the near future.

For the first realization, we use the action

S = 1
2π

∫
d2w

[
G

(3)
ab

2 ∂φa∂̄φb − β∂̄γ − β̄∂γ̄ +
√
gR
4 (Q1φ

1 +Q2φ
2) + λ

2∑
l=1

Vl

]
. (A.1)
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The background charges for φa are

Q1 = b+ 1/b , Q2 = b (A.2)

with b = 1/
√
k − 3. It is convenient to formulate (β, γ)-system as

β = −∂yLe−xL+yL , γ = exL−yL (A.3)

with xL(z)xL(0) ∼ − ln z and yL(z)yL(0) ∼ ln z. We define xR, yR in a similar way and
also introduce x = xL + xR, y = yL + yR. The interaction terms are

V1 = γγ̄ebφ1 , V2 = ββ̄ebφ2 . (A.4)

The theory admits the symmetry of Bershadsky-Polyakov algebra and in particular its
U(1)-generator is given by

H = 1
3b(∂φ1 − ∂φ2) + βγ = 1

3b(∂φ1 − ∂φ2)− ∂x . (A.5)

For the second realization, we use

S = 1
2π

∫
d2w

[
G

(3)
ab

2 ∂φ′a∂̄φ′b − β′∂̄γ′ − β̄′∂γ̄′ + 1
4
√
gR(Q1φ

′1 +Q2φ
′2) + λ

2∑
l=1

V ′l

]
(A.6)

with the background charges (A.2). As above, we formulate (β′, γ′)-system as

β′ = −∂y′Le−x
′
L+y′L , γ′ = ex

′
L−y

′
L (A.7)

with x′L(z)x′L(0) ∼ − ln z and y′L(z)y′L(0) ∼ ln z. We define x′R, y′R in a similar way and
also introduce x′ = x′L + x′R, y

′ = y′L + y′R. The interaction terms are

V ′1 = ebφ
′
1 , V ′2 = β′β̄′ebφ

′
2 . (A.8)

The theory also admits the symmetry of Bershadsky-Polyakov algebra and its U(1)-
generator is

H ′ = 1
3b(∂φ′1 + 2∂φ′2)− β′γ′ = 1

3b(∂φ′1 + 2∂φ′2) + ∂x′ . (A.9)

We would like to show that the two descriptions are related by a rotation of fields. We
first require V1 = V ′1 , that is,

φ′1 = φ1 + (x− y)/b . (A.10)

We then require that V2 = V ′2 up to a total derivative term. Thus we need

y′ = c1y + c2(bφ2 − x+ y) , bφ2 − x+ y = bφ′2 − x′ + y′ (A.11)

with some coefficients c1, c2. Finally, we assign that the U(1)-generators are the same, i.e.,

H = 1
3b(∂φ1 − ∂φ2)− ∂x = 1

3b(∂φ′1 + 2∂φ′2) + ∂x′ = H ′ . (A.12)
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A solution is given by

φ′1 = φ1 + (x− y)/b , φ′2 = φ2 − 2(x− y)/b ,

y′ = (k − 3)x− (k − 2)y − φ2/b , x′ = (k − 4)x− (k − 3)y − φ2/b .
(A.13)

The vertex operators are mapped as

γ′αγ̄′ᾱeb(j1φ
′
1+j2φ′2) = γj1−2j2−αγ̄j1−2j2−ᾱeb(j1φ1+j2φ2) . (A.14)

In particular, the factor relative to these vertex operators is one.

B Duality with a theory of a gl(n|n)-structure

In [9] and sections 4, 5, we examined the duality related to the duality of Y0,n+1,n-algebras
in terms of [31]. A slightly modified duality can be obtained for Y0,n,n-algebra, which
involves the coset (1.3). In this appendix, we derive correlator correspondences between
the coset and the theory with a gl(n|n)-structure by almost the same analysis as done
in section 4. We examine another duality by introducing additional fermions and derive
correlator correspondences by almost the same analysis as done in section 5.

B.1 Bosonic duality

In subsection 3.2, we analyzed the coset (1.1) and showed that its correlation functions
match with those of sl(n) Toda field theory. In the coset, we describe SL(n)−1 by n

pairs of free fermion (ψ+
j , ψ

−
j ) (with a decoupled U(1)). In this appendix, we consider the

coset (1.3). In this case, we describe SL(n)1 by n pairs of ghost system (βj , γj) (with a
decoupled U(1)). We work on the Ramond sector such that the conformal dimensions of
(βj , γj) becomes effectively (1, 0), see, e.g., [18, 27] for related issues.

Following the same logic for the case with (1.1), we can reduce the correlation function
of the coset (1.3) to that of the form 〈

N∏
ν=1

Ψν(zν)
〉
. (B.1)

The effective action is

S = 1
2π

∫
d2w

[
G

(n)
ab

2
(
∂φa∂̄φb − ∂χa∂̄χb

)
+
√
gR
4

n−1∑
a=1

(Qφφa −Qχχa)
]

− 1
2π

∫
d2w

 n∑
j=1

(βj ∂̄γj + β̄j∂γ̄j)− λ
n−1∑
l=1

Vl

 , (B.2)

where the background charges are

Qφ = b(n) = 1√
k − n

, Qχ = b(n+1) = 1√
k − n+ 1

(B.3)

and the interaction terms are

Vl = |βlγl+1|2eb(n)φl (B.4)
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for l = 1, 2, . . . , n− 1. The vertex operators are of the form

Ψν(zν) =
[
n∏
i=1
|γνi |−2(jνi −j

ν
i−1+lνi −l

ν
i−1)

]
e
∑n−1

a=1 (b(n)j
ν
aφa+b(n+1)l

ν
aχa) (B.5)

with jν0 = lν0 = 0.
The integration over (βj , γj) can be carried out as in section 4. The interaction

terms are

Vl = e(φl−φl+φl+1)/b(n)+(χl−χl+1)/b(n+1)

= e−(φl−1−φl)/b(n)+(χl−χl+1)/b(n+1)
(B.6)

for l = 2, 3, . . . , n− 2 and

V ′l = e(φl−1−φl)/b(n)−(χl−1−χl)/b(n+1) (B.7)

for l = 2, 3, . . . , n− 1. Moreover, we have

V1 = eφ
1/b(n)+(χ1−χ2)/b(n+1) , Vn−1 = e−(φn−2−φn−1)/b(n)+χn−1/b(n+1) (B.8)

and

V ′1 = e−φ
1/b(n)+χ1/b(n+1) , V ′n = eφ

n−1/b(n)−χn−1/b(n+1) . (B.9)

The kinetic terms are the same as (B.2) except for no (βj , γj) now. The vertex operators are

Ψν(zν) = e
∑n−1

a=1 (b(n)j
ν
aφa+b(n+1)l

ν
aχa) . (B.10)

We can check that the interaction terms correspond to screening operators for a free
field realization of Yn,0,n[ψ−1] with ψ = −k + n. For this, we introduce φ(1)

j , φ
(3)
j with

j = 1, 2, · · · , n. The normalization is

φ
(1)
j (z)φ(1)

l (0) ∼ − 1
h2h3

δj,l ln z , φ
(3)
j (z)φ(3)

l (0) ∼ − 1
h1h2

δj,l ln z (B.11)

with

h1 = i
√
k − n , h2 = i√

k − n
, h3 = −ik − n+ 1√

k − n
. (B.12)

We may consider the free field realization corresponding to the ordering

φ
(1)
1 φ

(3)
1 φ

(3)
2 · · ·φ

(3)
n−1φ

(1)
n φ(3)

n . (B.13)

The screening operators are

V ′l = e−h3φ
(1)
l

+h1φ
(3)
l (l = 1, 2, . . . , n) ,

Vl = e−h1h
(3)
l

+h3φ
(1)
l+1 (l = 1, 2, . . . , n− 1) .

(B.14)

They indeed reproduce those obtained above.
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B.2 Fermionic duality

We then consider the coset of the form

SL(n)k ⊗ SL(n)1 ⊗ SL(n)−1
SL(n)k

. (B.15)

Compared with the coset (1.3), n pairs of complex fermions ψ±j with j = 1, 2, . . . , n
are added.

As in the previous examples, we can reduce the problem to compute the correlation
function 〈

N∏
ν=1

Ψν(zν)
〉

(B.16)

with the effective action

S = 1
2π

∫
d2w

[
G

(n)
ab

2
(
∂φa∂̄φb − ∂χa∂̄χb

)
+
√
gR
4

n−1∑
a=1

(Qφφa −Qχχa)
]

+ 1
2π

∫
d2w

 n∑
j=1

(−βj ∂̄γj − β̄j∂γ̄j + ψ+
j ∂̄ψ

−
j + ψ̄+

j ∂ψ̄
−
j ) + λ

n−1∑
l=1

Vl

 . (B.17)

Here the background charges are

Qφ = Qχ = b = 1√
k − n

(B.18)

and the interaction terms are

Vl = |ψ+
l ψ
−
l+1 + βlγl+1|2ebφl (B.19)

for l = 1, 2, . . . , n− 1. The vertex operators are of the form

Ψν(zν) =
[
n∏
i=1
|Γνi |−2(jνi −j

ν
i−1+lνi −l

ν
i−1)

]
eb
∑n−1

a=1 (jνaφa+lνaχa) (B.20)

with j0 = l0 = 0 and

Γ1 = γ1 , Γi = γi + ψ+
i−1ψ

−
i (i = 2, 3, . . . , n) . (B.21)

The integration over (βa, γa) can be carried out as in section 5 along with the change
of variables

Γi = γi + ψ+
i−1ψ

+
i → γi . (B.22)

The interaction terms are

Vl = e(−φl−1+φl+χl−χl+1)/b|ψ+
l − ψ

+
l+1|

2 (B.23)
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for l = 2, 3, . . . , n− 2 and

V ′l = e(φl−1−φl−χl−1+χl)/b|ψ−l |
2 (B.24)

for l = 2, 3, . . . , n− 1. Moreover, we have

V1 = e(φ1+χ1−χ2)/b|ψ+
1 − ψ

+
2 |

2 , Vn−1 = e(−φn−2+φn−1+χn−1)/b|ψ+
n−1 − ψ

+
n |2 (B.25)

and

V ′1 = e(−φ1+χ1)/b|ψ−1 |
2 , V ′n = e(φn−1−χn−1)/b|ψ−n |2 . (B.26)

The vertex operators become

Ψν(zν) = eb
∑n−1

a=1 (jνaφa+lνaχa) . (B.27)

The theory can be identified with the gl(n|n) Toda field theory, see [43].
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