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Impact-induced hardening in dense frictional suspensions
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We numerically study the impact-induced hardening in dense suspensions. We employ
the lattice Boltzmann method and perform simulations of dense suspensions under impacts,
which incorporate the contact between suspended particles with the free surface of the
suspension. Our simulation for a free-falling impactor on a dense suspension reproduces
experimental results, where rebound takes place for frictional particles at high-speed
impact and high volume fraction shortly after the impact before subsequently sinking. We
found that the shear stress of the suspension is not affected by the impact, which clearly
distinguishes the impact-induced hardening from the discontinuous shear thickening. In-
stead, we found the existence of a localized region with distinctively high value of normal
stress corresponding to the dynamically jammed region. Our simulation indicates that
the frictional interaction between suspended particles is important for the impact-induced
hardening to maintain the dynamically jammed region. Furthermore, persistent homology
analysis successfully elucidates the topological structure of force chains.

DOI: 10.1103/PhysRevFluids.6.033301

I. INTRODUCTION

A dense suspension can behave as a fluid or a solid depending on the situation. One of the
examples of this non-Newtonian behavior is that a running person can stay afloat on top of the
suspensions, while a walking person sinks. The phenomenon that the suspension exhibits a solidlike
response under fast impact also has practical applications, such as protective vests when it is
combined with fibers as a composite material [1,2]. Some efforts have been made to reproduce such
hardening during impact through experiments. Waitukaitis and Jaeger discovered a dynamically
jammed region which is like a solid plug beneath the impactor [3]. They proposed an added
mass effect to explain the solidification induced by the impact. A similar hardening process is
also observable in fractures on a thin layer of suspension under an impact [4]. Then, by using
a high-speed ultrasound imaging, Han et al. measured the sound speed and visualized the flow
field of the suspension [5]. Their measurement of the sound speed showed no increase in local
volume fraction. In addition, they suggested that the mechanism behind such solidification in dense
suspensions under impact is related to the jamming by shear, instead of densification. Moreover, a
series of constant speed penetration experiments indicated that the solidification occurs when the
dynamically jammed region spans from the impactor to the boundaries [6–8]. Finally, the impact-
induced hardening can also be characterized by dropping an impactor into a dense suspension [9].

Some people use discontinuous shear thickening (DST) to explain the impact-induced hardening
[1,7,8], while the connection between these two processes is unclear [10]. Actually, there are
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some differences between these two processes. First, DST is observed in the dense suspensions
undergoing steady shear, while the impact-induced hardening is a transient process undergoing
normal compression. Second, the flow field of dense suspensions under impact is inhomogeneous
[5]. This is contrary to the common DST, which is anisotropic but still homogeneous [11]. Therefore,
to make a further distinction between the impact-induced hardening and the DST, we need a detailed
study of impact-induced hardening. Some papers also suggested some similarities between the shear
jamming and the impact-induced hardening [5,12], but the connection between the two processes is
also unclear. To clarify the relation is also one of the purposes of this study.

Even though the aforementioned experiments have already visualized the displacement and flow
fields [3,5], and measured the stress exerted on the impactor [6], any experimental measurement on
the shear and normal stress fields of dense suspensions under impact has not been reported yet. On
the other hand, the local distribution of the stress can be calculated and visualized through particle-
based suspension simulations [11,13,14]. Moreover, numerical simulation is an important tool to
understand the microscopic mechanism behind exotic phenomena in suspensions since the motion of
the suspended particles is not visible in three-dimensional experiments, unlike in two-dimensional
dry granular materials where the force acting on each grain can be visualized with the photoelastic
disks [15]. However, a particle-based simulation of a free-falling impactor hitting a suspension has
not been reported so far because of the difficulty of simulating suspension with a free surface. As far
as we know, the first fluid-based simulation of suspensions under impact was conducted recently in
Ref. [16], where the authors successfully reproduced various interesting processes for suspensions
under impact, such as the viscoelastic response of a dense suspension to a rotating wheel. Since,
however, their fluid simulations with a constitutive equation with some fitting parameters cannot
capture the particle dynamics, the mechanism behind impact-induced hardening at the microscopic
level remains elusive. In this paper, we utilize the lattice Boltzmann method (LBM) to perform a
simulation to capture particle dynamics [17–19]. By using the LBM for hydrodynamic calculation,
combined with the particle interaction scheme in Refs. [13,14], we have already analyzed the shear
jamming and DST on dense suspensions under simple and oscillatory shear [11]. Now, we upgrade
the simulation scheme by incorporating the free surface of the suspensions as first demonstrated in
Refs. [20–22]. Then, we can characterize the impact-induced hardening by capturing the particle
dynamics of a suspension.

The outline of this paper is as follows. In Sec. II, we explain our simulation method briefly.
In Sec. III we present the simulation results of a free-falling impactor onto dense suspensions
which include the kinematics of the impactor, phenomenological model, and visualization of local
quantities such as the stress tensor, local volume fraction, and displacement. We also present the
persistent homology analysis to capture the topological structure of force chains. In Sec. IV, we
summarize our results and discuss future perspectives. In Appendix A, we describe the details of
the LBM involving suspensions with a free surface [20–22]. In Appendix B, we discuss the system
size dependence of our simulations. In Appendix C, we illustrate how to implement the persistent
homology analysis for force networks observed in our simulation.

II. SIMULATION METHOD

We employ the LBM involving suspensions with a free surface of liquid. The details of our
method are explained in Appendix A. Due to the discrete nature of the LBM, we take the lattice unit
�x = 0.2amin (amin is the radius of the smallest particle) for the calculation of hydrodynamic fields.
The suspended particles in the LBM are represented as a group of solid nodes, while the surrounding
fluids are represented by fluid nodes. The hydrodynamic field is calculated from the time evolution
of the discrete distribution function at each fluid node. The choice of a smaller lattice unit means a
smoother surface of the sphere, but it becomes expensive. We select the lattice unit �x = 0.2amin,
where it still gives sufficient accuracy but still is not computationally expensive as shown in the
previous LBM for the suspension literature [17,18,23]. Then, to simulate the free surface of the
fluid, it is necessary to introduce interface nodes between the fluid and gas nodes, as explained in
Appendix A [20–22].
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A. Discrete element method for suspended particles

Equations of motion and the torque balance of particle i are, respectively, given by

mi
dui

dt
= Fc

i + Fh
i + F lub

i + Fr
i + Fg

i , (1)

Ii
dωi

dt
= T c

i + T lub
i + T h

i . (2)

Here, ui, ωi, mi, and Ii = (2/5)mia2
i (with ai the radius of particle i) are the translational velocity,

angular velocity, mass, and the moment of inertia of particle i, respectively. Fg
i = −migẑ is the

gravitational force acting on the suspended particle i, where g is the gravitational acceleration
and ẑ is the unit vector in the vertical direction. Note that our LBM accounts for both the short
lubrication force F lub

i and torque T lub
i , as well as the long-range parts of the hydrodynamic force

Fh
i and torque T h

i [11,23]. The long-range parts (Fh
i and T h

i ) are calculated using the direct forcing
method (see Appendix A), while the lubrication force F lub

i and torque T lub
i are expressed by pairwise

interactions as F lub
i = ∑

j �=i F lub
i j and T c

i = ∑
j �=i T lub

i j , respectively [11,13,14,23]. The contact force
Fc

i and torque T c
i of particle i are also expressed by pairwise interaction as Fc

i = ∑
j �=i Fc

i j and
T c

i = ∑
j �=i T c

i j and are computed using the linear-dashpot model with Coulomb friction rules and
friction coefficient μ [24]. Finally, Fr

i is the electrostatic repulsive force, also expressed by pairwise
interactions as F r

i = ∑
j �=i Fr

i j . This force arises from the double layer to prevent particles from
clustering with neglecting the Brownian force [11,14]. The explicit expressions of F lub

i j , T lub
i j , Fc

i j ,
T c

i j , and Fr
i j can be found in Ref. [11]. Throughout this paper, we have adopted the perfect density

matching between the solvent and suspended particles, where the densities of solvent and particles
satisfy the relation ρ f = ρp with the densities of a suspended particle ρp and solvent fluid ρ f .

The impactor is a solid spherical object with density ρI = 4ρ f . The force and torque acting on
the impactor are, respectively, given by

F I = F I,h + F I,lub + F I,c + F I,g, (3)

T I = T I,h + T I,c + T I,lub. (4)

F I,g = −mI gẑ is the gravitational force acting on the impactor with mass mI . The contact force F I,c

and torque T I,c arise from the interactions with the suspended particles, also calculated with the
linear-dashpot model with Coulomb friction rules. The hydrodynamic force F I,h and torque T I,h

are calculated using the bounce-back rule that satisfies the no-slip boundary condition between the
fluid and the surface of the impactor [17,18]. Here, the bounce-back rule is implemented by treating
the surface of the impactor as boundary nodes. When the LBM discrete distribution function streams
from fluid nodes to the boundary nodes, it is reflected, which we call the bounce-back rule. Then, the
hydrodynamic force on each node is calculated from the momentum transferred in that bounce-back
process. We cannot use the direct forcing method in Eqs. (1) and (2) as explained in Appendix A
for the impactor since the method requires the whole surface of the impactor to be surrounded by
liquid. The lubrication force F I,lub and torque T I,lub are calculated in a similar manner as suspended
particles.

B. Simulation setup

Suspended particles (with bidispersity ratio amax = 1.2amin, where the radii of the large and small
particles are amax and amin, respectively) are confined into a rectangular box (W × D × H) with
smooth walls. The system contains N = 2000 particles for most simulations and sometimes contains
N = 1200. The radius of the impactor, aI , is aI = 4.5amin for N = 2000 and aI = 3.75amin for
N = 1200. We fix W/aI = 8, D/aI = 8, and H/aI = 4 except for the argument in Sec. III B. The
system size dependence is discussed in Appendix B. The impactor is released from various heights
H0 that correspond to the impact velocity as uI

0 = √
2gH0, which also specifies the units of time,
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FIG. 1. (a) A snapshot of our 3D simulation for φ = 0.54, μ = 1, and u0/u∗ = 4.26 at t/τ = 0. (b) The
time evolution of (a) at t/τ = 0.1. (c) A top view of the sliced region. (d) Successive snapshots of the impactor
in a quasi-two-dimensional slice of container as in (c), where the dashed lines mark the maximum penetration.

τ = √
amin/2g, units of velocity, u∗ = √

2gamin, units of force, F0 = 4
3πρ f a3

ming, and units of stress,
σ0 = F0/a2

min, in our simulation.

III. RESULTS

A. Impact-induced hardening

Three-dimensional (3D) snapshots of a free-falling impactor simulation can be seen in Figs. 1(a)
and 1(b). For visualization, we slice the system in the middle of the container, as shown in Fig. 1(c).
By looking at the successive motion of the impactor from Fig. 1(d), where we set time t = 0 and
height z = 0 at the moment of impact, one can confirm that the impactor penetrates and slightly
rebounds after the maximum penetration. This rebound motion of the impactor can be clearly
observed by watching the movie in the Supplemental Material [25]. We plot the impactor speeds
uI

z(t )/u∗ against time for various volume fractions of suspended particles φ in Fig. 2(a). The vertical
position of the impactor, z(t )/amin, for various volume fractions φ can be seen in Fig. 2(b). Both
results are obtained by using 2000 frictional particles with μ = 1.0. One can observe the rebound
of the impactor [uI

z(t )/u∗ < 0] for φ � 0.54, which agrees semiquantitatively with the free-falling
impactor experiment [9]. This rebound is the instance of the impact-induced hardening of the
suspension shortly after the impact. After the rebound, the suspension relaxes, and the impactor
starts to sink. Note that φ for rebounds might be a little higher than that in the experiment [9].

In Fig. 3(a), we plot the time evolution of total forces exerted on the impactors for both rebound
and no-rebound cases for μ = 1.0 and N = 2000. One can see that the maximum exerted force
for the rebound case is larger than that for the no-rebound case. We find that the peak of the
contact force is located slightly after the peak of the total force, which follows the weaker peak
from the hydrodynamic contribution. The time difference between these two peaks is not large so
they merge to a single peak in the total force. In an experiment with a rod impactor, two peaks in
the acceleration of the impactor are observed for deep suspensions while for shallower suspensions,
in which rebound takes place, the separation between peaks is not detectable [3]. Thus, we confirm
that the second peak in Ref. [3] is originated from the contact contribution. Moreover, they also
observed the second peak when the impact force is transmitted to the boundary. To clarify this,
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(a) (b)

FIG. 2. (a) Plots of impactor speeds in the z direction, uI
z (t )/u∗, against time for various volume fractions

φ. (b) Plots of the heights of the impactor against time for various volume fractions φ. Both results are obtained
by using 2000 frictional particles whose friction constant is μ = 1.

we plot the force exerted on the bottom wall in Fig. 3(b). Compared to the force exerted on the
impactor, one can see a clearer distinction between the rebound and no-rebound cases, where the
force exerted on the bottom wall for the rebound case is about three times larger than the no-rebound
case. This indicates that the hardening takes place when the contact force network percolates from
the impactor to the boundaries, which is consistent with the picture in Ref. [6].

B. Hertzian contact model

Let us explain the time evolution of the impactor velocity. As can be seen in Fig. 3(a), the main
contribution of the force acting on the impactor is the elastic contact force. Also, the liquid surface
behaves as an elastic sheet when the penetration of the impactor is small. Therefore, we may model
of the impactor motion by using the Hertzian contact theory between the impactor and a sufficiently

(a) (b)

FIG. 3. Plots of the force for both rebound (φ = 0.54) and no-rebound (φ = 0.50) cases with N = 2000.
(a) Force exerted on the impactor, where the solid lines are the total force, dashed lines represent the contact
contributions, and dot-dashed lines represent the hydrodynamic contributions, and (b) the total force exerted
on the bottom wall. All results are obtained for μ = 1 and u0/u∗ = 4.26.
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FIG. 4. Plots of the speeds of impactors in the z direction, uI
z (t )/u∗, against time (dashed lines) and the

solution of Eq. (5) (solid lines) for φ = 0.54 and N = 2000 with fitting parameters A = 1.64 × 105m0/(aminτ
2)

and B = 6.48 × 104m0/(aminτ ) for various aI and m0 = 4πa3
minρ f /3.

large elastic sheet supported by the sidewalls [26,27]. To verify our picture, we vary the impactor
radius aI and show how the impactor dynamics depends on its radius in Fig. 4. The equation motion
for the deformation h of the Hertzian contact is written as

mI
d2h

dt2
= −A

√
aI h

3
2 − B

√
aI h

1
2

dh

dt
, (5)

where A and B are fitting parameters which correspond to the elastic modulus and viscosity,
respectively. In Fig. 4, we plot the results of the simulation alongside the solutions of Eq. (5).
One can see that the results of the simulation agree with the model shortly after the impact. We also
clarified that the impact speed uI

z(t ) clearly depends on the radius of the impactor, which cannot be
explained in the linear spring model used in Ref. [9]. One of the limitations of this model is that it
completely ignores the hydrodynamic contributions. Therefore, it deviates after the elastic response
(rebound). To describe sinking processes of the impactor, including the stop-go cycles of a sinking
impactor [28], we need a different approach [29]. However, such behavior and analysis are beyond
the scope of this paper.

C. Phase diagram with μ = 1

We observe that the impact-induced hardening depends on the impact speed uI
0,z, as shown in the

diagram of Fig. 5, where we have fixed the friction coefficient as μ = 1. Due to the limitation of
our computational resources, the data for this phase diagram are obtained with N = 1200 particles.
The finite-size effects are discussed in Appendix B.

Some previous papers reported that impact-induced hardening depends on impact speed [6,16].
Note that the highest rebound volume fraction (φ = 0.56) in our simulation is still below the
frictional (μ = 1) jamming fraction φ

μ=1
J ≈ 0.585 [30], whereas rebound takes place for 0.50 �

φ � 0.56. This range is similar to the observed volume fractions for the DST under simple shear
in numerical simulations [11,13,14]. However, one should recognize that the two processes are
different since impact-induced hardening is a heterogeneous and transient process, while shear
thickening is a homogenous steady-state process.
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FIG. 5. Phase diagram showing whether the impactor rebounds before sinking as a function of the volume
fraction φ and the impact speed uI

0,z.

D. Roles of the friction between particles

To clarify the roles of mutual friction between particles, we plot the bouncing phase diagram on
a plane of the friction coefficient μ and volume fraction φ in Fig. 6(a). Due to the limitation of our
computational resources, the data for this phase diagram are obtained by simulations of N = 1200
particles. One can verify that the impact-induced hardening is enhanced as μ increases. This μ

dependence is analogous to that for DST in dense suspensions under steady shear [11,13,14,31,32]
and for impact in dry granular materials [33]. To quantify the tendency, we plot the impulse J defined
by J = ∫ t=0.1

t=0 F I
z (t )dt in Fig. 6(b). One can confirm that the impulse for the frictional case mono-

tonically increases as the friction coefficient μ increases for all volume fractions φ. To investigate
how frictional interactions between suspended particles affect the dynamics of the impactor, we plot
the time evolution of the forces exerted on the impactor for both the frictional and frictionless cases
for φ = 0.54 in Fig. 6(c). Here, one can verify that the force in the frictional case has a sharper
peak than that in the frictionless case. The behavior is consistent with Fig. 6(b) because the force in
the frictional case for t/τ < 0.1 is larger than that in the frictionless case. It is easy to imagine that
the frictional force stabilizes contact points and networks which are needed for rebounds. Thus, the
friction between particles plays an important role in impact-induced hardening processes.

(a) (b) (c)

FIG. 6. (a) Phase diagram showing whether the impactor rebounds before sinking on a plane of volume
fraction φ and friction coefficient μ. (b) Impulses on the impactor J as functions of the friction coefficient
μ for various φ. (c) Plots of the forces exerted on the impactors for φ = 0.54, uI

z (t )/u∗ = 4.26 for μ = 0
(no-rebound) and μ = 1 (rebound).
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FIG. 7. Visualizations of local quantities for φ = 0.54 and uI
0,z/u∗ = 4.26 shortly after the impact (t/τ =

0.1). (a) Force chains of the normal contact forces scaled by the gravitational force |Fc,n
i j |/F0. (b) Local volume

fraction φi. (c) Magnitude of the dimensionless normal stress σzz/σ0. (d) Normal displacement �z. (e) Absolute
ratio between the shear and normal stress.

E. Local quantities and dynamically jammed region

To understand the microscopic mechanism behind the impact-induced hardening, we visualize
the local responses of the suspension shortly after the impact. First, we visualize the force chains
generated by the impactor by plotting the ratio of the normal contact force to the gravitational
force, |Fc,n

i j |/F0, in Fig. 7(a). One can observe that the percolating force chains span from the
impactor to the boundary without any loops. The spanned region of force chains from the impactor
to the boundaries can be regarded as the dynamically jammed region. Let us look for quantities
to characterize the dynamically jammed region. For this purpose, we quantify the local volume
fraction φi with the aid of radical Voronoi tessellation [34–36]. In Fig. 7(b), we visualize φi in
the sliced region, as shown in Fig. 1(c). One can observe that the local volume fraction is almost
homogeneous. We also found that the local volume fraction is not largely affected by the impact
[25]. This corresponds to the experimental observation where no detectable increase of packing
fraction in the suspension is observed when impact-induced hardening takes place [5]. Thus, the
local dense region does not correspond to either force chains or the dynamically jammed region.
We visualize the stress σzz on each suspended particle in the sliced region in Fig. 7(c). Here we
observe a localized region with a distinctively high value of σzz corresponding to force chains in
Fig. 7(a), which extends from the impactor to the boundary. In Fig. 7(d), we visualize the particle
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displacement in the normal (z) direction �z, also sliced in the middle of the simulation box. One
can observe the existence of a localized region of high normal displacements, which corresponds to
the regions in Figs. 7(c) and 7(a). The visualization of �z within our simulation is reminiscent of
the experimentally observed one in Refs. [3,5]. The regions of large σzz [Fig. 7(c)], �z [Fig. 7(d)],
and the force chains [Fig. 7(a)] correspond to the dynamically jammed region in Refs. [3,5]. As
indicated in Refs. [3,5,6,16], the propagation speed of the jamming front depends on the impact
speed. After the impactor stops, one can imagine that the vanishing of the stress exerted on the
suspension by the impactor allows the suspension to relax and to become soft, which in turn the
impactor subsequently sinks after the impact. On the other hand, we observe a uniformly weaker
magnitude of the shear stress σxz compared to the normal stress σzz as we plot the ratio σxz/σzz

in the sliced region in Fig. 7(e). Then, the local shear stress is not connected to the dynamically
jammed region. Therefore, this eliminates the conjecture where the dynamically jammed region
under impact corresponds to the shear jamming and DST.

F. Persistent homology

To elucidate the role of the force chains in impact-induced hardening, we analyze the topological
structure of force chains by using persistent homology analysis [37]. In addition to successfully
distinguishing the liquid, amorphous, and crystalline states of, e.g., silicon dioxide [38], persistent
homology allows us to quantify the structure of the force chains in granular materials [39,40] and in
dense suspensions under simple shear [41]. Since no persistent loops or higher-dimensional struc-
tures are observed in the force network in Fig. 7(a), the relevant topological structure is only the con-
nected component represented by the zeroth Betti number β0. On the other hand, the first Betti num-
ber β1 is important in DST due to the existence of persistent loops in the sheared suspensions [41].

The idea of persistent homology is to filter the force chains by increasing threshold θ f , where
a link in a force chain appears when |Fc,n

i j |/F0 � θ f . We regard this as the birth of a connected
component. As the threshold further increases, the structure grows in size as additional contacts are
added. When connected components merge, the structure that is born later in the filtration (which
has higher birth θ f ) dies. We record the birth θ f as θ f ,b and the death θ f as θ f ,d . This rule ensures
that θ f ,d � θ f ,b. Then, we plot these quantities in the persistence diagram. In Appendix C, we
illustrate the process to translate a force network into a persistence diagram. The algorithm for
filtering chains is available in public domains [42–44]. We plot θ f ,d against θ f ,b for all connected
components appearing in Fig. 7(a) in the persistence diagram [Fig. 8(a)]. The time evolution of the
force chains and the persistence diagram can also be seen in Ref. [25]. Shortly after the impact, we
observe more points far from the diagonal, representing the connected components which persist
through the increments of the force threshold with the life span (θ f ,d − θ f ,b). Intuitively, the contact
force between particles cannot change abruptly. Therefore, the only possible mechanism for the
occurrence of a long life span for some connected components is by forming a long chain. Thus,
persistent homology emphasizes the length of the chain instead of its magnitude. This argument
shows that percolated force chains exist. One point to note is that a component with θ f ,d = −1
has infinite persistence; i.e., it does not die until the filtration ends. The components with infinite
persistence represent the contact force links that do not form any connection with other links.
Persistent homology ignores the effect of such contact forces since we are only interested in
extracting the structural information.

The total persistence of the connected components, T P0, is the sum of all life spans in the
persistence diagram:

T P0 =
∑

(θ f ,d ,θ f ,b)

(θ f ,d − θ f ,b). (6)

This allows us to describe the persistence diagram by a single number. Higher T P0 means more
merging of force chains takes place, while T P0 = 0 means that no connected components are
merged. We plot T P0 scaled by the number of suspended particles, N , against time in Fig. 8(b).
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(a) (b)

FIG. 8. (a) Persistence diagram of the connected components of the force network for φ = 0.54, uI
0,z/u∗ =

4.26, and μ = 1 shortly after the impact (t/τ = 0.1). (b) Plots of the total persistence of the connected
components T P0, scaled by the number of suspended particles, N , against time for φ = 0.54 and uI

0,z/u∗ = 4.26
(red lines), and the corresponding contact force on the impactor in the z direction, F I,c

z (dashed blue lines).

It is remarkable that T P0 reaches its peak at the same time as the corresponding contact force and
that the shape of T P0 is similar to that of the contact force. Thus, the peak of the contact force
inducing the hardening of the suspension originates from the existence of long and sustained force
chains. This can only take place when the force chains are percolated to the boundaries. Our results
provide quantitative proof for the argument in Refs. [3,6,9] in which the impact-induced hardening
takes place when the dynamically jammed region spans from the impactor to the boundary.

To conclude this section, let us restate the implication from our persistent homology analysis.
First, the magnitude of the force chains is not as important as its topological structure. Second,
persistent homology provides the quantitative proof that the dynamically jammed region which
spans from the impactor to the boundary exists. Third, there are no persistent loops of force chains
in our simulations. Meanwhile, loops are more significant for sheared suspensions where DST is
observed since the total persistence of β1 can capture the behavior of the viscosity [41]. This
distinction exists because the force chains in sheared suspensions are more structured and uniformly
distributed than that in suspensions undergoing impact. Thus, this gives us another distinction
between the impact-induced hardening and the DST or shear jamming.

IV. CONCLUSIONS AND OUTLOOK

We simulated the impact-induced hardening of suspensions by the LBM simulation with free
surface, where the free-falling impactor rebounds for high impact speed with the suspension of high
volume fraction involving frictional particles. By visualizing each suspended particle, we observed
the emergence of the dynamically jammed region with distinctively huge value of normal stress σzz,
formed by force chains of contacting particles. Meanwhile, the shear stress σxz of the suspension is
not significantly affected by the impact. We also found that frictional interaction between suspended
particles is necessary for the impact-induced hardening to maintain the dynamically jammed region.
The fact that the jammed region is characterized by the normal stress instead of shear stress is
important since it distinguishes the impact-induced hardening from shear-induced phenomena such
as DST and shear jamming. Finally, with the aid of persistent homology, (i) we provided the
quantitative proof of the existence of a system-spanning dynamically jammed region, (ii) we found
that only the topological structure of the force chains is important for the contact force acting on the
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impactor, and (iii) we did not observe any persistent loops formed by the force networks in contrast
to the topological structure for DST.

Our finding that the response to the impact is affected by the friction coefficient between
suspended particles is of interest for future experiments, since one can vary the shape and the
asperity of the suspended particles [45]. Some previous papers indicated that the depth of the
container plays an important role in the impact-induced hardening [3,4,6,8,9]. Unfortunately, we
presented the results in a container with a fixed depth because of the limitation of our computational
resources. The study on the depth dependence will be reported elsewhere. In this paper, we only
focused on short time behavior after the impact, while a sinking impactor in dense suspensions
shows a distinct behavior, as it oscillates and has a stop-go cycle near the bottom of the container
[28]. Our simulation will be able to be used to reproduce those results. Then, observation of a
universal scaling law for impacts on dry granular media was recently reported [46]. It would be
interesting to investigate whether such a scaling law also exists in the case of impact on dense
suspensions. Finally, a study on the spatial correlation of the force chains has explained the origin of
a coherent network that arises from its topological constraints [47]. Such a complementary approach
will be important to understand the role of the force chains in the impact problem. These are targets
of our next research.
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APPENDIX A: LATTICE BOLTZMANN METHOD FOR SUSPENSIONS WITH FREE SURFACE

1. Review on the lattice Boltzmann method

In this section, we review the lattice Boltzmann method (LBM) based on Refs. [11,17–19,48,49].
Due to the discrete nature of the LBM, one needs to discretize the unit of length into the lattice unit
�x. We take the lattice unit �x as �x = 0.2amin (amin is the radius of the smallest particle). In the
LBM, the hydrodynamic fields (density ρ f and velocity u f ) are calculated on nodes r inside cells of
a fixed Cartesian grid as

ρ f (r) =
∑

q

fq(r)�c3, ρ f u f (r) =
∑

q

fqcq(r)�c3, (A1)

where cq is the lattice velocity of the direction q, and �c3 is the volume element in the velocity space
with �c = �x/�t . fq(r) is the abbreviation of fq(r, t ) which is the discrete distribution function
and has the dimension of mass density. The evolution equation for fq(r, t ) is

fq(r + cq�t, t + �t ) = fq(r, t ) + �t (
q,c + 
q, f ), (A2)

where 
q,c is the collision operator and 
q, f is an additional operator if a volumetric force density
f̃ acts on the system. We use the Bhatnagar-Gross-Krook approximation for the collision operator
[50], which relaxes the system to the equilibrium state f eq

q as


q,c = f eq
q − fq

τr
, (A3)
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FIG. 9. Illustration of the division of the lattice nodes into fluid, interface, and gas nodes.

where τr is the relaxation time relating to the kinematic viscosity ν as τr = �t/2 + ν/c2
s , with the

lattice sound speed cs =
√

�c2/3. The equilibrium distribution function f eq
q is calculated as

f eq
q �c3 = wqρ f

[
1 + cq · u f

c2
s

+
(
u f u f :

(
cqcq − c2

s I
))

2c4
s

]
, (A4)

where wq is the lattice weight that depends on the configurations. For 
q, f , we employ [51]


q, f �c3 = wq

(
1 − �t

2τr

)[
(cq − u f )

c2
s

+ (cq · u f )

c4
s

cq

]
· f̃ . (A5)

As a result, the macroscopic velocity is changed so the second term in Eq. (A1) becomes

ρ f u f (r) =
∑

q

{
fqcq(r)�c3 + �t f̃ (r)

2

}
. (A6)

2. Handling the free surface of the fluid

To simulate the free surface, we need to implement the mass tracking algorithm [20,22,52]. First,
we assign a type of node such as the fluid, interface, or gas node for each node, where the interface
node exists between the fluid and gas nodes as in Fig. 9. Note that Eqs. (A1) and (A2) are only used
in the fluid and interface nodes.

A gas node represents the cell which is not occupied by the fluid; hence fq = 0. An interface node
expresses the interface between the fluid and gas, where the streaming and collision of fq exists as
in fluid nodes. Here, we introduce a variable m f , which represents the density of the fluid in a single
cell, to track the evolution of the surface. The interface node turns into a fluid node if m f � ρ∗

f or
into a gas node if m f � 0, where ρ∗

f is the unit density of the fluid. Therefore, the state of each node
is characterized by the liquid fraction λ:⎧⎨

⎩
λ = 1 if the node is liquid
0 < λ < 1 if the node is interface
λ = 0 if the node is gas,

(A7)

where m f = λρ f . The evolution of the m f is determined by the balance between the populations
streaming into the node, fq′ (r + cq′�t, t ) (q′ = −q), and out of the node, fq(r, t ),

m f (t + �t ) = �t
∑

q

αq( fq′ (r + cq′�t, t ) − fq(r, t ))�c3 + m f (t ), (A8)
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where αq is a function of λ of the neighboring node (located at r + cq′�t):

αq =
⎧⎨
⎩

1
2 [λ(r, t ) + λ(r + cq′�t, t )] if fq′ (r + cq′�t, t ) streams from an interface node
1 if fq′ (r + cq′�t, t ) streams from a fluid node
0 if fq′ (r + cq′�t, t ) streams from a gas node.

(A9)

When an interface node turns into a fluid node, the neighboring gas nodes turn into interface
nodes. When an interface node turns into a gas node, the neighboring fluid nodes turn into interface
nodes. Although the density in a continuum model must be conserved, the discrete model can
contain small loss or gain of m f . The surplus (or shortfall, including the possibility of negative
density) of m f is then computed at every time step and is corrected to satisfy the conservation
among all interface nodes.

Fixed-pressure boundary condition. As stated before, LBM equations are solved only in the
liquid and interface nodes. This creates a problem in the implementation since the population
streaming to the interface nodes from gas nodes which is necessary in Eq. (A2) is not well defined.
Assuming that the gas nodes are always in equilibrium characterized by f eq

q and have the same uin
f

and cs as the interface nodes, with a constant atmospheric density ρa = 0.3ρ f , we can solve Eq. (A2)
[49,52]. This is analogous to applying a fixed-pressure boundary condition at the interface and local
symmetry conditions for the velocity. The condition ρa > 0 also gives an effective surface tension
to the system [52].

3. Solid boundaries and the fluid-particle coupling

We implement two coupling schemes to handle solid boundaries within our simulations. We use
the bounce-back rules for the no-slip boundary condition on walls and the surface of the impactor,
while we use the direct forcing scheme for suspended particles.

The bounce-back rule simply states that whenever a population is streaming towards a wall, this
population is reflected and bounced back in the opposite direction. This rule can be expressed as

fq′ (r, t + �t ) = fq(r, t ), (A10)

in LBM notation. If the wall is moving, the reflection has to take into account the momentum transfer
by an additional term [17,18]

{ fq(r, t ) − fq′ (r, t + �t )}�c3 =
(

2wqρ f uw · cq

c2
s

)
, (A11)

where uw is the wall velocity. Here, uw is calculated as

uw(r) = uI + (r − RI ) × ωI , (A12)

where uI and ωI are the translational velocity and the angular velocity on the surface of the impactor,
respectively, and RI denotes the center of mass of the impactor. The momentum exchange described
in Eq. (A11) results in a force on each node on the impactor surface F̃(r) as

F̃(r) = �x3

�t

(
2 fq(r, t )�c3 − 2wqρ f uw · cq

c2
s

)
cq. (A13)

The hydrodynamic force on the impactor, F I,h, is the sum of the forces for all nodes in the surface
as F I,h = ∑

r∈surface F̃(r), while T I,h = ∑
r∈surface(r − RI ) × F̃(r) is the hydrodynamic torque.

Direct forcing. By using the immersed boundary method, we calculate the hydrodynamic force
through an additional discretization of particles into a set of segments rcell. These particle segments
are related to the fluid simulation by an interpolating function [53]. We implement the simplified
version [22,49], where the segments correspond to the lattice nodes of the LBM rcell = r. Since
the volume of a cubic cell is unity, the hydrodynamic force on each cell, F̃cell(r), can be computed
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FIG. 10. Plots of impactor speeds in the z direction, uI
z (t )/u∗, against time for several numbers of particles,

N , for φ = 0.54. The time scale t is scaled by the particle numbers Nα with α = 0.35

directly from the velocity differences:

F̃cell(r) = �x3

�t
ρ f (r)[u f (r) − ucell(r)], (A14)

where ucell is the velocity of the particle cell,

ucell(r) = u + (r − R) × ω, (A15)

where u, R, and ω are the translational velocity, center of mass, and angular velocity of the
suspended particles, respectively. The resultant hydrodynamic force on each suspended particle Fh

is the sum of all forces on the cells inside the particle l as Fh = ∑
r∈l F̃cell(r). Similarly, the torque

is given by T h = ∑
r∈l (r − R) × F̃cell(r). Note that this method requires a contribution to the body

force density of the fluid, f̃ . Therefore, we calculate f̃ in Eqs. (A6) and (A5) as

f̃ (r) = −ρ f gẑ − F̃cell(r)

�x3
. (A16)

The first term in Eq. (A16) comes from gravity. Note that this scheme requires all segments of each
particle to be inside the solvent fluid.

APPENDIX B: FINITE-SIZE EFFECTS

In this Appendix, we examine how the impactor dynamics depends on the number of particles
in our system. We plot the time evolution of the impactor velocity for several numbers of particles,
N , for φ = 0.54 and uI

0,z/u∗ = 4.26 in Fig. 10. As mentioned in Sec. II, we keep the ratios of the
impactor radius to the width and depth of the box as W/aI = 8, D/aI = 8, and H/aI = 4. Therefore,
varying the numbers of particles, N , also changes the ratio of the impactor radius aI to the smallest
suspended particles radius amin as aI/amin = 2.25, 3, 3.75, and 4.5 for N = 300, 600, 1200, and
2000, respectively.

We found that the system size dependence mainly appears as the time scale of the impact
processes. Although the impact velocity depends a little on the system size (and as a result, the phase
diagrams also depend a little on the system size), such system size dependencies are not significant.
For instance, if we scale the time by Nα with exponent α = 0.35 for the data of φ = 0.54, we can
obtain an approximate universal curve of the impact speed. Thus, one can guess the behavior in
the thermodynamic limit from the simulations with small systems. Note that the value of α might
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FIG. 11. (a) An illustration of a force network configuration, where the numbers represent the force
magnitude and the colors represent each connected component. (b) The corresponding bar code and (c) the
corresponding persistence diagram.

depend on φ. A systematic study in finite-size scaling for simulations of dense suspensions under
impact will be reported elsewhere.

APPENDIX C: BRIEF EXPLANATION OF PERSISTENT HOMOLOGY

In this Appendix, we briefly explain the procedure to plot a persistence diagram from a network
configuration [41–43]. First, let us consider a force network configuration as in Fig. 11(a), where
the numbers represent the force magnitude and the colors represent each connected component.
Now, let us filter the force chains by increasing the threshold θ f , where a link in a network appears
when the magnitude is greater than or equal to θ f . Once a connected component appears during the
filtration, we start to record its appearance in the bar code [Fig. 11(b)]. Note that when θ f = 3, the
first component (brown) appears, followed by the second component (blue) at θ f = 5. These are
the birth θ f for each connected component. As θ f increases, more chains appear and the connected
components grow. At θ f = 25, two connected components (blue and green) merge with each other.
When merging of the connected components takes place, we adopt a rule such that a component
that is born later in the filtration (which has higher birth θ f ) dies. In other words, at θ f = 25,
component green (birth θ f = 15) dies since it merges with the component blue (birth θ f = 5).
Then, at θ f = 30, the blue component merges with the brown component. Since θ f = 30 is the
maximum value of the filtration, component brown will never die. Thus, we consider that it has
infinite persistence. In addition, component black also never dies since it does not merge with any
other components until the end of the filtration. Finally, we plot the death and birth θ f of each
connected component in the persistence diagram [Fig. 11(c)], where we assign death θ f = −1
for the connected components with infinite persistence. From this example, we demonstrate that
persistent homology emphasizes more on the structure of each component rather than its total
magnitude since (i) the green component has a higher total magnitude than the blue component,
but the blue component has a bigger life span (death θ f − birth θ f ) and (ii) we ignore a single link
(black component) that is not merged with another component.

[1] Y. S. Lee, E. D. Wetzel, and N. J. Wagner, The ballistic impact characteristics of Kevlar woven fabrics
impregnated with a colloidal shear thickening fluid, J. Mater. Sci. 38, 2825 (2003).

[2] C. H. Nam, M. J. Decker, C. Halbach, E. D. Wetzel, and N. J. Wagner, Ballistic and rheological properties
of STFs reinforced by short discontinuous fibers, in Proceedings of 50th International Symposium and
Exhibition SAMPE2005: New Horizons for Materials and Processing Technologies, May 1–5, 2005, Long
Beach CA (Society for the Advancement of Material and Process Engineering, Covina, California, 2005).

033301-15

https://doi.org/10.1023/A:1024424200221


PRADIPTO AND HISAO HAYAKAWA

[3] S. R. Waitukaitis and H. M. Jaeger, Impact-activated solidification of dense suspensions via dynamic
jamming fronts, Nature 487, 205 (2012).

[4] M. Roche, E. Myftiu, M. C. Johnston, P. Kim, and H. A. Stone, Dynamic Fracture of Nonglassy
Suspensions, Phys. Rev. Lett. 110, 148304 (2013).

[5] E. Han, I. R. Peters, and H. M. Jaeger, High-speed ultrasound imaging in dense suspensions reveals
impact-activated solidification due to dynamic shear jamming, Nat. Commun. 7, 12243 (2016).

[6] R. Maharjan, S. Mukhopadhyay, B. Allen, T. Storz, and E. Brown, Constitutive relation for the system-
spanning dynamically jammed region in response to impact of cornstarch and water suspensions, Phys.
Rev. E 97, 052602 (2018).

[7] B. Allen, B. Sokol, S. Mukhopadhyay, R. Maharjan, and E. Brown, System-spanning dynamically
jammed region in response to impact of cornstarch and water suspensions, Phys. Rev. E 97, 052603
(2018).

[8] S. Mukhopadhyay, B. Allen, and E. Brown, Testing constitutive relations by running and walking on
cornstarch and water suspensions, Phys. Rev. E 97, 052604 (2018).

[9] K. Egawa and H. Katsuragi, Bouncing of a projectile impacting a dense potato-starch suspension layer,
Phys. Fluids 31, 053304 (2019).

[10] E. Brown and H. M. Jaeger, Shear thickening in concentrated suspensions: Phenomenology, mechanisms
and relations to jamming, Rep. Prog. Phys. 77, 046602 (2014).

[11] Pradipto and H. Hayakawa, Simulation of dense non-Brownian suspensions with the lattice Boltzmann
method: Shear jammed and fragile states, Soft Matter 16, 945 (2020).

[12] I. R. Peters, S. Majumdar, and H. M. Jaeger, Direct observation of dynamic shear jamming in dense
suspensions, Nature 532, 214 (2016).

[13] R. Seto, R. Mari, J. F. Morris, and M. M. Denn, Discontinuous Shear Thickening of Frictional Hard-
Sphere Suspensions, Phys. Rev. Lett. 111, 218301 (2013).

[14] R. Mari and R. Seto, Shear thickening, frictionless and frictional rheologies in non-Brownian suspensions,
J. Rheol. 58, 1693 (2014).

[15] A. H. Clark, A. J. Petersen, L. Kondic, and R. P. Behringer, Nonlinear Force Propagation During Granular
Impact, Phys. Rev. Lett. 114, 144502 (2015).

[16] A. S. Baumgarten and K. Kamrin, A general constitutive model for dense, fine-particle suspensions
validated in many geometries, Proc. Natl. Acad. Sci. USA 116, 20828 (2019).

[17] A. J. C. Ladd, Numerical simulations of particulate suspensions via a discretized Boltzmann equation.
Part 1. Theoretical foundation, J. Fluid Mech. 271, 285 (1994).

[18] A. J. C. Ladd, Numerical simulations of particulate suspensions via a discretized Boltzmann equation.
Part 2. Numerical simulations, J. Fluid Mech. 271, 311 (1994).

[19] S. Succi, The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond (Oxford University Press,
Oxford, UK, 2001).

[20] O. Švec, J. Skocek, H. Stang, M. R. Geiker, and N. Roussel, Free surface flow of a suspension of rigid
particles in a non-Newtonian fluid: A lattice Boltzmann approach, J. Non-Newton. Fluid. 179-180, 32
(2012).

[21] A. Leonardi, F. K. Wittel, M. Mendoza, and H. J. Hermann, Coupled DEM-LBM method for the free-
surface simulation of heterogeneous suspensions, Comput. Part. Mech. 1, 3 (2014).

[22] A. Leonardi, M. Cabrera, F. K. Wittel, R. Kaitna, M. Mendoza, W. Wu, and H. J. Herrmann, Granular-front
formation in free-surface flow of concentrated suspensions, Phys. Rev. E 92, 052204 (2015).

[23] N. Q. Nguyen and A. J. C. Ladd, Lubrication corrections for lattice-Boltzmann simulations of particle
suspensions, Phys. Rev. E 66, 046708 (2002).

[24] S. Luding, Cohesive, frictional powders: Contact models for tension, Granular Matter 10, 235 (2008).
[25] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevFluids.6.033301 for

movies for force chains and persistence diagram, and movies for local volume fractions.
[26] G. Kuwabara and K. Kono, Restitution coefficient in a collision between two spheres, Jpn. J. Appl. Phys.

26, 1230 (1987).
[27] N. V. Brilliantov, F. Spahn, J.-M. Hertzsch, and T. Poschel, Model for collisions in granular gases, Phys.

Rev. E 53, 5382 (1996).

033301-16

https://doi.org/10.1038/nature11187
https://doi.org/10.1103/PhysRevLett.110.148304
https://doi.org/10.1038/ncomms12243
https://doi.org/10.1103/PhysRevE.97.052602
https://doi.org/10.1103/PhysRevE.97.052603
https://doi.org/10.1103/PhysRevE.97.052604
https://doi.org/10.1063/1.5095678
https://doi.org/10.1088/0034-4885/77/4/046602
https://doi.org/10.1039/C9SM00850K
https://doi.org/10.1038/nature17167
https://doi.org/10.1103/PhysRevLett.111.218301
https://doi.org/10.1122/1.4890747
https://doi.org/10.1103/PhysRevLett.114.144502
https://doi.org/10.1073/pnas.1908065116
https://doi.org/10.1017/S0022112094001771
https://doi.org/10.1017/S0022112094001783
https://doi.org/10.1016/j.jnnfm.2012.05.005
https://doi.org/10.1007/s40571-014-0001-z
https://doi.org/10.1103/PhysRevE.92.052204
https://doi.org/10.1103/PhysRevE.66.046708
https://doi.org/10.1007/s10035-008-0099-x
http://link.aps.org/supplemental/10.1103/PhysRevFluids.6.033301
https://doi.org/10.1143/JJAP.26.1230
https://doi.org/10.1103/PhysRevE.53.5382


IMPACT-INDUCED HARDENING IN DENSE FRICTIONAL …

[28] S. von Kann, J. H. Snoeijer, D. Lohse, and D. van der Meer, Nonmonotonic settling of a sphere in a
cornstarch suspension, Phys. Rev. E 84, 060401(R) (2011).

[29] R. Maharjan and E. Brown, Giant deviation of a relaxation time from generalized Newtonian theory in
discontinuous shear thickening suspensions, Phys. Rev. Fluids 2, 123301 (2017).

[30] L. E. Silbert, Jamming of frictional spheres and random loose packing, Soft Matter 6, 2918 (2010).
[31] M. Otsuki and H. Hayakawa, Critical scaling near jamming transition for frictional granular particles,

Phys. Rev. E 83, 051301 (2011).
[32] J. E. Thomas, K. Ramola, A. Singh, R. Mari, J. F. Morris, and B. Chakraborty, Microscopic Origin of

Frictional Rheology in Dense Suspensions: Correlations in Force Space, Phys. Rev. Lett. 121, 128002
(2018).

[33] L. Kondic, X. Fang, W. Losert, C. S. O’Hern, and R. P. Behringer, Microstructure evolution during impact
on granular matter, Phys. Rev. E 85, 011305 (2012).

[34] J. G. Puckett, F. Lechenault, and K. E. Daniels, Local origins of volume fraction fluctuations in dense
granular materials, Phys. Rev. E 83, 041301 (2011).

[35] We use an open source C++ library VORO++ to construct the radical Voronoi tessellation in our
simulation domain [36]. Then, the local volume fraction φi is calculated as φi = vi/Vi, where vi = 4πa3

i /3
is the volume of particle i and Vi is the volume of its corresponding Voronoi cell.

[36] C. H. Rycroft, A three-dimensional Voronoi cell library in C++, Chaos 19, 041111 (2009).
[37] G. Carlsson, Topology and data, Bull. Am. Math. Soc. 46, 255 (2009).
[38] Y. Hiraoka, T. Nakamura, A. Hirata, E. G. Escolar, K. Matsue, and Y. Nishiura, Hierarchical structures of

amorphous solids characterized by persistent homology, Proc. Natl. Acad. Sci. USA 113, 7035 (2016).
[39] M. Kramar, A. Goullet, L. Kondic, and K. Mischaikow, Evolution of force networks in dense particulate

media, Phys. Rev. E 90, 052203 (2014).
[40] T. Takahashi, A. H. Clark, T. Majmudar, and L. Kondic, Granular response to impact: Topology of the

force networks, Phys. Rev. E 97, 012906 (2018).
[41] M. Gameiro, A. Singh, L. Kondic, K. Mischaikow, and J. F. Morris, Interaction network analysis in shear

thickening suspensions, Phys. Rev. Fluids 5, 034307 (2020).
[42] K. Mischaikow and V. Nanda, Morse theory for filtrations and efficient computation of persistent homol-

ogy, Dicrete Comput. Geom. 50, 330 (2013).
[43] V. Nanda, PERSEUS, the persistent homology software, http://people.maths.ox.ac.uk/nanda/perseus/.
[44] Note that in Refs. [39–41], θ f ,b is always not smaller than θ f ,d , since they adopt filtration by reducing the

threshold.
[45] L. C. Hsiao, S. Jamali, E. Glynos, P. F. Green, R. G. Larson, and M. J. Solomon, Rheological State

Diagrams for Rough Colloids in Shear Flow, Phys. Rev. Lett. 119, 158001 (2017).
[46] N. Krizou and A. H. Clark, Power-Law Scaling of Early-Stage Forces During Granular Impact, Phys. Rev.

Lett. 124, 178002 (2020).
[47] K. P. Krishnaraj and P. R. Nott, Coherent Force Chains in Disordered Granular Materials Emerge from a

Percolation of Quasilinear Clusters, Phys. Rev. Lett. 124, 198002 (2020).
[48] Pradipto, Numerical simulation of dense suspensions with lattice Boltzmann method, Master’s thesis,

Kyoto University, 2019 (unpublished).
[49] A. Leonardi, Numerical simulation of debris flow and interaction between flow and obstacle via DEM,

Ph.D. thesis, ETH Zürich, 2015, https://www.research-collection.ethz.ch/handle/20.500.11850/105874.
[50] P. L. Bhatnagar, E. P. Gross, and M. Krook, A model for collision processes in gases. I. Small amplitude

processes in charged and neutral one component systems, Phys. Rev. 94, 511 (1954).
[51] Z. Guo, C. Zheng, and B. Shi, Discrete lattice effects on the forcing term in the lattice Boltzmann method,

Phys. Rev. E 65, 046308 (2002).
[52] C. Korner, M. Thies, T. Hofmann, N. Thurey, and U. Rude, Lattice Boltzmann model for free surface flow

for modeling foaming, J. Stat. Phys. 121, 179 (2005).
[53] C. S. Peskin, Flow patterns around heart valves: A numerical method, J. Comput. Phys. 10, 252 (1972).

033301-17

https://doi.org/10.1103/PhysRevE.84.060401
https://doi.org/10.1103/PhysRevFluids.2.123301
https://doi.org/10.1039/c001973a
https://doi.org/10.1103/PhysRevE.83.051301
https://doi.org/10.1103/PhysRevLett.121.128002
https://doi.org/10.1103/PhysRevE.85.011305
https://doi.org/10.1103/PhysRevE.83.041301
https://doi.org/10.1063/1.3215722
https://doi.org/10.1090/S0273-0979-09-01249-X
https://doi.org/10.1073/pnas.1520877113
https://doi.org/10.1103/PhysRevE.90.052203
https://doi.org/10.1103/PhysRevE.97.012906
https://doi.org/10.1103/PhysRevFluids.5.034307
https://doi.org/10.1007/s00454-013-9529-6
http://people.maths.ox.ac.uk/nanda/perseus/
https://doi.org/10.1103/PhysRevLett.119.158001
https://doi.org/10.1103/PhysRevLett.124.178002
https://doi.org/10.1103/PhysRevLett.124.198002
https://www.research-collection.ethz.ch/handle/20.500.11850/105874
https://doi.org/10.1103/PhysRev.94.511
https://doi.org/10.1103/PhysRevE.65.046308
https://doi.org/10.1007/s10955-005-8879-8
https://doi.org/10.1016/0021-9991(72)90065-4

