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We study a one-matrix model of a real symmetric matrix with a potential which is a sum of
two logarithmic functions and a harmonic one. This two-logarithm matrix model is the absolute
square norm of a toy wave function which is obtained by replacing the tensor argument of the
wave function of the canonical tensor model (CTM) with a matrix. We discuss a symmetry
enhancement phenomenon in this matrix model and show that symmetries and dimensions of
emergent spaces are stable only in a phase which exists exclusively for the positive cosmological
constant case in the sense of CTM. This would imply the importance of the positivity of the
cosmological constant in the emergence phenomena in CTM.
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1. Introduction

Quantum gravity is one of the serious fundamental problems in theoretical physics. The problem
originates from the fact that it is difficult to apply the standard quantum field theoretical method to
the quantization of general relativity.1 Various approaches have been proposed, and some of them
argue that macroscopic spacetimes and general relativity are emergent phenomena from collective
dynamics of some fundamental degrees of freedom [2–5].

The tensor model may be regarded as one such approach [6–9]. It was introduced as an extension
of the matrix model, which successfully describes two-dimensional quantum gravity [10], with the
hope of extending the success to higher dimensions. However, the tensor model does not seem to
generate macroscopic spacetimes but is rather dominated by singular objects like branched poly-
mers.2 Therefore, it seems difficult to regard the tensor model as quantum gravity for dimensions
higher than two.

The tensor model above is considered in the context of Euclidean simplicial quantum gravity. In
fact, simplicial quantum gravity is more successful in the Lorentzian context. It has been shown
that causal dynamical triangulation, the Lorentzian version, successfully generates macroscopic
spacetimes [13], while dynamical triangulation, the Euclidean version, does not. Prompted by the
success, the present author has formulated a tensor model in the Hamilton formalism, which we
call the canonical tensor model (CTM) [14,15]. CTM is a first-class constrained system having an
analogous structure to the Arnowitt–Deser–Misner formalism of general relativity. The canonical

1 However, see, for example, Ref. [1] for a sophisticated quantum field theoretical approach.
2 See Refs. [11,12] for a proof in the large-N limit in the colored tensor model.
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quantization of CTM is straightforward [16], and the physical state condition can be solved exactly
by a wave function [17].

The wave function is represented by a multiple integral of an integrand which has an argument of a
real symmetric tensor Pabc (a, b, c = 1, . . . , N ) [17] (see Appendix A for a minimal introduction). It
has been argued in general contexts and has been shown for some simple cases that the wave function
has peaks at Lie group symmetric configurations (namely, Pabc = ga′

a gb′
b gb′

b Pa′b′c′ , g ∈ G) for various
Lie group representations G [18,19]. This phenomenon, which may be called symmetry emergence
from quantum coherence, would be interesting from the perspective of spacetime emergence, since
spacetimes could potentially be realized as gauge orbits of Lie group representations.3 However, we
need more thorough knowledge of the phenomenon to argue for spacetime emergence, including the
large-N limits, in which continuum spacetimes are expected to appear.

In Refs. [20–23] we studied the wave function in the negative cosmological constant case through
a matrix model with non-pairwise index contractions. However, real interesting properties of CTM
are expected to appear in the positive cosmological constant case, since the symmetry emergence
phenomenon mentioned above is much more evident in the positive case than the negative [19].
Here, the Monte Carlo simulations performed in Refs. [21–23] cannot easily be applied, because
the quantity to be computed for the positive case suffers from the notorious sign problem of Monte
Carlo simulations.

In this paper we consider a matrix version of the wave function of CTM by replacing the tensor
argument Pabc with a matrix Mab. This of course is not an approximation to the wave function, but
its similarity makes the correspondence of the parameters and the interpretations between the matrix
and the tensor versions possible. An advantage of the matrix version is that it can be computed even
for the positive cosmological constant case, as we will see. As will be explained in Sect. 2, the matrix
model we consider comes from the absolute square norm of the matrix version of the wave function,
and is given by a one-matrix model of a real symmetric matrix Mab (a, b = 1, 2, . . . , N ) with a
partition function defined by

Z =
∫

R#M

N∏
a,b=1
a≤b

dMab e−S(M ), (1)

where #M = N (N + 1)/2 (the number of independent components of Mab), and

S(M ) := Tr
[

R

2
log(k1 + ik2 − iM ) + R

2
log(k1 − ik2 + iM ) + αM 2

]
, (2)

with positive parameters R, k1, k2, and α. The parameters have a redundancy under the rescaling of
Mab, and α = 1 may be taken in the following sections.

A similar matrix model with two logarithmic functions has been considered in a different context
in Ref. [24] with a difference in the last term of Eq. (2).

2. Connection to the canonical tensor model

As explained in Appendix A, Eq. (A.4) gives the wave function corresponding to the exactly solved
physical state [17] of CTM mentioned in Sect. 1. We consider an analogous wave function which is

3 In fact, the peaks of the wave function of CTM form ridges along configurations invariant under Lorentzian
Lie groups, such as SO(n, 1), rather than Euclidean Lie groups [19].
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obtained by replacing Pabc with Mab:

�(M ) := 〈M |�〉 = ϕ(M )R,

ϕ(M ) :=
∫

RN

N∏
a=1

dφa eiMabφaφb−(k1+ik2)φaφa , (3)

where the repeated indices are assumed to be summed over. Here, the integration region is the whole
N -dimensional real space, Mab is a real symmetric matrix, and k1, k2, and R are assumed to be posi-
tive.4 The part containing k1 and k2 of the integrand is an analogue to the Airy function in Eq. (A.4).
If k1 dominates, the part becomes a damping function corresponding to the negative cosmological
constant case in CTM, while, if k2 dominates, the part becomes oscillatory corresponding to the
positive cosmological constant case. As explained in Sect. 1, since we are mainly interested in the
positive cosmological constant case, our main focus is on the case with finite k2 and small k1. More
precisely, k̃1 = k1/

√
N 	 1 (which will appear later) is implicitly assumed throughout this paper.

Let us consider the following observable for the state |�〉 in Eq. (3):

〈�|e−αM̂ 2 |�〉 =
∫

R#M

N∏
a,b=1
a≤b

dMab |�(M )|2 e−αM 2
, (4)

where α is a positive parameter, M 2 := MabMab, and the integration is over the whole #M -
dimensional real space. By performing the Gaussian integration over φa in Eq. (3) and putting
the result into Eq. (4), we obtain

〈�|e−αM̂ 2 |�〉 = const. Z , (5)

where Z is given in Eq. (1), and the overall constant is irrelevant.
It would be instructive to cast the same system into a different expression. Let us assume R is an

integer. Then the Rth power of the wave function in Eq. (3) can be replaced by introducing R replicas
of φa:

�(M ) = ϕ(M )R =
∫

RNR

N ,R∏
a,l=1

dφl
a e
∑R

l=1 iMabφ
l
aφ

l
b−(k1+ik2)φ

l
aφ

l
a . (6)

Considering the same replacement for the complex conjugate �∗(M ) with variable φ̃l
a, putting them

into Eq. (4), and integrating over M , we obtain

Z = const.
∫ N ,R∏

a,l=1

dφl
adφ̃l

a e−Sφ , (7)

where

Sφ := 1

4α

(
Tr
[
φφtφφt]+ Tr

[
φ̃φ̃tφ̃φ̃t]− 2Tr

[
φφtφ̃φ̃t])

+ (k1 + ik2)Tr
[
φφt]+ (k1 − ik2)Tr

[
φ̃φ̃t], (8)

4 The sign of k2 can always be chosen positive by the replacement M → −M without loss of generality for
our discussions in later sections (see Eq. (13), for example).

3/21

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2021/4/043A01/6168688 by KYO

TO
 U

N
IVER

SITY Igaku Toshokan user on 05 July 2022



PTEP 2021, 043A01 N. Sasakura

where (φφt)ab := ∑R
l=1 φl

aφ
l
b. This may be regarded as a special choice of the parameters of the

eight-vertex matrix model presented in Ref. [25]. It can also be regarded as a usual matrix analogue
to the matrix model with non-pairwise index contractions analyzed in Refs. [20–23] in the context
of CTM.

Though there would be no direct quantitative connections between the matrix and tensor models,
the problem we consider in the matrix model and that of the tensor model have a certain common
characterization, as described below. For simplicity, let us put k1 = 0, which is consistent with our
purpose as explained above. Then, the “matrix model wave function” ϕ(M ) in Eq. (3) has peaks of
infinite values at the locations where k2 is an eigenvalue of M , because ϕ(M ) ∝ det(Mab −k2δab)

− 1
2 .

In other words,5 the matrix model in Eq. (5) has a preference for configurations of M such that the
curve S(M , φ) = 0 in the space of φa, where S(M , φ) is the exponent of the integrand in Eq. (3), has
singular points in φa defined by

∂

∂φa
S(M , φ) = 2Mabφb − 2k2φa = 0, (9)

which is the condition for an eigenvalue of M to be k2. The full dynamics of the matrix model is
determined by the balance between this preference for the curve S(M , φ) = 0 to be singular and the
repulsive nature of eigenvalues of random matrices.

This characterization of the problem also holds for the tensor model. As discussed in Sect. 4.2 of
Ref. [19], the peaks (singular points) of the wave function in Eq. (A.3) are located where the curve
SCTM(P, φ, φ̃) = 0 in the space of φa, φ̃, where SCTM(P, φ, φ̃) is the exponent of the integrand in
Eq. (A.3), has singular points in φa, φ̃ defined by

∂

∂φa
SCTM(P, φ, φ̃) = ∂

∂φ̃
SCTM(P, φ, φ̃) = 0. (10)

Therefore, there are similar preferences for the curve SCTM(P, φ, φ̃) = 0 to be singular as in the
matrix model. However, the dynamics among eigenvalues/vectors would be more complicated than
the matrix model due to the non-linear (namely, third-order) character of SCTM(P, φ, φ̃) in φa, φ̃.

3. Aligned Coulomb gas picture

In this section we give an intuitive picture of the dynamics of the matrix model in Eq. (1) by regarding
it as an aligned Coulomb gas system. A solid treatment of the matrix model by the Schwinger–Dyson
equation will be discussed in Sect. 4.

The partition function of the matrix model can be rewritten by using its invariance under the SO(N )

transformation M ′ = LMLt , L ∈ SO(N ). Denoting the eigenvalues of M by λa (a = 1, 2, . . . , N ),
which are all real, one obtains

Z = const.
∫

RN

N∏
a=1

dλa

N∏
a,b=1
a<b

|λa − λb| e−∑N
a=1 S(λa) (11)

= const.
∫

RN

N∏
a=1

dλa e−SCoul(λ), (12)

5 For instance, see Ref. [29] for the view to regard the eigenvalue/vector problem for matrices and tensors
as discriminants for curves.
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Fig. 1. The four possible profiles of the eigenvalue distributions for the matrix model in Eq. (1).

where
∏

a<b |λa − λb| is the Jacobian for the change of variable from M to λa (and integrate over
L), and

SCoul(λ) := −
N∑

a,b=1
a<b

log |λa − λb| + R
N∑

a=1

log |λa − k2 + ik1| + α

N∑
a=1

λ2
a. (13)

The form of SCoul(λ) in Eq. (13) shows that the eigenvalue system can be interpreted as a system of
charged particles on a line interacting with each other by the two-dimensional Coulomb potentials.
More precisely, the first term represents that the particles of unit charge are located at λa (a =
1, 2, . . . , N ) on R and interact with each other by the Coulomb repulsive potentials. The second term
can be interpreted as that there exists an opposite charge −R located at a fixed location k2 interacting
with the particles of unit charge by its Coulomb potential. Here, k1 can be regarded as a sort of
small regularization parameter to the potential, since, as explained in Sect. 2, our main interest is the
case of small k1 corresponding to the positive cosmological constant case in CTM. The third term
represents a harmonic potential for all the particles.

While the first and the third terms generate the eigenvalue distribution of the semicircle law [26],
the second term generated by the −R charge attracts the particles to the neighborhood of k2, and part
of the −R charge is screened. Therefore, we can expect the following four possibilities of eigenvalue
distributions to occur, as shown in Fig. 1:

(I) For small R and small k2, there is a semicircle-like distribution with a concentration (peak)
around k2.

(II) For large R, all the eigenvalues concentrate around k2.
(III) For large R and large k2, there are two bunches of eigenvalues, one with a semicircle-like

distribution and the other around k2.
(IV) For small R and large k2, the eigenvalues form a semicircle-like distribution with no

concentration around k2.

Here, note that all the parameters R, k1, k2, and α are assumed to be positive, as mentioned below
Eq. (2).

Next, let us discuss the large-N limit in a manner similar to Ref. [27]. To balance all the terms in
Eq. (13), the scaling with N can be determined to be

R = NR̃,

ki = √
Nk̃i,

λa = √
N λ̃a, (14)
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where R̃, k̃i, and λ̃a are supposed to be kept finite in the limit. By introducing a distribution function
ρ(λ̃) for the eigenvalues, the SCoul in Eq. (13) can be rewritten in the large-N limit as

Scont(ρ) = N 2
[
−1

2

∫
R2

dxdy ρ(x)ρ(y) log |x − y| +
∫

R

dx ρ(x)
(

R̃ log |x − k̃2 + ik̃1| + αx2
)]

,

(15)

where we have ignored an additional irrelevant constant, and have taken the normalization of ρ as∫
R

dx ρ(x) = 1 (16)

for
∑N

a=1 · · · → N
∫

R
dx ρ(x) · · · .

After adding the Lagrange multiplier β(
∫

dxρ(x)−1) to take into account the constraint in Eq. (16),
the functional derivative of Scont with respect to ρ(x) leads to the stationary equation

−
∫

R

dy ρ(y) log |x − y| + R̃ log |x − k̃2 + ik̃1| + αx2 + β = 0. (17)

Note that this is valid only in the region of x with ρ(x) > 0, because there is a physical constraint
ρ(x) ≥ 0 and the functional derivative cannot freely be taken in the region ρ(x) = 0. Taking further
the derivative of Eq. (17) with respect to x, we have

−
∫

R

dy
1

x − y
ρ(y) = R̃(x − k̃2)

(x − k̃2)2 + k̃2
1

+ 2αx, (18)

where the integration with a dash represents the Cauchy principal value. This equation will be treated
by using the Schwinger–Dyson equation of the matrix model in the large-N limit in Sect. 4.

4. Analysis by the Schwinger–Dyson equation

In this section we will study the matrix model in Eq. (1) in the large-N limit by the Schwinger–Dyson
equation. See, for example, Ref. [10] for some details of the techniques used in this section.

Let us define

W (z) := 1

N

〈
Tr
[

1

z − M

]〉
, (19)

where z is a complex variable, and 〈·〉 denotes the expectation value in the matrix model. Since we
consider real symmetric M , the singularities of W (z) can only be on the real axis. As we will see
below, W (z) has branch cuts of square roots on the real axis, and the eigenvalue density ρ(x) on real
x is related to W (z) by

ρ(x) = i

2π
[W (x + i ε) − W (x − i ε)] (20)

with ε = +0.
Let us consider the Schwinger–Dyson equation,

∫
R#M

N∏
a,b=1
a≤b

dMab DM
cd

{(
1

z − M

)
cd

e−S(M )

}
= 0, (21)
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where DM
ab denotes the partial derivative with respect to Mab defined by

DM
abMcd = δacδbd + δbcδad , (22)

with the symmetric property of the indices of Mab being taken into account. By taking derivatives
on the left-hand side of Eq. (21), we obtain

∫ N∏
a,b=1
a≤b

dMab

{(
1

z − M

)
cc

(
1

z − M

)
dd

+
(

1

z − M

)
cd

(
1

z − M

)
dc

−2
(

1

z − M

)
cd

S ′(M )dc

}
e−S(M ) = 0. (23)

Let us perform the large-N limit given in Eq. (14), where the last one corresponds to M → √
NM

(accompanied by z → √
Nz). Then, in the leading order of N , by assuming the factorization for the

first term and ignoring the second term as sub-leading, we obtain

W (z)2 − 2

N

〈
Tr

[
S̃ ′(M )

z − M

]〉
= 0, (24)

where

S̃ ′(M ) = R̃

2(M − k̃2 − ik̃1)
+ R̃

2(M − k̃2 + ik̃1)
+ 2αM . (25)

By applying the partial fraction decomposition to the last term of Eq. (24), it can be further rewritten
as

W (z)2 − 2S̃ ′(z)W (z) + R̃

(
W (k̃2 + ik̃1)

z − k̃2 − ik̃1
+ W (k̃2 − ik̃1)

z − k̃2 + ik̃1

)
+ 4α = 0. (26)

Therefore, the solution is given by

W (z) = S̃ ′(z) −
{

S̃ ′(z)2 −
[

R̃

(
W (k̃2 + ik̃1)

z − k̃2 − ik̃1
+ W (k̃2 − ik̃1)

z − k̃2 + ik̃1

)
+ 4α

]}1/2

. (27)

Here, the branch of the square root must be chosen appropriately, as will be explained below.
The solution in Eq. (27) has a complex free parameter W (k̃1 + ik̃2) (W (k̃1 − ik̃2) is its complex

conjugate.). The parameter has to be tuned so that the solution becomes consistent with the expected
properties of W (z) defined in Eq. (19): W (z) has the asymptotic behavior W (z) ∼ 1/z for z → ∞;
singularities (actually cuts) are only on the real axis. One can check that the asymptotic behavior
and the absence of poles of S̃ ′(z) in W (z) are automatically satisfied by the solution in Eq. (27) with
an appropriate choice of the branch of the square root. However, it is difficult to tune W (k̃1 + ik̃2)

so that all the branch cuts of Eq. (27) are located only on the real axis. This is because the content
of the square root in Eq. (27) is expressed as a sixth-order polynomial function of z over a common
denominator, and the dependence of its zeros on W (k̃1+ik̃2) is too complicated to analyze. Therefore,
we rather take a different strategy to determine W (z), which will be explained below. Whether a
solution by the method below corresponds to the solution in Eq. (27) with a value of W (k̃1 + ik̃2)

can be checked afterwards for each solution.
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From the discussions about the possible eigenvalue distributions in Sect. 3 and Eq. (20), we expect
W (z) to have one or two branch cuts on the real axis. From the form of S̃ ′(z), we can assume the
following forms of W (z). For cases (I), (II), or (IV) in Sect. 3, we assume a one-cut solution,

W (z) = S̃ ′(z) −
(

c

z − k̃2 − ik̃1
+ c∗

z − k̃2 + ik̃1
+ 2α

)√
z − c+

√
z − c−, (28)

where c is generally complex, c− and c+ are real with c− < c+, and the square roots are taken in
the principal branch. From Eq. (20), ρ(x) is non-zero in the region c− < x < c+. For case (III), we
assume a two-cut solution,

W (z) = S̃ ′(z) − 2α(z − c)

(z − k̃2)2 + k̃2
1

√
z − c1

√
z − c2

√
z − c3

√
z − c4, (29)

where the parameters are assumed to be all real and satisfy c1 < c2 < c < c3 < c4, and the square
roots are taken in the principal branch. From Eq. (20), the eigenvalue density ρ(x) is non-zero in
the two regions [c1, c2] and [c3, c4]. The reason for imposing c2 < c < c3 is that this condition is
necessary for ρ(x) to be positive in both these regions.

For the expressions in Eqs. (28) and (29), it is straightforward to write down the conditions for the
absence of singularities except on the real axis and the asymptotic behavior W (z) ∼ 1/z in z → ∞.
For the one-cut solution in Eq. (28), we obtain

R̃/2 − c
√

k̃2 + ik̃1 − c+
√

k̃2 + ik̃1 − c− = 0,

− α(c+ + c−) + c + c∗ = 0,

R̃ + (c + c∗)(c+ + c−)/2 + α(c+ − c−)2/4 − c(k̃2 + ik̃1) − c∗(k̃2 − ik̃1) = 1. (30)

The first condition comes from that W (z) should not inherit the poles of S̃ ′(z), since they are at
complex values z = k2 ± ik1. The second and the third conditions are for the asymptotic behavior of
W (z) to be ∼1/z. Since the number of conditions and the number of free parameters are the same,
the solution is uniquely determined (there may exist some discrete sets of solutions, though).

For the two-cut solution in Eq. (29), we first perform a replacement of the argument z − k̃2 = y
for simplicity, and parameterize W (z) as

W (y) = S̃ ′(y + k̃2) − 2α(y − d)

y2 + k̃2
1

√
y − d1

√
y − d2

√
y − d3

√
y − d4, (31)

where d = c − k̃2 and so on, and d1 < d2 < d < d3 < d4. We obtain

R̃

2
− α(ik̃1 − d)

ik̃1

4∏
l=1

√
ik̃1 − dl = 0,

k̃2 + d + 1

2

4∑
l=1

dl = 0,

R̃ + 2α

⎛
⎜⎝−d

2

4∑
l=1

dl + k̃2
1 + 1

8

4∑
l=1

d2
l − 1

4

4∑
l,m=1
l<m

dldm

⎞
⎟⎠ = 1. (32)
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The first condition is for the absence of the poles of S̃ ′(z) in W (z), and the last two are for the
asymptotic behavior. The conditions in Eq. (32) give four real conditions in total, since the first is
a complex-valued condition and the latter are real. Therefore, the solution has one free parameter,
since the number of the parameters in Eq. (29) is five.

The presence of one free parameter in the two-cut solution is physically understandable by the
aligned Coulomb gas picture of Sect. 3. There are two bunches of the eigenvalues, between which
there exists an infinite potential barrier in the large-N limit. Therefore, part of the eigenvalues can,
freely to some extent, be moved between the two bunches without losing the stability of the solution.
This freedom gives one free parameter to the solution.

Yet one can fix this freedom by imposing that the two bunches have the same chemical potential
[28]. In other words, this condition is that there is no energy cost when moving an eigenvalue from
one bunch to the other. This balance between the two bunches is relevant if N is not taken strictly to
the infinite. To obtain the condition for the balance, let us take the aligned Coulomb gas picture of
Sect. 3. Suppose a particle with a small charge is located at x between the two bunches of particles.
Then the force F(x) acting on the particle is proportional to

F(x) = W (x) − S̃ ′(x), (33)

where the first term represents the repulsive Coulomb forces coming from the particles contained in
the bunches, and the second the forces from the negative charge and the harmonic potential. Then,
the energy cost of moving a particle from one bunch to the other is given by

∫ c3
c2

dx F(x). This should
vanish for the balance, and, by using Eq. (29), we obtain∫ d3

d2

dy
y − d

y2 + k̃2
1

√
y − d1

√
y − d2

√
d3 − y

√
d4 − y = 0. (34)

With this additional condition, the two-cut solution is uniquely determined (there may exist some
discrete sets of solutions, though).

Once a solution is obtained, one can compute the eigenvalue density by Eq. (28). We obtain

ρ(x) = 1

π

(
c

x − k̃2 − ik̃1
+ c∗

x − k̃2 + ik̃1
+ 2α

)√
c+ − x

√
x − c− (35)

in the region [c−, c+] for the one-cut solution. Note that the positivity of ρ(x) in the one-cut solution
is not automatically satisfied, and there actually exist solutions with negative regions of ρ(x) for
some parameters. In such a case, the solutions are not correct, and other one-cut or two-cut solutions
must be taken for these parameters. For the two-cut solution in Eq. (29), once a solution is found
with c2 < c < c3, the positivity of ρ(x) is automatically satisfied and

ρ(x) = 1

π

2α|x − c|
(x − k̃2)2 + k̃2

1

√|(x − c1)(x − c2)(x − c3)(x − c4)| (36)

for the ranges [c1, c2] and [c3, c4].

5. Examples and a simple case

It seems difficult to obtain explicit solutions to the equations obtained in Sect. 4. In particular,
Eq. (34) is an integral equation and would probably not be explicitly solvable. Yet, it is possible to
numerically find solutions. To demonstrate, Fig. 2 shows some eigenvalue densities ρ(x) which have
been obtained by numerically solving the equations in Sect. 4 for the four cases in Sect. 3.

9/21

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2021/4/043A01/6168688 by KYO

TO
 U

N
IVER

SITY Igaku Toshokan user on 05 July 2022



PTEP 2021, 043A01 N. Sasakura

Fig. 2. Examples of eigenvalue densities corresponding to the four cases (I), (II), (III), and (IV), from left
to right. The results of the Monte Carlo simulations of the system in Eq. (13) with N = 200 are shown by
the histograms of λa after the rescaling in Eq. (14). The eigenvalue densities ρ(x) obtained by solving the
equations in Sect. 4 are shown by the solid lines. We take α = 1. There are no clear qualitative differences
between cases (I) and (II) of the examples.

Fig. 3. Classification of the data points into cases (I)–(IV) by the histograms of λa for k̃1 = 0.1 and α = 1. The
points are taken with interval 0.2 in the square region, 0.2 ≤ k̃2 ≤ 2.0 and 0.2 ≤ R̃ ≤ 2.0. The histograms of
λa are obtained from the Monte Carlo simulation of the Coulomb gas system for each point of the parameters
with N = 200. A point to note is that the boundary between (I) and (II) is rather arbitrary, because of the lack
of a clear distinction between the two profiles.

These are consistent with the results obtained from the Monte Carlo simulations of the aligned
Coulomb gas system with N = 200 in Sect. 3, as shown by the histograms of λa after the rescaling
in Eq. (14). We can see that there are no clear qualitative differences between the profiles of cases (I)
and (II), and therefore the classifications into (I) or (II) are rather arbitrary in the examples.

In Fig. 3, the phase structure is shown in the plane of (k̃2, R̃) for k̃1 = 0.1 and α = 1. This
is obtained by classifying the histograms of λa obtained from the Monte Carlo simulations of the
system in Eq. (13) with N = 200. We see that the four cases discussed in Sect. 3 do indeed exist. A
point to note in this figure is that the boundary between cases (I) and (II) is rather arbitrary, since the
profiles of (I) and (II) cannot clearly be distinguished.

Although the distinction between cases (I) and (II) is not clear in the examples above, one can find
a reason for separating the two cases in the limit k̃1 → +0. To see this, let us consider the explicitly
solvable case by putting k̃2 = 0. This case corresponds to the one-cut solution, and the conditions
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in Eq. (30) can straightforwardly be solved. The result of ρ(x) is given by

ρ(x) = 1

π

⎛
⎜⎝ R̃ k̃1

(x2 + k̃2
1 )

√
k̃2

1 + a2
+ 2α

⎞
⎟⎠√a2 − x2, (37)

where a := c+ = −c− > 0, and is determined by

R̃ − R̃k̃1√
k̃2

1 + a2
+ α a2 = 1. (38)

Since the left-hand side is a monotonically increasing function of a with 0 at a = 0 and +∞ at
a = +∞, there always exists a unique solution of a > 0 to the equation. One can also show that, by
taking partial derivatives of the left-hand side with respect to the variables, there exists no singular
behavior of a as a function of k̃1 and R̃. This is consistent with the statement above that cases (I)
and (II) cannot be absolutely distinguished. However, let us take the k̃1 → +0 limit. In this case, the
solution to Eq. (38) is explicitly given by

a =
{ √

(1 − R̃)/α, R̃ < 1,

0, R̃ ≥ 1.
(39)

A singularity appears at R̃ = 1. Hence, after taking the limit k̃1 → +0, (I) and (II) can clearly be
distinguished by the order parameter a. In the next section we will more thoroughly study the limit
k̃1 → +0.

6. The k̃1 → +0 limit

While it does not seem possible to obtain explicit solutions to the equations in Sect. 4 for general
values of the parameters, we can obtain explicit solutions by taking the k̃1 → +0 limit. Fortunately,
this limit is exactly consistent with our main purpose, namely, studying the case corresponding to
the positive cosmological constant case of CTM, as explained in Sect. 2. We obtain explicit solutions
for cases (I), (II), and (III). Case (IV) disappears in this limit, because the potential generated by the
−R charge becomes infinitely deep, and there always exist a bunch of eigenvalues around it.

Let us first consider case (I). We assume R̃ < 1 and c− < k̃2 < c+ for the one-cut solution. The

last assumption and k̃1 → +0 leads to
√

k̃2 + ik̃1 − c+
√

k̃2 + ik̃1 − c− = i
√

c+ − k̃2

√
k̃2 − c− in

the first equation of Eq. (30), and therefore c must be pure imaginary. Then the second equation leads
to c+ + c− = 0 in the limit. Finally, with the third equation, we obtain

c = − iR̃

2
√

c+ − k̃2

√
k̃2 − c−

,

c± = ±
√

1 − R̃

α
(40)

in the limit. Note that, because of the assumption c− < k̃2 < c+, this solution is consistent only if

1 − R̃ − αk̃2
2 > 0. (41)
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By putting the solution in Eq. (40) into Eq. (35), ρ(x) is obtained as

ρ(I)(x) = lim
k̃1→+0

1

π

R̃ k̃1

(x − k̃2)2 + k̃2
1

+ 2α

π

√
(1 − R̃)/α − x2

= R̃ δ(x − k̃2) + 2α

π

√
(1 − R̃)/α − x2, (42)

where the domain of x is restricted to the positive region of the square root. One can check that∫
R

dxρ(I)(x) = 1 holds.
The result in Eq. (42) can intuitively be understood by the aligned Coulomb gas picture discussed

in Sect. 3. In the k̃1 → +0 limit, the potential generated by the charge −R at x = k̃2 becomes
infinitely deep, and some of the particles of unit charge are trapped at the location x = k̃2 in the
limit. When R̃ < 1, i.e. N > R, the number of particles trapped is equal to R, since the particles
are trapped until the −R charge is totally screened. This concentration of particles is represented by
the first term of Eq. (42). Because of the total screening, the −R charge is totally hidden from the
remaining N −R particles of unit charge, and therefore they form the semicircle distribution because
of the harmonic potential, as represented by the second term of Eq. (42).

Let us next consider R̃ > 1. In this case, since N < R, the −R charge at x = k̃2 can only be
partially screened. This means that all the particles of unit charge are concentrated around x = k̃2 in
the limit k̃1 → +0, which corresponds to case (II) of Sect. 3. Therefore, we may naturally assume
the behavior

c+ ∼ k̃2 + b+k̃1,

c− ∼ k̃2 − b−k̃1 (43)

in the k̃1 → +0 limit, where b−, b+ > 0. Putting the assumption in Eq. (43) into the first equation
of Eq. (30), we obtain

c ∼ − iR̃

2k̃1
√

b+ − i
√

b− + i
(44)

as the behavior for k̃1 → +0. By putting the assumption in Eq. (43) into the second equation of
Eq. (30), we see that the real part of c does not diverge in the limit:

c + c∗ ∼ 2αk̃2. (45)

Therefore, this requires b+ = b− in Eq. (44). By noting that (c + c∗)(c+ + c− − 2k̃2) has lower
order than k̃1, the third equation of Eq. (30) leads to

b± =
√

2R̃ − 1

R̃ − 1
, (46)

where b± := b+ = b−. By putting the results into Eq. (35), we obtain

ρ(II)(x) = lim
k̃1→+0

(R̃ − 1)

√
(b±k̃1)2 − (x − k̃2)2

π((x − k̃2)2 + k̃2
1 )

= δ(x − k̃2), (47)

where the domain of x in the middle expression is the positive region of the square root.
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Let us next consider the two-cut solution in the k̃1 → +0 limit. Since the potential generated
by the −R charge becomes infinitely deep, case (III) with N > R (R̃ < 1) is the only possibility,
and case (IV) does not appear. In a similar spirit to above, it is natural to assume the behavior for
k̃1 → +0 as

d1 ∼ −b1,

d2 ∼ −b2,

d3 ∼ −b0k̃1,

d4 ∼ b0k̃1,

d ∼ −b, (48)

where b, bi are all positive. Here, one may start by assuming different proportional coefficients for
d3 and d4, but they turn out to be the same by the equations, as we encountered in the previous case.
The ordering of the d’s restricts 0 < b < b2 < b1. By putting the assumptions into Eq. (32), we
obtain

R̃ = 2αb
√

b1b2(1 + b2
0),

k̃2 − b − (b1 + b2)/2 = 0,

R̃ + α
(−b(b1 + b2) + (b1 − b2)

2/4
) = 1 (49)

in the limit. Solving these equations, we obtain

b0 =
√

R̃2/(4α2b2b1b2) − 1,

b1 = k̃2 − b +
√

(1 − R̃)/α + 2b(k̃2 − b),

b2 = k̃2 − b −
√

(1 − R̃)/α + 2b(k̃2 − b). (50)

As discussed below Eq. (32), the solution in Eq. (50) has one free parameter, which may be chosen
to be b. It is not totally free and is restricted to a range. One condition comes from the ordering
0 < b < b2 mentioned above, which leads to

0 < b <
1

2
k̃2 −

{
1

6

(
1

2
k̃2

2 + 1 − R̃

α

)}1/2

. (51)

Note that the presence of this region requires

αk̃2
2 − 1 + R̃ > 0. (52)

Another condition comes from b0 being real in Eq. (50), which requires R̃2 > 4α2b2b1b2. To see
what this inequality requires, let us introduce a function of b, g(b) := 4α2b2b1b2, where b1, b2 are
given by the expressions depending on b in Eq. (50). Then we find its derivative to be

g′(b) = 4α2(12(b − k̃2/2)2 − k̃2
2 − 2(1 − R̃)/α

)
> 0, (53)

where the positivity comes from Eq. (51). Since g(0) = 0, the condition R̃2 > 4α2b2b1b2 may also
give an additional bound of the form 0 < b < bmax with g(bmax) = R̃2. Though the bound is not
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explicitly determined, an important point here is that there exists a finite range of b for a solution, if
the condition in Eq. (52) is satisfied.

By putting Eqs. (48) and (50) into Eq. (36), and taking the k̃1 → +0 limit, one obtains

ρ(III)(x) = 2α(x + b − k̃2)

√
(x + b1 − k̃2)(−x − b2 + k̃2)

π(x − k̃2)
+ R̃

⎛
⎜⎝1 − 1√

1 + b2
0

⎞
⎟⎠ δ(x − k̃2), (54)

where the domain of x for the first term is restricted to the positive region of the square root. One
can check the normalization,

∫
dxρ(III)(x) = 1.

We can also take into account the condition in Eq. (34) for the balance of the chemical potential
between the two bunches. In the k̃1 → +0 limit, the condition gives

d =
∫ d3

d2
dy y

y2+k̃2
1

√
y − d1

√
y − d2

√
d3 − y

√
d4 − y∫ d3

d2
dy 1

y2+k̃2
1

√
y − d1

√
y − d2

√
d3 − y

√
d4 − y

∼
∫ d3

d2
dy
√

y − d1
√

y − d2∫ d3
d2

dy 1
y

√
y − d1

√
y − d2

→ 0, (55)

because d3, d4 → 0, where we assume d2 = −b2 is finitely below zero in the limit; we will see its
consistency below. By setting b = −d → +0 in Eq. (50), we obtain

b0 → +∞,

b1 = k̃2 +
√

(1 − R̃)/α,

b2 = k̃2 −
√

(1 − R̃)/α. (56)

For this solution, the eigenvalue distribution is given by

ρbalance
(III) (x) = 2α

√
(1 − R̃)/α − x2

π
+ R̃ δ(x − k̃2), (57)

where the domain of x for the first term is restricted to the positive region of the square root. We
again obtain the distribution of the semicircle law and the concentration at x = k̃2.

The condition in Eq. (52) for the presence of a solution for case (III) is a complement to Eq. (41)
for case (I). Therefore, there is a transition line,

αk̃2
2 − 1 + R̃ = 0, (58)

between the two phases (I) and (III). Collecting the results in this section, the phase structure in the
k̃1 → +0 limit is given in Fig. 4.

7. Implications for the canonical tensor model

The wave function in Eq. (A.3) [17] of the CTM [14,15] has the interesting property that the peaks of
the wave function are located at the configurations (the values of the tensor Pabc) which are invariant
under Lie group symmetries [18,19]. This property is particularly interesting from the perspective
of spacetime emergence in CTM, because this property would provide a natural mechanism for
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Fig. 4. The phase structure in the k̃1 → +0 limit with α = 1.

spacetime emergence by generating spacetimes as representation spaces of Lie groups. However,
this property has not been fully studied because of some technical difficulties, as explained in Sects. 1
and 2. This gives the main motivation for studying the particular simplified model in Eq. (1) of a
matrix, which is derived from a matrix analogue of the wave function of CTM.

The relation between peaks and symmetries is simple in the matrix model of Eq. (1). The real
symmetric Mab becomes Lie group symmetric when and only when n of the eigenvalues take the
same values, in which SO(n) is the Lie group symmetry.6 In the aligned Coulomb gas picture of
Sect. 3, this corresponds to n of the particles of unit charge being concentrated at a location. In fact,
in the k̃1 → +0 limit, R (or N if N < R) of the particles concentrate at x = k̃2 to screen the −R
charge there, as has explicitly been derived in Sect. 4. Therefore, we see the emergence of SO(R)

(or SO(N ) if N < R) symmetry in the matrix model in the k̃1 → +0 limit.
The above discussions do not depend on the value of k̃2. However, we have two different phases,

(I) and (III), on the same value of R̃ < 1, as shown in Fig. 4. In fact, there is a qualitative difference
between (I) and (III) concerning the symmetry emergence.

To see this in the following discussions, let us assume that k̃1 is very small, k̃1 	 1, but the limit
k̃1 → +0 is not strictly taken. It would still be meaningful to discuss the symmetry enhancement
above in an approximate sense, though the concentration of the eigenvalues is not exactly on k̃2

anymore. Let us first note that, in phase (I), all the eigenvalues are continuously distributed, and
there are no clear boundaries between the eigenvalues near k̃2 and those which are not. Therefore,
the number n of eigenvalues near k̃2 is ambiguous, meaning that the enhanced symmetry is ambiguous
in this phase. Moreover, by adding perturbations to the system, it would be possible to smoothly
move some of the eigenvalues toward or away from k̃2. Therefore, the enhanced symmetry can easily
be changed under perturbations. The situation is illustrated in the left panel of Fig. 5.

On the other hand, in phase (III), the bunch of eigenvalues around k̃2 is separated from the other
bunch of eigenvalues. In fact, there exists a potential barrier (infinite in the large-N limit) for eigen-
values to move between the two bunches (the necessary force is proportional to Eq. (33); see Fig. 6
for an illustration). Therefore, in phase (III), the symmetry associated with an eigenvalue distribution

6 We may also consider the possibilities of concentrations to multiple values, but this does not occur in the
present matrix model, in which only a concentration at x = k̃2 can occur.
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Fig. 5. An illustration of the difference between phases (I) and (III) concerning symmetry. In phase (I), the
symmetry associated with an eigenvalue distribution is ambiguous and is subject to changes under perturbations.
In phase (III), symmetries are definite and stable against perturbations. In (III) there are metastable states with
other symmetries.

Fig. 6. Illustration of the potential and the chemical potential corresponding to case (III). There is a potential
barrier between the two bunches of eigenvalues. The chemical potentials of the two bunches take the same
value in the figure. If some of the eigenvalues are moved between the bunches, the chemical potentials get
unbalanced, corresponding to metastable states.

is definite and is stable against perturbations. There are also metastable states which correspond to
distributions obtained by moving some of the eigenvalues from one bunch to the other. Other sym-
metries are associated with these metastable states, since the numbers of eigenvalues in the bunch
around k̃2 are different. The situation is illustrated in the right panel of Fig. 5.

Let us now move on to the discussions on the emergent spaces associated with the symmetries. To
see this, let us go back to the origin of the matrix model in Eq. 3. It is clear from the expression that
the distribution of φa extends to the directions of the eigenvectors of Mab whose eigenvalues are near
k2. In other words, when Mab has n eigenvalues near k2, the distribution of φa forms an n-dimensional
ball Bn with a radius of order 1/

√
k1. The differences between the other eigenvalues and k2 determine

the transverse sizes (the thickness) of the ball. The ball gives the representation space of the SO(n)

symmetry. Here, it is important that the emergent spaces are realized by distributions of φa, rather
than φa itself, which transforms under SO(n). More explanations will be given at the end of this
section on this point.

We again encounter an ambiguity in phase (I). The sizes of some of the transverse directions (the
thickness) of the ball Bn are actually similar to that of Bn, and therefore the dimension of the ball is
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Fig. 7. Illustration of the difference between phases (I) and (III) concerning the dimension of an emergent
space, an n-dimensional ball Bn. In phase (I), the dimension is ambiguous and is subject to changes by
perturbations. In phase (III), the dimension is definite and stable against perturbations. There are metastable
states representing other dimensional balls in phase (III).

ambiguous. In addition, the dimension is subject to changes by perturbations. On the other hand, in
phase (III), the dimension is well determined, because the clear distinction between the eigenvalues
of Mab which are near k2 and those which are not provides a hierarchy of sizes between the ball
Bn and its transverse directions. The dimension is also stable against perturbations. The situation is
described in Fig. 7.

Another major outcome from the matrix model is that this gives some indirect support to the
previous Monte Carlo results for CTM [21–23]. Here, as explained in Sects. 1 and 2, the previous
numerical results are for the negative cosmological constant, corresponding to k2 = 0 in the matrix
model. An important previous result is that we found a continuous phase transition point near7

2R ∼ N 2/2. This was observed for large N and small k , which corresponds to k1 in the matrix
model. This transition point seems to correspond to the singular point of the matrix model found
at R = N in the limit k̃1 = k1/N → +0, which was discussed in the final part of Sect. 5. If we
identify them as similar kinds of points, the phase diagram of the matrix model shown in Fig. 4
suggests that the transition point found for CTM in the previous Monte Carlo studies is a common
endpoint of phase transition lines which extend into the parameter region of positive cosmological
constants. This gives a strong motivation for the future study of CTM for the positive cosmological
constant case, because the transition lines in the matrix model are the boundary of phase (III), which
is important for stable symmetries/dimensions of emergent spaces.

The R dependence shown above of the symmetries and dimensions of the distributions of φa in
the matrix model seems to parallel the R dependence observed for CTM in Refs. [21–23]. However,
there exists a crucial difference. In the matrix model, the dimension increases with R, reaches its
maximum around R = N (see the left panel of Fig. 8). On the other hand, in CTM, the dimension
takes a minimum at the critical point (see the right panel of Fig. 8). Currently, we do not understand
this difference.

Lastly, we provide more explanation about the emergent spaces in the above context. To do this, let
us look at the expression in Eq. (6), which represents the wave function �(M ) with R replicas. Let us
assume that k1 is very small and that n of the eigenvalues of M are very close to k2, while the others

7 There is a difference in the definition of R by a factor of 2 between the present and previous papers for the
convenience of each: 2R in this paper corresponds to R in Refs. [20–23].
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Fig. 8. Illustrations of the R dependencies of the dimensions of the distributions of φa for the matrix (left) and
CTM (right) cases. The right behavior was obtained in Ref. [22].

are significantly different from k2. Then, it is clear from the expression in Eq. (6) that dominant
contributions of integrations over φl

a come from the configurations where all φl
a (l = 1, 2, . . . , R) lie

in the vicinity of the linear subspace over the eigenvectors of M for the n eigenvalues close to k2. This
is an n-dimensional ball of size ∼ 1/

√
k1. In fact, the presence of such a ball of dominance can be

detected by studying the probability distribution of an SO(N )-invariant observable like φi
aφ

j
a/|φi||φj|

(i < j). This observable8 detects the mutual azimuthal angles θ among the vectors φi (i = 1, 2, . . . , R)

in the N -dimensional space, and the probabilistic distribution ρ(θ) dθ of the angles should obey
∝ sinn−2(θ) dθ , which represents the area elements on the (n−1)-dimensional unit sphere. Because
of the SO(N ) invariance of the observable, the dimension n extracted by this procedure is a meaningful
quantity even in the matrix model, i.e. even after making Mab dynamical, if fluctuations of n are
negligible, as in the large-N limit in the preceding sections. Indeed, one would be able to compute
expectation values of arbitrary products of the observable in the matrix model.

8. Summary and future prospects

We have studied a matrix model derived from a matrix analogue to the wave function of the canonical
tensor model, and have shown that positivity of the cosmological constant is vital for the presence
of emergent spaces with stable symmetries and dimensions.

More precisely, we have studied a one-matrix model of a real symmetric matrix with a potential
which is a sum of two logarithmic functions and a quadratic one. This is a simplified toy model
obtained by replacing the tensor argument of the wave function [17] of CTM [14,15] with a matrix
and considering the absolute square norm of the wave function. The main purpose of the present study
is to foresee the possible outcomes of CTM for the positive cosmological constant case by studying the
toy matrix model for the corresponding case. The properties of CTM for the positive cosmological
constant case have not been studied in the previous numerical works [21–23] because of some
technical difficulties: the quantity we need to compute is oscillatory for the positive cosmological
constant case, suffering from the sign problem of Monte Carlo simulations. This paper has shown
that, in the matrix model, positivity of the cosmological constant is vital for the presence of a phase

8 This kind of observable is called an overlap and they often appear in spin glass theory [30]. This was also
used to study dimensions of dominant configurations in Ref. [22] with Monte Carlo simulations.
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in which symmetries and dimensions of emergent spaces are definite and stable. This result would
strongly encourage the future study of the positive cosmological constant case in CTM.

The matrix model has been shown to have a critical point at R = N for k2 = 0 in the limit
k̃1 = k1/N → +0, as discussed at the end of Sect. 5. A similar critical point has been found for
CTM at 2R ∼ N 2/2 in Refs. [20–23]. Therefore, the analytical result of the matrix model has given
indirect confirmation of the numerical Monte Carlo result in Refs. [21–23]. However, there exists
a crucial difference between the two critical points concerning the dimensional behaviors in R, as
discussed in Sect. 7 (see Fig. 8). This difference should be studied more deeply, since it will be
directly linked to the mechanism of the emergent phenomena in CTM.

Though the matrix model presented in this paper does not fully describe the properties of CTM,
it gives intriguing insights for future CTM analysis. For instance, the importance of the eigenvalue
density profiles for the dynamics of emergent spaces in the matrix model motivates the study of CTM
in the light of the tensor eigenvalue/vector problem [31]. Various other aspects, such as thermody-
namic properties, of the matrix model remain unexplored, which are also expected to give some
insights into CTM. The matrix model would also provide an arena for developing tools to efficiently
analyze CTM.
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Appendix A. A minimal introduction to CTM

We provide here minimal information about the canonical tensor model (CTM) in order for readers
to understand the connection between CTM and the matrix model in Eq. (1). A more thorough but
concise summary of CTM can be found in an appendix of Ref. [21].

CTM [14,15] is a tensor model formulated as a first-class constrained system in the Hamilton
formalism. Its dynamical variables are a canonical conjugate pair of real symmetric three-index
tensors, Qabc and Pabc (a, b, c = 1, 2, . . . , N ), and there are two kinds of first-class constraints
Ha and Hab (= −Hba), which form a closed Poisson algebra with dynamical-variable-dependent
structure coefficients. The canonical quantization of CTM is straightforward [16], and the physical
state condition is given by Ĥa|�〉 = Ĥab|�〉 = 0, where Ĥa and Ĥab are the quantized constraints.
The explicit form of Ĥa is given by

Ĥa = P̂abcP̂bdeQ̂cde − λ Q̂abb + i λH P̂abb, (A.1)

where λ is identified with the cosmological constant of general relativity (GR) from the equivalence
between the N = 1 CTM and the minisuperspace approximation of GR [32]. λH is uniquely deter-
mined by the hermiticity of Ĥa as λH = (N + 2)(N + 3)/2. The wave function which represents
the exactly solved physical state is given by

�CTM(P) := 〈P|�〉 = ϕCTM(P)λH /2, (A.2)
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Fig.A.1. The Airy Ai function.

where

ϕCTM(P) :=
∫

C
dφ̃

N∏
a=1

dφa exp
[
iPabcφaφbφc − i k φ2φ̃ + i φ̃3/3

]
. (A.3)

Here, k has the same sign as the cosmological constant, because λ ∝ k3. The integration contour C
can be taken in various ways with an infinite extent as far as the integration converges. We consider
the naive choice C = R

N+1 with a regularization, which can, for example, be taken as the one in
Ref. [19].9

The integration over φ̃ in Eq. (A.3) provides the expression

ϕCTM(P) = const.
∫

RD

N∏
a=1

dφa exp (iPabcφaφbφc) Ai(−k φ2), (A.4)

where Ai(·) denotes the Airy Ai function. For k > 0 corresponding to a positive cosmological
constant, Ai(−k φ2) is an oscillatory function of φ2, while, for k < 0 corresponding to a negative
cosmological constant, this is a damping function of φ2 (see Fig. A.1).
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