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Geometrical formulation of adiabatic pumping as a heat engine
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We investigate a heat engine under an adiabatic (Thouless) pumping process. In this process, the extracted
work and lower bound on dissipated availability are characterized by a vector potential and a Riemannian metric
tensor, respectively. We derive a trade-off relation between the power and effective efficiency. We also explicitly
calculate the trade-off relation as well as the power and effective efficiency for a spin-boson model coupled to
two reservoirs.
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I. INTRODUCTION

An average current can be generated even in the absence
of an average bias under slow and periodic modulation of
multiple parameters of the system. This is known as an adi-
batic pumping process. Thouless first proposed the theory of
the adiabatic pumping for an isolated quantum system [1,2].
He showed that electrons can be transported by applying a
time-periodic potential to one-dimensional isolated quantum
systems under a periodic boundary condition. He also clarified
that the charge transport in this system is essentially induced
by a Berry-phase-like quantity in the space of the modulation
parameters [1–4]. This phenomenon has been observed exper-
imentally in various processes such as charge transport [5–12]
and a spin pumping process [13]. Later, Brouwer extended
the Thouless pumping to that in an open quantum system
[14]. It has been recognized that the essence of Thouless
pumping can be described by a classical master equation
in which the Berry-Sinitsyn-Nemenman (BSN) phase is the
generator of the pumping current [15,16]. There are various
papers on geometrical pumping processes in terms of the
scattering theory [17–23], classical master equations [24–32]
and quantum master equations [33–38]. The extended fluctu-
ation theorem for adiabatic pumping processes has also been
studied [39–41].

The geometrical concept is also used in finite time ther-
modynamics [42], in which the thermodynamic length plays a
key role. The thermodynamic length is originally introduced
for macroscopic systems [43–47], and it has been used in
wide classes of thermodynamic systems such as a classical
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nanoscale system [48], a closed quantum system [49], and an
open quantum system [50].

Recently, Brandner and Saito have formulated the geomet-
rical thermodynamics for a microscopic heat engine in the
adiabatic regime [51]. In their approach, the properties of
the working system are discribed by a vector potential and a
Riemannian metric tensor in the space of control parameters.
If one chooses a driving protocol, an effective flux and a
length are assigned to the protocol. Then, they provide the
extracted work and lower bound of the dissipated availability.
On the other hand, Giri and Goswami proposed a quantum
heat engine which includes the effect of the BSN phase by
controlling temperatures of reservoirs [52].

Nevertheless, we cannot apply the previous formulations
to a heat engine undergoing an adiabatic pumping process
with equal average temperature in both reservoirs, because
(i) Ref. [51] only considered systems coupled to a single
reservoir near an equilibrium state and (ii) Ref. [52] only
considered the situation where the temperature of one of the
reservoirs is always higher than that of the other one. Note that
the outcome in the latter case is dominated by the dynamical
phase. Namely, it is difficult to observe the geometrical contri-
bution in such a system. In this paper, therefore, we extend the
geometrical formulations of Refs. [51] and [52] to a system
which is coupled to two reservoirs with equal average temper-
ature under adiabatic modulation of thermodynamic quantities
of the reservoirs and the target system. In the adiabatic regime,
we obtain a geometrical representation of the extracted work
and a lower bound of dissipated availability. We also derive a
trade-off relation between the power and effective efficiency.

The organization of this paper is as follows. In Sec. II,
we explain the setup and geometrical formulation for describ-
ing the heat engine under an adiabatic pumping process. In
Sec. III, we apply our formulation to a two-level spin-boson
system coupled to two reservoirs. Finally, we discuss and
summarize our results in Sec. IV. In Appendix A, we present
a mathematical description of the pseudo-inverse of transition
matrix. In Appendix B, we explain the outline of the pertur-
bation theory of the master equation with slowly modulated
parameters. In Appendix C, we summarize the detailed setup
of the spin-boson model used in the main text.
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FIG. 1. A schematic of the total system which consists of the
target system and the left and right reservoirs. We periodically con-
trol the temperatures of the reservoirs T L, T R and the parameter λ

of the system Hamiltonian Ĥ (λ) by the external device. JL and JR

are the heat currents from the left and right reservoirs to the system,
respectively. P is the averaged power extracted from the system.

II. GENERAL FRAMEWORK

A. Setup

In this paper, we consider a system S coupled to two
reservoirs L and R under periodic modulation of parameters
with the period τp. A schematic of our system is depicted
in Fig. 1. Each reservoir α =L or R is characterized by the
temperature T α . We assume that the system S is characterized
by n discrete states i = 0, . . . , n − 1. The system Hamiltonian
Ĥ (λ) is characterized by its eigenvalue Ei(λ) of ith state with
a control parameter λ.

In this paper, we control the set of parameters � :=
(λ, T L, T R).

We assume that the dynamics of S is described by a master
equation

d

dθ
|p(θ )〉 = ε−1K̂ (�(θ ))|p(θ )〉. (1)

Here we have introduced the dimensionless time (which is
the phase in the modulation) θ := (t − t0)/τp and the di-
mensionless operation speed ε := 1/(τp�), where t0 is the
time after which the system reaches a periodic state and
� is the coupling strength or the characteristic transition
rate between the system and the reservoirs. The explicit
expression of � for the spin-boson model is presented in
Appendix C. We have also introduced the vector |p(θ )〉 :=
(p0(θ ), . . . , pn−1(θ ))T , where pi(θ ) is the probability of
state i at θ . The vector |p(θ )〉 satisfies 0 � pi(θ ) � 1 and
〈1|p(θ )〉 = ∑

i pi(θ ) = 1, where 〈1| := (1, . . . , 1). The ma-
trix K̂ (�(θ )) = ∑

α=L,R K̂α (�(θ )) := ∑
α=L,R(kα

i j (�(θ ))) is
the transition matrix and its (i j)-component kα

i j (�(θ )) is the
transition rate of j → i due to interaction with the reservoir α

at θ . K̂ (�(θ )) satisfies 〈1|K̂ (�(θ )) = 0. We assume that the
θ dependence of K̂ (�(θ )) only appears through the control
parameters �(θ ). We also assume that K̂α (�(θ )) satisfies the
detailed balance relation

ln
kα

i j (�(θ ))

kα
ji(�(θ ))

= −βα (θ )[Ei(λ(θ )) − Ej (λ(θ ))], (2)

where βα (θ ) := 1/T α (θ ) is the inverse temperature of the
reservoir α at θ . We assume that the master equation
(1) has a unique steady state |pss(�(θ ))〉 which satisfies
K̂ (�(θ ))|pss(�(θ ))〉 = 0. Since the system is coupled to two

reservoirs having different temperatures, |pss(�(θ ))〉 is a
nonequilibrium steady state.

B. Thermodynamic quantities

The performance of a heat engine is governed by the sec-
ond law of thermodynamics, i.e., the non-negativity of the
total entropy production rate. When the system is coupled to
a single heat reservoir, the second law of thermodynamics
is achieved by a quasistatic operation. On the other hand,
when the system is coupled to multiple heat reservoirs, a
proper nonequilibrium entropy production should be non-
negative for arbitrary operations. Such a non-negative quantity
is known as the Hatano-Sasa (HS) entropy production rate
σ HS(θ ) [53] defined as

σ HS(θ ) := Ṡ(θ ) + σ ex(θ ), (3)

where

S(θ ) := 〈1|ŝ(θ )|p(θ )〉 (4)

with its element si j (θ ) of ŝ(θ )

si j (θ ) := − ln pi(θ )δi j (5)

is the Shannon entropy of the system S with the notation
Ṡ(θ ) := dS(θ )/dθ . Equation (3) contains the excess entropy
production rate σ ex(θ ) defined as

σ ex(θ ) := −〈1|φ̂(�(θ ))| ṗ(θ )〉, (6)

where the element φi j (�(θ )) of φ̂(�(θ )) satisfies

φi j (�(θ )) := − ln pss
i (�(θ ))δi j . (7)

It is known that HS entropy production rate σ HS is always
non-negative and converges to zero in quasistatic limit ε → 0,
thanks to the HS inequality [53].

To discuss the performance of the heat engine, we intro-
duce the dissipative availability [45,51] defined as

A :=
∫ 1

0
T (θ )σ HS(θ )dθ, (8)

where T (θ ) := β(θ )−1 with β(θ ) := [βL(θ ) + βR(θ )]/2. Ac-
cording to HS inequality σ HS(θ ) � 0 the dissipative availabil-
ity is always non-negative, i.e., A � 0. Thus A plays a key role
in nonequilibrium thermodynamics. A can be decomposed as

A = U + V − W, (9)

where

W := −
∫ 1

0

〈
1

∣∣∣∣∂Ĥ (λ(θ ))

∂λ(θ )

∣∣∣∣p(θ )

〉
λ̇(θ )dθ (10)

is the work extracted from the system per cycle. Here, U
defined as

U := −
∫ 1

0
S(θ )Ṫ (θ )dθ (11)

is the thermal energy which can be used even in nonequilib-
rium processes [51], while V defined as

V :=
∫ 1

0

〈
1

∣∣∣∣∂X̂ (�(θ ))

∂μ(θ )

∣∣∣∣p(θ )

〉
̇μ(θ )dθ (12)
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is a nonequilibrium potential which exists only if the system
is coupled to multiple reservoirs. Here we have introduced
a matrix X̂ (�(θ )) := T (θ )[φ̂(�(θ )) − Ĥ (λ(θ ))] and �(θ ) :=
[βL(θ ) − βR(θ )]/2. Since � = (λ, T L, T R) can be converted
into � = (λ, T,�), we use the notation μ to express one
of (λ, T,�), i.e., 0 = λ, 1 = T and 2 = � for later
discussion. We also use Einstein’s summation convention for
μ = 0, 1, and 2 in this paper. Since A � 0, the extracted
work W is bounded as

W = U + V − A � U + V. (13)

Thus we can interpret U + V as the available energy which
can be converted into the work. If a system is coupled to only
one reservoir, the dissipative availability A is reduced to A =
U − W [51], which is equivalent to W � U . Therefore our
dissipative availability A is a nonequilibrium extension of the
dissipative availability introduced in Refs. [45,51].

Let us introduce the ratio of the work W to the available
energy U + V as

ξ := W

U + V
= W

W + A
. (14)

Because of A � 0, ξ satisfies 0 � ξ � 1. Thus we call ξ the
effective efficiency because it is an indicator of the perfor-
mance of the heat engine. In the quasistatic limit (ε → 0, i. e.
A → 0), ξ converges to 1. The scaled power defined as

P := εW (15)

converges to zero in this limit. Note that P does not have the
dimension of power because we measure time scale by the
dimensionless parameter ε under the fixing �. To obtain larger
power, we need the higher speed ε of operation, in which the
effective efficiency ξ becomes smaller. In the next section, we
discuss such a trade-off relation in the linear response regime.

We note that the conventional thermal efficiency is written
as

η := W

Qin
, (16)

where

Qin :=
∑

α=L,R

∫ 1

0
dθ max[Jα (θ ), 0] (17)

is the heat absorbed by the system in one cycle and

Jα (θ ) := ε−1〈1|Ĥ (λ(θ ))K̂α (�(θ ))|p(θ )〉 (18)

is the heat current from the reservoir α to the system S at θ . If
the temperature difference between two reservoirs is finite, the
leading term of Jα (θ ) is O(ε−1). Thus the thermal efficiency
η is O(ε), which converges to zero in the quasistatic limit.

Let us briefly summarize difference between the effective
efficiency ξ and conventional efficiency η. The former is the
efficiency to express the conversion rate from the available
source U + V to the work W once a nonequilibrium steady
state is achieved, while the latter is the conversion rate from
the absorbing heat to the work. Both efficiencies prefer zero
entropy productions to get high performance, but there are
several intrinsic differences. It should be noted that most of
absorbing heat in a nonequilibrium engine is consumed as
the housekeeping heat. Therefore ξ is much higher than η in

general. Moreover, the heat engine under Thouless pumping
we consider in this paper is driven by reservoirs coupled to
equal average temperature. Therefore η becomes zero in the
limit ε → 0.

For later discussion, let us rewrite the dissipative availabil-
ity A. Substituting Eqs. (3)–(7) into Eq. (8) with the integral
by part A can be rewritten as

A =Ã(0) + Ã(1), (19)

where

Ã(0) := −
∫ 1

0
〈1|[ŝ(θ ) − φ̂(�(θ ))]|p(θ )〉Ṫ (θ )dθ (20)

and

Ã(1) := −
∫ 1

0
f μ(θ )̇μ(θ )dθ (21)

with

f μ(θ ) := 〈1|F̂μ(�(θ ))|p(θ )〉 (22)

and

F̂μ(�(θ )) := −T (θ )
∂φ̂(�)

∂μ
(θ ), (23)

which is the effective force conjugate to ̇μ(θ ). To derive
Eq. (19) we have used the periodicities of |p(θ )〉 and the
control parameters �(θ ) to omit the boundary term.

C. Linear response regime

In this section, we consider thermodynamics of the en-
gine introduced in the previous section in the linear response
regime for small ε. Thanks to Appendix A, the solution of
the master equation (1) in the linear response regime can be
expanded as

|p(θ )〉 � |pss(�(θ ))〉 + ε|p(1)(�(θ ))〉 + O(ε2), (24)

where the second term on the right-hand side of Eq. (24) can
be written as

|p(1)(�(θ ))〉 = K̂+(�(θ ))| ṗss(�(θ ))〉. (25)

Here, K̂+(�(θ )) is the pseudoinverse [54] of the transition
matrix K̂ (�(θ )) (see Appendix B for its details), which is
written as

K̂+(�) =
∫ ∞

0
dsesK̂ (�)

(
|pss(�)〉〈1| − 1

)
. (26)

Then, f μ(θ ) can be written as

f μ(θ ) � f μ
ss (�(θ )) + εRμν (�(θ ))̇ν (θ ) + O(ε2), (27)

where we have introduced

f μ
ss (�(θ )) := −〈1|F̂μ(�(θ ))|pss(�(θ ))〉. (28)

The response matrix Rμν (�(θ )) introduced in Eq. (27) is
defined as

Rμν (�(θ )) = −β(θ )
∫ ∞

0
ds〈Fμ(s); F ν (0)〉�(θ ), (29)
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where

〈Fμ(s); F ν (0)〉�
:= 〈

1
∣∣F̂μ(�)esK̂+(�)F̂ ν (�)

∣∣pss(�)
〉

− 〈
1
∣∣F̂μ(�)esK̂+(�)

∣∣pss(�)
〉〈1|F̂ ν (�)|pss(�)〉 (30)

is the cannonical correlation between F̂μ(�) and F̂ ν (�) in a
steady state characterized by �. Equation (30) is nothing but
the Green-Kubo formula in nonequilibrium systems coupled
to two reservoirs.

Since we focus only on the linear region of ε in this paper,
we can ignore Ã(0) in Eq. (19), which is estimated as O(ε2). 1

Thus Eq. (19) is reduced to

A � Ã(1). (31)

Thus substituting Eq. (27) into Eq. (21) the dissipative avail-
ability A can be rewritten as

A � −
∫ 1

0
f μ
ss (�(θ ))̇μ(θ )dθ

− ε

∫ 1

0
Rμν (�(θ ))̇μ(θ )̇ν (θ )dθ (32)

where the first term on the right-hand side of Eq. (32) is
zero because of 〈1|dφ(θ )/dθ |pss〉 = −∑

i pss
i (d/dθ ) ln pss

i =
0 with the aid of d

dθ

∑
i pss

i (θ ) = 0 and Eqs. (21) and (31).
Thus we obtain

A = εA1 + O(ε2), (33)

A1 : =
∫ 1

0
gμν (�(θ ))̇μ(θ )̇ν (θ )dθ, (34)

where

gμν (�(θ )) := −1

2
[Rμν (�(θ )) + Rνμ(�(θ ))] (35)

is the thermodynamic metric tensor, which is symmetric and
positive semidefinite. Using the Cauchy-Schwartz inequality,
the dissipative availability A = εA1 is bounded as

A1 � L2, (36)

where

L :=
∮

γ

√
gμν (�)dμdν (37)

is the thermodynamic length corresponding to the length
along the trajectory γ in Riemannian manifold with the metric
gμν (�). The inequality (36) is one of the main results in
this paper, which has an identical form to that coupled to
one reservoir [51]. The equality in Eq. (36) is held when

1This estimation can be shown as follows. The integrand
of the first term in Ã(0) in Eq. (19) can be rewritten as
〈1|(ŝ − φ̂)|p〉 = ∑

i pi ln(pi/pss
i ), where we have used Eqs. (5)

and (7). Substituting Eq. (24) into this expression, we obtain
〈1|(ŝ − φ̂)|p〉 � −∑

i{pss
i + εp(1)} ln {1 + ε

p(1)

pss
i

} + O(ε2) =
−ε

∑
i p(1)

i + O(ε2). Because of
∑

i p(1)
i = 0 we obtain

〈1|(ŝ − φ̂)|p〉 = O(ε2).

gμν (�(θ ))̇μ(θ )̇ν (θ ) is a non-negative θ -independent con-
stant. This equality cannot be achieved if BSN phase is
meaningful, because gμν (�(θ ))̇μ(θ )̇ν (θ ) should be a θ -
dependent variable once the trajectory in the parameter space
makes a closed loop to generate BSN phase.

The average power can be approximated as

P = εW + O(ε2) (38)

for small ε, where

W :=
∮

γ

Aμ(�)dμ (39)

is the adiabatic work defined as the line integration of the
thermodynamic vector potential

Aμ(�) := λ
∂

∂μ

〈
1

∣∣∣∣∂Ĥ

∂λ

∣∣∣∣pss(�)

〉
(40)

along the trajectory γ of parameter control [51]. Note that
Aμ(�) corresponds to the BSN vector in adiabatic pumping
processes [15,16].

By using the equality (36), the effective efficiency ξ (14) is
written as

ξ = 1 − ε
A1

W + O(ε2). (41)

Using Eq. (36), the relation (41) can be rewritten as

1 − ξ � ε
L2

W = ε2 L2

P
, (42)

where we have used Eq. (15) for the final expression. This
relation tells us that the decrement of the effective efficiency is
bounded by the thermodynamic length L and W or the power
P, which becomes smaller if W or P is larger. If we regard ε

as a control parameter, and thus P as an independent variable
from W , one obtains the trade-off relation between the power
and effective efficiency

P �
(W
L

)2

(1 − ξ ) (43)

in the limit ξ → 1 which is equivalent to ε → 0. This bound
is identical to that for one reservoir [51]. The maximum slope
in Eq. (43) is determined by W/L, where W and L are the ge-
ometric quantities. To optimize the performance of the engine
we should choose smaller under the condition A1 → L2.

It is obvious that ξ in Eq. (41) becomes 1 and the power
P in Eq. (43) becomes zero in the adiabatic limit (ε → 0).
This corresponds to the Carnot efficiency in the conventional
thermodynamics. Note that the conventional efficiency η in-
troduced in Eq. (16) tends to zero in the quasistatic limit
(ε → 0) even if ξ reaches the maximum value 1 because we
need the house keeping heat, though we do not know how η

depends on ε in general.

III. APPLICATION TO SPIN-BOSON SYSTEM

In this section, we apply the general framework developed
in previous section to the spin-boson model in which a single
spin is coupled to two bosonic reservoirs (see Fig. 2 for a
schematic of our system). Under the Born-Markov approx-
imation, the system follows the master equation. Moreover,
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FIG. 2. A schematic of a two-level spin-boson model. We peri-
odically control the temperatures of the reservoirs T L, T R and the
parameter λ of the system Hamiltonian Ĥ (λ). Eλ(θ ) is the energy
difference between two states.

if we ignore the initial relaxation process, the off-diagonal
elements of the density matrix of the system is negligible.
Thus the system can be regarded as a classical one. Detailed
formulation of the spin-boson system as a quantum system is
given in Appendix C. In this section, we only consider the
classical limit of this system.

A. Two-level classical spin-boson model

The system contains one spin which has two states. The
system Hamiltonian is given as

Ĥ (λ(θ )) =
(

0 0
0 Eλ(θ )

)
, (44)

where Eλ(θ ) is the energy difference between two states
with the non-negative control parameter λ(θ ). The system
is coupled to two thermal reservoirs L and R characterized
by temperatures T L and T R, respectively. We control the set
of parameters �(θ ) = (λ(θ ), T L(θ ), T R(θ )) periodically with
the control speed ε. The transition matrix K̂ (�) of the master
equation (1) is given as

K̂ (�(θ )) =
(−k10(�(θ )) k01(�(θ ))

k10(�(θ )) −k01(�(θ ))

)

=
∑

α

(−nα (�(θ )) 1 + nα (�(θ ))
nα (�(θ )) −1 − nα (�(θ ))

)
, (45)

where

nα (�(θ )) = (
eβα (θ )Eλ(θ ) − 1

)−1
(46)

is the Bose distribution function in the reservoir α (= L, R).
The steady state of the master equation (1) is given as

|pss(�(θ ))〉 =
(

pss
0 (�(θ ))

pss
1 (�(θ ))

)

= 1

k01(�(θ )) + k10(�(θ ))

(
k01(�(θ ))
k10(�(θ ))

)
. (47)

In (λ, T,�) representation, |pss(�)〉 can be written as

pss
0 (�(θ )) = peq

0 (λ(θ ), β(θ )){
1 + keq

10(λ(θ ), β(θ ))
[
1 − cosh (�Eλ(θ ))

]}
,

(48)

pss
1 (�) = peq

0 (λ(θ ), β(θ )){
1 + keq

01(λ(θ ), β(θ ))
[

cosh (�Eλ(θ )) − 1
]}

, (49)

where

peq
0 (λ(θ ), β(θ )) : = 1

1 + e−β(θ )Eλ(θ )
, (50)

peq
1 (λ(θ ), β(θ )) : = e−β(θ )Eλ(θ )

1 + e−β(θ )Eλ(θ )
(51)

are the corresponding equilibrium states at β for the ground
state and excited state, respectively, (see Fig. 2) and

keq
10(λ(θ ), β(θ )) := (

eβ(θ )Eλ(θ ) − 1
)−1

, (52)

keq
01(λ(θ ), β(θ )) := eβ(θ )Eλ(θ )(eβ(θ )Eλ(θ ) − 1

)−1
(53)

are the transition rates at λ(θ ) and β(θ ). Then, the diagonal
elements of the matrix X̂ (�(θ )) in Eq. (12) are explicitly
given as

X00(�) = −T ln
{

1 + keq
10(λ, β )

[
1 − cosh (�Eλ)

]}
, (54)

X11(�) = −T ln
{

1 + keq
01(λ, β ))

[
cosh (�Eλ) − 1

]}
, (55)

where we have omitted writing θ dependence.

B. Numerical calculation

In this section, we calculate thermodynamic quantities dis-
cussed in Sec. II numerically. In this section, we control the
set of parameters �(θ ) = (λ(θ ), T L(θ ), T R(θ )) as

λ(θ ) = 1 + rλ cos[2πθ ], (56)

T L(θ )/E = cL + rL sin[2πθ ], (57)

T R(θ )/E = cR + rR sin[2π (θ + δ)], (58)

where δ is the phase difference between the temperatures in
left and right reservoirs. We take 0 � δ < 1/4 without loss
of generality. If we take δ �= 0, the temperature difference
between two reservoirs remains finite. We also note that δ = 0
corresponds to the single-reservoir case discussed in Ref. [51].

We plot the δ dependencies of the thermodynamic length
L, the adiabatic work W , the ratio W/L which plays an
important role for the performance of the engine, and the
effective efficiency ξ in Figs. 3, 4, 5 and 6, respectively. The
thermodynamic length L and the adiabatic work W monoton-
ically decrease with δ (see Figs. 3 and 4). Thus the geometric
quantities such as W and L are a little suppressed by the heat
current between two reservoirs. The ratio W/L takes a peak
at a relatively large δ (see Fig. 5). The effective efficiency ξ

increases with δ. This relation suggests that we can make a
high-performance engine if we ignore the house keeping heat
to maintain a nonequilibrium steady state.

We also plot the δ dependence of the conventional thermal
efficiency η in Fig. 7. Contrary to ξ , the thermal efficiency η

decreases with δ. This is because Qin contains the contribution
of the steady heat current to maintain the nonequilibrium
steady state, which increases with δ. This result is reaonable
because the efficiency is expected to be high in a quasistatic
operation near equilibrium. If the system is far from equilib-
rium with increasing δ, we need the extra effort known as
the house keeping heat to maintain a nonequilibrium steady
state.
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FIG. 3. Plots of the δ dependence of the thermodynamic
length L for ε = 0.01, cL = cR = 1.0, rλ = rL = rR =
0.1, 0.3, 0.5, 0.7, and 0.9 corresponding to circle, square,
diamond, up triangle, and down triangle, respectively.

IV. CONCLUSION

In this paper, we successfully extended the geometrical
thermodynamics formulated in Refs. [51,52] to a system
coupled to two slowly modulated reservoirs, i.e., the adia-
batic (Thouless) pumping system without average bias. In
the adiabatic regime, the extracted work can be written as
the line integral Eq. (39) of the thermodynamic vector po-
tential Eq. (40) along the path of the manipulation in the
parameter space. On the other hand, the lower bound of the
dissipated availability can be written as the thermodynamic
length (37) along the path. By using these results, we obtained
the geometrical trade-off relation (43) between the power and
effective efficiency in the adiabatic limit. We applied these
results to a two-level spin-boson system to obtain the explicit
values of the power and effective efficiency. In contrast to
Ref. [52], we have analyzed a pumping system with two
reservoirs of the same average temperature. Thanks to this
setup, the geometrical contribution plays the dominant role
in the thermodynamics of the heat engine.

Our future tasks are as follows. (i) To calculate the ther-
modynamic metric or vector potential, we need to know
the explicit form of the steady state of the master equation.

FIG. 4. Plots of the δ dependence of the adiabatic
work W for ε = 0.01, cL = cR = 1.0, rλ = rL = rR =
0.1, 0.3, 0.5, 0.7, and 0.9 corresponding to circle, square,
diamond, up triangle, and down triangle, respectively.

FIG. 5. Plots of the δ dependence of the ratio W/L for ε = 0.01,
cL = cR = 1.0, rλ = rL = rR = 0.1, 0.3, 0.5, 0.7, and 0.9 corre-
sponding to circle, square, diamond, up triangle, and down triangle,
respectively.

In other words, our method cannot be used to systems for
which a steady solution cannot be explicitly obtained. Be-
cause nonequilibrium steady solutions cannot be obtained in
most nonequilibrium systems, we need to extend our formu-
lation even if the steady solution cannot be obtained. (ii) The
relationship between the effective efficiency ξ and the con-
ventional thermal efficiency η := W/Qin is unclear in general
systems. Clarifying this relationship is our future work. (iii) In
order to optimize the heat engine, one should find a trajectory
that maximizes the ratio W/L which could not be determined
even in the spin-boson model in Sec. III. The configuration
of such an optimal trajectory is our future work. (iv) Because
the present method is restricted to the adiabatic case ε → 0, at
least, for the argument after Sec. II C, we will need to extend
the analysis to the nonadiabatic regime for finite ε. Reference
[55] obtained the nonadiabatic solution of a classical master
equation and geometrical representation of the nonadiabatic
current in two level system. We expect to apply these methods
to investigate the nonadiabatic effect in heat engines. (v) Be-
cause we only focus on a classical system, we will have to try
to extend our analysis to quantum systems in which quantum
coherence plays an important role. Reference [51] showed that
quantum coherence reduces the performance of slowly driven

FIG. 6. Plots of the δ dependence of the effective efficiency ξ for
ε = 0.01, cL = cR = 1.0, rλ = rL = rR = 0.1, 0.3 0.5, 0.7, and 0.9
corresponding to circle, square, diamond, up triangle, and down
triangle, respectively.
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FIG. 7. Plots of the δ dependence of the thermal
efficiency η for ε = 0.01, cL = cR = 1.0, rλ = rL = rR =
0.1, 0.3, 0.5, 0.7, and 0.9 corresponding to circle, square,
diamond, up triangle, and down triangle, respectively.

heat engines. On the other hand, it was shown that coherence
can enhance the performance of heat engines in Ref. [56].
Therefore we will have to analyze full quantum systems to
clarify whether the coherence can improve the efficiency in
the heat engine undergoing an adiabatic pumping process.
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APPENDIX A: SLOW-DRIVING PERTURBATION

In this Appendix, we explain the outline of the perturbation
theory of the master equation with slowly modulated parame-
ters [57]. First, we expand the solution of Eq. (1) in terms of
ε as

|p(θ )〉 =
∞∑

n=0

εn|p(n)(�(θ ))〉. (A1)

Since the normalization condition 〈1|p(θ )〉 = 1 holds for any
ε, |p(n)(�(θ ))〉 satisfies

〈1|p(0)(�(θ ))〉 = 1, (A2)

〈1|p(n)(�(θ ))〉 = 0 (n � 1). (A3)

Substituting these into Eq. (1), we obtain

K̂ (�(θ ))|p(0)(�(θ ))〉 = 0, (A4)

K̂ (�(θ ))|p(n)(�(θ ))〉 = d

dθ
|p(n−1)(�(θ ))〉 (n � 1). (A5)

Equation (A4) means that |p0(�(θ ))〉 is the instantaneous
steady state of K̂ (�(θ )):

|p(0)(�(θ ))〉 = |pss(�(θ ))〉. (A6)

By using the pseudoinverse K̂+(�(θ )) of K̂ (�(θ )), Eq. (A5)
can be written as

|p(n)(�(θ ))〉 = K̂+(�(θ ))
d

dθ
|p(n−1)(�(θ ))〉

=
(

K̂+(�(θ ))
d

dθ

)n

|pss(�(θ ))〉. (A7)

Ignoring terms of O(ε2) and higher in Eq. (A1), we obtain
Eq. (24) of the main text.

APPENDIX B: PSEUDOINVERSE OF THE TRANSITION
MATRIX

In this Appendix, we introduce the pseudo-inverse K̂+(�)
of K̂ (�), which satisfies following conditions [54,58]

K̂+(�)K̂ (�) = 1 − |pss(�)〉〈1|, (B1)

K̂ (�)K̂+(�) = 1 − |pss(�)〉〈1|, (B2)

K̂+(�)|pss(�)〉 = 0, (B3)

〈1|K̂+(�) = 0. (B4)

In particular, if K̂ (�) is diagonalizable, K̂ (�) =∑
m φm(�)|rm(�)〉〈lm(�)|, K̂+(�) can be written as

K̂+(�) =
∑
m �=0

φm(�)−1|rm(�)〉〈lm(�)|, (B5)

where φm(�) is the eigenvalue and |rm(�)〉, 〈lm(�)| are the
corresponding right and left eigenvectors of K̂ (�). Here we
note that φ0(�) = 0, then |r0(�)〉 = |pss(�)〉 and 〈l0(�)| =
〈1|. Here we assume that these eigenstates do not degenerate.

As we mentioned in Sec. II C, the pseudo-inverse K̂+(�)
can be also written as Eq. (26). We can easily check that the
form of the pseudo-inverse in Eq. (26) also satisfies the above
conditions (B1)–(B4).

APPENDIX C: SPIN-BOSON MODEL

In this Appendix, we summarize the detailed setup of the
spin-boson model used in Sec. III.

In the spin-boson model, the total Hamiltonian is given by
Htot = HS + ∑

ν=L,R[Hα + HSα]. Each term is given by

HS = h̄ω0

2
σz, (C1)

Hα =
∑

k

h̄ωk,νb†
k,α

bk,α, (C2)

HSα = h̄σx ⊗
∑

k

gk,α (bk,α + b†
k,α

), (C3)

where h̄ω0 is the energy gap between the two levels in the
target system. σz and σx are Pauli operators, where ωk,ν is
the angular frequency at wave number k for the αth reservoir
and bk,α (b†

k,α
) is the boson annihilation (creation) operator

for the αth reservoir, respectively. Here, gk,α is the coupling
constant, which is related to the spectral density function
Dα (ω) := 2π

∑
k g2

k,αδ(ω − ωk,α ). For later analysis, we use
the line width �α = Dα (ω) which is independent of ω.

We assume that the bosonic reservoirs are always at equi-
librium. Thus the density matrix of the νth reservoir is
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expressed as ρ
eq
α (βα ) = e−βαHα /Zα at the inverse temperature

βα , where Zα = Trα[e−βαHα ].
The total density matrix ρtot (t ) follows von-Neumann

equation. Under Born-Markov approximation, the reduced
dynamics of the target system ρ(t ) := TrL,R[ρtot (t )] can be
describe by the Lindblad master equation [59]. Moreover, the
diagonal part of ρ(t ) is described by the master equation:

d

dt

(
p0(t )
p1(t )

)
=

∑
α=L,R

(−�αnα �α (1 + nα )
�αnα −�α (1 + nα )

)(
p0(t )
p1(t )

)
,

(C4)

where nα is the Bose distribution function in reservoir α given
by

nα := 1

eβα h̄ω0 − 1
. (C5)

By using θ := t/τp and ε := 1/τp� with � := ∑
α �α/2, we

obtain the normalized master equation with (45).
In this model, we control βL, βR, and ω0. In Sec. III, we

have used the notation E := ω̄0 := ∫ 1
0 dθω0(θ ) and λ(θ ) :=

ω(θ )/ω̄0.
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