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1 Introduction and summary

Nonlinear sigma models appear as low-energy effective descriptions in broad areas of mod-
ern physics, ranging from high-energy to condensed-matter physics. For example, they
have allowed systematic analyses of strong-interaction phenomena [1, 2] even before the
establishment of quantum chromodynamics (QCD), while they have also provided useful
tools to study the long-range physics of anti-ferromagnetic spin systems [3].

In nonlinear sigma models, Lagrangian consists not only of the usual kinetic term but
also of topological terms. Schematically, the kinetic term can be written as

Lkin =
∫
gab(σ) dσa ∧ ?dσb, (1.1)

where σ : Md → X is a map from the spacetime Md to the target space X, and gab(σ) is
the metric of X, which defines the effective coupling constant. In practical use, we can add
higher-derivative corrections to this Lagrangian, but (1.1) is often sufficient for our purpose.
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Let us consider what kind of topological terms can be added to this Lagrangian. Ac-
cording to the standard lore, they are classified by the homotopy of the target space
π∗(X) [4]. In the path integral, we are interested in the configuration with the finite Boltz-
mann weight exp(−Lkin[σ]) < ∞. Taking the infinite-volume limit Md → Rd, in order to
have a finite action, the sigma-model field must be constant as it approaches the infinities,

lim
|x|→∞

σ(x) = σ∗ ∈ X. (1.2)

As a result, we can identify the infinities of the spacetime with a single point, and we may
regard σ : Sd → X. By definition, the topological nature of such maps is classified by
πd(X). Based on this kind of argument, it has been considered that there is a theta term
corresponding to nontrivial πd(X), and also that there is a Wess-Zumino term [5, 6] when
πd+1(X) = Z while πd(X) = 0, as it allows us to extend the sigma-model configuration on
Sd to a disk Dd+1 to define the well-defined phase factor mod 2π.

On the other hand, recent developments have led to more refined understanding of
topological terms. Assuming quantum field theories (QFTs) can be defined on any space-
time manifolds (with given structures), the principle of locality requires their partition
functions to be consistent under cutting and gluing of spacetime manifolds. Along this
line together with the unitarity, (exponentiated) topological terms should be regarded as
partition functions of the so-called invertible QFTs [7]. As a result, for the case at hand
where the sigma-model target space is X, topological terms are classified up to continuous
ones by a group Invd(X) [8, 9], which sits in the middle of the short exact sequence

0 −→ Ext(Ωd(X),Z) −→ Invd(X) −→ Hom(Ωd+1(X),Z) −→ 0. (1.3)

In addition, ordinary theta angles invisible in Invd(X) are classified by Hom(Ωd(X),U(1))
along with discrete theta angles [10]. An important point is that these classifications
use bordism groups Ω∗(X)1 rather than homotopy groups π∗(X), and correspondingly the
traditional arguments relying on homotopy groups might miss some subtleties. This indeed
turns out to be the case, and one of the examples regarding the Hopf term in 3d CP 1 sigma
model was recently pointed out by Freed, Komargodski, and Seiberg [11]. In this paper,
we will further explore 3d sigma models with target spaces CPN−1 and flag manifolds
U(N)/U(1)N , both of which can be viewed as a generalization of the simplest CP 1 case.2,3

In passing, we mention another motivation to consider the flag-manifold sigma models.
In (1 + 1)d, the sigma models with flag-manifold target space have appeared as effective
descriptions of the SU(N)-analogue of antiferromagnetic Heisenberg-like chains [15–18], and
are known to show a rich phase diagram thanks to various theta terms [19–22] (see [23]
for a review). Similarly, the (2 + 1)d flag-manifold sigma models describe the 2d quantum
SU(3) Heisenberg model on several lattices [24, 25], and some of them are equivalent to

1In this paper, we consider spin bordism groups Ωspin
∗ (X) since the underlying microscopic theories are

assumed to contain fermions.
2Generalized (co)homologies including bordism have been also effectively used to analyze the nonlinear

sigma model descriptions of 4d QCD-like theories [8, 12, 13].
3Analyses on the sigma-model dynamics from the bordism perspective have also been carried out in [14].
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the Tsunetsugu-Arikawa point [26] of the SU(2) spin-1 model. It is expected that the
SU(N) anti-ferromagnetic Heisenberg systems may be realized with the ultracold atoms
using alkaline earth metals [27–33], and thus theoretical predictions on these systems may
be able to be verified by such experiments. Therefore, it is an interesting question to ask
what kind of topological terms can enrich those quantum spin systems.4

Let us summarize our result on the U(N)/U(1)N flag-manifold sigma model, which
shall be discussed in detail in section 4. Although the homotopy argument suggests the
presence of Hopf-like term because of the nontrivial homotopy π3(U(N)/U(1)N ) = Z, we
conclude that such a term does not exist since

Ωspin
3 (U(N)/U(1)N ) = 0 (1.4)

for N ≥ 3, assuming that the spacetime manifold is equipped with spin structure. We also
find that there are N(N−1)

2 − 1 types of Chern-Simons-like terms according to the bordism
computation, and we try to write down their explicit forms using the gauged sigma-model
description. In such a description, we introduce U(1) gauge fields a1, . . . , aN−1, which
indeed allows us to write down the Chern-Simons coupling, but there still exists a puzzle.
When naively writing down possible Chern-Simons term, we get

N−1∑
I=1

kI
4πaIdaI +

∑
I<J

kIJ
2π aIdaJ , (1.5)

and there are N(N−1)
2 of them, which overcounts the number of independent Chern-Simons

couplings compared to the bordism computation. It turns out that there is a nontrivial
relation, which allows us to eliminate one of the off-diagonal Chern-Simons couplings,
and we find there exist globally well-defined 3-forms, which can be added to the effective
Lagrangian, as a byproduct. For example for N = 3, the topological terms of the effective
Lagrangian are given as

k1
4πa1da1 + k2

4πa2da2 + h

2πa12a23a31, (1.6)

where the first two terms are diagonal Chern-Simons terms, and the last one is a non-
quantized topological coupling with aij defined as (4.20), while the off-diagonal Chern-
Simons term is absent. In particular, when the diagonal Chern-Simons terms have odd
levels, skyrmions are transformed as fermions under spacetime rotations.

The rest of the paper is organized as follows. In section 2, we review the case of 3d CP 1

sigma model. We first directly compute bordism groups to identify the topological (“Hopf”)
term, and then discuss its consequence for the statistics of skyrmions from the physics point
of view, using gauged realization of the model. In sections 3 and 4, we further go on to
the case of 3d sigma model with target spaces CPN−1 and flag manifolds U(N)/U(1)N ,
respectively. Appendix A serves as a supplement involving some subtleties arising in the
flag manifold case. In appendix B, various relevant cohomology groups are computed via
Leray-Serre spectral sequence (LSSS). In appendix C, we review the realization of the Hopf
term of the CP 1 model as a partition function of a fermionic invertible phase [36].

4Furthermore, 4d flag-manifold sigma models have appeared in the study of SU(N) gauge theories [34,
35], and our analysis can be used to identify possible theta terms in those models.
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2 Review on the topological term of 3d CP 1 model

3d CP 1 sigma model gives a low-energy description of the 2d anti-ferromagnetic quantum
spin systems. Because of π3(CP 1) = Z which represents the Hopf fibration, it has been
suspected for more than three decades that the model accommodates a topological theta
term, which can be schematically written as

iθHopf[n]. (2.1)

The paper by Wilczek and Zee [37] has shown that the (magnetic) skyrmion acquires the
fractional spin θ/2π and becomes an anyon due to this Hopf term. The Hopf term does not
have a local expression in the original spin fields, but can be written as a Chern-Simons
form using the U(1) gauge field in the gauged sigma-model description [38].

Meanwhile, starting from the (2 + 1)d SU(2) anti-ferromagnetic quantum Heisenberg
spin system, it is known that the Hopf term does not appear in the low-energy theory [39].
Instead, the discrete value of the theta term θ = π arises when the spin variable is coupled
to fermions by Yukawa interaction, after integrating out fermions [36].

In a recent paper [11], it has been elucidated that only these values, θ = 0 and θ = π,
are consistent as local and unitary QFTs. Indeed, k = θ/π behaves as the level of U(1)
spin Chern-Simons term, and the magnetic skyrmion becomes fermion if k is odd.

In the following of this section, we will give a review on these facts, as it is a basic
ingredient in order to extend these results for general flag-manifold sigma models.

2.1 Formal and explicit descriptions of topological terms of CP 1

Here, we first give a formal description on the possible topological terms in the CP 1 sigma
model, and then write down the explicit forms for the topological term. Unless explicitly
stated, we always assume that the spacetime manifolds are equipped with spin structure.

As briefly explained in section 1, while topological terms have been conventionally
classified using homotopy, the correct framework to be adopted is bordism rather than
homotopy when we require the generalized locality (i.e. consistency under cutting and
gluing rules) for QFTs, so that they can be defined on any manifolds beyond spheres.
Accordingly, topological terms of the 3d CP 1 sigma model should be captured by spin
bordism groups Ωspin

∗ (CP 1) from this modern point of view:5

• U(1) factors in Hom(Ωspin
3 (CP 1),U(1)) classifies the ordinary theta angles [10],

• Ext(Ωspin
3 (CP 1),Z) ' Tors(Ωspin

3 (CP 1)) classifies the discrete theta angles [8, 9],

• Hom(Ωspin
4 (CP 1),Z) ' Free(Ωspin

4 (CP 1)) classifies the Chern-Simons or Wess-Zumino
terms [8, 9].

5Strictly speaking, the first two statements are established as theorems, while the last statement is still
better to be regarded as a conjecture. Note, however, that since it can be viewed as a formal way to present
the Stora-Zumino descent equation [40, 41], the authors think it quite reasonable.
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These groups can be computed using the Atiyah-Hirzebruch spectral sequence (AHSS)

E2
p,q = Hp(CP 1; Ωspin

q (pt)) =⇒ Ωspin
p+q(CP 1), (2.2)

where the E2-page on the left hand side converges to the desired group on the right hand
side. The explicit form of the E2-page is given as follows:

Hp(CP 1)

Ω
sp

in
q

(p
t)

0 1 2 3 4

0

1

2

3

4

Z

Z2

Z2

Z

Z

Z2

Z2

Z

(2.3)

It is known that, if the space X is connected, bordism groups split as

Ωspin
∗ (X) = Ωspin

∗ (pt)⊕ Ω̃spin
∗ (X), (2.4)

and therefore differentials going into the p = 0 column (e.g. the dashed arrow) are all
trivial. As a result, E2

2,1 = H2(CP 1; Ωspin
1 (pt)) = Z2 survives to the E∞-page, and one has

Free(Ωspin
3 (CP 1)) = 0,

Tors(Ωspin
3 (CP 1)) = Z2,

Free(Ωspin
4 (CP 1)) = Z.

(2.5)

The free part of Ωspin
4 (CP 1) comes from Ωspin

4 (pt) describing the gravitational Chern-Simons
term, which is not of our interest; our interest will only be in Ω̃spin

4 (CP 1). The Hopf term
with continuous θ ∈ R/2πZ parameter is in fact absent as the free part of Ωspin

3 (CP 1) is
trivial. We identify the torsion part of Ωspin

3 (CP 1) as the “Hopf” term of 3d CP 1 model,
but its theta angle should be discretized as it is Z2-valued.

Let us move on to explicit computations in order to write down the discrete theta term.
We can realize the CP 1 sigma model as a U(1) gauge theory according to the fibration
U(1) → SU(2) → CP 1, that is, we introduce the SU(2)-valued scalar field U(x) and the
U(1) gauge field a = aµdxµ. We note that SU(2) matrix U can be written as

U =
(
z1 −z∗2
z2 z∗1

)
, (2.6)

with |z1|2 + |z2|2 = 1, and thus the SU(2) scalar field is equivalent to the two-component
complex scalar field z = (zα)α=1,2 with a unit norm. Assigning U(1) gauge charge 1 to this
scalar z, the kinetic term in the Lagrangian is given by

1
g2 |(∂µ + iaµ)z|2 = 1

g2

(
|∂µz|2 + iaµ(−z†∂µz + (∂µz†)z) + a2

µ

)
. (2.7)

– 5 –
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Since this is quadratic in aµ, the equation of motion can be solved as

a = iz†dz. (2.8)

With this U(1) gauge field, we define the Hopf term as the Chern-Simons term, following
the idea of [38]. That is, we extend the spacetime manifold M3 to the 4d spin manifold
W4 with ∂W4 = M3 and define

exp
(
i(πk)Hopf[M3, (z, a)]

)
:= exp

(
i k4π

∫
W4

dã ∧ dã
)
, (2.9)

where ã is the 4d extension of a as U(1) gauge fields.
We shall give concrete computations to show that this gives the correct discrete theta

term in the next subsection. Before that, let us make several remarks, which would be
confusing at first sight.

In the definition (2.9), we only extend the U(1) gauge field a, while the CP 1 field needs
not be extended to W4, and therefore (2.8) holds only on the boundary M3 but not on
the 4d bulk.6 We note that Ωspin

3 (CP 1) = Z2 shows that the CP 1 field may not have a 4d
extension when the spin structure is taken into account: only after taking the double copy,
M3 tM3, we can take the 4d bounding manifold M ′4 such that the extension of the CP 1

field is possible.
Next, let us prove that the Hopf term defined in (2.9) is a bordism invariant of 3d spin

manifolds equipped with a map σ = (z, a) to CP 1. To see this, suppose the pair (M3, σ) is
bordant to (M ′3, σ′), i.e., there exists a 4d spin manifold Y4 and a map σ̃ : Y4 → CP 1, such
that ∂Y4 = M3 tM ′3 and

σ̃
∣∣
M3

= σ, σ̃
∣∣
M ′3

= σ′. (2.10)

Then we have

exp
(
i(πk)Hopf[M3, σ]

)
exp

(
i(πk)Hopf[M ′3, σ′]

) = exp
(

i k4π

∫
Y4

dã ∧ dã
)

= 1. (2.11)

Here, unlike in the definition (2.9), the 4d extension to Y4 is taken as a CP 1 field, and thus
the U(1) gauge field is subject to the constraint (2.8), ã = iz̃†dz̃. As a result, dã ∧ dã = 0
identically. Hence, we can see that

exp
(
i(πk)Hopf[M3, σ]

)
= exp

(
i(πk)Hopf[M ′3, σ′]

)
, (2.12)

which means that the Hopf term (2.9) gives a bordism invariant.
6In the work of Abanov [42], the similar idea has been used to find the Hopf term by integrating out

the fermion when the spin variable n = z†σz couples to it. Instead of directly evaluating the fermion
determinant, they consider an infinitesimal variation of the spin variable, and try to integrate it to obtain
the result. Within the CP 1 model, however, the Hopf term is a total derivative [38], and the infinitesimal
variation identically vanishes. They circumvented this issue by embedding CP 1 ⊂ CPN−1 with N > 2. As
BU(1) = CP∞, our prescription (2.9) can be formally regarded as the N →∞ limit of it.

– 6 –
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2.2 Statistics of skyrmions

Let us illustrate how the level k of the Hopf term is quantized. Since the 3d spin bordism
group equipped with a map to CP 1 is given by Ωspin

3 (CP 1) = Z2, the Hopf term must take
a Z2 valued phase, exp

(
iπHopf[M3, σ]

)
= ±1. Therefore, we should identify

k ∼ k + 2, (2.13)

in the path-integral weight, exp
(
i(πk)Hopf[M3, σ]

)
. This shows that we can verify the

definition (2.9) of the Hopf term by constructing a CP 1 configuration σ on a 3-manifold
M3 which gives exp

(
iπHopf[M3, σ]

)
= −1 for k = 1.

We can construct such a configuration by taking the spacetime M3 to be S2 × S1,
introducing a magnetic skyrmion on the space S2, and then performing the adiabatic 2π
rotation along the imaginary time S1. This is exactly the way to measure the statistics of
the skyrmion in a semi-classical manner [37, 38]. A skyrmion can be put on S2 by setting

z(θ, φ) =
(

cos θ2
eiφ sin θ

2

)
, (2.14)

where (θ, φ) is the spherical coordinate of S2 with 0 ≤ θ ≤ π and 0 ≤ φ < 2π. We can
perform the adiabatic 2π rotation along the imaginary time 0 ≤ τ < 2π as

z(τ, θ, φ) := eiτ/2 exp
(

iτ2σ3

)
z(θ, φ) =

(
eiτ cos θ2
eiφ sin θ

2

)
. (2.15)

Here, exp
(
i τ2σ3

)
describes the adiabatic rotation, and we further multiply the overall U(1)

phase eiτ/2 so that the configurations at τ = 0 and τ = 2π are in the same gauge. We then
obtain the U(1) gauge field a on S2 × S1 from (2.15) as

a = − cos2 θ

2 dτ − sin2 θ

2 dφ. (2.16)

In order to evaluate (2.9), we need to extend (2.16) from S2× S1 to a 4-manifold. We
can take W4 = S2×D2 as an extension, where the polar coordinate of D2 is given by (ρ, τ)
and the extension of a is

ã = − cos2 θ

2 ρ
2dτ − sin2 θ

2 dφ. (2.17)

We can readily check that
1

4π

∫
S2×D2

dã ∧ dã = π, (2.18)

which confirms that exp
(
iπHopf[S2 × S1, (z, a)]

)
= −1. This means that the skyrmion

becomes fermionic due to the Hopf term when we set k = 1.
One should be able to confirm the statistics of the skyrmion also by checking the statis-

tics of its creation/annihilation operator. Since a single skyrmion in the space S2 introduces
the configuration of the U(1) gauge field (2.16), we identify its creation/annihilation oper-
ator as the monopole operator m(x) for the U(1) gauge field. The monopole operator m(x)

– 7 –
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is defined as a defect operator. Roughly speaking, we remove a point x from the spacetime
3-manifold M3, and require the U(1) gauge field a to behave as∫

S2
x

1
2πda = ±1, (2.19)

where S2
x is a sufficiently small two-sphere surrounding the removed point x. When the

monopole operator m(x) is inserted, we assert that the path integral is performed over the
gauge fields with this boundary condition.

We note that the monopole operator is not U(1) gauge invariant when the Chern-
Simons term exists [43, 44]: under the gauge transformation, a 7→ a+ dε and z 7→ e−iεz,

m(x) 7→ ei k ε(x)m(x). (2.20)

As a result, the gauge-invariant monopole operator should be defined as

m(x)zα1(x) · · · zαk(x). (2.21)

The quantum number of this operator should be identical with that of the corresponding
skyrimon. In order to find the spin of the gauge-invariant monopole operator, note that
the spherical coordinate dependence of the scalar field z is described by the monopole
harmonics, Yq,`,m, near the monopole singularity [45]. For the minimal monopole charge,
q = 1/2, and the allowed values of ` are ` ∈ |q| + Z≥0 [46, 47]. Therefore, the spin of the
monopole operator is given by k/2 mod Z, which is consistent with the above computations.

3 Topological term of 3d CPN−1 sigma model with N ≥ 3

Let us move on to the 3d CPN−1 nonlinear sigma model, and consider its topological
terms. Even though the expressions for the topological terms of CP 1 and CPN−1 are
superficially similar, we shall emphasize the difference between them in this section. This
understanding turns out to be useful to find the correct description of topological terms
for the flag-manifold model in the next section.

3.1 Conflict between homotopy argument and the gauged-sigma model

The CPN−1 sigma model can be realized using a CN -valued scalar field z = (zα)α=1,...,N
with a unit norm, with a U(1) gauge field a. This corresponds to the fibration

S1 → S2N−1 → CPN−1, (3.1)

which is identical with the Hopf fibration for N = 2. In the following, we consider the case
with N ≥ 3. As a consequence of the homotopy exact sequence, for k ≥ 3,

πk(S2N−1) = πk(CPN−1) (3.2)

as πk(S1) = πk−1(S1) = 0, and we immediately find that

π3(CPN−1) = π4(CPN−1) = 0. (3.3)

– 8 –
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Therefore, in the conventional view of the homotopy, we do not expect the 3d CPN−1

model to have any topological terms, neither theta terms nor Wess-Zumino terms.
However, if we regard the CPN−1 model as an example of U(1) gauge-Higgs systems,

we can write down a Chern-Simons coupling for the U(1) gauge field,

ik
4π

∫
W4

dã ∧ dã, (3.4)

where W4 is a four-dimensional extension of the spacetime 3-manifold along with the spin
structure. We would like to resolve the discrepancy between these two arguments, and also
find the physical consequence of the topological terms.

3.2 Spin bordism of CPN−1 and the topological term

To find possible topological terms, we again consider AHSS

E2
p,q = Hp(CPN−1; Ωspin

q (pt)) =⇒ Ωspin
p+q(CPN−1). (3.5)

The E2 page is given by the following figure:

Hp(CPN−1)

Ω
sp

in
q

(p
t)

0 1 2 3 4 5 6

0

1

2

3

4

Z

Z2

Z2

Z

Z

Z2

Z2

Z

Z

Z2

Z2

Z

Z

Z2

Z2

Z

(3.6)

where the homology of CPN−1 is

H∗(CPN−1) =
{
Z ∗ = 0, 2, . . . , 2(N − 1),
0 else, (3.7)

(see appendix B.1 to confirm this result from the Leray-Serre spectral sequence (LSSS)).
Important difference from the N = 2 case is that H4(CPN−1) = Z for N ≥ 3 and this gives
rise to a possibly-nontrivial differential d2 : E2

4,0 → E2
2,1. This map is known to be given

by a dual of Steenrod square composed with mod 2 reduction [48], and here the generator
x ∈ H2(CPN−1;Z2) is mapped to Sq2(x) = x ∪ x ∈ H4(CPN−1;Z2). Correspondingly d2

is nontrivial, and thus E2
2,1 = Z2 is eliminated in the E∞-page, leading to

Ωspin
3 (CPN−1) = 0 (N ≥ 3). (3.8)

Therefore, (not only the ordinary ones but also) the discrete theta angles do not exist in
the 3d CPN−1 sigma model for N ≥ 3. Instead, we have

Ω̃spin
4 (CPN−1) = 2Z (3.9)

– 9 –
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which is nothing but the Chern-Simons coupling (3.4) in our description. Here, the map
H4(CPN−1;Z) = Z → 2Z ⊂ Ωspin

4 (CPN−1) is a multiplication by two,7 since the latter is
the kernel of d2 : E2

4,0 → E2
2,1. To be more explicit,8 we can take CP 2 ⊂ CPN−1 as the gen-

erator of H4(CPN−1,Z), which satisfies
∫
CP 2

(
da
2π

)2
= 1. On spin 4-manifolds X, however,

the Atiyah-Singer index theorem tells that
∫
X

(
da
2π

)2
is always an even integer, so there is

a factor-2 difference between the integral homology and the spin bordism of degree 4.
Let us make several remarks. Although the definition (3.4) looks very similar to the

one (2.9) in the CP 1 model, there are important differences. As Ωspin
3 (CPN−1) = 0 for

N ≥ 3, the CPN−1 configurations in 3 dimensions are always null-bordant within the
spin manifold. Therefore, unlike in the case of CP 1, we can take the 4d extension of the
fields (z̃, ã) as CPN−1 fields in the definition (3.4). A related remark is that, for CPN−1

models, we do not have any identifications on k, although the Hopf tem for the CP 1 model
has (2.13). For such an identification to exist, the phase factor exp

(
i

4π
∫
ada

)
needs to be

quantized. This indeed occurs for the CP 1 model because dã∧ dã = 0 when ã is restricted
to ã = iz̃†dz̃. However, for CPN−1 with N ≥ 3, one can easily check that dã∧dã 6= 0 even
with the constraint ã = iz̃†dz̃, so such quantization of phases does not occur. This explains
the fact that the topological term (3.4) comes from Ωspin

4 (CPN−1), not from Ωspin
3 (CPN−1),

in an intuitive way.

3.3 Statistics of skyrmions

Let us discuss the statistics of skyrmions. We add the level-1 Chern-Simons coupling to
CPN−1 sigma model for N ≥ 3.

In order to discuss the quantum number of skyrmions, we can look at the statistics of
corresponding monopole operators, as we have briefly explained in section 2.2. Because of
the Chern-Simons coupling (3.4), the naive monopole operator is not U(1) gauge invariant,
and the gauge-invariant monopole operator is given as

m(x)zα(x). (3.10)

Therefore, the skyrmion is in the defining representation of SU(N) flavor symmetry. In
order to discuss its spin, we again note that the z field in the vicinity of the monopole
singularity should be decomposed with the monopole harmonics Y1/2,`,m. Thus, the z field
has a half-integer spin, and so does the monopole operator m(x)zα(x). As a result, the
corresponding skyrmion is a fermion.

Let us confirm this result by directly evaluating the topological term (3.4) for the
adiabatic 2π-rotation of a skyrmion. To be specific, let us set N = 3 and put a CP 1

7We would like to note that this factor 2 appears due to the spin structure of the spacetime. When we only
assume the orientation structure, we need to compute the oriented bordism, instead. As (reduced) oriented
bordism is exactly identical to the homology at low degrees without this extra factor, we can classify the
topological terms using ordinary (co)homology in such cases [49]. Use of generalized (co)homology allows
us to deal with the subtle factor related to the spacetime structure.

8We thank the anonymous referee for suggestion of giving the following explicit explanation.
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skyrmion configuration in the first two components of CP 2 fields:

z(θ, φ) =

 cos θ2
eiφ sin θ

2
0

 . (3.11)

Here, we take the spherical coordinate of the space S2, and make θ and φ run over [0, π] and
[0, 2π) respectively. Then, we can realize the 2π rotation of this skyrmion by multiplying
the following SU(3) matrix,

z̃(ρ, α, θ, φ) =

1 0 0
0 ρ eiα −

√
1− ρ2

0
√

1− ρ2 ρ e−iα

 z(θ, φ). (3.12)

Here, α ∼ α + 2π is regarded as the imaginary-time circle at ρ = 1, and it is extended to
the two-dimensional disk D2. Importantly, unlike the case of CP 1 model, we here take a
4d extension of both the U(1) gauge field and the scalar field.9

Now, let us evaluate the Chern-Simons term. The U(1) gauge field is obtained as

ã = iz̃†dz̃ = − sin2 θ

2 dφ− sin2 θ

2 ρ
2dα. (3.13)

The phase factor acquired by the skyrmion is given by

exp
( i

4π

∫
S2×D2

dã ∧ dã
)

= exp
( i

4π2
∫ π

0
sin2 θ

2d sin2 θ

2

∫ 2π

0
dφ
∫ 1

0
dρ2

∫ 2π

0
dα
)

= −1, (3.14)

which shows that the skyrmion with the Chern-Simons coupling becomes a fermion.

4 Topological terms of 3d flag-manifold sigma model

We finally consider sigma models having flag manifolds

U(N)
U(1)N (4.1)

as a target space, which are another type of generalizations of CP 1 = U(2)/U(1)2.

4.1 Spin bordism of flag manifolds

As before, the classification of topological terms is given in terms of Ωspin
∗ (U(N)/U(1)N ).

The AHSS we consider is

E2
p,q = Hp(U(N)/U(1)N ; Ωspin

q (pt)) =⇒ Ωspin
p+q(U(N)/U(1)N ) (4.2)

9We note that the same is true for skyrmions of 4d Nf -flavor QCD; for Nf = 2, we cannot extend the
skyrmion configuration with 2π rotation into 5d, but it becomes possible if we embed it into larger flavors
Nf ≥ 3 [50].
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and the E2 page is as follows:

0 1 2 3 4

0

1

2

3

4

Z

Z2

Z2

Z

Z⊕(N−1)

Z⊕(N−1)
2

Z⊕(N−1)
2

∗

Z⊕
(
N(N−1)

2 −1
)Z

⊕
(
N(N−1)

2 −1
)

2

∗

∗

(4.3)
See appendix B.2 for the computation of integral cohomology of flag manifolds, which is
necessary for filling in the above table. Here, note that the Z2 cohomology ring of flag
manifolds is known to be [51]

H∗
( U(N)

U(1)N ;Z2

)
' H∗

(
BU(1)N ;Z2

) /
I

= Z2[x1, . . . , xN ]
/(

ΛZ(x1, . . . , xN )⊗ Z2
) (4.4)

where ΛZ(x1, . . . , xN ) is a ring of symmetric functions of generators x1, . . . , xN ∈
H2(BU(1)N ). This implies that the differential d2 : E2

4,0 → E2
2,1 given by a dual Steenrod

square composed with mod 2 reduction [48] is nontrivial, and none of the Z2’s involved
survive to the E∞-page. This shows that

Ωspin
3 (U(N)/U(1)N ) = 0, (4.5)

and thus both ordinary and discrete theta angles do not exist in the 3d U(N)/U(1)N sigma
model for N ≥ 3. We also find that

Ω̃spin
4 (U(N)/U(1)N ) = (2Z)⊕(N−1) ⊕ Z⊕

( (N−1)(N−2)
2 −1

)
, (4.6)

each factor corresponding to a Chern-Simons-like term, and there are N(N−1)
2 − 1 of them

in total.10 In this formula, we have already neglected the purely gravitational term by
considering the reduced bordism.

As we can trivially rewrite U(N)/U(1)N ' SU(N)/U(1)N−1, we expect that there are
N − 1 types of U(1) gauge fields, (aI)I=1,...,N−1, in the gauged sigma-model description.
This would naively allow us to write down the (N − 1) diagonal Chern-Simons terms and

10The factor 2 in front of Z appears in the same way as we have discussed in (3.9). Here, it means that
the diagonal Chern-Simons terms are quantized with the coefficient 1

4π , while the off-diagonal ones are
quantized with the coefficient 1

2π , which is twice of that of diagonal ones.
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(N−1)(N−2)
2 off-diagonal Chern-Simons terms,

N−1∑
I=1

kI
4π

∫
W4

f2
I +

∑
I<J

kIJ
2π

∫
W4

fI ∧ fJ , (4.7)

where fI = daI . However, this overcounts the number of independent Chern-Simons
couplings according to the bordism computations (4.6). We shall resolve this issue in the
next subsection by closely looking at the constraint on U(1) gauge fields.

In passing, we note that this is again in conflict with the homotopy argument, where
the homotopy exact sequence on the fibration

U(1)N → U(N)→ U(N)
U(1)N (4.8)

leads to
π3

( U(N)
U(1)N

)
= Z,

π4

( U(N)
U(1)N

)
= 0.

(4.9)

Thus, the homotopy argument would imply the existence of one continuous theta angle.
However, the bordism suggests that the 3d theta terms (both ordinary and discrete) do
not exist. Instead, there should to be many Chern-Simons terms, which are also invisible
from the homotopy group.

4.2 Effective Lagrangian of 3d flag-manifold sigma models

Let us consider the form of the effective Lagrangian for 3d flag-manifold sigma models. We
take an approach of the gauged nonlinear sigma model, by introducing an SU(N) scalar
field U and U(1) gauge fields aI=1,...,N−1. We denote the SU(N)-valued scalar field U as

U = [z1, z2, . . . , zN ] , (4.10)

where zi are N -component complex vectors with the constraint

z†i · zj = δij , (4.11)

and also with det[z1, . . . , zN ] = 1. We can then express zN in terms of the other scalars
{zI}I=1,...,N−1 as

zN,α =
∑

α1,...,αN−1

εα1···αN−1αz
∗
1,α1 · · · z

∗
N−1,αN−1 . (4.12)

Under the U(1) gauge transformations

aI(x) 7→ aI(x) + dλI(x), (4.13)

the scalar fields transform as
zI 7→ e−iλIzI (4.14)

and
zN 7→ ei(λ1+···+λN−1)zN . (4.15)
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We can write down the SU(N)-symmetric kinetic term as

1
g2

N∑
i=1
|(d + iai)zi|2, (4.16)

where we have set aN := −(a1 + · · ·+ aN−1) to emphasize the ZN permutation symmetry
of this Lagrangian. We can solve the equation of motion for the gauge fields to find the
constraint

aI = iz†IdzI , (4.17)

for I = 1, . . . , N − 1. With this setup, we try to find the possible topological terms that
can be added to this Lagrangian.

We have observed that there are potentially N(N−1)
2 Chern-Simons type terms listed

in (4.7) for the 3d sigma model on the flag manifold. Meanwhile, due to

E2
4,0 = H4(SU(N)/U(1)N−1) = Z⊕

(
N(N−1)

2 −1
)
, (4.18)

the E2 page of the AHSS (4.3) implies the existence of N(N−1)
2 − 1 of them. This suggests

that one specific linear combination of Chern-Simons terms in (4.7) somehow becomes
trivial, which enables us to identify N(N−1)

2 − 1 independent Chern-Simons terms modded
out by such a relation. In appendix A, we actually find that the U(1) gauge fields are
subject to the relation given by

N−1∑
I=1

f2
I +

∑
I<J

fIfJ = −1
2d

 ∑
i 6=j<k

aijajkaki

 , (4.19)

where we have introduced
aij = z†i dzj (4.20)

for i 6= j. Under the U(1) gauge transformations, they behave as

aij 7→ e+iλiz†i d(e−iλjzj) = ei(λi−λj)
(
z†i dzj + (−i)(z†i · zj)dλj

)
= ei(λi−λj)aij , (4.21)

where we have used z†j · zi = 0 for i 6= j. Therefore, although aij are not U(1) gauge
invariant, they transform covariantly. Accordingly, following combinations

aij ∧ ajk ∧ aki, (4.22)

for i 6= j 6= k, are gauge invariant,11 which define globally well-defined 3-forms. This shows
that the right-hand-side of (4.19) is an exact 4-form, and we have reproduced the result of
the cohomology group by an explicit computation. We note that

(aijajkaki)∗ = ajiaikakj , (4.23)

so the right-hand-side of (4.19) is real-valued as it should be.
11aijaji is also gauge invariant, but it is not a Lorentz scalar in 3d as it is a 2-form. We can construct

Lorentz scalars by considering (aijaji) ∧ ?(ak`a`k) or aijaji ∧ ?(dak), but they are higher-derivative cor-
rections. We note that, in 2d, aijaji is dual to the Lorentz scalar, and it indeed appears in the effective
Lagrangian [18, 19]. Therefore, we may be able to regard this new term, aijajkaki, as its 3d analogue.
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According to this relation (4.19), the following combination involving Chern-Simons
terms

N−1∑
I=1

1
2π

∫
W4

fI ∧ fI +
∑
I<J

1
2π

∫
W4

fI ∧ fJ −
∑
i 6=j<k

1
4π

∫
M3

aijajkaki (4.24)

potentially provides a bordism invariant of 3d spin manifolds equipped with a map to
U(N)/U(1)N , as in the case of the Hopf term in the CP 1 model. Here,M3 is a 3d spacetime
manifold where ∂W4 = M3. However, since the spin bordism Ωspin

3 (U(N)/U(1)N ) = 0, we
can take a 4d extension as a flag-manifold field, not as U(1) gauge fields. Hence, the above
candidate term turns out to be trivial

i
2π

∫
W4

N−1∑
I=1

fI ∧ fI +
∑
I<J

fI ∧ fJ −
1
2
∑
i 6=j<k

d(aijajkaki)

 = 0, (4.25)

and we can simply eliminate one of the off-diagonal Chern-Simons term by using (4.19).12

In the following, let us explicitly work on the case N = 3, i.e. on the 3d SU(3)/U(1)2

flag-manifold sigma model. Topological terms of the effective Lagrangian can be written as

ik1
4π

∫
W4

dã1 ∧ dã1 + ik2
4π

∫
W4

dã2 ∧ dã2 + i h2π

∫
M3

a12a23a31. (4.26)

Here, we note that
(a12a23a31)∗ = a12a23a31 − d(a12a21), (4.27)

and thus it gives a real-valued 3-form up to a total derivative. Therefore, we do not need to
introduce coupling constants separately for a12a23a31 and (a12a23a31)∗ = a21a13a32. The
coupling constant h for a12a23a31 does not need to be quantized unlike the Chern-Simons
couplings k1, k2, and it does not have a periodicity unlike the theta terms, even though
the term is topological. Even if we add the off-diagonal Chern-Simons term, k12

2π dã1 ∧ dã2,
its effect can be taken into account with the above Lagrangian by rewriting the couplings
k′1 = k1 − 2k12, k′2 = k2 − 2k12, and h′ = h+ k12.

Let us give a quick observation on how we could introduce the Chern-Simons coupling
in view of symmetry. Our kinetic term (4.16) is constructed so that it has Z3 permutation
symmetry, zi 7→ zi+1 mod 3, which is often a consequence of the underlying lattice symmetry
of quantum spin systems. However, the Chern-Simons coupling cannot be introduced in
a Z3-symmetric way. Indeed, the only Z3 symmetric combination of the diagonal Chern-
Simons term is

f2
1 + f2

2 + f2
3 = 2(f2

1 + f2
2 + f1f2), (4.28)

since f3 = −(f1 + f2), and because of the relation (4.19), this is a trivial element of the
cohomology. This would suggest that, if we try to construct a SU(3)/U(1)2 model with

12The relation (4.19) has been used to construct the Hopf invariant for the SU(3)/U(1)2 flag manifold [52]
(see also [35]). In order to detect π3(U(N)/U(1)N ) = Z, as a special feature of the sphere S3, we can take
the globally defined U(1) gauge fields, a1, . . . , aN−1 on S3, and this fact plays a crucial role to have the
Hopf invariant in [52]. Discussion in this paragraph has shown that the corresponding θ terms do not exist
for the 3d sigma model including discrete ones, when we adopt the bordism classification of topological
terms in order to define QFTs on general 3-manifolds.
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nontrivial Chern-Simons terms from the SU(3) Heisenberg-like model on triangular lattices,
we need to break the full wallpaper group, p6m, to some smaller subgroup explicitly.

Lastly, we consider the properties of skyrmions for the SU(3)/U(1)2 sigma model. As
there are two independent U(1) gauge fields, there are two different skyrmions charges
defined by QI = 1

2π
∫
M2

daI for I = 1, 2. Let us introduce a skyrmion for Q1 and discuss
its statistics as we have done in section 3. Such a skyrmion can be constructed as

U(θ, φ) = [z1, z2, z3] =

 cos θ2 0 e−iφ sin θ
2

eiφ sin θ
2 0 − cos θ2

0 1 0

 . (4.29)

We can further construct a 4d extension of the adiabatically 2π-rotated skyrmions by
multiplying an SU(3) matrix from the left, exactly as we did in (3.12). One can readily
check that the skyrmion becomes a fermion when k1 is odd. Note that the non-quantized
topological term, a12a23a31, does not affect the result since it vanishes identically for this
configuration on S2 × S1.
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A Derivation of constraint relations for the flag sigma model

In this appendix, we prove the relation for the flag-manifold sigma model,

N∑
i=1

f2
i = −d

 ∑
i 6=j<k

aijajkaki

 , (A.1)

where ∑i 6=j<k means the summation over all 1 ≤ i, j, k ≤ N satisfying i 6= j and both
i, j < k. Combined with the relation fN = −f1 − · · · − fN−1, we find that

N−1∑
I=1

f2
I +

∑
I<J

fIfJ = −1
2d

 ∑
i 6=j<k

aijajkaki

 , (A.2)

where capital I, J run over 1, . . . , N − 1, while i, j, k run over 1, . . . , N .
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Let U be a U(N)-valued scalar field and define the Maurer-Cartan form as

A = U †dU. (A.3)

Let Pi be the projector to i-th component and denote

Ai = PiAPi (A.4)

and13

Fi = dAi +A2
i . (A.5)

We note that, in this appendix, the gauge fields, A and Ai, are taken to be anti-Hermitian,
and thus there is an extra fator of i to make the connection with the main text of the paper:

ai = tr(iAi), fi = tr(iFi). (A.6)

Let us prove the following relations,∑
i

tr(Fi) = 0, (A.7)

∑
i

tr(F 2
i ) = d

 ∑
i 6=j<k

tr(PiAPjAPkA)

 . (A.8)

The first relation (A.7) can be shown very easily. Since dA = −A2, we find that

Fi = Pi(−A2)Pi + PiAPiAPi = −PiA
∑
j 6=i

PjAPi. (A.9)

Therefore, ∑
i

tr(Fi) = −
∑
i

∑
j 6=i

tr(PiAPjA) = 0. (A.10)

Here, we use the cyclic property of the trace, which gives tr(PiAPjA) = −tr(PjAPiA).
Let us show the second relation (A.8).

N∑
i=1

tr(F 2
i ) =

N∑
i=1

∑
j,k 6=i

tr(PiAPjAPiAPkA)

=
N−1∑
I=1

tr(PIA(1− PI)APIA(1− PI)A)

+
∑
J,K

tr
((

1−
∑
L

PL

)
APJA

(
1−

∑
M

PM

)
APKA

)
. (A.11)

In order to obtain the last expression, we replace the summations i, j, k over 1, . . . , N into
the summations I, J,K over 1, . . . , N − 1 and N is treated separately, and we eliminate

13Since Ai is a U(1) gauge field, A2
i -term in the definition of Fi is not necessary, as it automatically

vanishes. However, the proof in this appendix can be generalized to the case where Ai is a U(n) gauge field,
which corresponds to more general flag manifolds, U(n1 + . . .+nN )/(U(n1)×· · ·×U(nN )). Therefore, in the
proof, we do not use any special properties for U(1) gauge fields, and keep the A2

i -term in the field strength.
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PN by substituting PN = 1 − P1 − · · · − PN−1. By cyclic property, tr((PIA)4) = 0 and∑
J,K,L,M tr(PJAPKAPLAPMA) = 0. We therefore find∑
i

tr(F 2
i ) =

∑
I

{
tr(PIdAPIdA) + 2tr((PIA)2PIdA)

}
−
∑
J,K

tr(PJdAPKdA) + 2
∑
J,K,L

tr(PJAPKAPLdA)

= d

∑
J 6=K

tr(PJAPKA2) + 2
3

∑
I

tr((PIA)3)−
∑
J,K,L

tr(PJAPKAPLA)


= d

1
3

∑
J 6=K 6=L

tr(PJAPKAPLA) +
∑
J 6=K

tr(PJAPKAPNA)


= d

 ∑
i 6=j<k

tr(PiAPjAPkA)

 . (A.12)

The first equation on the right-hand-side is obtained by replacing A2 = −dA in (A.11) with
the above note. As it turns out to be a total derivative, we extract the exterior derivative
to find the second equality, and replace dA by −A2 inside the overall differential. In
order to go from the second line to the third line on the right-hand-side, we have replaced
A2 = A(∑L PL+PN )A and then consider the combinatorics for the domain of summations.
To obtain the last line from the third one, we note that tr(PJAPKAPLA) is cyclically
symmetric in J,K,L, so we can replace ∑J 6=K 6=L = 3∑J 6=K<L in the first term. Then,
we can combine the first and second terms in the third line by reintroducing the dummy
indices i, j, k running over 1, . . . , N , which gives the last line, and this completes the proof.

B Leray-Serre spectral sequence for cohomologies of sigma models

Leray-Serre spectral sequence (LSSS) provides us a systematic way to find cohomologies
from the fibration,

F → E → B. (B.1)

When π1(B) acts trivially on the cohomology of the fiber H∗(F ), LSSS gives

Hp(B;Hq(F )) =⇒ Hp+q(E), (B.2)

that is, the E2 page can be written down by knowing the cohomologies of the base space
B and the fiber F , and it converges to the cohomology of the total space E. LSSS is a
first-quadrant spectral sequence, so if B or F is finite dimensional, then LSSS collapses at
some finite page. There are two typical ways to use LSSS. The first one is to obtain H∗(E)
when we already know about H∗(B) and H∗(F ). The another one is the “opposite” way:
knowing H∗(E) and one of cohomologies of B or F , we constrain the possible cohomologies
of the last one.

In the context of the sigma model, we are interested in the cohomology of the target
space X. In many cases, the target space is given by the homogeneous Riemannian space
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G/H, because this appears when a global symmetry G is spontaneously broken to its
subgroup H by some condensates. Then, there is a principal H-bundle,

H → G→ G/H. (B.3)

When both G and H are continuous and connected Lie groups, and G is moreover simply
connected, then the homotopy exact sequence tells

π1(G/H) ' 0. (B.4)

Therefore, LSSS works nicely, which gives

Hp(G/H;Hq(H)) =⇒ Hp+q(G). (B.5)

Since (B.3) gives a principal bundle, which is not a general fibration, we have another
fibration out of (B.3);

G→ G/H → BH, (B.6)

where BH is the classifying space of H. When H is connected, π1(BH) ' π0(H) = 0, and
thus LSSS again works nicely. We obtain

Hp(BH;Hq(G)) =⇒ Hp+q(G/H). (B.7)

Therefore, this spectral sequence makes a relationship between topological terms of H
gauge fields and topological terms of G/H-valued sigma models.

In the following of this appendix, we first study the cohomology of CPN−1 as an
exercise, and then compute and reinterpret the cohomology of SU(N)/U(1)N−1.

B.1 Cohomology of CPN−1

Let us apply the LSSS to the fibration (3.1), which gives

Hp(CPN−1;Hq(U(1))) =⇒ Hp+q(S2N−1). (B.8)

We note that H∗(Sn) = Z for ∗ = 0, n and others vanish. Therefore, the cohomologies
of the total space and the fiber is known, and thus we can constrain H∗(CPN−1) from
consistency. Let us explicitly work on the case N = 3, i.e. for the case of CP 2. The E2
page is given by

Hp(CP 2)

H
q
(S

1 )

0 1 2 3 4

0
1

Z

Z

Z

Z

Z

Z

(B.9)

Since CPN−1 is connected, H0(CPN−1) = Z, and then we can fill the 0th column. Since
the total-space cohomology H∗(S5) does not have the nontrivial cohomology until ∗ = 5,

– 19 –



J
H
E
P
0
8
(
2
0
2
1
)
0
7
5

Z in (p, q) = (0, 1) must be eliminated by the d2 differential. Let y ∈ H1(S1) be the
generator, and we denote d2(y) = x and H2(CPN−1) ' Z is generated by x. Then,
(p, q) = (2, 1) is generated by their tensor products xy, which again should be eliminated
by d2, and the Leibniz rule gives d2(xy) = d2(x)y+xd2(y) = x2. Thus, x2 is the generator
of H4(CP 2) ' Z. Since (p, q) = (4, 1) must not be eliminated by differentials because
H5(S5) = Z, we find that d2(x2y) = 0, and then we obtain H∗(CP 2) ' Z[x]/(x3) as a ring
isomorphism. This reproduces (3.7).

We would like to identify this generator x as a U(1) field strength da/2π in the gauged
sigma model description. Since the fibration (3.1) is principal, we can obtain another
fibration out of it:

S2N−1 → CPN−1 → BU(1). (B.10)

Let us apply the LSSS to it. We note that π1(BU(1)) = 0, and thus the complication of
local coefficients does not come up. To be specific, let us consider the case N = 3, while
the discussion for general N is also straightforward. LSSS gives

Hp(BU(1);Hq(S5)) =⇒ Hp+q(CP 2). (B.11)

Then, E2 page looks like

Hp(BU(1))

H
q
(S

5 )

0 1 2 3 4 5 6 7 8

0
1
2
3
4
5

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

(B.12)

As CP 2 is a 4-manifold, H∗(CP 2) must vanish for ∗ ≥ 5. Just because of this trivial
information, we find that the d6 differentials should be identity maps, which are drawn
with blue solid arrows. As a result, we find that, for N ≥ 3,

H4(CPN−1) ' H4(BU(1)), (B.13)

which is generated by ∫ da
2π ∧

da
2π . (B.14)

This elucidates that the topological term of our interest can be described as the Chern-
Simons coupling.

In this case, this argument may seem to be tautological, reminding the fact that
BU(1) ' CP∞. This, however, turns out to be a good exercise for the flag-manifold sigma
models, as we discuss in the next subsection.
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B.2 Cohomology of SU(N)/U(1)N−1

Next, let us compute the cohomology of the flag manifold SU(N)/U(1)N−1 using LSSS for
U(1)N−1 → SU(N)→ SU(N)/U(1)N−1:

Hp(SU(N)/U(1)N−1;Hq(U(1)N−1)) =⇒ Hp+q(SU(N)). (B.15)

The basic strategy is as follows: we know the cohomologiesH∗(U(1)N−1) andH∗(SU(N)) =∧[x3, x5, . . . , x2N−1], and then we find out H∗(SU(N)/U(1)N−1) from consistency. We also
note that dim(SU(N)/U(1)N−1) = N(N − 1), and the degree beyond it must vanish.

Let us take the specific example, N = 3, in the following. The E2 page looks as

Hp(SU(3)/U(1)2)

H
q
(U

(1
)2 )

0 1 2 3 4 5 6

0
1
2

Z
Z⊕2

Z

Z⊕2

Z⊕4

Z⊕2

Z⊕2

Z⊕4

Z⊕2

Z
Z⊕2

Z

(B.16)

Here, we denote Z⊕n = ⊕ni=1Z. As a result, we find that

Hp(SU(3)/U(1)2) =


Z p = 0, 6,

Z⊕2 p = 2, 4,
0 else.

(B.17)

Although we did not identify the cohomology ring structure, it is consistent with (4.4)
as a module.14 With this information, we can start the computation of the spin bordism
using AHSS, as we did in the main text. Here, instead, let us take a close look at the
physical meaning of these nontrivial cohomologies. As in the case of CPN−1 model, it is
convenient to describe the SU(N)/U(1)N−1 sigma model using the SU(N)-valued scalar
field U with (N−1) U(1) gauge fields, a1, . . . , aN−1. Then, the natural question is whether
the nontrivial cohomologies of SU(N)/U(1)N−1 are related to the nontrivial topological
terms of these U(1) gauge fields.

The answer turns out to be affirmative. To see this, we consider the following fibration,

SU(N)→ SU(N)/U(1)N−1 → BU(1)N−1. (B.18)

14Indeed, LSSS is not necessarily useful to determine the cohomology ring structure. In particular, the
cohomology ring of the total space cannot be determined from LSSS. For example, we can consider the
fibration, CP 1 → U(3)/U(1)3 → CP 2, which can be obtained from U(2)×U(1)→ U(3)→ CP 2 by dividing
the total space and the fiber by U(1)3. LSSS immediately reproduces (B.17) as a module, but it does not
give the cohomology ring structure.
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We apply LSSS to this fibration. Let us set N = 3 again for simplicity, then the E2 page
is given by

Hp(BU(1)2)

H
q
(S

U
(3

))

0 1 2 3 4 5 6 7 8

0
1
2
3
4
5
6
7
8

Z

Z

Z

Z

Z⊕2

Z⊕2

Z⊕2

Z⊕2

Z⊕3

Z⊕3

Z⊕3

Z⊕3

Z⊕4

Z⊕4

Z⊕4

Z⊕4

Z⊕5

Z⊕5

Z⊕5

Z⊕5

(B.19)

Here, the d4 differentials are drawn with blue solid arrows, and the d6 differentials are
drawn with the red dashed arrows. The spectral sequence clashes after the E6 page. We
then find that only the q = 0 components with Hp(BU(1)2) for p = 0, 2, 4, 6 can survive
in the E∞ page, and thus the nontrivial cohomology H∗(SU(3)/U(1)2) has a well-defined
origin in Hp(BU(1)2).

For general N , we get

H2(SU(N)/U(1)N−1) = Z⊕(N−1), H4(SU(N)/U(1)N−1) = Z⊕
(
N(N−1)

2 −1
)
. (B.20)

We note that H2(SU(N)/U(1)N−1) ' H2(BU(1)N−1) ' Z⊕(N−1). As we have seen in the
case N = 3, however,

H4(SU(N)/U(1)N−1) ' H4(BU(1)N−1)/d0,3
4 (H3(SU(N)))

' Z⊕
N(N−1)

2 /d0,3
4 (Z)

' Z⊕
(
N(N−1)

2 −1
)
. (B.21)

Thus, we can express these topological terms as fi ∧ fj , but there is a constraint compared
with the U(1)N−1 gauge theory. We have computed the explicit relation among them in
appendix A.

C Realization of topological terms by a free massive fermion

In this section, we present an explicit realization of the Hopf term (2.9) as a partition
function of a massive free fermion. Let us consider a (2 + 1)d Euclidean relativistic Dirac
fermion coupled with spin fields n which take values on sphere S2,

L = iψ̄( /D +mn · σ)ψ, n2 = 1. (C.1)
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Here, /D = γµ(∂µ− iAµ) is a covariant derivative with Aµ a spinc gauge field, γµ’s are the 2
by 2 gamma matrices, and σ are Pauli matrices for the internal spin space. It was shown
that the large-scale dynamics of the spin fields n compared to the inverse of the mass,
1/m > 0, is described by the nonlinear sigma model with the Hopf term [36],

exp (−Seff) =
∫
Dψ̄Dψ exp

(
−
∫
d3xL

)
, (C.2)

where15

Seff = m

8π

∫
d3x(∂µn)2 + i

4π

∫
ada+ i

2π

∫
Ada. (C.4)

The imaginary part of the effective action Seff is the Chern-Simons term corresponding to
the spinc bordism group Ω̃spinc

4 (CP 1) = Z, and it describes two topological responses: a
skyrmion of the spin fields n has a unit U(1) charge, and the adiabatic 2π rotation of the
skyrmion texture gives rise to the Berry phase (−1) on the ground state wave function. By
restricting the background spinc fields A to a spin one, the third term of (C.4) vanishes
and only the Z2-quantized Hopf term of (C.4) remains, which is nothing but the Hopf
term (2.9) with k = 1.

A corresponding lattice model of (C.4) is the following imaginary-time-dependent
Hamiltonian of fermions on a closed two-dimensional square lattice [53]

Ĥ(τ) =
∑
x∈Z2

[(
ψ̂†x+x̂

−σzτz + iτx
2 ψ̂x + ψ̂†x+ŷ

−σzτz + iτy
2 ψ̂x + h.c.

)

+ ψ̂†x(mn(x, τ) · στz + λσzτz)ψ̂x
]
, (C.5)

where ψ̂†x/ψ̂x are complex fermion creation/annihilation operators, σµ, τµ are Pauli ma-
trices, n(x, τ) are spin fields with n2 = 1, and m > 0 and λ are parameters controlling
whether the skyrmion becomes a fermion or not. For a uniform configuration of the spin
fields n(x, τ) ≡ n, this Hamiltonian can be written as Ĥ = ∑

k ψ
†
kH(k,n)ψk with a one-

particle Hamiltonian

H(k,n) = sin kxτx + sin kyτy + (mn · σ + (λ− cos kx − cos ky)σz)τz (C.6)

in the Bloch-momentum space. The energy eigenvalues of H(k,n) are given by

ε(k)2 = sin2 kx + sin2 ky +m2n2
1 +m2n2

2 + (mn3 + λ− cos kx − cos ky)2, (C.7)

which has a finite energy gap unless m = |λ|, |λ + 2|, |λ − 2| is satisfied. For λ = 2 the
low-energy Hamiltonian around the Gamma point k ∼ 0 reduces to the Dirac model (C.1),

15Strictly speaking, the imaginary part of (C.4) is defined as

i

4π

∫
W4

(dã+ 2dÃ) ∧ dã (C.3)

with ã and Ã extensions of U(1) and spinc fields, respectively, to a spinc bounding manifold W4.
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thus it is expected that the ground state with a skyrmion indicates desired topological
responses for an appropriate parameter region. Hereafter, we set m = 1 and focus on
λ = 0,±2,±4 as representatives of different invertible phases.

A skyrmion texture in a finite square lattice with sites {1, . . . , Lx}×{1, . . . , Ly} in the
periodic boundary conditions is introduced, for example, by setting the unit vector n to

n1(x, y, τ = 0) = sin
(2πx
Lx
− π

)
cos

(
πy

Ly
− π

2

)
, (C.8)

n2(x, y, τ = 0) = sin
(2πx
Lx
− π

)
cos2

(
πx

Ly
− π

2

)
, (C.9)

n3(x, y, τ = 0) = 1− 2 cos2
(
πx

Lx
− π

2

)
cos2

(
πy

Ly
− π

2

)
. (C.10)

This construction is based on the smash product S1 ∧ S1 ∼= S2 [54]. We numerically find
that the number of electrons of the ground state |Ω〉 (equivalently, the number of negative
eigenvalues of one-particle Hamiltonian of (C.4)) in the presence of a skyrmion is

∆N := 〈Ω|N̂ |Ω〉 − 2LxLy =


−1 (λ = ±2),
2 (λ = 0),
0 (λ = ±4),

(C.11)

for sufficiently large Lx and Ly. Here, 2LxLy is the number of electrons of the ground
state without skyrmions. Thus, we confirm that a skyrmion behaves as an electron
for 1 < |λ| < 3. We also confirm that ∆N coincides with the second Chern number
− 1

8π2
∫
T 2×S2 trF(k,n)2 of the semiclassical HamiltonianH(k,n) over the Bloch-momentum

space T 2 and the spin space S2 with the identity map n : S2 → S2.
Next, we evaluate the imaginary-time evolution of the Hamiltonian with the 2π rotation

of skyrmion, which can be introduced by hand as

ñ1(x, y, τ) + iñ2(x, y, τ) = e2πiτ/T (n1(x, y, τ = 0) + in2(x, y, τ = 0)),
ñ3(x, y, τ) = n3(x, y, τ = 0). (C.12)

For the adiabatic limit T →∞, the ground state |Ω〉 stays in the instantaneous ground state
|Ω(τ)〉, which is defined by Ĥ(τ) |Ω(τ)〉 = EΩ(τ) |Ω(τ)〉, and acquires the Berry phase as in

P e−
∫ T

0 Ĥ(τ)dτ |Ω〉 ∼ e−
∫ T

0 EΩ(τ ′)dτ ′e−
∮
〈Ω(τ)|dΩ(τ)〉 |Ω〉 . (C.13)

The Berry phase e−
∮
〈Ω(τ)|dΩ(τ)〉 can be computed as the product of fermion ground-state

overlaps
〈Ω(τ + δτ)|Ω(τ)〉 = det[Ψ(τ + δτ)†Ψ(τ)]. (C.14)

Here, Ψ(τ) = (φ1(τ), . . . , φN (τ)) is the 4LxLy × N matrix composed of one-particle
eigenvectors φj(τ), j = 1, . . . , N , which are eigenvectors of the one-particle Hamiltonian
defined in (C.5) having negative energies. We then numerically find that

e−
∮
〈Ω|dΩ〉 =

{
−1 (λ = ±2),
1 (λ = 0,±4), (C.15)

as expected. The skyrmion with an odd U(1) charge has an odd half-integer spin.
It is not evident from the point of view of the lattice model that the Berry phase of

the Hamiltonian is always quantized to ±1. We leave this issue to future studies.
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