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We perform digital quantum simulation, using a classical simulator, to study screening and confinement
in a gauge theory with a topological term, focusing on (1þ 1)-dimensional quantum electrodynamics
(Schwinger model) with a theta term. We compute the ground state energy in the presence of probe charges
to estimate the potential between them, via adiabatic state preparation. We compare our simulation results
and analytical predictions for a finite volume, finding good agreements. In particular our result in the
massive case shows a linear behavior for noninteger charges and a nonlinear behavior for integer charges,
consistently with the expected confinement (screening) behavior for noninteger (integer) charges.
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I. INTRODUCTION

A historical milestone of the classical lattice simulation
of quantum chromodynamics (QCD) was the derivation
of the confinement potential from the first principles [1–3].
The potential energy VðRÞ between a quark and an
antiquark was obtained, via the relation hWðR; TÞi ∼
e−VðRÞT for large T, by calculating the expectation value
of the rectangular Wilson loop WðR; TÞ with spatial
distance R and temporal separation T. The resulting
potential VðRÞ can be fitted well [4] by a function of
the form σR − α=R with σ and α constants [5]. The linear
growth of VðRÞ for large R is evidence, or the definition, of
quark confinement, whose strength is quantified by the
string tension σ.

The conventional lattice QCD is based on the Lagrangian
formalism and the path integral is usually computed by
the Markov chain Monte Carlo algorithm, where the
Euclidean action S defines the probability e−S assigned
to a field configuration on discretized spacetime. While
very successful for real S, the conventional lattice simu-
lation becomes practically intractable when S is complex
and the integrand is highly oscillatory. This is called the
sign problem and arises, for example, when we turn on the
topological (theta) term in the action, introduce quark
chemical potentials, or consider the real-time dynamics
of QCD. These situations occur in many important subjects
such as the strong CP problem, neutron stars, the early
universe and collider experiments. Various alternative
methods have been proposed within the path integral
formalism. See, for example, [6].
In digital quantum simulation, where the Hamiltonian

formalism is favored and quantum operations over the
exponentially large Hilbert space are expected to be
efficiently processed, the sign problem tied to the path
integral is absent from the beginning. We still need to
formulate the theory on a finite lattice and regularize the
infinite-dimensional Hilbert space. While the small number
of qubits and high error rates severely limit the capability of
current quantum computers, it is hoped that quantum
hardware with sufficient (supreme) abilities will be built
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in the near (far) future to allow digital simulation of
quantum field theories. Before such machines are realized,
it is important to develop simulation methods and demon-
strate their usefulness. Even now we can use a simulator on
a classical computer to perform quantum simulations with a
moderate number of qubits (up to 20 or 30 qubits depend-
ing on tasks) and without quantum noise.
In this work we perform digital quantum simulation on a

classical simulator to study screening and confinement in a
gauge theory with a topological term. We focus on (1þ 1)-
dimensional quantum electrodynamics (Schwinger model
[7]), whose Lagrangian with a theta term [8] is given by1

Lcon ¼ −
1

4
FμνFμν þ gθ

4π
ϵμνFμν

þ iψ̄γμð∂μ þ igAμÞψ −mψ̄ψ : ð1Þ

Here ψ is the Dirac fermion, g the gauge coupling, and m
the fermion mass. The model provides a good testing
ground for quantum algorithms as it is one of the simplest
nontrivial gauge theories that share some features with
QCD. With two probe particles of charges�q, the model is
known to exhibit qualitatively different behaviors depend-
ing on the values of q and m (for θ ¼ 0): with m ¼ 0 the
two probe charges are screened for any value of q [9], while
withm ≠ 0 they are confined for noninteger q and screened
for integer q [8].
To study the screening versus confinement problem, we

compute the ground state energy in the presence of probe
charges and estimate the potential between them. We
put the Schwinger model on a lattice and introduce two
probe charges �q using a position-dependent theta angle.
Then we adiabatically prepare the ground state of the
Hamiltonian and compute its energy as a function of a
distance between the probes.2 This is an analog of the
quark-antiquark potential while our computational
scheme should be contrasted with the one in the conven-
tional lattice QCD. Our simulation results in the massless
case agree well with the analytic results for a finite volume
in the continuum limit. In the massive case, our result
shows a linear behavior for noninteger q just like the
confining potential in the infinite-volume limit does. The
present work envisions what the investigation will look
like when one studies screening and confinement on a real
quantum computer in the future. We believe that our work
will serve as a guide for the simulation of many-body
physics in the noisy intermediate-scale quantum (NISQ)

[10]/early fault-tolerant era, when the number of qubits
will be limited.3

II. QUBIT DESCRIPTION OF THE SCHWINGER
MODEL

We begin by rewriting the Hamiltonian of the Schwinger
model in terms of spin operators acting on qubits, following
[11,71,72] but with a theta angle [16]. The Hamiltonian of
the continuum theory in the gauge A0 ¼ 0 is4Z

dx

�
1

2

�
Π −

gθ
2π

�
2

− iψ̄γ1ð∂1 þ igA1Þψ þmψ̄ψ

�
;

where Π ¼ ∂0A1 þ gθ=2π is the canonical momentum
conjugate to A1 and physical states are subject to the
Gauss law ∂1Πþ gψ†ψ ¼ 0.
We regularize the theory by putting it on a one-

dimensional spatial lattice with N sites, lattice spacing a
and open boundaries. We replace the Dirac fermion ψðxÞ ¼
ðψuðxÞ;ψdðxÞÞT by a pair of neighboring staggered fer-
mions [73] according to

χnffiffiffi
a

p ↔

�
ψuðxÞ n∶ even;

ψdðxÞ n∶ odd;
ð2Þ

where n ¼ 0;…; N − 1 label the lattice sites x ¼ na. The
lattice counterparts of the gauge field operators are Un

(↔ e−iagA
1ðxÞ) and Ln (↔ −ΠðxÞ=g) such that U†

n ¼ U−1
n ,

L†
n ¼ Ln, defined on the link between the nth and (nþ 1)th

sites. These operators satisfy the canonical commutation
relations

fχ†n;χmg¼δmn; fχn;χmg¼0; ½Un;Lm�¼δmnUn:

Let us introduce the probe charges þq and −q on the
l̂0th and ðl̂0 þ l̂Þth sites, respectively. We realize this by
making the theta angle position dependent as

ϑn ¼
�
2πqþ θ0; l̂0 ≤ n < l̂0 þ l̂;

θ0; otherwise:
ð3Þ

We place the probe charges equally separated from the
center of the lattice by setting l̂0 ¼ ðN − 1 − l̂Þ=2. The
lattice Hamiltonian with the probe charges is

1Our convention: ημν ¼ diagð1;−1Þ; ϵ01 ¼ 1, Fμν ¼ ∂μAν−∂νAμ, γ0 ¼ σz; γ1 ¼ iσy; γ5 ¼ σx, ψ̄ ¼ ψ†γ0.
2One can use an adiabatic process to prepare the ground state

accurately for finite-gap systems by taking a sufficiently large
adiabatic time. In the fault-tolerant era it is anticipated to be more
useful than variational methods.

3Previous works that study digital quantum simulation of the
Schwinger model include [11–19]. See also [20,21] for analog
simulations of the Schwinger model, [22–54] for digital simu-
lations of other quantum field theories, and [55–67] for their
analog simulations. Algorithms specific to the simulation of
gauge theories were developed in [48,68–70].

4In contrast to [16], we do not absorb the theta angle by a chiral
rotation of the mass term.
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H ¼ J
XN−2

n¼0

�
Ln þ

ϑn
2π

�
2

− iw
XN−2

n¼0

ðχ†nUnχnþ1 − χ†nþ1U
†
nχnÞ

þm
XN−1

n¼0

ð−1Þnχ†nχn; ð4Þ

where w ¼ 1=ð2aÞ and J ¼ g2a=2. The physical states
must satisfy the lattice version of the Gauss law

Ln − Ln−1 ¼ χ†nχn −
1 − ð−1Þn

2
: ð5Þ

We solve this with the boundary condition L−1 ¼ 0 and fix
the gauge Un ¼ 1 to eliminate ðLn;UnÞ.
To rewrite the theory in terms of a spin system, we apply

the Jordan-Wigner transformation [74]

χn ¼
Xn − iYn

2

Yn−1
i¼0

ð−iZiÞ; ð6Þ

where ðXn; Yn; ZnÞ denote the Pauli matrices (σx, σy, σz)
acting on the qubit on site n, then the lattice Hamiltonian
becomes [73]

H ¼ J
XN−2

n¼0

�Xn
i¼0

Zi þ ð−1Þi
2

þ ϑn
2π

�
2

þ w
2

XN−2

n¼0

½XnXnþ1 þ YnYnþ1� þ
m
2

XN−1

n¼0

ð−1ÞnZn; ð7Þ

up to an irrelevant constant. In this form, it is manifest that
we can directly apply quantum algorithms in qubit form to
the lattice Schwinger model.

III. SIMULATION PROTOCOL

Our main target is the energy

Eðθ0; q;lÞ ≔ hGSjHjGSi ¼ hHi ð8Þ

of the ground state jGSi in the presence of probes, where
the parameters ðθ0; q;l ¼ l̂aÞ enter the setup as described
above. We will refer to Vfðθ0; q;lÞ ≔ Eðθ0; q;lÞ −
Eð0; 0; 0Þ as the potential.5 We use the adiabatic state
preparation and the Suzuki-Trotter decomposition to obtain
an approximation to the ground state jGSi.
Set H0 ≔ Hjw¼0;θ0¼0;q¼0;m¼m0

for some m0 > 0. Its
ground state is jGS0i ¼ j1010…i with Zj0i ¼ þj0i and
Zj1i ¼ −j1i, and can be constructed easily. Fix T > 0
and choose a one-parameter family of slowly varying
Hamiltonians HAðtÞð0 ≤ t ≤ TÞ such that

HAð0Þ ¼ H0; HAðTÞ ¼ H: ð9Þ

By the adiabatic theorem, if HAðtÞ has a unique gapped
ground state for any t, then the exact ground state jGSi is
given by

jGSi ¼ lim
T→∞

T exp

�
−i

Z
T

0

dtHAðtÞ
�
jGS0i; ð10Þ

where T denotes time ordering. In practice, we take T to be
sufficiently large but finite, which induces a systematic
error in the preparation of the ground state (see, e.g.,
[75,76] and Appendix A).
To apply the Suzuki-Trotter decomposition, we decom-

pose the Hamiltonian as

H ¼ Hð0Þ
XY þHð1Þ

XY þHZ þ C: ð11Þ

Each term is given as

Hð0Þ
XY ¼ w

2

XN−3
2

m¼0

ðX2mX2mþ1 þ Y2mY2mþ1Þ; Hð1Þ
XY ¼ w

2

XN−1
2

m¼1

ðX2m−1X2m þ Y2m−1Y2mÞ;

HZ ¼ J
2

XN−3

n¼0

XN−2

m¼nþ1

ðN −m − 1ÞZnZm þ J
2

XN−2

n¼0

1þ ð−1Þn
2

Xn
i¼0

Zi þ qJ
Xl̂0þl̂−1

m¼0

ðl̂0 þ l̂ −mÞZm

− qJ
Xl̂0−1
m¼0

ðl̂0 −mÞZm þ θ0
2π

J
XN−2

m¼0

ðN −m − 1ÞZm þm
2

XN−1

n¼0

ð−1ÞnZn;

C ¼ qJ
2

�
l̂þ ð−1Þl̂0 1 − ð−1Þl̂

2

�
þ q

�
qþ θ0

π

�
Jl̂þ θ0J

4π

�
N − 1þ 1þ ð−1ÞN

2

�
þ
�
θ0
2π

�
2

JðN − 1Þ ð12Þ

5The l-dependent part is free from UV divergence and therefore the potential has a well-defined continuum limit.
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for odd N, on which we focus in this work.6 Here C is a
classical number where we have kept only the terms that
depend on θ0; q; l̂. All the terms commute within each of

Hð0Þ
XY;H

ð1Þ
XY , and HZ.

Let Hð0Þ
XY;s; H

ð1Þ
XY;s, and HZ;s denote the modifications of

the corresponding operators in (12) by the replacements

w → w
sδt
T

; θ0 → θ0
sδt
T

; q → q
sδt
T

;

m → m0

�
1 −

sδt
T

�
þm

sδt
T

: ð13Þ

We approximate (10) by the second-order Suzuki-Trotter
decomposition as

jGSAi ≔
YM
s¼1

ðe−iHð0Þ
XY;s

δt
2e−iH

ð1Þ
XY;s

δt
2e−iHZ;sδt

× e−iH
ð1Þ
XY;s

δt
2e−iH

ð0Þ
XY;s

δt
2 ÞjGS0i; ð14Þ

where M ≔ T=δt and the product is ordered from right to
left with increasing s. For fixed T, this approximation
results in the error ofOðδt2Þ for the whole operator [77,78].
Then we compute hGSAjHjGSAi, which approximates the
ground state energy. This involves separate measurements
of the mutually noncommuting terms in the Hamiltonian

(11):Hð0Þ
XY;H

ð1Þ
XY andHZ. We denote the number of times the

circuit for each term is executed by nshots, which determines
the statistical uncertainties in the simulation. Details on the
above protocol are explained in Appendix B.
Let us comment on a property of the state jGSAi. The

time evolution in (14) preserves the U(1) symmetry
generated by Q ≔

P
N−1
n¼0 Zn and the state jGSAi approx-

imates the ground state within the Q ¼ −1 sector. In
principle, there may be states with lower energies with
different charges. See Appendixes A and C for details.

IV. SIMULATION RESULTS

We present the results of our quantum simulations on a
classical simulator (QasmSimulator in IBM’s open source
SDK Qiskit). In this section we fix a ¼ 0.4g−1,
δt ¼ 0.3g−1, T ¼ 99g−1 and m0 ¼ 0.5g. Therefore the
physical volume L ¼ aðN − 1Þ is simply specified by N.
In Appendix A we show that the systematic errors are
comparable to the statistical uncertainties in the whole
parameter region we study while the systematic errors
become larger when we expect a larger effect of a phase
transition,7 i.e., for larger θ0; m; q, and l. Analytical results

in a finite volume compared here are derived in
Appendix D 2.
We begin with the θ0 ¼ 0 case. In Fig. 1, we show the

simulation results for the potential Vf with q ¼ 1 as a
representative of the integer q case where the theory is
known to exhibit a screening behavior. For m ¼ 0 (left
panel), we compare the simulation results with the potential
in the infinite volume [81]

Vð0ÞðlÞ ¼
ffiffiffi
π

p
q2g
2

�
1 − e−

glffiffi
π

p
�
; ð15Þ

and the one in a finite volume

Vð0Þ
f ðlÞ ¼

ffiffiffi
π

p
q2g
2

ð1 − e−
glffiffi
π

p Þð1þ e−
gðL−lÞffiffi

π
p Þ

1þ e−
gLffiffi
π

p
: ð16Þ

For m=g ¼ 0.2 (right panel), the curves represent

Vð0Þ
f þ Vð1Þ

f , where Vð1Þ
f is the OðmÞ mass perturbation

given in (D10). The simulation results agree rather well
with the analytical predictions with the same volumes. We
cannot see a clear plateau although the results for a larger
volume (N ¼ 21) have a more slowly varying region in
which the values of the potential are close to that of the
plateau for a very large volume (N ¼ 101; Lg ¼ 40).8 The
value of the plateau for a large volume depends on m and
this is a result of nontrivial dynamics. The absence of a
clear plateau in the simulation is reasonable because the
simulation setup does not have a parameter region that
satisfies the condition 1 ≪ gl ≪ gL necessary to have a
plateau. The small discrepancy between the simulation data
and the corresponding curves indicates a correction due to
finite a and/or systematic errors.
In the left panel of Fig. 2, we depict the simulation results

for q ¼ 0.25 as a representative of noninteger charge where
the confinement (screening) behavior is expected for
massive (massless) case. We first observe a qualitative
difference between the simulation data for the massive and
massless cases: the m=g ¼ 0.2 case exhibits an almost
linear behavior in the region gl≳ 3while the massless case
does not. This is in contrast to the integer q case
demonstrated in Fig. 1, where the screening behavior is
expected for any m. Thus our simulation results are
consistent with the above expectations although a larger
volume is needed for unambiguous demonstrations. More
quantitatively, we compare the simulation results with the
analytical results on a finite volume. For m ¼ 0 the
simulation results agree well with the analytical prediction

Vð0Þ
f ðlÞ as can be seen in the left panel of Fig. 1. The data

for m=g ¼ 0.2 has moderate discrepancies from the OðmÞ6In these expressions, only Xn, Yn, Zn are quantum operators
and all the other quantities are c-numbers.

7The continuum Schwinger model in the infinite volume
undergoes a first-order phase transition at θ0 ¼ π and form larger
than a critical mass mc [79], with value mc=g ¼ 0.3335ð2Þ [80].

8With Lg ¼ 12 (N ¼ 31), the function Vð0Þ
f þ Vð1Þ

f exhibits a
plateau of the height within 3.5 percent of the height for Lg ¼ 40
(N ¼ 101).
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analytical prediction Vð0Þ
f ðlÞ þ Vð1Þ

f ðlÞ. In Appendix E, we
study the mass dependence of the potential and argue that
their origin is likely due to the inadequacy of the OðmÞ
approximation.
In the right panel of Fig. 2, we plot of the string tension a

finite-L (σf) for various values of q, where σf is defined as
the slope given by a linear fit for the energy EðlÞ as a
function of l. Specifically the linear fit has been done by
least squares weighted by the statistical uncertainties in the
region 2.4 ≤ gl ≤ 4.8 (l̂ ¼ 6, 8, 10, 12).9 We first observe
that our simulation data clearly deviate from the string

tension σCoulomb ¼ q2g2=2 of the classical Coulomb poten-
tial (corresponding to infinite mass), implying that our
simulation result exhibits confinement by nontrivial
dynamics. More quantitatively, we again compare the result
with the OðmÞ analytical results both on the infinite and
finite volumes. The string tension in the infinite volume is

σð1ÞðqÞ ¼ eγmg

2π3=2
½1 − cosð2πqÞ�; ð17Þ

with γ being the Euler constant [9]. We depict its finite-
volume counterpart as the band region surrounded by the

maximum and minimum of the derivative ðd=dlÞðVð0Þ
f þ

Vð1Þ
f Þ=g2 in the range 2.4 ≤ gl ≤ 4.8 used for the linear

FIG. 2. Left: results for VfðlÞ with nshots ¼ 4 × 105. The error bars represent the statistical uncertainties. The solid (cyan) and dotted

(magenta) curves represent Vð0Þ
f and Vð0Þ

f þ Vð1Þ
f , respectively. Right: the finite-volume analog σf of the string tension for m=g ¼ 0.2.

The error bars represent the standard uncertainties from the fit. The dashed (green) and dotted (magenta) curves represent σCoulomb=g2

and σð1Þ=g2, respectively. The band region represents the finite-volume counterpart of σð1Þ=g2.

FIG. 1. Results for VfðlÞ with nshots ¼ 105. The statistical uncertainties are smaller than the markers. The curves (in colors similar to

and lighter than the data markers) represent Vð0Þ
f ðlÞ on the left and Vð0Þ

f ðlÞ þ Vð1Þ
f ðlÞ on the right with the corresponding volumes. The

dashed curve (purple) on the right panel depicts Vð0Þ
f ðlÞ þ Vð1Þ

f ðlÞ for N ¼ 101, Lg ¼ 40.

9To estimate the true string tension, we should take a larger
volume and choose a fit range away from gl ¼ 0 and gL.
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fit.10 While the simulation result is roughly consistent with
both, it is somewhat closer to the finite-volume result
for q ≳ 0.4.
Let us turn to nonzero θ0, which is inaccessible by the

conventional Monte Carlo approach unless θ0 is small. In
Fig. 3, we plot the simulation results for ½Eðθ0; q;lÞ −
Eð0; 0; 0Þ�=g2L against θ0 for various values of l. One can
read off the l-dependence of the potential from the
simulation data at fixed θ0. The simulation result for q ¼
0 agrees well with the OðmÞ analytical result on a finite
volume given explicitly by (D5) and (D8). For θ0 close to
zero, the analytic formula σð1Þðθ0=2πÞ viewed as the energy
density is also roughly consistent with the simulation result.
Note that the simulation results do not show the

periodicity θ0 ∼ θ0 þ 2π. This is expected for the open
boundary condition because the theory with the theta angle
θ0 þ 2πkðk ∈ ZÞ is equivalent to the one with θ0 in the
presence of extra probe charges �k on the boundaries.
Indeed in Fig. 3, the blue squares in the range −1 ≤
θ0=2π ≤ 0 coincide with the red circles in the range 0 ≤
θ0=2π ≤ 1 up to a horizontal shift.

V. DISCUSSION

We used the classical simulator to test and demonstrate
our protocol. Let us estimate the resources needed to
implement the algorithm on real quantum devices expected
to be available in the near and far futures. (For more details,
see Appendix B 3.) In the near future, only NISQ devices
will be available. On such devices, single-qubit gates will
be implemented more accurately and with higher speed

than two-qubit gates, which will be the dominant cause of
the quantum error. In our algorithm the only two-qubit
gates are the CNOT gates, and we needOðMN2Þ of them to
perform the discrete time evolution of M Suzuki-Trotter
steps in (14) for N lattice sites. Thus our simulation with
N ¼ 15 and M ¼ 330 would require roughly a hundred
thousand CNOT gates. This makes the NISQ implementa-
tion of our simulation implausible.
In the far future, quantum devices with many qubits and

less noise will be able to implement quantum error
correction. In most approaches to fault-tolerance [82],
the T-gate will consume the most computational cost
among the Cliffordþ T universal gate set. Our algorithm
demands OðN2 logðN2=δÞÞ T-gates to implement one
Suzuki-Trotter step within an accuracy δ.
We have introduced two probe charges using a position-

dependent theta angle. In an Abelian gauge theory, this
method is equivalent to the one based on a change of the
Gauss law [83]. In non-Abelian gauge theories, an
approach similar to ours is to introduce probes as heavy
fermions and measure the energy [84,85]. In higher
dimensions the quark-antiquark potential can also be
estimated by Wilson loops along spatial directions as in
the conventional lattice QCD. The approach based on the
inclusion of probes as part of the Hamiltonian is in contrast
with the conventional method based on Wilson loops,
where one suffers from a large signal-to-noise ratio in
extracting the string tension, although several smearing
techniques have been applied to reduce statistical uncer-
tainties. It would be important to implement this approach
in quantum simulation.
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APPENDIX A: SYSTEMATIC ERRORS

The expectation value of an operatorO in the true ground
state jGSi is defined as

hOi ¼ hGSjOjGSi: ðA1Þ

FIG. 3. Results for ½Eðθ0; q; lÞ − Eð0; 0; 0Þ�=g2L with N ¼
15; m=g ¼ 0.2; ag ¼ 0.4 and nshots ¼ 105. The statistical uncer-
tainties are much smaller than the markers. The solid (black) and
dashed (magenta) curves represent the results of the mass
perturbation theory with q ¼ 0 and σð1Þðθ0=2πÞ=g2, respectively.

10In Appendix D 3 we show that N ¼ 35 is enough to have
good agreement between ðd=dlÞðVð0Þ

f þ Vð1Þ
f Þ=g2 and σð1Þ for

m=g ¼ 0.2 and ga ¼ 0.4.
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In our simulation we calculate

hOiA ¼ hGSAjOjGSAi; ðA2Þ

where jGSAi is the approximate ground state defined in
(14). Here we study the systematic error

δsyshOi ≔ hOi − hOiA; ðA3Þ

where hOi and hOiA are calculated by exact diagonaliza-
tion and quantum simulation without statistical uncertain-
ties,11 respectively. For exact diagonalization we use the
Python package QuSpin. For quantum simulation without
statistical uncertainties we use the “snapshot” functionality
of Qiskit.
Besides the physical parameters of the lattice Schwinger

model, adiabatic preparation requires three extra parame-
ters: the initial mass m0, the Trotter time step δt, and the
adiabatic time T. As in Section IV we fix them to
δt ¼ 0.3g−1, T ¼ 99g−1 and take m0=g ≈ 0.5.12

From the numerical results shown in Table I for m ¼ 0,
we see that the systematic errors are smaller than the
statistical uncertainties for nshots ¼ 105 estimated by (B12).
Table II shows numerical results for the particular value
m=g ¼ 0.2 of mass. Systematic errors are larger than
statistical uncertainties, though they are still of the same
order of magnitude. We also see the tendency that the
systematic error gets larger for larger gl.13

There is a known bound on the adiabatic error (see, for
example, [75,76,86]). Let us define adiabatic error ϵ as

ϵ ≔ kð1 − jGSihGSjÞjfGSAik; ðA4Þ

where jfGSAi is the state adiabatically prepared in finite
time T and continuously, rather than in infinite time as in
(10) or discretely as in (14). If the mixing between the
ground state and the first excited state is the dominant
source of the adiabatic error ϵ, then it can be bounded as

ϵ≲max
t

kdHA=dtk
Δ2

; ðA5Þ

TABLE I. Numerical results for EðlÞ=g obtained by exact diagonalization and quantum simulation without statistical uncertainties for
N ¼ 15, ag ¼ 0.4,m ¼ 0, q ¼ 0.5, and θ0 ¼ 0. Systematic errors δsysE ¼ δsyshHi and statistical uncertainties δstatE for nshots ¼ 105 are
also shown.

gl Exact diagonalization Quantum simulation Systematic error Statistical uncertainty

0.0 −16.2954 −16.2897 5.7E-003 (0.03%) 1.00E-002 (0.06%)
0.8 −16.2128 −16.2072 5.6E-003 (0.03%) 1.00E-002 (0.06%)
1.6 −16.1506 −16.1448 5.8E-003 (0.04%) 0.99E-002 (0.06%)
2.4 −16.1057 −16.0986 7.1E-003 (0.04%) 0.99E-002 (0.06%)
3.2 −16.0590 −16.0533 5.8E-003 (0.04%) 0.98E-002 (0.06%)
4.0 −16.0255 −16.0198 5.8E-003 (0.04%) 0.97E-002 (0.06%)
4.8 −15.9692 −15.9619 7.3E-003 (0.05%) 0.97E-002 (0.06%)
5.6 −15.9248 −15.9172 7.6E-003 (0.05%) 0.97E-002 (0.06%)

TABLE II. Numerical results for EðlÞ=g obtained for N ¼ 15, ag ¼ 0.4,m=g ¼ 0.2, q ¼ 0.5, and θ0 ¼ 0. Statistical uncertainties for
nshots ¼ 105 are also shown.

gl Exact diagonalization Quantum simulation Systematic error Statistical uncertainty

0.0 −16.6458 −16.6347 1.10E-002 (0.07%) 1.05E-002 (0.06%)
0.8 −16.5562 −16.5757 1.96E-002 (0.12%) 1.04E-002 (0.06%)
1.6 −16.4770 −16.4710 0.60E-002 (0.04%) 1.04E-002 (0.06%)
2.4 −16.4052 −16.4080 0.28E-002 (0.02%) 1.03E-002 (0.06%)
3.2 −16.3327 −16.3030 2.97E-002 (0.18%) 1.00E-002 (0.06%)
4.0 −16.2669 −16.2532 1.37E-002 (0.08%) 1.00E-002 (0.06%)
4.8 −16.1905 −16.1692 2.13E-002 (0.13%) 0.98E-002 (0.06%)
5.6 −16.1228 −16.0990 2.38E-002 (0.15%) 0.99E-002 (0.06%)

11This enables us to obtain the actual values of systematic
errors rather than estimate systematic uncertainties.

12We fixm0=g ¼ 0.5 for all the simulations in this paper except
for the right panel of Fig. 5 (m0=g ¼ 0.55) and the left panel of
Fig. 6 (m0=g ¼ 0.7).

13A more detailed analysis shows that the (nonmonotonic)
dependence of the systematic error on gl cannot be understood
purely in terms of the adiabatic error, and that we need to take into
account the Trotter error.
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where Δ denotes the energy gap between the ground state
and the first excited state. We note that dHA=dt ∝ 1=T
when HA depends on t only through t=T. Generically, we
expect that larger values of (w, J, m, q, θ0, l) lead to a
larger value of kdHA=dtk, and that a larger value of L and a
smaller value of a lead to a smaller value of Δ.
The density plots in Fig. 4 show the energy difference

between the ground state and the first excited state. The
energies are taken from the spectrum of the adiabatic
Hamiltonian HAðtÞ, which depends on t through the
following t-dependent parameters (0 ≤ t ≤ T): fermion
mass m0ð1 − t=TÞ þmt=T, inverse lattice spacing wt=T,
and probe charge qt=T. Each horizontal path with increas-
ing t corresponds to an adiabatic variation of the parameters
(13) with the probe charge q of the target Hamiltonian
fixed. For the adiabatic process along the horizontal path
passing the region with small excitation energy (blue), a
longer adiabatic time is likely to be required in order to
prepare the corresponding target state with a given pre-
cision. In general, however, higher excited states, whose

effects cannot be read off from Fig. 4, also contribute to the
error in the adiabatic approximation and correct the
inequality (A5). The region with small excitation energy
appears for a larger value of q and the region tends to
spread as l=a increases. This suggests that larger l requires
longer adiabatic time T.
Indeed in the left panel of Fig. 5, we find (for a fixed

massm=g ¼ 0.25) that a larger value of l=að≳14Þ requires
a longer adiabatic time to achieve desired precision. The
quantum simulation results obtained by adiabatic prepara-
tion approach the exact diagonalization results for large T,
linearly in 1=T. This is likely due to a small energy-gap we
expect for moderately large gl.
In the right panel of Fig. 5, we depict the energy density

as a function of θ0. For δt ¼ 0.3g−1 and 0.2g−1 the quantum
simulation results are clearly not invariant under θ0 → −θ0,
while the data obtained for δt ¼ 0.1g−1 are almost invariant
and reproduce the exact diagonalization results. Exact
diagonalization results shown there are for states within
the same U(1) charge (Q ¼ P

n Zn ¼ −1) sector as the

FIG. 4. Density plots of the eigenenergy of HAðtÞ=g for the first excited state relative to the ground state (both states in the Q ¼ −1
sector) computed for N ¼ 15, m0=g ¼ 0.5, m=g ¼ 0.15, ag ¼ 0.4, θ0 ¼ 0, and q ¼ 1. Each panel shows the result for the indicated
value of l.
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FIG. 5. Left: dependence of the quantum simulation result for VfðlÞ on the adiabatic time T for N ¼ 21, m=g ¼ 0.25, q ¼ 1, θ0 ¼ 0,
and for the fixed value δt ¼ 0.3g−1. The dashed lines represent the results calculated by exact diagonalization. Right: dependence of the
quantum simulation result for Eðθ0Þ=g2L ¼ Eðθ0; q ¼ 0;l ¼ 0Þ=g2L on θ0 and δt for N ¼ 15, m=g ¼ 0.05, m0=g ¼ 0.55, T ¼ 99g−1

and for a small value a ¼ 0.1g−1. The exact diagonalization (QuSpin) result is represented by the solid curve.
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initial state j1010…i for adiabatic preparation. We con-
firmed that for θ0=2π ≤ −0.4, there are states with a
different value of Q and with energies lower than the
values shown in the figure, while for −0.35 ≤ θ0=2π ≤
þ0.5 there are no such states.

APPENDIX B: QUANTUM CIRCUIT

1. Quantum operations for state preparation

All the quantum operations used in the main text consist
of the following three elementary gates.

(i) Hadamard gate.

ðB1Þ

(ii) Phase (Z-rotation) gate.

ðB2Þ

(iii) CNOT (CX) gate.

ðB3Þ

Given a 2-qubit state on lattice sites labeled by n ∈
f0; 1g we decompose e−iαðX0X1þY0Y1Þ and e−iαZ0Z1 in terms
of the elementary gates defined above.

ðB4Þ

ðB5Þ

Here the top and bottom lines correspond to n ¼ 0 and
n ¼ 1 respectively, and α is a real parameter.
The initial state jGS0i ¼ j1010…i in the adiabatic time

evolution can be simply constructed as

jGS0i ¼
YbN−1

2
c

j¼0

X2jj00…i: ðB6Þ

Here bxc denotes the largest integer smaller than or equal
to x.

2. Measurements of Hð0Þ
XY , H

ð1Þ
XY , HZ

We spell out the measurement protocol used to compute
the Hamiltonian expectation value and its statistical uncer-
tainty for a quantum state of interest. We consider the case
where the state is a 4-qubit state for the sake of concrete-
ness. The corresponding lattice sites are labeled
by n ∈ f0; 1; 2; 3g.
The term Hð0Þ

XY consists of the operators

fX0X1; Y0Y1; X2X3; Y2Y3g: ðB7Þ

Noting that14

HiCXijðXiXjÞCXijHi ¼ HiðXiIjÞHi ¼ ZiIj;

HiCXijðYiYjÞCXijHi ¼ −HiðXiZjÞHi ¼ −ZiZj;

the expectation values that we wish to measure can be
expressed as

hXiXji ¼ hCXijHiðZiIjÞHiCXiji;
hYiYji ¼ −hCXijHiðZiZjÞHiCXiji; ðB8Þ

where Ii stands for the identity operator acting on ith site.
These quantities can be read off by the following circuit.

ðB9Þ

The four operations at the right end are the classical
measurements in the Z basis. Having obtained the counts
of the bit strings “b0b1b2b3” with bi ∈ f0; 1g from the
measurements, we calculate the expectation values from
these samples as

14We employ the following identities repeatedly:

CXijðXiYjÞCXij ¼ YiZj; CXijðYiXjÞCXij ¼ YiIj;

CXijðXiXjÞCXij ¼ XiIj; CXijðYiYjÞCXij ¼ −XiZj:
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hX0X1i♭ ¼
X
bn

ð1 − 2b0Þ
countsb0b1b2b3

nshots
;

hY0Y1i♭ ¼ −
X
bn

ð1 − 2b0Þð1 − 2b1Þ
countsb0b1b2b3

nshots
;

hX2X3i♭ ¼
X
bn

ð1 − 2b2Þ
countsb0b1b2b3

nshots
;

hY2Y3i♭ ¼ −
X
bn

ð1 − 2b2Þð1 − 2b3Þ
countsb0b1b2b3

nshots
:

Here nshots denotes the number of times the circuit is
executed,15 and countsb0b1b2b3 denotes the number of times
the bit string “b0b1b2b3” is observed. The brackets h•i♭
stand for the expectation values from samples measured by
the circuits (B9).
The term Hð1Þ

XY consists of the operators

fX1X2; Y1Y2g: ðB10Þ

Hence, the following measurement will do for the compu-
tation of their expectation values.

ðB11Þ

Given the counts of the bit strings “b0b1b2b3”, we evaluate
expectation values from samples as

hX1X2i♯ ¼
X
bn

ð1 − 2b1Þ
countsb0b1b2b3

nshots
;

hY1Y2i♯ ¼ −
X
bn

ð1 − 2b1Þð1 − 2b2Þ
countsb0b1b2b3

nshots
:

Here the brakets h•i♯ stand for the expectation values from
samples measured by the circuits (B11).
For HZ, the measurements in the computational basis

allow us to compute

hZ0i♮ ¼
X
bn

ð1 − 2b0Þ
countsb0b1b2b3

nshots
;

hZ0Z1i♮ ¼
X
bn

ð1 − 2b0Þð1 − 2b1Þ
countsb0b1b2b3

nshots
;

where brackets h•i♮ denote the expectation values from
samples measured in the computational basis. Combining

these results leads to the expectation value of the total
Hamiltonian (11).
We can also evaluate statistical uncertainties from the data

obtained for computing the vacuum expectation value of the
Hamiltonian as follows. First, we compute the expectation
values of the squares of each term in the Hamiltonian from

those data. For example, the term ðHð0Þ
XYÞ2 contains the term

X0X1X2X3 and its expectation value is given by

hX0X1X2X3i♭ ¼
X
bn

ð1 − 2b0Þð1 − 2b2Þ
countsb0b1b2b3

nshots
:

Other terms in hðHð0Þ
XYÞ2i♭, hðHð1Þ

XYÞ2i♯, hðHð0Þ
Z Þ2i♮ can be

evaluated in a similar manner. We then obtain the statistical
uncertainty δstatE from these quantities as

ðδstatEÞ2 ¼
ðδ̂EÞ2

nshots − 1
; ðB12Þ

where16

ðδ̂EÞ2 ≔ hðHð0Þ
XYÞ2i♭ þ hðHð1Þ

XYÞ2i♯ þ hðHð0Þ
Z Þ2i♮

− ðhHð0Þ
XYi♭Þ2 − ðhHð1Þ

XYi♯Þ2 − ðhHZi♮Þ2: ðB13Þ

3. Resource estimation

Let us estimate the computational resource required for
our simulation, closely following [87]. The circuit (B4) has
four CNOT gates and two RZ-gates, while the circuit (B5)
has two CNOT gates and one RZ-gate. Each step
in the Suzuki-Trotter decomposition (14) has 2ðN − 1Þ
subcircuits of the form (B4) and 1

2
ðN − 1ÞðN − 2Þ

15Shots of microwave pulses execute quantum circuits on a real
superconducting quantum computer.

16Let us consider more general cases first. Suppose that we
want to evaluate the sum of noncommutative operators A, B, and
we measure two operators independently. Then, the variance of
Aþ B is evaluated as

X
A;B

fðAÞgðBÞðAþ BÞ2 −
�X

A
fðAÞ

�
2

− 2

�X
A

fðAÞ
��X

B

gðBÞ
�
−
�X

B
gðBÞ

�
2

¼
X
A

fðAÞA2 þ
X
B

gðBÞB2

−
�X

A
fðAÞA

�
2

−
�X

B
gðBÞB

�
2

;

where fðAÞ, gðBÞ are the distribution functions for A and B. So
we do not need to consider cross terms. In our protocol, we
independently measure the expectation values of Hð0Þ

XY , H
ð1Þ
XY and

Hð0Þ
Z , thus the statistical uncertainty of the total energy can be

evaluated as (B12) and (B13) without cross terms.
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subcircuits of the form (B5), and N RZ-gates besides. Thus,
for odd N, we need ðN − 1ÞðN þ 6Þ CNOT gates and
1
2
ðN2 þ 7N − 6ÞRZ-gates for each step.
As mentioned in Sec. V, CNOT gates are the main source

of errors in NISQ devices. Thus the number ðN − 1ÞðN þ
6Þ of CNOT gates is crucial for implementation on NISQ
devices. On the other hand, in most approaches to fault-
tolerance [88,89], the most costly components are non-
Clifford operations such as T-gates, where T ¼ diagð1; eiπ4 Þ
in a matrix representation. In our algorithm T-gates appear
only in implementing RZ-gates. They can be implemented
by using the repeat-until-success method [90,91] with
1.15 log2ð2=δÞ T-gates within an accuracy δ:

kRZ − R̃Zk < δ; ðB14Þ

where R̃Z approximates RZ-gates in a fault-tolerant manner
and k · k stands for the spectral norm. Thus we need
0.575ðN2 þ 7N − 6Þlog2ððN2 þ 7N − 6Þ=δÞ T-gates to
implement each step in the Suzuki-Trotter decomposi-
tion (14).
In our simulations, the computation of the potential Vf

within the Oð10%Þ accuracy requires nshots ¼ 4 × 105

measurements for a noninteger probe charge. In our
quantum simulation on a classical simulator, it takes about
3 hours for N ¼ 21 to obtain the potential in the range
0 ≤ l=a ≤ 20 (11 data points) with nshots ¼ 105 on a
typical personal computer (such as iMac).

APPENDIX C: COMMENTS ON SYMMETRIES

We comment on discrete symmetries in the lattice theory.
In the continuum theory, the net effect of the parity (or
charge conjugation) transformation is to flip the sign of θ0
because it acts as F01 → −F01. Therefore, the continuum
theory in the absence of probes is manifestly parity
invariant at θ0 ¼ 0. On a space without boundary, the
theory at θ0 ¼ π also has parity invariance because of the
periodicity θ0 ∼ θ0 þ 2π while in the case with boundaries,
the theories at θ0 ¼ π and −π differ by boundary terms in
the action.
The situation in the lattice theory is more intricate. An

analog of the parity transformation on the lattice is

χn → ið−1ÞnχN−1−n; Un → U−1
N−2−n;

Ln → −LN−2−n: ðC1Þ

For the periodic boundary condition, in which N is always
even, the periodic analog of the lattice Hamiltonian (4) is
invariant under this transformation for θ0 ¼ 0 and π.17 With
the open boundary condition, the situation is different for
odd N and even N. For odd N, the net effect of the

transformation (C1) is to flip the sign of the theta angle as in
the case of the continuum theory: it is parity invariant for
θ0 ¼ 0, and the cases with θ0 ¼ π and −π differ only by
boundary terms. However, for even N, the transformation
(C1) flips not only the theta angle but also the massm. This
implies that the lattice theory with even N and nonzero
mass does not have parity symmetry for any value of θ0.
Thus we take N to be odd in this work. In the presence of
symmetrically located probe charges in (3), the net effect of
the parity transformation (C1) is to flip the signs of both θ0
and q.
With the choice of the decomposition (11), the time

evolution in (14) respects the U(1) symmetry generated by
Q ¼ P

N−1
n¼0 Zn,

18 while it violates the parity symmetry,
which is only approximately restored for small δt. Whether
it is U(1) or parity, a symmetry can be a useful property for
simulation (see, e.g., [92]). In general an adiabatic process
prepares a state within the same charge sector as the initial
state. We checked by exact diagonalization that the lowest-
energy states among all charge sectors do haveQ ¼ −1 for
the parameters discussed in Figs. 1 and 2, and in Tables I
and II in Appendix A. But for some of the parameters
considered in Figs. 3 and 5, we found that the lowest-
energy states have different values of Q.

APPENDIX D: CONTINUUM SCHWINGER
MODEL

1. Summary of results

We summarize some analytic results for two probe
charges �q separated by distance l in the continuum
Schwinger model. Some of the results are new.
We begin with the theory in the infinite-volume limit. In

this case, there are some results by mass perturbation theory
in the literature [9,81,93]. The potential in the massless
(m ¼ 0) theory is given by [81]

Vð0ÞðlÞ ¼ q2g2

2μ
ð1 − e−μlÞ; ðD1Þ

where μ ¼ g=
ffiffiffi
π

p
. The OðmÞ correction to the potential for

l ≫ 1=μ is given by

Vð1ÞðlÞ ¼ mΣð1 − cosð2πqÞÞlþ cqmþ oð1=lÞ; ðD2Þ

where Σ ¼ eγg=ð2π3=2Þ. The first term giving the string
tension has been known in the literature (see e.g., [9]) while
the second term has not. In Appendix D 2, we find that the
constant cq is given by

17The ð−1Þn=2 term in the Gauss law constraint (5) violates the
invariance under (C1) for even N. 18See [17] for another decomposition that preserves U(1).
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cq ¼
2eγ

π
cosðθ0 þ πqÞ½cosðπqÞCinðπqÞ

− sinðπqÞSiðπqÞ�; ðD3Þ

where CinðzÞ ≔ R
z
0 ds½1 − cosðsÞ�=s and SiðzÞ ≔R

z
0 ds sinðsÞ=s are known as the cosine and sine integral
functions, respectively.19 Note that cq is nonzero even when
q is an integer. This implies that the potential for large l in
integer q case approaches a nonzero constant which is
given by cqm up to an Oðm2Þ correction. Therefore the
value of the screening potential on the plateau in the
massive case differs from the one in the massless case, as
can be confirmed for the analytic curves on the right panel
of Fig. 1.20 The Oðm2Þ correction for l ≫ 1=μ is [93]

Vð2ÞðlÞ ¼ m2

�
π

�
Σ
2g2

�
2

μ20Eþð1 − cosð4πqÞÞglþOð1Þ
�
;

ðD4Þ

where μ20Eþ ≃ −8.9139.21 This formula is consistent with
the expectation that the string tension vanishes exactly
when q is an integer [8].
Next let us consider the Schwinger model on the finite

interval ½0; L�. As explained in Appendix D 2, we take an
appropriate boundary condition, which corresponds to the
continuum limit of the lattice model studied in the main
text. For this boundary condition, we derive the following
results for the probe charges �q placed at x ¼ ðL ∓ lÞ=2.
For m ¼ 0, the ground state energy is

Eð0Þ
f ðθ0; q;lÞ ≔

X∞
n¼1

Lμ2

16π

k2n
ω2
n
ðΘðqÞ

n Þ2; ðD5Þ

where

ΘðqÞ
n ¼ 1 − ð−1Þn

n

�
2θ0
π

þ ð−1Þn−12 4q sin
�
πnl
2L

��
þ 1þ ð−1Þn

n
: ðD6Þ

For θ0 ¼ 0, the potential Vð0Þ
f ðlÞ ≔ Eð0Þ

f ð0; q;lÞ −
Eð0Þ
f ð0; q; 0Þ simplifies to

Vð0Þ
f ðlÞ ¼ q2g2

2μ

ð1 − e−μlÞð1þ e−μðL−lÞÞ
1þ e−μL

: ðD7Þ

One can easily see that this reproduces (D1) in the infinite-
volume limit L → ∞ with 1 ≪ μl ≪ μL. The OðmÞ
correction to the energy is given by

Eð1Þ
f ðθ0; q;lÞ ¼ −mΣ

Z
L

0

dxλðxÞ

× cos

�
2

ffiffiffi
π

p
ϕ0−

X∞
n¼1

μ2ΘðqÞ
n

μ2 þ k2n
sinðknxÞ

�
;

ðD8Þ

where kn ¼ πn=L,

λðxÞ≔ lim
Λ→∞

exp

�
sinh−1

�
Λ
μ

�
−

XbLΛ=πc
n¼1

2π

L
sin2ðknxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2þk2n

p �
; ðD9Þ

Λ is a UV cutoff sent to infinity, and bxc denotes the largest
integer smaller than or equal to x. The OðmÞ correction to
the potential for θ0 ¼ 0 is by definition

Vð1Þ
f ðlÞ ≔ Eð1Þ

f ð0; q;lÞ − Eð1Þ
f ð0; q; 0Þ: ðD10Þ

We also show in Appendix D 2 that for m=g ≫ 1 and for
θ0 ¼ 0, the potential VfðlÞ becomes

q2g2

2

�
1 −

e−γg
2

ffiffiffi
π

p
m
þOððg=mÞ2Þ

�
l: ðD11Þ

The leading term is the Coulomb potential of the pure U(1)
gauge theory as expected.

2. Bosonized Schwinger model on an interval

Here we study the bosonized Schwinger model on an
interval and derive some of the analytic results used in the
main text and summarized Appendix D 1. Let us consider
the Schwinger model on the spacetime R × ½0; L�. We
parametrize the time by t ¼ x0 and the interval ½0; L� by
x ¼ x1. After bosonization the theory with a position-
dependent theta angle ΘðxÞ is described by the Lagrangian
density

Lb ¼ −
1

4
FμνFμν þ g

4π
ΘðxÞϵμνFμν þ

gffiffiffi
π

p ϵμνAμ∂νϕ

þ 1

2
∂μϕ∂μϕþmg

eγ

2π3=2
cosð2 ffiffiffi

π
p

ϕÞ: ðD12Þ

We first specify the boundary conditions for the fields.
For ϕ, we impose

ϕjx¼0 ¼
ffiffiffi
π

p
w0; ϕjx¼L ¼ ffiffiffi

π
p

w1; ðD13Þ

19The function CinðzÞ is related to a more common function
CiðzÞ ≔ −

R
∞
z ds cosðsÞ=s as CinðzÞ ¼ γ þ log z − CiðzÞ.

20For m=g ¼ 0.2, cq¼1m=g ≃ 0.37, which is the difference
between the limiting values (for large gl) of the dashed curves in
green and purple in Fig. 1.

21The precise definition is given by Eq. (64) in [93] as μ20Eþ ¼
2π

R
∞
0 drrðe−2K0ðrÞ − 1Þ with the modified Bessel function K0ðrÞ

of the second kind.
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where w0 and w1 are real (not necessarily integral) con-
stants specifying the boundary conditions. In the main text
we set these constants to the specific values w0 ¼ 1=4 and
w1 ¼ −1=4 for the reasons we explain below (D23).
Regarding the gauge field, it must be consistent with the
Gauss law constraint δðR d2xLbÞ=δA0 ¼ 0, which reads

∂1

�
F01 þ

g
2π

ðΘþ 2
ffiffiffi
π

p
ϕÞ

�
¼ 0: ðD14Þ

This is solved by

F01 ¼
g
2π

ðΘþ 2
ffiffiffi
π

p
ϕÞ þ fðx0Þ; ðD15Þ

where fðx0Þ is x-independent. As in Section II we work in
the temporal gauge A0 ¼ 0. We choose the boundary
condition on A1 such that fðx0Þ ¼ 0.
Denoting the canonical momentum conjugate to ϕ by

Πϕ, we get the Hamiltonian density

HbðxÞ ¼
1

2
Π2

ϕ þ
1

2
ð∂xϕÞ2 þ

g2

2π

�
ϕþ ΘðxÞ

2
ffiffiffi
π

p
�

2

−mg
eγ

2π3=2
cosð2 ffiffiffi

π
p

ϕÞ ðD16Þ

and the Hamiltonian Hb ¼
R
L
0 dxHbðxÞ. We note that the

numerical coefficient eγ=2π3=2 for the cosine terms in (D12)
and (D16) is appropriate only if “cosð2 ffiffiffi

π
p

ϕÞ” in (D16) is
interpreted as normal-ordered with mass μ ¼ g=

ffiffiffi
π

p
on an

infinite spatial line. This will be important below.
We now set m ¼ 0 to compute the energy by the mass

perturbation theory. Let us define ϕ0ðxÞ and ϕ̂ðxÞ by

ϕ0ðxÞ ¼
ffiffiffi
π

p
w0 þ

ffiffiffi
π

p ðw1 − w0Þ
x
L
;

ϕ̂ðxÞ ¼ ϕðxÞ − ϕ0ðxÞ:

We also define

Θ̂ðxÞ≡ ΘðxÞ þ 2
ffiffiffi
π

p
ϕ0ðxÞ: ðD17Þ

We expand the operators in terms of the Fourier coefficients
ϕn, Πn, Θn as

ϕ̂ðxÞ ¼
X∞
n¼1

ϕn sinðknxÞ; ΠϕðxÞ ¼
X∞
n¼1

Πn sinðknxÞ;

Θ̂ðxÞ ¼
X∞
n¼1

Θn sinðknxÞ: ðD18Þ

Here we extended Θ̂ðxÞ to a (possibly discontinuous)
odd periodic function with period 2L. We have the
canonical commutation relations ½ϕn;Πn0 � ¼ ð2i=LÞδnn0 .
The Hamiltonian can be written as

Hb ¼
πðw1 − w0Þ2

2L
þ
X∞
n¼1

�
ωn

�
a†nan þ

1

2

�
þ Lμ2

16

k2n
ω2
n
Θ2

n

�
;

ðD19Þ

where ωn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ k2n

p
and

an ¼
ffiffiffiffiffiffiffiffiffi
Lωn

p
2

�
ϕn þ

μ2Θn

2
ffiffiffi
π

p
ω2
n

�
þ i
2

ffiffiffiffiffiffi
L
ωn

s
Πn: ðD20Þ

We have ½an; a†n0 � ¼ δnn0 . The ground state j0i satisfies
anj0i ¼ 0, and its energy is

h0jHbj0i¼
πðw1−w0Þ2

2L
þ
X∞
n¼1

�
ωn

2
þLμ2

16π

k2n
ω2
n
Θ2

n

�
: ðD21Þ

The sum of the first term in the bracket is the (L-dependent)
Casimir energy. It is UV-divergent but independent
of Θ. Therefore we focus on the sum of the second term.
We take

ΘðxÞ ¼
�
θ0 þ 2πq for L−l

2
≤ x ≤ Lþl

2
;

θ0 otherwise:
ðD22Þ

The Fourier coefficients for Θ̂ are then

Θn ¼
1 − ð−1Þn

n

�
2θ0
π

þ ð−1Þn−12 4q sin
�
πnl
2L

��
þ 4

w0 − ð−1Þnw1

n
: ðD23Þ

We claim that the lattice Schwinger model described in
Sec. II corresponds, in the continuum limit, to the choice
w0 ¼ 1=4 and w1 ¼ ð1=2ÞQþ 1=4, where Q ≔

P
N−1
n¼0 Zn.

To see this, let us compare the Gauss law constraints
Ln − Ln−1 ¼ ½Zn þ ð−1Þn�=2 and (D14) in the spin and
bosonized formulations, respectively. The correspondence
Ln ↔ ð1=gÞF01 − ð1=2πÞΘ suggests that ϕðxÞ= ffiffiffi

π
p

is the
mean field (spatial average) for ð1=2ÞPn

i¼0½Zi þ ð−1Þi�.
By the symmetry under Zi → −Zi present for
g ¼ 0, the mean value of Zi on sites near (compared with
1=g) the boundary must vanish. The mean value of
ð1=2ÞPn

i¼0ð−1Þi is 1=4. This leads to our claim, which
can be explicitly confirmed by comparing the results for the
charge density computed by DMRG and by bosoniza-
tion [94].
We now restrict to odd N and Q ¼ −1, so that

w1 ¼ −1=4. Substituting the values of w0 and w1 to
(D23) gives (D6). The q-dependent part of the ground
state energy (D21) for θ0 ¼ 0
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4g2q2

L

X∞
j¼0

sin2ðk2jþ1l=2Þ
ω2
2jþ1

ðD24Þ

can be rewritten as the potential (D7) in the massless case.22

To derive theOðmÞ correction to the ground state energy,
we now compute the chiral condensate in the massless
theory. Upon bosonization it is given as

hψ̄ψðxÞi ¼ −
eγg

2π3=2
h0j∶ cosð2 ffiffiffi

π
p

ϕðxÞÞ∶∞j0i; ðD25Þ

where the normal ordering ∶ • ∶∞ is taken with respect to
the creation and annihilation operators on an infinite line,
while j0i is the ground state on the interval. Let us denote
the normal ordering with respect to an in (D20) by ∶ • ∶. We
find formally

∶e�2i
ffiffi
π

p
ϕðxÞ∶∞ ¼ e�2i

ffiffi
π

p
ϕðxÞ exp

�Z
∞

0

dkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ k2

p �
; ðD26Þ

∶e�2i
ffiffi
π

p
ϕðxÞ ≔ e�2i

ffiffi
π

p
ϕðxÞ exp

�X∞
n¼1

2π

L
sin2ðknxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ k2n

p �
: ðD27Þ

The right-hand sides of (D26) and (D27) involve UV
divergent expressions. By introducing a cutoff, we obtain
the well-defined relation

∶e�2i
ffiffi
π

p
ϕðxÞ∶∞ ¼ λðxÞ∶e�2i

ffiffi
π

p
ϕðxÞ∶; ðD28Þ

where λðxÞ is defined in (D9). Then (D25) gives23

hψ̄ψðxÞi ¼ −
eγg

2π3=2
λðxÞ cos

�
2

ffiffiffi
π

p
ϕ0−

X∞
n¼1

μ2Θn

ω2
n

sinðknxÞ
�
:

ðD29Þ

With this, perturbation theory gives the correction (D8) to
the ground state energy.
For a single probe defined by

ΘprobeðxÞ ≔
�
θ0 for x < 0;

θ0 þ 2πq for x > 0;
ðD30Þ

we find, either from the general formula (D29) or by
repeating the derivation,

hψ̄ψðxÞiprobe ¼ −
eγg

2π3=2
cos½θ0 þ πq

þ sgnðxÞπqð1 − e−μjxjÞ�: ðD31Þ

Integrating, over x ∈ ð−∞; 0� for example, the difference
between (D31) and its asymptotic value givesZ

0

−∞
dx

�
hψ̄ψðxÞiprobe þ

eγg

2π3=2
cos θ0

�
¼ eγ

2π
½cos θ0CinðπqÞ þ sin θ0SiðπqÞ�; ðD32Þ

where CinðzÞ ¼ R
z
0 ds½1 − cosðsÞ�=s and SiðzÞ ¼R

z
0 ds sinðsÞ=s. By considering two well-separated probes,
it follows that the constant cq in (D2) is given by (D3).
Finally we consider the large mass limit m=g ≫ 1 of

(D16). We assume that jw0j; jw1j < 1=2. The cosine term
forces ϕ to be localized near ϕ ¼ 0 in the bulk. Expanding
the cosine in ϕ, we can write the potential part of Hb as

C1ðϕþ C2ΘÞ2 þ
g2

8π2

�
1þ e−γg

2
ffiffiffi
π

p
m

�
−1
Θ2 þOðϕ3Þ;

where C1 ¼ Oðm=gÞ and C2 ¼ Oðg=mÞ are constants.
Substituting (D22) and repeating the analysis leading to
(D21), we obtain the result (D11) for the potential VfðlÞ.

3. Volume dependence of the slope of the potential

The results in Fig. 2 include finite-size corrections. We
wish to estimate the number of qubits for which such
corrections become negligible. Using our analytic formulas
for Vð0Þ

f þ Vð1Þ
f , we look for the values of volume L where

the slope (the first derivative) at an appropriate point
accurately reproduces the string tension σð1Þ in the infinite
volume. For m=g ¼ 0.2 and ga ¼ 0.4, we find that with
L ¼ 13.6 (N ¼ 35), the slope at l ¼ L=2 reproduces σð1Þ
within 5 percent, as can be seen from Fig. 7, where

ðd=dlÞðVð0Þ
f þ Vð1Þ

f Þ=g2 at l ¼ L=2 is plotted for several
values of N. We thus expect that an ideal quantum
simulation with N ¼ 35 or larger will exhibit reasonable
agreement with the true (infinite-volume) string tension.

APPENDIX E: MASS DEPENDENCE OF THE
POTENTIAL

Here we study the dependence of the potential VfðlÞ on
the fermion mass m. We depict quantum simulation results
and OðmÞ analytic predictions for VfðlÞ in Fig. 6.24 As in
Sec. IV we take a ¼ 0.4g−1, δt ¼ 0.3g−1, T ¼ 99g−1 and
m0 ¼ 0.5g. We use the “snapshot” functionality of Qiskit to
obtain quantum simulation results without statistical

22Let α be real and b ∈ Z satisfy b ≤ α ≤ bþ 1. A useful
formula

P
j∈Z

e2πiαðjþ1=2Þ
A2þπ2ðjþ1=2Þ2 ¼ ð−1Þb sinh½ð1þ2b−2αÞA�

A coshðAÞ can be proved
by the residue theorem and contour deformation.

23With the special values w0 ¼ 1=4 and w1 ¼ −1=4, the chiral
condensate hψ̄ψðxÞi is finite near the boundaries.

24These simulation results include adiabatic errors. See Tables I
and II for the systematic errors in similar settings.
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uncertainties. As we increase the mass within the range
m=g≲ 0.15, the analytic results become less curved. At
m=g ¼ 0.2 and 0.25, the curves are almost straight lines.
In the small mass range 0 < m=g≲ 0.15, the simulation

results match well the analytic predictions. For
0.2≲m=g≲ 0.25, the differences between the simulation
results and the OðmÞ analytic predictions are larger. If the

systematic errors in our results are small, then this
discrepancy should be due to finite a effect or/and breaking
of the approximation by the mass perturbation in this
regime.
We expect that the latter is a dominant source of the

discrepancy as follows. There is another numerical study
[95] of the lattice Schwinger model by the density matrix
renormalization group (DMRG) method, which takes the
both continuum and infinite-volume limits. In [95],
analogous deviations of the numerical results from the
analytic OðmÞ results were found for similar values of
m=g. Since the continuum limit is taken in [95], this
implies that the mass perturbation theory in the regime
0.2≲m=g≲ 0.25 is no longer reliable at least for large
volume. Although it is nontrivial whether this is still true
for the value of our volume, we regard this as indirect
evidence of our expectation. Then our results in Fig. 6
likely give a prediction for the middle range of mass
between small mass and massive limit. It would be
important to check the consistency of the results between
the quantum computing and the DMRG in such a non-
perturbative mass regime in the future.

FIG. 7. The values of ðd=dlÞðVð0Þ
f þ Vð1Þ

f Þ=g2 at l ¼ L=2 for
L ¼ ðN − 1Þa, m=g ¼ 0.2, and ga ¼ 0.4, with the indicated
values of N. We also plot σð1Þ=g2 given in (17).
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FIG. 6. Potential VfðlÞ for several values ofm=g, and forN ¼ 15, q ¼ 0.25, θ0 ¼ 0. The blue crosses represent the results of quantum

simulation without statistical uncertainties. The black solid curves represent the OðmÞ analytic prediction Vð0Þ
f ðlÞ þ Vð1Þ

f ðlÞ.
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