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We construct an anomaly-preserving compactification of 4D gauge theories, including
SU(N) Yang–Mills theory, N = 1 supersymmetric Yang–Mills theory, and quantum chro-
modynamics (QCD), down to 2D by turning on the ’t Hooft flux through T2. This provides
a new framework to analytically calculate nonperturbative properties such as confinement,
chiral symmetry breaking, and the multi-branch structure of vacua. We give a semiclassi-
cal description of these phenomena based on the center vortex and show that it enjoys the
same anomaly-matching condition as the original 4D gauge theory. We conjecture that the
weak-coupling vacuum structure on small T 2 × R2 is adiabatically connected to the strong-
coupling regime on R4 without any phase transitions. In QCD with fundamental quarks as
well, we can turn on the ’t Hooft flux either by activating the SU(Nf)V symmetry twist for
Nf = N flavors or by introducing a magnetic flux of baryon number U(1)B for arbitrary Nf

flavors. In both cases, the weak-coupling center-vortex theory gives a prediction consistent
with the chiral Lagrangian of 4D QCD.
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1. Introduction and summary
Color confinement [1] is the fundamental property of 4D pure Yang–Mills theory. It has been
suspected for a long time that topological defects play important roles in understanding con-
finement, such as the condensation of monopoles and proliferation of center vortices [2–8].
Monopoles and center vortices are particle-like and string-like objects in 4D spacetime, respec-
tively, and they both carry color–magnetic charges. Their condensation or proliferation means
the liberation of magnetic charges, which leads to the confinement of color–electric charges. De-
spite its beauty, it is not easy to incorporate this idea with the actual calculation to demonstrate
the confinement of 4D gauge theories. From the practical point of view, the difficulty reflects
the fact that they are extended objects in the Euclidean path integral. Their action densities are
inversely proportional to the gauge coupling, ∼O(1/g2), and thus the entropy for such config-
urations, ∼O(1), cannot overcome the suppression by the action density in the weak-coupling
regime. In the strong-coupling regime of U(1) lattice gauge theories [9–12], this relation is re-
versed and confinement occurs due to the proliferation of monopole worldlines as confirmed
numerically. Currently, its analytical success in 4D continuum field theory is limited to the case
with sufficiently many supersymmetries, in which we can control strongly coupled regimes [13],
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(a) (b)

Fig. 1. Expected phase diagrams as a function of the compactification size L of T2. (a) In a T2 compact-
ification of 4D gauge theories (YM, QCD) without ’t Hooft flux, there is generically a phase transition
such as center-symmetry breaking and chiral restoration. (b) In an ’t Hooft flux background, the phase
transitions can be avoided. The dynamics of small T 2 × R2 theory can be adiabatically connected to the
strongly coupled dynamics on R4, and it is semiclassically calculable. The small-T2 regime provides a
window in which the center-vortex mechanism is operative.

and it demonstrates confinement by monopole (or dyon) condensation for softly broken N = 2
supersymmetry.

However, this does not rule out the weak-coupling semiclassical analysis with monopoles
or center vortices to describe confinement. Indeed, when we consider Yang–Mills theory on
R3 × S1 with suitable deformations, many important features of the confinement phase can
be obtained by the semiclassical analysis using monopoles [14–18]. In this case, the monopole
worldline can wrap the compactified S1 direction, and thus monopoles behave as instantons,
or point-like objects, in 3D effective field theory on R3. This gives us a chance to circumvent
the arguments on action density versus entropy when S1 is sufficiently small. This program
has revealed many examples of confinement, chiral symmetry breaking, and the multi-branch
structure of vacua at weak couplings. An important lesson is that these nonperturbative phe-
nomena are not necessarily strong-coupling effects.

In this work, we propose a new calculable framework for 4D gauge theories by compact-
ifying the spacetime to small R2 × T 2 while preserving anomalies. This construction gives a
new semiclassical description of confinement and chiral symmetry realization based on center
vortices. Our analysis of this paper includes Yang–Mills (YM) theory, N = 1 supersymmetric
Yang–Mills (SYM) theory, and quantum chromodynamics (QCD) with fundamental quarks.
When we consider the T2 compactification, the center-vortex worldsheet can wrap around it,
and then it can be regarded as a point-like object in R2. For this purpose, we have to perform
a specific T2 compactification so that such a point-like center vortex exists as a local minimum
of the YM action. It turns out that we can achieve this without adding any deformations or
extra matter fields to the theories, and we only need to take the ’t Hooft twisted boundary
condition along the T2 direction [19,20]. Remarkably, these analytical computations on small
R2 × T 2 with ’t Hooft flux can reproduce important qualitative features of 4D confinement for
all these theories, YM, N = 1 SYM, and QCD. We uncover the kinematical reasoning behind
this matching by computing ’t Hooft anomalies of both 2D and 4D field theories, and we show
that they are intimately related in the presence of the ’t Hooft flux [21,22]. In other words, this
T2 compactification preserves the ’t Hooft anomaly, and thus both 2D and 4D dynamics are
constrained by the same anomaly-matching condition. Based on these observations, we cannot
help but conjecture that our semiclassical center-vortex theory on R2 × T 2 with ’t Hooft flux
is adiabatically connected to the strongly coupled dynamics of confining gauge theories on R4

without having phase transitions (see Fig. 1). Of course, this is quite a nontrivial conjecture
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(a) (b) (c)

Fig. 2. (a) YM theory (with adjoint matter λ): ’t Hooft flux through T2 � (x3, x4) can be realized by
the twisted boundary condition, which is a mild violation of the cocycle condition, g3(L)†g4(0)† =
e2π in34/Ng4(L)†g3(0)†, for the SU(N) transition functions, g3(x4), g4(x3). (b), (c) QCD with fundamen-
tal quarks ψ : In this case, we cannot naively introduce an ’t Hooft flux in the gauge sector. We have two
ways to go around this obstacle using the symmetry of QCD. (b) ’t Hooft flux in QCD with Nf = N by
using a non-commuting SU(Nf)V flavor twist, with �F

3 �F
4 = e2π i/Nf �F

4 �F
3 . (c) ’t Hooft flux in QCD with

any Nf by using a U (1)B = U (1)q/ZN magnetic flux,
∫

T 2 dAB = 2π , which requires fractionalized U(1)
transition functions, eiα3(x4 )/N, eiα4(x3 )/N , for quark fields.

on dynamics of 4D gauge theories, and we should carefully examine and improve it in future
studies.

In the following, let us summarize the main results.
In Sect. 2, we consider the SU(N) pure YM theory on M4 = M2 × T2, where T2 � (x3, x4)

is much smaller than the strong scale �−1 and the minimal ’t Hooft flux, n34 = 1 mod N, is
inserted in this small T2 (see Fig. 2(a)). YM theory has center symmetry, or ZN 1-form sym-
metry [23], denoted as Z[1]

N . Under the T2 compactification, this 4D 1-form symmetry splits
into 1-form symmetry and two 0-form symmetries, and the 2D effective theory on M2 enjoys
(Z[1]

N )2D × Z[0]
N × Z[0]

N . In the presence of the ’t Hooft flux, the 0-form center symmetries are un-
broken at the classical level, and thus the deconfinement for Polyakov loops, P3, P4, does not
occur. This already gives us a hint that the adiabatic continuity may be possible in this com-
pactification. However, the perturbative spectrum of 2D gauge fields is completely gapped due
to the ’t Hooft flux, and thus the Wilson loop in M2 obeys the perimeter law within the pertur-
bation theory, which seems to be problematic. It is the center vortex that resolves this issue in
the semiclassical analysis.

As we will discuss in Sect. 2.3, the center vortex realizes a self-dual configuration of YM
theory on R2 × T 2 with the ’t Hooft flux. It carries the fractional topological charge, Qtop =
± 1

N , and its classical action is given by Re(SYM) = 8π2

Ng2 . It is slightly unfortunate that there do
not yet exist analytic solutions, but its presence is numerically well established [24–26]. Since it
has a fixed size along the R2 direction, we can perform the dilute gas approximation without
suffering from infrared divergence. As a result, we obtain the multi-branch structure of the
ground states,

Ek(θ ) ∼ −�2(�L)5/3 cos
(

θ − 2πk
N

)
, (1)

where � is the strong scale, L (� �−1) is the length of small T2, θ is the topological vacuum
angle, and k = 0, 1, …, N − 1 is the branch label. This multi-branch structure is also expected
for the confinement dynamics of 4D YM theory [27–29], and we here obtain it in the weak-
coupling semiclassical analysis for the T2-compactified setup. This fractional θ dependence is
also a key for the area law of the Wilson loop. When −π < θ < π , the string tension for the
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Wilson loop of the representation R is given by

TR(θ ) = E0(θ + 2π |R|) − E0(θ ), (2)

where |R| is the N-ality of the representation. Therefore, for quarks with nonzero N-ality, there
is a linear confinement as TR(θ ) > 0 for generic values of θ . It has recently been found that the
multi-branch nature of vacua is controlled by the discrete ’t Hooft anomaly of 4D YM theory
at θ = π [30,31], and we shall see that this anomaly persists under this T2 compactification in
Sect. 2.4. Therefore, our result is not a coincidence, but comes from the fact that 2D and 4D
dynamics are constrained by the same ’t Hooft anomaly.

In Sect. 3, we move on to the N = 1 SYM theory on M2 × T2 with the ’t Hooft flux along
small T2. We take the supersymmetry-preserving boundary condition for gluinos, λ, and thus
the Witten index, tr(−1)F = N, suggests that there are N vacua as a consequence of discrete chi-

ral symmetry breaking, Z2N
SSB−−→ Z2 [32]. We confirm this by applying the semiclassical center-

vortex theory, and we obtain that

〈tr(λλ)〉k ∼ �3ei(θ−2πk)/N, (3)

where k = 0, 1, …, N − 1. In this case, the chiral condensate does not depend on the com-
pactification size L at the leading order of semiclassical analysis. Again, we can reproduce the
qualitative feature of 4D dynamics of SYM theory by considering the theory on small R2 × T 2

with ’t Hooft flux.
Armed with this semiclassical center-vortex theory on confinement, we study QCD with fun-

damental quarks in Sect. 4. In the presence of fundamental matter, however, one cannot naively
impose the ’t Hooft twisted boundary condition, as pointed out by ’t Hooft himself [20], since
the wave function of fundamental matter cannot be single-valued with the ’t Hooft flux. We
find that there are at least two ways to go around this obstacle, and then we can use the center-
vortex theory to study QCD. The first one is to use the SU(Nf)V flavor symmetry when Nf = N,
and the second one is to use the U(1)B magnetic flux; this is useful for any number of flavors (see
Figs. 2(b) and (c), respectively).

In Sect. 4.1, we consider Nf = N-flavor massless QCD on small T2 with the non-commuting
SU(N)V flavor twist (Fig. 2(b)). This boundary condition explicitly breaks the non-Abelian chi-
ral symmetry, and thus the 2D effective theory only has baryon-number and discrete chiral sym-
metries, U (1)B × (ZN )L. 4D massless QCD has a discrete anomaly that involves SU (N )V/ZN

and this 2D symmetry [33], and it is preserved under this flavor-twisted T2 compactification.
Anomaly matching predicts N degenerate gapped vacua as a consequence of discrete chiral
symmetry breaking. Within the perturbative analysis, we show that there exists a massless Dirac
fermion tr(ψ) that comes from the diagonal component in the color–flavor space and other N2

− 1 components are gapped. Applying the center-vortex theory, we find that the 2D massless
fermion develops the chiral condensate,

〈tr(ψL)tr(ψR)〉k ∼ �3e−i(θ−2πk)/N, (4)

which satisfies the anomaly matching. Moreover, we also compute the large-T2 case with
this boundary condition using the chiral Lagrangian, and we find the same result: Nambu–
Goldstone bosons become massive due to the flavor twist, and there are N gapped vacua.

In Sect. 4.2, we consider massless QCD at arbitrary flavors Nf with the minimal U(1)B mag-
netic flux,

∫
T 2 dAB = 2π (Fig. 2(c)). In this case, we can preserve the U(1)B–SU(Nf)L–SU(Nf)L

perturbative anomaly through T2 compactification, and the 2D effective theory enjoys the
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SU(Nf)L–SU(Nf)L ’t Hooft anomaly. This 2D anomaly can be matched by the SU(Nf) level-
1 Wess–Zumino–Witten (SU(Nf)1 WZW) model, and we explicitly derive it from the 4D chiral
Lagrangian for large T2 with the U(1)B flux. On small T2, we first solve the Dirac zero modes
and find that each flavor gives a single 2D massless Dirac fermion at the perturbative level, so
we have Nf massless Dirac fermions in 2D. By non-Abelian bosonization, we obtain the U(Nf)1

WZW model instead of SU(Nf), but the center vortex gives a mass to one of the massless modes
and resolves the discrepancy. This center-vortex-induced mass term can be understood as the
η′ mass term in the 4D chiral Lagrangian.

It is quite surprising that a simple idea based on T2 compactification and the center vortex
works so nicely just by introducing an ’t Hooft flux. If the adiabatic continuity really works for
a wide class of 4D gauge theories, then this provides a new way to analyze the strongly coupled
dynamics through the weakly coupled semiclassical regime. It is intriguing that there now exist
two different semiclassical limits of Yang–Mills theory, on R3 × S1 and on R2 × T 2, both of
which seem to be adiabatically connected to the strong dynamics on R4 but exhibit two different
confinement mechanisms, via monopole-instantons and center vortices, respectively.

2. SU(N) Yang–Mills theory on M2 × T2 without and with ’t Hooft flux
In this section, we study 4D SU(N) Yang–Mills (YM) theory on small-T2 compactification, so
that the total 4D spacetime is M4 = M2 × T2 and we consider the 2D effective theory on M2.
The classical action of the theory is given by

SYM = 1
g2

∫
tr[F (a) ∧ �F (a)] + i θ

8π2

∫
tr[F (a) ∧ F (a)], (5)

where a is the SU(N) gauge field, F(a) = da + ia∧a is the field strength, θ is the topological
theta angle, and 1

8π2

∫
tr[F (a) ∧ F (a)] ∈ Z is the instanton number.

SU(N) Yang–Mills theory enjoys ZN 1-form symmetry [23], and we denote it as Z[1]
N . Under

the compactification with 2-torus T2, we can choose whether we insert an ’t Hooft flux. In
both methods of T2 compactification, the Z[1]

N symmetry in 4D decomposes into Z[1]
N in 2D and

ZN × ZN ordinary center symmetry:(
Z[1]

N

)
4D

T 2 compact.−−−−−−−−→
(
Z[1]

N

)
2D

× Z[0]
N × Z[0]

N . (6)

Here, the Z[1]
N symmetry acts on Wilson loops inside M2, and Z[0]

N × Z[0]
N acts on Polyakov loops

wrapping along T2. When T2 is large, the strong dynamics in 4D should be recovered, and thus
these center symmetries are unbroken. We would like to find a semiclassical description that
has the same feature even for small T2.

We first briefly discuss this theory on M2 × T2 without the ’t Hooft flux. However, our main
emphasis is the case with a nontrivial ’t Hooft flux on T2. Introducing a nontrivial ’t Hooft flux,
we will show that the 2D effective theory shows confinement and the ground states have a multi-
branch structure. As the 4D YM theory is expected to have the same feature, we can conjecture
that the 2D theory is adiabatically connected to the large volume limit of pure Yang–Mills
theory in the sense of gauge-invariant order parameters.

2.1 Periodic T2 compactification and absence of adiabatic continuity
Consider the compactification of pure YM theory on R2 × T 2, where T2 is symmetric and its
size L is much smaller than the strong length scale, �−1. Here, we take the periodic boundary
condition for the gauge field, so the ’t Hooft flux is not inserted. Let us denote the compactified
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direction as x3 and x4, and the holonomies along those directions as

P3 = P exp
(

i
∫ L

0
a3dx3

)
, P4 = P exp

(
i
∫ L

0
a4dx4

)
. (7)

As the classical Yang–Mills action includes the term 1
g2 tr(F34)2, the classical minima are given

by flat connections, F34 = 0. This shows that P3 and P4 commute with each other, and thus they
are simultaneously diagonalizable by a gauge transformation:

P3 = diag(eiα1, eiα2, . . . , eiαN ),

P4 = diag(eiβ1, eiβ2, . . . , eiβN ). (8)

Each diagonalized holonomy takes its value in the maximal torus TN � U(1)N − 1 of SU(N),
and the remaining part of the gauge transformations is the Weyl group SN, which respects the
diagonal form and permutes the eigenvalues of the Polyakov loops simultaneously. The classical
moduli space is given by

Mcl = (TN )2/SN . (9)

This classical moduli space does not survive quantum mechanically. At the one-loop order, a
Gross–Pisarski–Yaffe-type calculation [34–37] generates a potential for the gauge holonomies
P3, P4:

V1-loop = − 2
π2L4

∑
(n3,n4 )∈Z2\{0}

1(
n2

3 + n2
4

)2

∣∣tr (Pn3
3 Pn4

4

)∣∣2 . (10)

This potential has N2 isolated minima located at

1
N

〈trP3〉 = ei
2πk3

N ,
1
N

〈trP4〉 = ei 2πk4
N , (11)

where k3, k4 = 0, 1, …, N − 1. Therefore, the theory spontaneously breaks the Z[0]
N × Z[0]

N center
symmetry.

On each vacuum that breaks Z[0]
N × Z[0]

N , the 2D effective theory is given by 2D SU(N) YM
theory coupled to massive adjoint scalars (a3, a4) or (P3, P4). If we neglect those massive scalars,
we find that the Wilson loop WR(C) inside M2 obeys the area law with the Casimir scaling,

〈WR(C)〉 = exp
(−g2

2C2(R)Area(C)
)
, (12)

where C2(R) is the quadratic Casimir element of the representation R, and the value of the
tension is dictated by g2

2 = g2

L2 . This violates the N-ality rule, but we can expect that the N-ality
rule of string tensions is obtained by taking into account the effect of massive scalars. In any
case, the Wilson loop in M2 with nontrivial N-ality obeys the area law, and thus Z[1]

N in 2D is
unbroken. Therefore, when we consider the periodic T2 compactification, we have(

Z[1]
N

)
2D

× Z[0]
N × Z[0]

N
SSB−−→

(
Z[1]

N

)
2D

(13)

for sufficiently small T2.
When the T2 size is large, the Z[0]

N × Z[0]
N symmetry is not spontaneously broken as the 4D YM

theory shows confinement. As a result, there has to be a phase transition between the small-
and large-T2 limits. This shows that periodic T2 compactification cannot be used to study the
4D confinement dynamics, and we should consider some other setups to achieve the adiabatic
continuity between 2D and 4D theories.
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2.2 T2 compactification with a nontrivial ’t Hooft flux
Since the periodic compactification turns out not to be suitable for adiabatic continuity, let us
examine other boundary conditions. In the following, we take the ’t Hooft twisted boundary
condition for the small-T2 direction [19], and we shall see how the classical vacuum is affected.
As in the case of the periodic compactification, we should have F34 = 0 to minimize the classical
action, but the Polyakov loops P3, P4 do not commute with each other due to the ’t Hooft twist.
Instead, they obey

P3P4 = P4P3 e2π in34/N, (14)

with some n34 ∈ ZN , and we specifically choose n34 = 1 (for details of the ’t Hooft flux, see
Appendix A).

This algebra (14) with n34 = 1 can be satisfied by the shift and clock matrices,

P3 = S, P4 = C, (15)

where C ∝ diag(1, ω, …, ωN − 1) and (S)i, j ∝ δi + 1, j with ω = e2π i/N, and this gives the classical
vacuum with the ’t Hooft flux. We note that there always exists a gauge transformation that
brings a minimal action configuration to the above gauge configuration. For detailed discus-
sions, see Appendices A3 and A4. Since

tr
(
Pn3

3 Pn4
4

) = 0 (16)

for any (n3, n4) �= (0, 0) mod N, the Z[0]
N × Z[0]

N center symmetry is kept intact by this classical
vacuum.1

Let us discuss the perturbative mass spectrum of 2D gauge fields on M2:∑
m=1,2

amdxm. (17)

Because of the ’t Hooft flux, its boundary condition along T2 is given by

am(x, x3 + L, x4) = S−1am(x, x3, x4)S,

am(x, x3, x4 + L) = C−1am(x, x3, x4)C, (18)

where x ∈ M2 and (x3, x4) ∈ T2. For performing Fourier expansion, it is convenient to introduce
the following basis for the Lie algebra [39]:

Jp = ω−p3 p4/2C−p3Sp4, (19)

1One may wonder if quantum fluctuations can destabilize the Z
[0]
N × Z

[0]
N symmetric minimum (15) to

Z
[0]
N × Z

[0]
N broken minima (11). In fact, this problem is very important to know if twisted Eguchi–Kawai

large-N reduction works or not [38,39]. When N is fixed, we can show that the center symmetry is unbro-
ken at sufficiently weak couplings by the similar discussion. However, destabilization takes place on the
1-site model at some intermediate couplings, and the critical value g2

∗ depends on N as 1/(Ng2
∗) ∼ N [40–

42]. Later, it was pointed out that stability can be maintained for a judicious choice of nμν that depends
on N when taking the large-N limit [43] or by introducing fermionic matter in the adjoint representa-
tion [44]. We may also need to choose some nontrivial twists if we try to make a connection between
our continuum theory and the large-N volume independence. As another possibility, we may extend the
applicability of adiabatic continuity by adding a massive adjoint fermion with the same boundary con-
dition, which would prohibit the phase transitions at intermediate length scales. The adjoint fermion
decouples for sufficiently small T2 because of its mass term, and we can apply the following analysis
without any changes. As we shall see, our semiclassical center-vortex description of confinement gives
predictions that are consistent with the adiabatic continuity. This suggests the existence of a continuous
path connecting the confinement on small-T2 regimes and the 4D confinement without phase transitions.
However, we must note that such a continuous path may exist in the enlarged theory space.
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with p = (p3, p4) ∈ (ZN )2. This satisfies J†
p = J−p, and we can expand am ∈ su(N ) as

am(x, x3, x4) =
∑
p�=0

a(p)
m (x, x3, x4)Jp, (20)

with (a(p)
m )∗ = a(−p)

m . The twisted boundary condition (18) can be written as

a(p)
m (x, x3 + L, x4) = ωp3a(p)

m (x, x3, x4),

a(p)
m (x, x3, x4 + L) = ωp4a(p)

m (x, x3, x4), (21)

and thus the Fourier expansion of a(p)
m is given by

a(p)
m (x, x3, x4) =

∑
k3,k4∈Z

ã(p,k)
m (x) exp

(
2π i
NL

(
(Nk3 + p3)x3 + (Nk4 + p4)x4

))
. (22)

Part of the 4D kinetic term, tr(F 2
m3) + tr(F 2

m4), gives the mass of each mode, a(p,k)
m , as

M2
p,k =

(
2π

NL

)2 (
(Nk3 + p3)2 + (Nk4 + p4)2

)
. (23)

We note that the traceless condition, tr(a) = 0, requires p �= 0, and thus there is no zero mode.
The perturbative fluctuations are completely gapped in the presence of the ’t Hooft flux, and
thus semiclassical calculations do not suffer from infrared divergence.2 Note that the 4D cou-
pling Ng2(μ) runs according to a standard renormalization group at distances much smaller
than NL

2π
and freezes at longer length scales. As a result, Ng2( NL

2π
) � 1 at small T2 and the the-

ory admits a weak-coupling calculable regime.
One way to understand the perturbative mass gap is to regard P3 and P4 as the adjoint Higgs

fields in 2D effective theory. At the classical vacuum (15), the Higgsing of the gauge group
occurs as

SU (N )
Higgsing−−−−→ ZN, (24)

and the low-energy effective theory becomes the discrete gauge theory at the perturbative level.
This also suggests that the Wilson loop inside M2 obeys the perimeter law within the perturba-
tion theory. In the next section, we shall examine how the Z[1]

N symmetry in 2D is restored by
taking into account nonperturbative effects.

2.3 Semiclassical confinement mechanism via center vortices
We have seen that the 0-form center symmetry is unbroken when we introduce the ’t Hooft flux
on small T2, but Z[1]

N is spontaneously broken within the perturbation theory. We should address
the question of whether the Z[1]

N symmetry is restored by some nonperturbative effects. In this
section, we reveal that the center vortex plays an important role in the restoration of Z[1]

N , and
quantitative features of 4D YM theory can be reproduced by the dilute gas approximation of
center vortices.

The center vortex is a dynamical codimension-2 object in Euclidean spacetime, and its liber-
ation is one of the famous scenarios to explain quark confinement [5–8,45–51]. See Ref. [52] for
a review of the center-vortex-induced confinement scenario. Although the center-vortex theory
provides a promising scenario to understand various properties of confinement, it seems that it

2Note that the spacing in the perturbative spectrum is controlled by 2π
NL , which is much finer than the

usual Kaluza–Klein spacing 2π
L . In particular, at finite L, if one takes the N → ∞ limit, the perturbative

states form a continuum, despite the fact that the theory is formulated on a finite space with size L. This
is a perturbative manifestation of the nonperturbative large-N volume independence [37,39].
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does not yet give analytically calculable semiclassical models of confinement to our best knowl-
edge. We will see that small-T2 compactification with an ’t Hooft flux gives a semiclassically
calculable setup of confinement based on center vortices, while maintaining many quantitative
features of 4D confinement.3

Most of the following discussion turns out to be quite parallel with the semiclassical analysis
of the 2D charge-N Abelian Higgs model, and we discuss this in Appendix B.

2.3.1 Center-vortex configurations. Here, let us explain the structure of center-vortex con-
figurations. Unfortunately, self-dual solutions of Yang–Mills equation on the torus T4 have
not been found analytically, so we cannot use analytical solutions for our semiclassical anal-
ysis. Still, numerical studies [24–26] by A. González-Arroyo and A. Montero have confirmed
the existence of the center-vortex configuration as a self-dual solution; let us briefly explain its
properties.

We consider the 4-torus M4 = T4 as our spacetime; the first two directions μ = 1, 2 are large
and the other two μ = 3, 4 are small:

T 2︸︷︷︸
Ll ��−1

× T 2︸︷︷︸
Ls��−1

Ll →∞−−−→ R2 × T 2. (25)

We introduce the background ZN 2-form gauge field B for the center symmetry. Following
Refs. [53,54], we do this by promoting the SU(N) gauge field a to a U(N) gauge field ã, and we
regard B as a U(1) 2-form gauge field with the constraint

NB = tr(F̃ ), (26)

where F̃ = F (ã) = dã + iã ∧ ã is the U(N) field strength (for details, see Appendix A2). This is
related to the ’t Hooft twist nμν by

1
N

nμν = 1
2π

∫
(T 2 )μν

B (mod1). (27)

In the presence of B, the topological charge can take fractional values [55]:

Qtop = 1
8π2

∫
T 4

tr
(
(F̃ − B)2)

= 1
8π2

∫
T 4

(
tr(F̃ 2) − NB2)

∈ − 1
N

εμνρσ nμνnρσ

8
+ Z. (28)

The fractional part comes from 1
8π2

∫
NB2, and the integer part from 1

8π2

∫
tr(F̃ 2) ∈ Z. We note

that εμνρσ nμνnρσ /8 ∈ Z, and thus Qtop ∈ 1
N Z. The fractional part is completely determined by

the ’t Hooft twist.
In particular, by taking n12 = 1 and n34 = 1, we have Qtop = −1/N mod 1. Then, the

Bogomol’nyi–Prasad–Sommerfield (BPS) bound [56,57] shows that the Yang–Mills kinetic

3In the context of 4D confinement, monopoles are also considered to play important roles. In our
T2-compactification setup, however, we have to explain the confinement of 2D effective theory. Since
monopoles are defined by their magnetic fluxes that penetrate the 2-sphere at infinities, we need at least 3
spacetime dimensions to have such configurations. This is why we consider center vortices as the leading
candidate for the semiclassical description of the confinement mechanism.
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term is bounded from below as

Re(SYM) ≥ 8π2

g2
|Qtop| = 8π2

Ng2
, (29)

and the lower bound is given by 1/Nth of the instanton action SI = 8π2/g2. The inequality
is saturated if and only if the (anti-)self-dual equation is satisfied, and not much is known
about its analytic solutions with fractional topological charges (except for Abelian-like constant
solutions on a torus with a certain aspect ratio [58]). In Refs. [24–26], the authors numerically
searched the absolute minimum of lattice YM action with this setup by using the naive cooling
technique [59]. They found that the fractional instanton can achieve the BPS bound within the
lattice discretization error, and the solution has a well defined limit in Ll → ∞. The self-dual
solution has a localized action density along the R2 direction, so it has a vortex-like structure.

Let us mention how this vortex-like solution affects the Wilson loop, WR(C), in R2. When the
vortex is outside of the loop, the Wilson loop takes a trivial value, W(C) = 1. When the vortex
is inside of the loop, however, the phase of the Wilson loop is rotated as

WR(C) = exp(2π i|R|/N ), (30)

where |R| is the N-ality of the representationR, i.e., the number of boxes of the Young tableaux
mod N. This is exactly what we expect for the center vortex [5–8], so the self-dual configuration
with the above setup can be regarded as the center vortex.

To sum up, it is known that the topological charge is quantized in units of Qtop = 1/N in
the background ZN 2-form gauge field B (or ’t Hooft flux background). Although an analytic
center-vortex solution is not yet known, numerical simulations unambiguously demonstrate
that configurations that saturate the BPS bound with the action 1

N SI exist. We will establish
semiclassical theories based on the proliferation of these configurations in various gauge theo-
ries: Yang–Mills, N = 1 SYM, and QCD with fundamental quarks.

2.3.2 Dilute gas of center vortices and confinement. We have seen that the center vortex exists
as the self-dual configuration on R2 × T 2 with the ’t Hooft flux. It carries a fractional topologi-
cal charge, Qtop = ±1/N, with the YM action Svortex = SI/N = 8π2/(Ng2). As it has a fixed radius,
we can perform the dilute gas approximation without suffering from infrared divergence.4 The
Boltzmann weight for a single center vortex is given by

K exp(−SI/N ) exp(±iθ/N ), (31)

where the ± sign depends on the topological charge Qtop = ±1/N. Here, K ∼ 1/L2
s is a prefac-

tor with mass dimension 2, which should be determined by careful analysis of the fluctuation
determinant.

When performing the dilute gas approximation, we must specify the details of the boundary
condition. Our spacetime is given by M4 = M2 × T2. Here, M2 is a large but compact 2D
manifold, and we do not insert any ’t Hooft flux along this direction. T2 is a small 2-torus with
a nontrivial ’t Hooft flux. Then, we have n34 = 1 but all the other components of nμν vanish,
and in particular n12 = 0. As a result, εμνρσ nμνnρσ = 0, and Eq. (28) indicates that Qtop ∈ Z, so
single vortex configurations are not summed in the path integral. Let n and n be the numbers

4According to Ref. [26], the radius of the center vortex is proportional to
√

N. When we would like to
take the large-N limit, we should take care with the order of the infinite-volume limit and large-N limit.
In this paper, we keep N finite, and thus the dilute gas approximation is valid for sufficiently large M2.
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of center vortices and anti-vortices, then

Qtop = n − n
N

. (32)

We must restrict the summation of dilute gas configurations so as to satisfy n − n ∈ NZ.
The partition function within the dilute gas approximation is then given by

Z(θ ) =
∑

n,n≥0

V n+n

n!n!
Kn+ne−(n+n)SI/Nei(n−n)θ/Nδn−n∈NZ, (33)

where V is the volume of M2. The Kronecker delta factor, δn−n∈NZ, is introduced in order to
impose the restriction, and it is convenient to write down the constraint as a Fourier series:

δn−n∈NZ =
N−1∑
k=0

e− 2π i k
N (n−n). (34)

Substituting this expression and performing the summation over n, n, we obtain

Z(θ ) =
∑

n,n≥0

V n+n

n!n!
Kn+ne−(n+n)SI/Nei(n−n)θ/N

N−1∑
k=0

e− 2π i k
N (n−n)

=
N−1∑
k=0

exp
[
V Ke−SI/N+i(θ−2πk)/N + V Ke−SI/N−i(θ−2πk)/N

]

=
N−1∑
k=0

exp
[
−V

(
−2Ke−SI/N cos

(
θ − 2πk

N

))]
, (35)

and thus we can reproduce the multi-branch structure of 4D YM theory [27–29]:

Ek(θ ) = −2Ke−SI/N cos
(

θ − 2πk
N

)
∼ −�2(�Ls)5/3 cos

(
θ − 2πk

N

)
. (36)

To find the last expression, we use the fact that the leading coefficient of the YM beta function
is 11

3 N, so that e−SI/N ∼ (�Ls)
11
3 . Neither branch of the ground state has 2π periodicity for its θ

dependence, but the partition function is 2π periodic thanks to the level crossing between these
branches. There is a first-order phase transition at θ = π , at which the level crossing occurs.

Next, let us derive the area law of the Wilson loop WR(C) inside M2; we denote the area
enclosed by C as A. When the vortex is inside the Wilson loop, it acquires an extra factor (30)
(see Fig. 3), and we should take it into account in the dilute gas approximation. For this purpose,
we split the number of vortices n into n1 and n2, which represent the number of vortices inside
and outside of the Wilson loop, respectively, and we do the same for n. The expectation value
of the Wilson loop can be obtained as

〈WR(C)〉 = 1
Z(θ )

∑
n1,n2,n1,n2

An1+n1 (V − A)n2+n2

n1! n2! n1! n2!

(
K e−SI/N)n1+n2+n1+n2

× ei(n1+n2−n1−n2 )θ/N e2π i(n1−n1 )|R|/N δn1+n2−n1−n2∈NZ (37)

= 1
Z(θ )

N−1∑
k=0

e−V Ek(θ ) exp
(
−A(Ek(θ + 2π |R|) − Ek(θ ))

)
. (38)
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Fig. 3. Center vortices are point-like objects on M2 and their fugacity is proportional to exp(−Svortex) =
exp(− 8π2

Ng2 ± i θ
N ). Due to their nontrivial mutual statistics with the Wilson loop, the center vortex acquires

an extra phase exp(± 2π i
N |R|) when it is inside the Wilson loop of the representation R. As a result, the

proliferation of the center vortex leads to the area law of Wilson loops, and confinement is realized.

In order to find the familiar expression, let us set −π < θ < π and take the infinite-volume limit
V → ∞ of M2. The k = 0 state is selected by this procedure, and we obtain the area law:

〈WR((C)〉 = exp
(
−A

(
E0(θ + 2π |R|) − E0(θ )

))
. (39)

The string tension TR(θ ) for the representation R is then given by

TR(θ ) = E0(θ + 2π |R|) − E0(θ )

∼ �2(�Ls)5/3
(

cos
θ

N
− cos

θ + 2π |R|
N

)
. (40)

We note that this expression is valid only for |θ | < π . In Appendix C, we derive this formula (40)
from a slightly different viewpoint. The θ angle dependence of string tensions (40) is shown in
Fig. 4. Note that although we observe confinement as the string tensions are nonzero at generic
θ , one of the tensions vanishes at θ = π . This turns out to be a consequence of the mixed
’t Hooft anomaly between the 1-form symmetry and CP at θ = π in 2D, as we shall discuss in
the next section.

For θ = 0, the string tensions reduce to

TR ∼ �2(�Ls)5/3 sin2 π |R|
N

. (41)

We note that the string tensions depend only on N-ality |R|, not on the representation R itself.
This is a common feature in the center-vortex confinement scenario. For quarks with nonzero
N-ality charges, |R| �= 0 (mod N), there is a linear confinement, induced by vortices in the semi-
classical domain, so we have unbroken Z[1]

N symmetry. For zero N-ality representations, the area
term vanishes, and the leading behavior is given by the perimeter law.

A few other remarks are in order. The N-ality rule of the string tension is a desirable feature
of the string tensions for sufficiently large Wilson loops; this is believed to be true for 4D pure
Yang–Mills theory. However, the linear confinement appears in a much shorter length scale for
pure YM theory on R4, and the Casimir scaling controls the string tension in that regime, which
predicts Tk = k(N−k)

N−1 T1 ∼ kT1 when k � N. The dilute gas approximation of the center vortex

cannot treat this feature as Eq. (41) gives a different behavior, Tk = sin2(πk/N )
sin2(π/N )

∼ k2T1 with k �
N, which may be called the “sine-squared” law. Even though this behavior is different from that
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Fig. 4. The θ angle dependence of the string tensions on M2 × T2 with ’t Hooft flux through small T2. At
θ = π , one of the tensions vanishes, which is consistent with the requirement of the 2D ’t Hooft anomaly
between the 1-form symmetry and CP at θ = π .

of 4D confinement of pure YM theory, we note that quantitative features can change under
T2 compactification, regardless of whether the adiabatic continuity scenario works or not. We
also point out that the vortex thickness is completely neglected in our semiclassical description.
Some previous studies have suspected that the Casimir scaling may be attributed to the finite
thickness of the vortex [52].

Let us compare this situation with other analytically calculable regimes of 4D YM theory
with adjoint matter, which are thought to be smoothly connected to pure YM dynamics. First,
we consider softly broken N = 2 Seiberg–Witten theory, which gives a model of confinement
by Abelian monopole condensation [13]. Since the Weyl group SN is completely Higgsed, the
fundamental string splits into N − 1 different confining strings [60]. Let Tk be the small-
est string tension in the k-box antisymmetric representation; then they obey the “sine” law,
Tk = sin(πk/N )

sin(π/N ) T1 ∼ kT1 when k � N. We note, however, that the N-ality rule for generic repre-
sentations is violated because of the absence of W-bosons in its effective description.

Next, we consider the YM theory on small R3 × S1 adding the double-trace deformation
or adjoint fermions with a periodic boundary condition [14–18]. In this case, a dilute gas of
monopole-instantons [61–64] provides the semiclassical description of confinement. String ten-
sions of deformed YM theory are studied in detail in Ref. [65], and they obey the square root

of Casimir scaling, Tk =
√

k(N−k)
N−1 T1 ∼ √

kT1, for k � N, where Tk is the minimal string in the
k-box antisymmetric representation. In this model, the ZN subgroup of the Weyl group SN can
be understood as the 0-form center symmetry. As a result, the fundamental string tension is
unique, but there are several confining strings for a higher irreducible representation, and the
N-ality rule is violated. These behaviors are different from what we expect for non-Abelian con-
finement of pure YM theory or N = 1 SYM theory, but one can expect that these theories are
smoothly connected.
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To summarize, each effective theory gives a prediction in its own valid regime, and different
quantitative properties can be connected via a smooth crossover even though the dynamics need
to be rearranged under the crossover. The important thing is that the center-vortex description
on small R2 × T 2 with ’t Hooft flux gives the same vacuum structure as that of 4D YM theory,
and we conjecture that they are adiabatically connected without phase transitions.

2.4 ’t Hooft anomaly and compactification of Yang–Mills theory
In this section, we discuss the topological aspects of T2 compactification with the ’t Hooft flux.
It is now well known that the 4D YM theory has an ’t Hooft anomaly related to Z[1]

N and CP
symmetry at θ = π [30,31]. It requires the spontaneous breakdown of CP at θ = π assuming
that the YM theory shows confinement at any value of θ . We have just seen that the 2D effective
theory with center vortices shows the same phenomena; let us demystify why this happens.

We start with a discussion on the anomaly of 4D SU(N) YM theory. Introducing the back-
ground ZN 2-form gauge field B = B4D, we have seen that the topological charge becomes
fractional as Eq. (28). Under the 2π shift of the θ angle, the partition function Zθ [B4D] with
B4D is transformed as

Zθ+2π [B4D] = exp
(

iN
4π

∫
M2×T 2

B4D ∧ B4D

)
Zθ [B4D]. (42)

This mild violation of the 2π periodicity plays a crucial role, because the presence of CP sym-
metry at θ = π uses the fact that we can identify θ = −π with θ = π up to 2π periodicity. At θ

= 0, the CP transformation is a good symmetry even with the background B4D,

CP : Zθ=0[B4D] → Zθ=0[B4D], (43)

but, at θ = π , the partition function transforms as

CP : Zθ=π [B4D] → Zθ=−π [B4D]

= exp
(

− iN
4π

∫
M2×T 2

B4D ∧ B4D

)
Zθ=π [B4D]. (44)

For even N, there is no local counter-term that eliminates this phase, so this is a genuine ’t Hooft
anomaly between Z[1]

N and CP at θ = π . For odd N, there is a local counter-term that elimi-
nates this phase, so there is no ’t Hooft anomaly at θ = π , but we can obtain a slightly weaker
condition on the ground state by the global inconsistency [30,66–71]. In both cases, the most
plausible scenario for 4D YM theory is that confinement occurs at any value of θ and CP is
spontaneously broken at θ = π to match the ’t Hooft anomaly and/or global inconsistency.

We then move on to the discussion of the T2 compactification [22] (see also Refs. [21,72–74]).
In order to emphasize the role of the ’t Hooft flux, we here reintroduce the ’t Hooft twist n34 as
a variable in ZN . The periodic compactification corresponds to n34 = 0, while the center-vortex
effective theory is obtained for n34 = 1. For any choice of n34, the 2D effective theory enjoys(
Z[1]

N

)
2D

× Z[0]
N × Z[0]

N , and we can introduce their background gauge fields:

� B2D: 2-form gauge field for Z[1]
N , which couples to WR(C) inside M2.

� A3: 1-form gauge field for one of Z[0]
N , which couples to P3.

� A4: 1-form gauge field for another Z[0]
N , which couples to P4.
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We note that these gauge fields live on M2, and thus they are independent of the T2 coordi-
nates. We can nicely summarize this information into the 4D ZN 2-form gauge field as

B4D = B2D + A3 ∧ dx3

Ls
+ A4 ∧ dx4

Ls
+ 2πn34

N
dx3 ∧ dx4

L2
s

. (45)

We can confirm that this is a ZN 2-form gauge field by noting that exp(i
∫

X2
B4D) ∈ ZN for

any closed 2-manifolds X2⊂M4. Indeed, this can be regarded as a configuration of the ZN

background gauge field for 4D Z[1]
N symmetry.

We can evaluate the 4D topological action using Eq. (45) as follows:

N
4π

∫
M2×T 2

B4D ∧ B4D = N
2π

∫
M2×T 2

(
B2D ∧ 2πn34

N
dx3dx4

L2
s

+ A3 ∧ dx3

Ls
∧ A4 ∧ dx4

Ls

)
= n34

∫
M2

B2D − N
2π

∫
M2

A3 ∧ A4. (46)

Let us denote the partition function with the ’t Hooft twist n34 as Z(n34 )
θ [B2D, A3, A4]; then the

relation (42) becomes

Z(n34 )
θ+2π

[B2D, A3, A4] = exp
(

i n34

∫
M2

B2D − iN
2π

∫
M2

A3 ∧ A4

)
Z(n34 )

θ [B2D, A3, A4]. (47)

This shows that we must take the nontrivial twist n34 �= 0 in order to have a nontrivial relation
between the confinement and the θ periodicity.

When we take the periodic compactification, n34 = 0, the 2D 1-form symmetry does not cou-
ple to the 4D θ angle, and the confinement of the Wilson loop does not lead to the multi-branch
structure of the confining vacuum. Even though there still exists a mixed anomaly between the
0-form center symmetry and the θ periodicity, the center symmetry is spontaneously broken as
we have seen in Sect. 2.1, and the anomaly matching is satisfied in a trivial manner.

The story is totally different for the twisted compactification, n34 = 1. The following discus-
sion applies for any twist n34 that satisfies gcd(n34, N) = ±1. In these cases, the 4D ’t Hooft
anomaly is kept intact as much as possible under the T2 compactification, and there remains a
mixed ’t Hooft anomaly between 2D Z[1]

N symmetry and the θ periodicity. The fractional θ de-
pendence must appear if the Wilson loop obeys the area law to satisfy the anomaly matching.
Moreover, at θ = π , this leads to a mixed ’t Hooft anomaly (or global inconsistency) between
(Z[1]

N )2D and the CP symmetry, which requires the doubly degenerate ground states at θ = π .
As the Wilson loops play the role of the domain-wall defect connecting these vacua, the degen-
eracy of ground states implies deconfinement for one of the Wilson loops at θ = π , as we have
seen in Fig. 4. In our semiclassical analysis in Sect. 2.3, both of these phenomena are caused by
center vortices, and this fact corroborates the close connection between confinement and the
fractional θ dependence.

2.5 Quantum mechanics with compactification of another direction
In this section, we consider another compactification by taking M2 = R × S1, and discuss the
quantum mechanics by regarding R as the time direction. This is useful to understand the
Hamiltonian picture of the center-vortex-induced semiclassical confinement. Moreover, this
clarifies the relation between the center-vortex theory discussed in Sect. 2.3 and Ref. [75] by
M. Yamazaki and K. Yonekura.
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The spacetime manifold in this section is given by

M4 = R × (S1)A × (S1)B × (S1)C︸ ︷︷ ︸
nBC=1

, (48)

with

Ls = LB = LC � Ll = LA ( � �−1). (49)

We note that the new S1 direction is much larger than the original T2, but it is still much smaller
than �−1. Let us denote the holonomy along the new S1 direction as PA.

We note that the holonomies, PB = P3 and PC = P4, along T2 are already determined as in
Eq. (15), PB = S and PC = C. The flatness condition shows PBPA = PAPB and PCPA = PAPC,
and thus we obtain

PA = e2π im/N1, (50)

with m = 0, 1, …, N − 1. Therefore, the center symmetry that acts on PA is spontaneously
broken at the classical level, even though the center symmetries acting on PB, PC are unbroken.
We denote these classically center-broken states as |m〉:

1
N

tr(PA)|m〉 = e2π im/N |m〉. (51)

An important question is if this broken center symmetry is restored by quantum effects. Here,
the center vortex, or the fractional instanton, again plays an important role. In Sect. 2.3, we
have reviewed the numerical study [24–26] of self-dual configurations on R2 × T 2 with ’t Hooft
flux, but there are also numerical studies on fractional instantons in R × T 3 [59,76,77]. The
transition amplitude of one fractional (anti-)instanton gives

〈n| exp(−T ĤYM)|m〉 ∼ δnm + T Ll Ke−SI/N (eiθ/Nδn,m+1 + e−iθ/Nδn,m−1
)
, (52)

where ĤYM is the Hamiltonian of YM effective quantum mechanics and the indices in the Kro-
necker delta are understood in mod N. We can understand the second term as the contribution
of the center vortex when LA is large. To see this, let us consider a single center vortex on a
cylinder M2 = R × S1. By moving PA across the center vortex, PA gets an extra phase, e±2π i/N,
as a result of the commutation relation between the center vortex and the Wilson loop. This
shows that the center vortex gives the transition amplitude from |m〉 to |m ± 1〉 as represented
by the second term.

The eigenstate of this Hamiltonian is given by

|̃k〉 = 1√
N

N−1∑
m=0

e2π ikm/N |m〉. (53)

We can explicitly check that this is an eigenstate as follows:

exp(−T ĤYM)|̃k〉 = 1√
N

∑
n,m

e2π ikm/N |n〉〈n| exp(−T ĤYM)|m〉

∼ 1√
N

∑
n,m

e2π ikm/N |n〉 {δnm + T Ll Ke−SI/N (eiθ/Nδn,m+1 + e−iθ/Nδn,m−1
)}

= 1√
N

∑
n

e2π ikn/N |n〉
(

1 + 2T Ll Ke−SI/N cos
θ − 2πk

N

)

∼ exp
(

2T Ll Ke−SI/N cos
θ − 2πk

N

)
|̃k〉. (54)
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This also confirms that the energy eigenvalue LlEk(θ ) is given by Eq. (36), and thus we obtain
the same expression for both Ll � �−1 and Ll � �−1. This suggests that we do not encounter
the phase transition for the size of the new compactified direction, (S1)A. The ground state is
unique at generic values of θ , and there is a level crossing at θ = π (see also Refs. [32,78]). We
can readily check that

〈̃k′| 1
N

tr(PA)|̃k〉 = δk′,k+1, (55)

and thus the ground-state expectation value vanishes, 〈̃k| 1
N tr(PA)|̃k〉 = 0. The center symmetry

is restored by fractional instantons. This also shows that the two-point function of tr(PA) shows
exponential decay along the imaginary-time direction, and the exponent is given by Ll(E1(θ )
− E0(θ )) = Ll(E0(θ + 2π ) − E0(θ )), which is nothing but the string tension LlT1(θ ) of the
fundamental Wilson loop.

In Ref. [75] by Yamazaki and Yonekura, a different limit was considered:

LA, LB � LC ( � �−1), (56)

while the ’t Hooft flux is still inserted along the BC directions, nBC = 1. They show that the
effective theory on R × (S1)C is basically given by the ZN-twisted CPN−1 sigma model that
has been discussed in Refs. [79–82], while the CPN−1 target space has several singularities. The
fractional instantons in 4D Yang–Mills theory with the ’t Hooft twist can be mapped to the
fractional instantons of the 2D ZN-twisted CPN−1 model, and we can perform the semiclassical
analysis without infrared divergence in the same way. Therefore, it would be natural to expect
that these two regimes are adiabatically connected, and they provide a promising method of
infrared regularization while keeping the confinement property of 4D Yang–Mills theory.

3. Supersymmetric Yang–Mills theory on M2 × T2 with ’t Hooft flux
Let us add the single Weyl fermion λ in the adjoint representation; we consider the T2-
compactified theory with the ’t Hooft flux. This theory has N = 1 supersymmetry at the mass-
less point, and the Lagrangian of N = 1 super Yang–Mills (SYM) theory is given by

SSYM = SYM + 2i
g2

∫
tr(λσμDμλ) , (57)

where Dμλ = ∂μλ + i [aμ, λ].

3.1 Discrete chiral symmetry and anomaly matching
The classical Lagrangian (57) has an Abelian chiral symmetry, λ → eiαλ and λ → λe−iα. How-
ever, this classical symmetry is absent due to the Adler–Bell–Jackiw (ABJ) anomaly, and the
path-integral measure is transformed as

DλDλ → DλDλ exp
(

i
2Nα

8π2

∫
tr(F 2)

)
. (58)

Since the topological charge is quantized to integers in closed spacetimes, there still exists the
discrete chiral symmetry:

(Z2N )χ : λ → e
2π
2N iλ, λ → λe− 2π

2N i. (59)

The Z2 subgroup of the chiral symmetry (Z2N )χ is identical to the fermion parity, and thus it
cannot be spontaneously broken as long as the rotational symmetry is unbroken.
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Computation of the Witten index, tr(−1)F = N, shows that there are at least N vacua, and it is
a natural guess to conclude that it comes from the spontaneous chiral symmetry breaking [32],

(Z2N )χ
SSB−−→ Z2, (60)

and these N vacua are specified by the chiral condensate,〈
tr(λλ)

〉
k ∼ �3ei(θ−2πk)/N, (61)

where k = 0, 1, …, N − 1. The fractional θ dependence of the chiral condensate is required
for consistency with the spurious symmetry, λ → eiαλ, λ → λe−iα, and θ → θ + 2Nα. This has
various pieces of supporting evidence, and we here comment on the recent result of anomaly
matching [83,84] as it is crucial for the following discussion on the compactified theory.

Let us again introduce the ZN 2-form gauge field B4D as a background gauge field for the 4D 1-
form symmetry Z[1]

N . Performing the discrete chiral transformation, λ → e
2π
2N iλ and λ → λe− 2π

2N i,
the fermion path-integral measure changes as

DλDλ → DλDλ exp

(
i
2N 2π

2N

8π2

∫
M4

tr
(

(F̃ − B4D)2
))

= exp
(

− iN
4π

∫
M4

B4D ∧ B4D

)
DλDλ. (62)

Here, the term that involves the dynamical gauge fields F̃ disappears due to the integer quanti-
zation of the U(N) topological charge. As a result, we find that there is a mixed ’t Hooft anomaly
between Z[1]

N and (Z2N )χ that is characterized as

(Z2N )χ : ZSYM[B4D] → exp
(

− iN
4π

∫
M4

B4D ∧ B4D

)
ZSYM[B4D]. (63)

As a consequence, if the Wilson loop shows the area law for SYM, its discrete chiral symmetry
should be maximally broken as Eq. (60) to satisfy the anomaly-matching condition.

The presence of the ’t Hooft anomaly (63) says that the SYM partition function Z[B4D, Aχ ]
with both the ZN 2-form gauge field B4D and the (Z2N )χ gauge field Aχ cannot be gauge invari-
ant. However, if we introduce the 5D bulk topological action,

S5D,M5 [B4D, Aχ ] = 2π

N

∫
M5

2N
2π

Aχ ∧ N2

8π2
B4D ∧ B4D, (64)

with ∂M5 = M4, then the following combination,

ZSYM[B4D, Aχ ] exp
(
i S5D,M5 [B4D, Aχ ]

)
, (65)

is gauge invariant by anomaly inflow. The information of the ’t Hooft anomaly is completely
summarized into the 5D topological action (64). We note that this 5D topological action is
quantized in 2π /N, and it is gauge invariant under the large gauge transformations mod 2π on
spin manifolds so that exp(i S5D,M5 ) is well defined when M5 is a closed spin manifold.

Let us now consider the T2 compactification: M4 = M2 × T2. The ’t Hooft flux on T2 is given
by n34 ∈ ZN , and we keep its dependence for a while. The 4D ZN 1-form symmetry splits into
(Z[1]

N )2D × Z[0]
N × Z[0]

N , and B4D is given by Eq. (45) using the gauge fields B2D, A3, A4 on M2 and
the ’t Hooft twist. We can easily compute the ’t Hooft anomaly of its 2D effective theory by
computing the 5D topological action with this setup. We take the 5D bulk as M5 = M3 × T2

with some M3 that satisfies ∂M3 = M2, and we extend 2D gauge fields to M3. This gives the 3D
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topological action on M3 as follows:

S5D,M3×T 2 [B4D, Aχ ] = 2N2

8π2

∫
M3×T 2

Aχ ∧ B4D ∧ B4D

= 2N2

8π2

∫
M3×T 2

Aχ ∧ 2
(

2πn34

N
B2D − A3 ∧ A4

)
∧ dx3dx4

L2

= 2Nn34

2π

∫
M3

Aχ ∧ B2D − 2N2

(2π )2

∫
M3

Aχ ∧ A3 ∧ A4. (66)

The first term describes the mixed anomaly between (Z[1]
N )2D and (Z2N )χ , and the second one

describes the mixed anomaly between Z[0]
N × Z[0]

N and (Z2N )χ . As in the case of pure YM theory,
the first term exists only if we take the nontrivial twist, n34 �= 0.

When n34 = 0, the result crucially depends on the choice of the fermion boundary condition
along T2. When the boundary condition maintains supersymmetry, the perturbative effective
potential (10) is canceled between the gluon and gluino contributions, and thus holonomies
have a flat direction at the perturbative level. At the nonperturbative level, we get N degenerate
vacua as the partition function in this case is identical to the Witten index. This is consistent
with spontaneous chiral symmetry breaking. Therefore, the anomaly matching for the second
term of Eq. (66) is satisfied by chiral symmetry breaking, while the center symmetry is unbro-
ken. This is an interesting situation, but we do not go into it in detail in this paper.

When we take the supersymmetry-breaking boundary condition with n34 = 0, then the
fermions do not have the zero modes and the perturbative potential (10) prefers the center-
broken vacua. Therefore, the ’t Hooft anomaly is trivially satisfied by spontaneous breaking of
the center symmetry.

In the next section, we consider the case with a nontrivial ’t Hooft flux, n34 = 1. In this
case, there is a mixed anomaly between (Z[1]

N )2D and (Z2N )χ , which means that the Wilson
loop WR(C) in M2 and the chiral condensate operator tr(λλ) have ZN mutual statistics. The
same ’t Hooft anomaly appears in the 1-flavor charge-N massless Schwinger model [85–89],
and the anomaly matching concludes both the spontaneous chiral symmetry breaking and the
deconfinement of the Wilson loop. We shall see how the center-vortex theory reproduces the
consequence of the anomaly-matching condition in the semiclassical manner.

3.2 Center vortex and discrete chiral symmetry breaking
As we have done in Sect. 2.5, let us compactify three directions, M4 = R × (S1)A × (S1)B ×
(S1)C, with

Ls = LB = LC � �−1; (67)

we introduce the nontrivial ’t Hooft flux, nBC = 1, along small T2 = (S1)B × (S1)C. We consider
the case where (S1)A is much larger than small T2:

Ll = LA � Ls. (68)

In Sect. 2.5, Ll � �−1 is also assumed, but we have shown that there is no phase transition
for Ll. Therefore, we no longer have to impose this extra assumption. As we have obtained
in Eq. (15), holonomies along B, C directions are given by PB = S and PC = C. We set the
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boundary condition for the adjoint fermion λ as

λ(x, x3 + Ls, x4) = S−1λ(x, x3, x4)S,

λ(x, x3, x4 + Ls) = C−1λ(x, x3, x4)C, (69)

which is identical to that of gauge fields (18). As a result, both the gauge field and gluino have
mass gaps, given in Eq. (23).

We regard R as the imaginary-time direction, and then the classical vacua can be characterized
by the holonomy PA along (S1)A. Since PA has to commute with PB = S and PC = C, we
have PA = e2π im/N1 with some m = 0, 1, …, N − 1, and we denote these N classical vacua as
|m〉 as we have done in Eq. (51). In the case of pure YM theory, the center vortex gives the
tunneling amplitude from |m〉 to |m ± 1〉, which resolves the degeneracy of N ground states.
In the presence of the massless fermion, this does not happen because of the fermionic zero
modes. The Atiyah–Singer index theorem indicates that the index for the adjoint Dirac operator
with the center-vortex configuration is given by

Index(i /Dadj) = 2NQtop = ±2, (70)

so there are two fermionic zero modes. As a consequence,

〈m ± 1| exp(−T ĤSYM)|m〉 = 0 (71)

for SYM, and there are N ground states even at the quantum level. This is consistent with the
fact that the Witten index is given by tr(−1)F = N for the N = 1 SU(N) SYM theory.

Although the center vortex does not contribute to the tunneling, it gives the chiral conden-
sate. Indeed, as the chiral condensate operator tr(λλ) has the axial charge 2, two zero modes
associated with the center vortex are soaked up by this operator (see also Ref. [90]). Therefore,

〈m′|tr(λλ)|m〉 ∼ K ′e−SI/Neiθ/Nδm′,m+1, (72)

where K ′is some factor that comes from the fluctuation determinant of both the gluon and
gluino and from the zero-mode wave function. By dimensional analysis, we can estimate K ′ ∼
1/L3

s but careful analysis will be required to determine its details. Since the first coefficient of
the beta function is now given by 11

3 N − 2
3 N = 3N, we get e−SI/N ∼ (�Ls)3 so that

〈m + 1|tr(λλ)|m〉 ∼ �3eiθ/N . (73)

We can diagonalize the chiral condensate operator by using |̃k〉 given in Eq. (53), and obtain

〈̃k|tr(λλ)|̃k〉 ∼ �3ei(θ−2πk)/N . (74)

Remarkably, we can reproduce the chiral condensate (61) in the semiclassical analysis using
center vortices with small Ls � �−1, and we here verify that the N degenerate vacua are a
consequence of spontaneous chiral symmetry breaking. We also note that this is consistent
with the requirement of the anomaly-matching condition.

In order to see more details of the ’t Hooft anomaly in this semiclassical description, let us
analyze the Wilson loop. In the chiral basis |̃k〉, the holonomy 1

N tr(PA) is no longer diagonal,
and instead we have Eq. (55):

〈̃k′| 1
N

tr(PA)|̃k〉 = δk′,k+1. (75)

Since k determines the fractional phase of the chiral condensate, this shows the nontrivial com-
mutation relation between the Wilson loop tr(PA) and the chiral condensate tr(λλ):

tr(λλ)tr(PA) = e−2π i/Ntr(PA)tr(λλ). (76)
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This mutual statistics is exactly the consequence of the mixed ’t Hooft anomaly between (Z[1]
N )2D

and (Z2N )χ in 2D with n34 = nBC = 1, and the same algebra has been observed for the massless
charge-N Schwinger model [85–89]. At low energies in this T2-compactified setup, sufficiently
large Wilson loops in M2 can be identified as the generator of discrete chiral symmetry.

As the Wilson loop is identified with the chiral symmetry generator that is spontaneously
broken, energy densities inside and outside the loop are the same. This means that the Wilson
loop in M2 shows the perimeter law, and the system is deconfined.5 This result may naively seem
in contradiction with adiabatic continuity. A version of adiabatic continuity asserts that as long
as the Z[0]

N × Z[0]
N part of the center symmetry is unbroken, the dynamics of the theory on R2 ×

T 2 is smoothly connected to the infinite-volume R4 limit. Indeed, the chiral condensate matches
exactly as expected. But the discussion of the Wilson loops is subtler. Does the perimeter law
of the Wilson loop in M2 imply the breakdown of adiabatic continuity?

We claim that this is not the case. In the 4D case, the perimeter law of the Wilson loop implies
the appearance of topological order, and thus the number of vacua on closed spatial manifolds
can be different between the confined and deconfined theories. This is why confined and decon-
fined theories with 1-form symmetry have to be separated by quantum phase transitions. In our
T2-compactified setup of SYM theory with the ’t Hooft flux, however, spontaneous breakdown
of (Z[1]

N )2D does not lead to extra vacua. The number of ground states is just N, which comes
from spontaneous chiral symmetry breaking, and this is a special feature of 2D field theories
with a mixed anomaly between the 0-form and 1-form symmetries. As the large-T2 and small-T2

theories have the same number of vacua, these two regimes can be adiabatically connected.

3.3 Mass-deformed theory
Let us now turn on a soft mass term in the Lagrangian:

�Lm = m
g2

(
tr(λλ) + tr(λ λ)

)
. (77)

The mass deformation breaks both N = 1 supersymmetry and Z[0]
2N chiral symmetry softly. In

the limit m → ∞, we obtain the pure YM theory and thus we can consider how the semiclassical
computations for SYM can be related to those of pure YM.

In the massless theory, tunneling by the center vortex is prohibited due to the fermionic zero
modes, but now those zero modes can be soaked up by the mass term. At the leading order of
mass perturbation, the energy densities of different branches are given by

Ek(θ ) = −L2
s m
(
〈tr(λλ)〉k + c.c.

)
∼ −2m�(�Ls)2 cos

θ − 2πk
N

. (78)

5This can be understood semiclassically as follows. Since the center vortices have fermionic zero modes,
they do not lead to confinement, unlike the situation in pure Yang–Mills on R

2 × T 2. This is similar to
the fact that monopole-instantons in N = 1 SYM on R

3 × S1 do not generate confinement either due
to their fermionic zero modes. On the other hand, on R

3 × S1, correlated events such as the magnetic
bion (without fermionic zero modes, but with a nonvanishing magnetic charge) lead to confinement. One
may wonder if correlated events of vortices on R

2 × T 2 can generate confinement. The answer to this
question is negative. Correlated events without fermionic zero modes have trivial mutual statistics with
Wilson loops, and they cannot disorder it. Let us emphasize that deconfinement in our T2-compactified
theory is required by the ’t Hooft anomaly matching, and it is not an artifact of our semiclassical center-
vortex analysis.

21/47

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2022/4/04A108/6553859 by KYO

TO
 U

N
IVER

SITY M
edical Library user on 07 July 2022



PTEP 2022, 04A108 Y. Tanizaki and M. Ünsal

The string tensions in the semiclassical domain take the form of

TR(θ ) = 2(m�)(�Ls)2
{

cos
(

θ

N

)
− cos

(
θ + 2π |R|

N

)}
. (79)

We note that these have the same θ dependence as those of pure YM theory on R2 × T 2 ob-
tained in Eq. (40). This is somewhat expected as we obtain the pure YM theory by taking the
massive limit, m → ∞, so this suggests that there is no phase transition as a function of the
fermion mass in this semiclassical center-vortex theory.

For m = 0, the string tensions vanish as we have discussed in the previous section. For small
fermion mass, the structure of the string tension is proportional to m, which is similar to the
massive charge-N Schwinger model. Note, however, that this is not the expected behavior on
the R4 thermodynamic limit, where we expect the tension to be proportional to �2 even for m
= 0. This peculiarity is related to the fact that the long distance limit of the massless theory
on M2 × T2 is a deconfined topological theory, and it is forced by the presence of the ’t Hooft
anomaly that involves (Z[1]

N )2D.

4. ’t Hooft flux in QCD with fundamental fermions
Since SU(N) YM theories with adjoint matter possess Z[1]

N symmetry, one can turn on a 2-form
background field associated with it. We have constructed a semiclassical description of confine-
ment based on the center vortex using this property. However, once fundamental fermions are
introduced, the theory no longer has Z[1]

N symmetry and, naively, one cannot impose ’t Hooft
twisted boundary conditions [20]. Does this imply that the semiclassical center-vortex theory
is not applicable to QCD with fundamental quarks?

Fortunately, we shall see that there are several ways to circumvent this obstacle in the case
of QCD, and it is possible to effectively introduce the ’t Hooft flux in the gluon sector. The
key ingredient is that the symmetry group that acts properly on local gauge-invariant operators
does not act properly on quark fields. In other words, the flavor symmetry group for the quark
fields has an overlap with the SU(N) gauge redundancy, and the correct symmetry group is the
one divided by the common center, ZN . As a result, the correct symmetry group for QCD with
Nf fundamental massless quarks is given by [33]

G = SU (Nf )L × SU (Nf )R × U (1)q

ZN × ZNf

. (80)

Here, U(1)q is the quark-number symmetry, and the baryon-number symmetry is given by
U (1)B = U (1)q/ZN . This subtlety of the symmetry group is responsible for introducing the
’t Hooft flux in the presence of fundamental quarks. Below, we shall consider two different ways
to introduce minimal ’t Hooft flux, by activating either SU(Nf)V flavor symmetry when Nf =
N, or the U(1)B magnetic flux background for general Nf (see Figs. 2(b) and (c), respectively).

It turns out that the semiclassical center-vortex calculation for QCD with fundamental quarks
is very similar to that of the charge-N Abelian Higgs model with a massless charge-N fermion,
which is discussed in Appendix B3, and it would be useful to compare these two.

4.1 SU(Nf)-twisted QCD on T2 for Nf = N flavors
Let us consider the case when the numbers of color and flavor are the same, Nf = N. In this case,
both the color gauge group SU(N)guage and the flavor symmetry group SU(Nf)V ⊂ SU(Nf)L

× SU(Nf)R have the common center subgroup ZN . Let us denote the quark field ψ as the
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N × Nf matrix-valued field, on which g ∈ SU(N)gauge acts from the left and V ∈ SU(Nf)V acts
from the right:

ψ (x) → g†ψ (x)V. (81)

The diagonal center element (ω, ω) ∈ ZN ⊂ SU (N )gauge × SU (Nf )V for Nf = N acts trivially
on the quark fields, so that the gauge group and flavor symmetry group are combined as

SU (N )gauge × SU (N )V

ZN
. (82)

Using this feature, when we consider the T2 compactification of QCD with Nf = N flavors, the
’t Hooft twist in the color sector can be imposed by a suitable choice of the flavor twist.

Let us consider the flavor-twisted boundary condition for QCD on R2 × T 2. For quark fields,
we impose

ψ (x, x3 + L3, x4) = g3(x4)†ψ (x, x3, x4)�F
3 ,

ψ (x, x3, x4 + L4) = g4(x3)†ψ (x, x3, x4)�F
4 , (83)

where �F
3 , �F

4 ∈ SU (N )V denotes the twisted boundary condition with the flavor symmetry,
and g3(x4), g4(x3) are the SU(N)gauge transition functions. Let us choose �3, �4 as the shift and
clock matrices,

�F
3 = S, �F

4 = C; (84)

then the ’t Hooft twisted boundary condition for the gauge sector is automatically selected for
the quark fields ψ being well defined:

ψ (x, L, L) =
{

g3(L)†ψ (x, 0, L)�F
3 = g3(L)†g4(0)†ψ (x, 0, 0)�F

4 �F
3 ,

g4(L)†ψ (x, L, 0)�F
4 = g4(L)†g3(0)†ψ (x, 0, 0)�F

3 �F
4 .

(85)

Since �F
3 �F

4 = e2π i/N�F
4 �F

3 in the above choice, we must require

g3(L)†g4(0)† = e2π i/Ng4(L)†g3(0)†, (86)

which is nothing but the ’t Hooft twisted boundary condition with n34 = 1. We can choose the
gauge so that g3(x4) = S and g4(x3) = C. For sufficiently small T2, the classical action should
be minimized and we get F34 = 0. Then, holonomies and transition functions can be identified,
and we obtain Eq. (15), P3 = S and P4 = C. Let us recall that the remnant gauge group is the
center subgroup ZN , so the non-Abelian part is completely gauge fixed.

4.1.1 Discrete ’t Hooft anomaly and chiral effective Lagrangian. Before studying the dynamics
of this T2-compactified QCD, let us discuss its ’t Hooft anomaly that is preserved by the twisted
boundary condition (83) on small T2. We note that the symmetry group of 2D effective theory
is given by

U (1)B × (ZN )L ⊂ G, (87)

where U (1)B = U (1)q/ZN is the baryon-number symmetry and (ZN )L ⊂ SU (N )L denotes the
discrete chiral symmetry. This is because the 2D symmetry must commute with S, C ∈ SU(N)V

to be consistent with the twisted boundary condition (83), and only the Abelian part can sat-
isfy this requirement. This suggests that we can concentrate on the discrete anomaly of 4D
QCD that involves U(1)B and (ZN )L, and we should discuss whether it persists under the T2
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compactification. Indeed, the subgroup,
SU (N )V

ZN
× U (1)B × (ZN )L ⊂ G, (88)

has the 4D discrete ’t Hooft anomaly, which is captured by the 5D topological action [33],

S5D = N
(2π )2

∫
M5

Aχ ∧ dAB ∧ B f , (89)

where Bf is the ZN 2-form gauge field as a part of the SU (N )V/ZN gauge field, AB is the U(1)B

gauge field, and Aχ is the (ZN )L gauge field. The twisted boundary condition (83) corresponds
to ∫

T 2
B f = 2π

N
, (90)

and thus the 5D topological action reduces to the nontrivial 3D topological action:

S5D = N
(2π )2

∫
M3×T 2

Aχ ∧ dAB ∧ B f = 1
2π

∫
M3

Aχ ∧ dAB. (91)

This is the 3D symmetry-protected topological state with U (1)B × (ZN )L, which is nothing but
the symmetry group of 2D effective theory. Since T2-compactified QCD with the flavor twist
(83) can be regarded as the boundary of this 3D symmetry-protected topological state, anomaly
matching requires N degenerate vacua by discrete chiral symmetry breaking or the presence of
a massless spectrum.

Let us briefly examine the prediction of the chiral effective Lagrangian when the torus size is
large, L � �−1. In this case, because of the spontaneous chiral symmetry breaking SU (Nf )L ×
SU (Nf )R

SSB−−→ SU (Nf )V, the low-energy effective theory is described by the chiral Lagrangian,

SχEFT = f 2
π

2

∫
M4

trf [dU † ∧ �dU ] + · · · , (92)

where U is the SU(Nf)-valued field and fπ is the pion decay constant. Since U ∼ ψLψR, the
flavor twist (83) in terms of clock and shift matrices translates for the chiral field as

U (x, x3 + L, x4) = S†U (x, x3, x4)S,

U (x, x3, x4 + L) = C†U (x, x3, x4)C. (93)

In order to satisfy this boundary condition with the constant fields, U is restricted to the center
elements,

〈U (x, x3, x4)〉 = e2π ik/Nf 1Nf , (94)

with k = 0, 1, …, Nf − 1. Therefore, we get Nf( = N) disconnected vacua. Because of the twisted
boundary condition (93), the N2

f − 1 massless Nambu–Goldstone bosons become massive of
O(1/NfL). To see this, one can decompose the pion field given by U = ei�/ fπ as �(x, x3, x4) =∑

p�=0 �(p)(x, x3, x4)Jp by using the basis (19), but now the basis is interpreted in terms of flavor.
The twisted boundary condition for �(p) is given by Eq. (21), which yields the mass spectrum
(23) for pions. We now find that the anomaly matching is satisfied by N gapped vacua with
discrete chiral symmetry breaking. In the next section, we consider if the semiclassical center-
vortex theory gives the same result or not in the small-T2 regime, L = Ls � �−1.

4.1.2 Semiclassical center-vortex computation with small torus. In this section, we study the
dynamics of Nf-flavor massless QCD with Nf = N on small T2 by imposing the SU(N)V-twisted
boundary condition (83). Since the holonomies along T2 directions are given by P3 = S and
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P4 = C due to the ’t Hooft flux in the gauge sector, the 2D gauge fields on M2 are completely
gapped at the perturbative level. We note, however, that the quark fields have one massless
component. As the quark fields obey

ψ (x3 + Ls, x4) = S†ψ (x3, x4)S, ψ (x3, x4 + Ls) = C†ψ (x3, x4)C, (95)

the massless mode exists only for the identity component, i.e., 1
N tr(ψ )1N , and the other N2 − 1

components acquire a perturbative mass gap, the same as the one given in Eq. (23) for gluons.
In the case of SYM theory, the fermion obeys the identical boundary condition, but the gluino
field is traceless, and thus there are no perturbatively massless modes. This gives the sharp
contrast between QCD with Nf = N fundamental quarks and SYM theory in this semiclassical
analysis.

Let us denote the perturbative massless quark field as

� = Lstr(ψ ), (96)

and then the 2D effective theory is given by the massless 2D fermions,

L = �/∂�, (97)

where /∂ = γ 1∂1 + γ 2∂2 is the 2D free Dirac operator with 4D gamma matrices. We here note
that � still couples to the ZN 1-form gauge field, and thus � itself is not gauge invariant while
the baryon operator �N is gauge invariant. It is important to recognize that the global U(1)
symmetry of this system is given by U (1)B = U (1)q/ZN instead of U(1)q, and we can find the
correct coefficient for the ’t Hooft anomaly (91). Anyway, within the perturbation theory, we
obtain the 2-component 2D massless Dirac fermion as the low-energy effective theory.

As a next step, let us perform the semiclassical analysis by taking into account the center-
vortex configurations. Since the center vortex carries the topological charge Qtop = ±1/N, there
are fermionic zero modes according to the index theorem:

2Nf Index( /Dfund) = 2NQtop = ±2. (98)

This means that the vertex operator for the center vortex is associated with the chiral operators
�L�R, �R�L of perturbatively massless fermions:

V (x) ∼ 1
Ls

e−SI/Neiθ/N�L�R(x), V∗(x) ∼ 1
Ls

e−SI/Ne−iθ/N�R�L(x). (99)

We now perform the dilute gas approximation. We should note that the total topological charge
has to be an integer, and this gives∑

n,n≥0

1
n! n!

(∫
d2xV

)n (∫
d2xV∗

)n

δn−n∈NZ

=
N−1∑
k=0

exp
[∫

d2x
1
Ls

e−SI/N

(
ei(θ−2πk)/N�L�R + e−i(θ−2πk)/N�R�L

)]
. (100)

The dilute gas of the center vortex gives the nonperturbative mass gap for � and �. Further-
more, the 2D effective theory decomposes into N distinct sectors, and the complex fermion
mass acquires different phases on each sector. As a result, the fermion bilinear condensate is
given by

〈�L�R〉 ∼ 1
Ls

e−SI/Ne−i(θ−2πk)/N

∼ �3L2
s e−i(θ−2πk)/N . (101)
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Recalling that � = Lstr(ψ), this gives the correct behavior of 4D chiral condensates. We ob-
tain N degenerate vacua as a consequence of the discrete chiral symmetry breaking of (ZN )L.
This satisfies the anomaly-matching condition, and, moreover, it reproduces the result of the
chiral effective Lagrangian for large T2. This strongly suggests that, even with fundamental
quarks, we can achieve adiabatic continuity by a suitable choice of the boundary condition
along T2.

We note, however, that it is somewhat accidental that we can reproduce the correct mag-
nitude for the chiral condensate, and this coincidence comes from the fact that the leading
coefficients of the beta function are the same for SYM theory and QCD with Nf = N fun-
damental quarks. What is important is that the qualitative features of vacua are the same
for the large-T2 and small-T2 regimes, and thus the strongly coupled 4D dynamics of QCD
may be smoothly connected to the semiclassical description with a center vortex without phase
transitions.

4.2 QCD on T2 with baryon-number magnetic flux
So far, we have seen that our flavor-twisted boundary condition is useful for Nf = N flavor QCD.
Here, we would like to consider another setup, so that the center-vortex theory is applicable to
QCD for any number of flavors Nf .

The idea is to use the baryon-number symmetry, U(1)B. Let us introduce the minimal U(1)B

magnetic flux along the small-T2 direction:∫
T 2

dAB = 2π. (102)

To be concrete, let us choose the specific U(1)B gauge field as

AB = 2π

L2
x3dx4. (103)

We note that

AB(x3 + L, x4) = AB(x3, x4) + 2π

L
dx4, (104)

and thus there is a U(1)B-valued transition function, eiα(x4 ), with the 2π -periodic function
α(x4) = 2π

L x4, when we identify (x3 + L, x4) ∼ (x3, x4).
Let us describe the boundary condition for quark fields under this background AB. How-

ever, we should note that U (1)B = U (1)q/ZN , so the quark fields have fractional charges ±1/N
under U(1)B. As a result, the fractionalized transition function, eiα(x4 )/N , appears in the connec-
tion formula, which may seem to be illegal at first sight. Introducing the SU(N)gauge transition
functions, g3(x4) and g4(x3), we get

ψ (x3 + L, x4) = e−iα(x4 )/Ng3(x4)†ψ (x3, x4),

ψ (x3, x4 + L) = g4(x3)†ψ (x3, x4). (105)

Consistency of the fermion wave function requires that

g3(L)†g4(0)† = ei(α(L)−α(0))/Ng4(L)†g3(0)†

= e2π i/Ng4(L)†g3(0)†. (106)

This is again nothing but the ’t Hooft twisted boundary condition with n34 = 1 for the
gauge sector. Turning on the baryon-number magnetic flux, the structure group is given by
(SU (N )gauge × U (1)q)/ZN � U (N ) instead of the naive one, SU(N) × U(1), and the ’t Hooft
flux is inserted through quotient by the common center subgroup.
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Let us briefly discuss the implications of turning on the U(1)B background for large T2 by
using the chiral Lagrangian (92), assuming spontaneous chiral symmetry breaking in 4D. The
chiral field U itself does not transform under U(1)B. To describe the effect of the background
baryon-number magnetic flux in the chiral Lagrangian, we must minimally couple AB to the
skyrmion current, JB = 1

24π2 tr f [(U †dU )3] [91]:∫
M4

AB ∧ JB =
∫

M5

dAB ∧ JB. (107)

Here, we have introduced the auxiliary 5D bulk, M5, that satisfies ∂M5 = M4 for convenience.
Consider M5 = M3 × T2; the boundary of M3 is given by ∂M3 = M2. The background AB field
corresponds to a magnetic monopole whose flux is piercing T2, and thus it gives the level-1
Wess–Zumino–Witten (WZW) term:∫

M3×T 2
dAB ∧ JB = 1

12π

∫
M3

tr f [(U †dU )3] =: �WZW[U ]. (108)

Therefore, the chiral Lagrangian is modified by �WZW, and 2D effective theory on M2 is de-
scribed by the 2D level-1 WZW model as a consequence of the 4D perturbative ’t Hooft
anomaly for U(1)B–SU(Nf)L–SU(Nf)L. Here, let us emphasize that 2D effective theory is gap-
less due to the WZW term, �WZW. If the WZW term is absent, the 2D theory is described by
the SU(Nf) principal chiral model, which is believed to acquire the nonperturbative mass gap
with the unique ground state. Therefore, we need to introduce the nonzero U(1)B flux in order
to make the 2D theory gapless at the nonperturbative level by turning on �WZW.

We must examine if this prediction by the chiral Lagrangian can be reproduced by the semi-
classical analysis of QCD on small T2. For this purpose, we first need to obtain the perturbative
massless spectrum. Because of the ’t Hooft flux in the gauge sector, the gluons are gapped. To
find the perturbative zero modes of the quark field, let us solve[

γ3∂3 + γ4

(
∂4 + i

1
N

AB,4

)]
ψ (x3, x4) = 0 (109)

with the boundary condition

ψ (x3 + L, x4) = e− 2π i
NL x4S†ψ (x3, x4), ψ (x3, x4 + L) = C†ψ (x3, x4). (110)

Since (iγ 3γ 4)2 = 1, the eigenvalue of iγ 3γ 4 is given by ±1, and thus Eq. (109) can be decom-
posed as [

∂3 ∓ i
(

∂4 + i
2π

NL2
x3

)]
ψ±(x3, x4) = 0, (111)

where (iγ 3γ 4)ψ± = ±ψ±.
We can immediately conclude that ψ− does not have zero modes by noticing the following

equation: ∫
T 2

d2x

∣∣∣∣{∂3 ∓ i
(

∂4 + i
2π

NL2
x3

)}
ψ±

∣∣∣∣2
=
∫

T 2
d2x

(∣∣∣∂3ψ±
∣∣∣2 +

∣∣∣∣(∂4 + i
2π

NL2
x3

)
ψ±

∣∣∣∣2 ∓ 2π

NL2

∣∣∣ψ±
∣∣∣2) . (112)

The left-hand side is 0 for zero modes. For ψ−, however, each term on the right-hand side is
positive semidefinite, and thus the zero-mode equation can be satisfied only if ψ− = 0, which
means that the zero mode is absent. From now on, let us solve the zero modes of ψ+, and we
neglect the spin degrees of freedom for a while. For ψ+, general solutions of Eq. (111) take the

27/47

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2022/4/04A108/6553859 by KYO

TO
 U

N
IVER

SITY M
edical Library user on 07 July 2022



PTEP 2022, 04A108 Y. Tanizaki and M. Ünsal

form of

ψ+(x3, x4) = exp
(
− π

NL2
x2

3

)
u(z), (113)

where u(z) is an N-component holomorphic function of the dimensionless complex coordinate,
z = (x3 − ix4)/L. The boundary condition for u(z) is given by

u(z + 1) = e
π
N + 2π

N zS†u(z), u(z − i) = C†u(z). (114)

From the second condition, we find the Fourier series

u�(z) = e
2π (�−1)

N z
∑
n∈Z

cn,� e2πnz, (115)

where � = 1, 2, …, N is the color label. Substituting this into the first condition, we find

cn,�−1 = e2πn+ 2π (�−1)
N − π

N cn,� (� = 2, . . . , N ),

cn−1,N = e2πn− π
N cn,1. (116)

From this expression, we obtain cn + 1, 1 = e−πN(2n + 1)cn, 1, and it can be solved as cn,1 =
e−πNn2

c0,1. This gives the convergent sum in the Fourier expansion of ψ+, and thus we find
the unique zero mode. If we repeat the same computation for ψ−, it turns out that the Fourier
sum is divergent, and we can confirm that there is no zero mode for ψ− in the concrete manner.
Recalling that ψ+ has 2 spin components, we obtain a single 2D Dirac fermion for each flavor
since these 2 spin components have opposite 2D chirality. To see this, we note that the 2D and
4D chiralities for ψ+ are related by iγ 1γ 2 = (iγ 1γ 2)(iγ 3γ 4) = −γ 5. As a result, we obtain the
2D Nf-flavor massless Dirac fermion as a 2D effective theory in this perturbative analysis.

By non-Abelian bosonization, 2D Nf-flavor massless Dirac fermions can be mapped to the
2D level-1 U(Nf) WZW model [92],

S = 1
8π

∫
M2

tr f (dŨ ∧ �dŨ †) + 1
12π

∫
M3

tr f [(Ũ †dŨ )3], (117)

where Ũ is a U(Nf)-valued field. The result is already close to that of the chiral Lagrangian
prediction for large T2, and we would like to resolve the difference between the U(Nf) and
SU(Nf) WZW models. By taking into account the center vortex, we expect that the U(1) axial
symmetry is explicitly broken while the SU(Nf)L × SU(Nf)R chiral symmetry is kept intact.
To be consistent with these requirements and with spurious symmetry, the center-vortex vertex
should take the following form:

�S ∼ − 1
L2

e−SI/N (eiθ/N (det Ũ )1/N + e−iθ/N (det Ũ †)1/N) . (118)

Here, the branch label k is eliminated because these are now connected by the Abelian part of
the U(Nf) field, Ũ , and thus discrete vacua do not appear. In other words, the branch label is
compensated by the ambiguity of taking the 1/Nth power of the U(1)-valued field det(Ũ ). By
formally regarding the number of color N as a large number, the center-vortex vertex can be
approximated as

�S ∼ �2(�L)
5N−2N f

3N

N2

(
i ln
(
det(Ũ )

)− θ
)2

, (119)

and we can obtain the same functional form for the η′ mass in large-N QCD with fixed numbers
of flavor. Indeed, if we neglect the correction of O(Nf /N ) in the coefficient, then the compari-
son between Eqs. (36) and (119) reproduces the Witten–Veneziano formula [93,94] that relates
the YM topological susceptibility and the η′ mass.

28/47

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2022/4/04A108/6553859 by KYO

TO
 U

N
IVER

SITY M
edical Library user on 07 July 2022



PTEP 2022, 04A108 Y. Tanizaki and M. Ünsal

We would like to emphasize that the center vortex has resolved the issue of the perturbative
analysis. Within perturbation theory, there are Nf massless fermions so the 2D central charge
is given by Nf , while the SU(Nf)1 WZW model has the central charge Nf − 1. Since the center
vortex gives a mass to the U(1) part of the U(Nf)-valued field, these two descriptions now match
each other.

5. Concluding remarks and outlooks
In this paper, we derived a novel semiclassical description of confinement based on center vor-
tices by putting 4D gauge theories on small R2 × T 2 with the ’t Hooft flux. These T2 compactifi-
cations preserve the ’t Hooft anomaly of 4D gauge theories, and thus 2D effective theories and
the original 4D gauge theories are constrained by the same anomaly-matching condition. We
have seen that analytic computations of the semiclassical center-vortex theory give a prediction
consistent with the expected behaviors of 4D strong dynamics.

We find ourselves in an exciting situation, as we now have two different compactifications
of 4D gauge theories down to small R3 × S1 (with center-stabilization) [14–18] and to small
R2 × T 2 (with ’t Hooft flux), both of which provide semiclassical descriptions of 4D gauge
theories. We expect that both of them are adiabatically connected to the R4 limit since we can
reproduce the nonperturbative properties such as confinement, chiral symmetry breaking, and
the multi-branch structure of vacua.

On small R3 × S1, the Polyakov loop in the small-S1 direction behaves as an adjoint Higgs
field. Adding suitable deformations, such as the double-trace deformation or several adjoint
fermions with the periodic boundary condition, the 0-form center symmetry is stabilized and
the expectation value of the Polyakov loop induces the adjoint Higgsing, SU(N) → U(1)N − 1.
Then, the dilute gas of monopole-instantons (or magnetic bions in some cases) gives the semi-
classical description of confinement. In this case, monopole-instantons are exact BPS solutions
of the self-dual YM equation and they carry fractional topological charge Qtop = 1/N. This
construction has been used in the last 15 years to address nonperturbative properties of gauge
theories; examples include deformed YM theory, adjoint QCD [14–17], and fundamental QCD
with the flavor-twisted boundary condition [95–98] (see also Refs. [99–101]). They provide a re-
alization of the idea of adiabatic continuity.

It is quite suggestive that both semiclassical descriptions rely on the topological defects with
the fractional topological charge, Qtop = 1/N, although their dimensions are different in 4D
spacetime. Moreover, both defects carry magnetic charges so that their liberation causes con-
finement. However, we have to note that there is a difference in detail about their magnetic
charges. The center vortex has nontrivial mutual statistics with the Wilson loop, and this is why
its liberation gives the correct N-ality structure in string tensions. On the other hand, monopoles
have magnetic charges in root lattice so they only have trivial mutual statistics with Wilson
loops. This shows that these two cases have different microscopic mechanisms for confinement
despite certain similarities. Still, we should be able to make some connections between them by
considering the decompactification of one S1 component of small T2 assuming that the confine-
ment always occurs in this process. This assumption is violated for pure YM theory, while it is
a valid scenario for softly broken N = 1 SYM theory. It would be an interesting future study to
find the explicit connection between these two semiclassical descriptions of color confinement
with some continuous deformations.
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Lastly, there are multiple interesting open directions to pursue about the semiclassical center-
vortex theory. Let us pick up some of them with brief comments:

� Analytic solution of the center-vortex configuration: As discussed in Sect. 2.3, the center
vortex on R2 × T 2 is constructed only numerically [24–26], and it satisfies the self-dual equa-
tion and has Qtop = 1/N. Since the center vortex plays a vital role in our semiclassical de-
scriptions of confinement, it is desirable to have analytic solutions for studying its properties
in more detail. Given the importance of the problem, it would be nice to devote an effort to-
wards finding either the BPS solutions or proof of their existence in the nontrivial ’t Hooft
flux background for fractional topological charge configurations.

� Chiral gauge theory dynamics: Some chiral theories (especially chiral quiver theories [102–
105]) possess Z[1]

N symmetry, so we can turn on the ’t Hooft flux background under T2 com-
pactifications. We can apply the setup of this paper to study the nonperturbative dynamics
of such 4D chiral gauge theories.

� Two-index QCD-like theories: Using the baryon-number U(1)B magnetic flux background,
it should also be possible to explore the dynamics of QCD with antisymmetric and sym-
metric representation Dirac fermions (QCD(AS/S)). These theories possess, at most, a Z[1]

2

1-form symmetry, and the use of baryon-number background is necessary to impose mini-
mal ’t Hooft flux. For QCD with bi-fundamental fermions (QCD(BF)), since there is a Z[1]

N

1-form symmetry, one can use the standard construction. This may give new insights into
the nonperturbative large-N orbifold and orientifold equivalences between the one-flavor
QCD(AS/S/BF) and N = 1 SYM and the multi-flavor generalization [106,107].
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Appendix A. Review of several perspectives on ’t Hooft flux
In this appendix, we summarize some basic properties of the ’t Hooft flux from several view-
points. After giving the definition of generic manifolds using the language of principal bundles,
we focus on the case of 2-torus T2. We discuss it in the continuum formulation first, and explain
the same result from the lattice gauge theory.

A1. Principal SU (N )/ZN bundle and ’t Hooft flux
Let us assume that we are interested in the su(N ) gauge theory coupled to adjoint matter fields.
In this case, we should make a choice of whether the global structure of the gauge group is
SU(N) or PSU (N ) = SU (N )/ZN .6 Here, the ’t Hooft flux becomes the key to understanding
these differences in the path-integral quantization.

6To be more precise, there are other choices SU (N )/ZK , where ZK ⊂ ZN is a subgroup of the center
group, and we may also have different choices of discrete theta angles for the same gauge group. In this
subsection, we neglect those subtleties for simplicity, and this is sufficient for the purposes of this paper.
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First, let us put SU(N) gauge theory with a matter φ in an irreducible representation ρ on a
compact Euclidean manifold M. To take care of the global data correctly, we introduce a good
open cover {Ui} of M, i.e., ∪iUi = M, and Ui, Uij = Ui ∩ Uj, etc. are diffeomorphic to the open
ball. Then, the gauge field a is the collection of the following mathematical data:

� ai is an su(N )-valued 1-form on Ui.
� gij: Uij = Ui ∩ Uj → SU(N) is a transition function. We set g ji = g−1

i j .
� On Uij, aj and ai are related by the gauge transformation with gij:

a j = g−1
i j aigi j − ig−1

i j dgi j . (A1)

� On Uijk = Ui ∩ Uj ∩ Uk, the transition functions gij, gjk, and gki satisfy the cocycle condi-
tion,

gi jg jkgki = 1. (A2)

In this sense, the gauge field a is locally a 1-form, but it is not necessarily globally well defined
as a 1-form field, and the subtlety is taken into account by transition functions.

Similarly, the matter field φ is not a globally defined function, but it has to be regarded as a
section of the associated bundle:

� φi is a function on Ui.
� On Uij, φj and φi are related by the gauge transformation,

φ j = ρ
(

g−1
i j

)
φi. (A3)

We note that the cocycle condition (A2) is a sufficient condition for the well-definedness of φ.
To see this, we consider a triple overlap Uijk, and we cyclically relate φi, φj, and φk as follows:

φi = ρ
(
g−1

ki

)
φk = ρ

(
g−1

ki

)
ρ
(

g−1
jk

)
φ j = ρ

(
g−1

ki

)
ρ
(

g−1
jk

)
ρ
(

g−1
i j

)
φi. (A4)

As a result, we obtain [
1 − ρ((gi jg jkgki)−1)

]
φi = 0. (A5)

Since ρ is an irreducible representation, this is true for arbitrary φi if and only if

ρ(gi jg jkgki) = 1. (A6)

Since ρ(1) = 1, we have shown that Eq. (A2) is indeed a sufficient condition.
If φ is in a defining (or fundamental) representation, then φ is valued in CN , and ρ(g)φ = g ·

φ when g is realized as a unitary N × N matrix. For this case, the cocycle condition (A2) is the
necessary and sufficient condition for the single-valuedness of φ. However, this is not necessar-
ily true for other representations. Especially for the adjoint representation, the condition (A6)
only requires that

gi jg jkgki = exp
(

2π i
N

ni jk

)
(A7)

for some integers nijk modulo N. This additional degree of freedom nijk is nothing but the
’t Hooft flux. When the matter field φ is in the adjoint representation, we have to make a choice
whether we impose Eq. (A2) or we relax it as Eq. (A7) without violating locality and unitarity of
quantum field theories. They correspond to SU(N) and SU (N )/ZN gauge theories, respectively.
More physically, those theories have different set of genuine line operators [108].

Let us discuss the properties of {nijk} to identify its physical degrees of freedom. We
first note that nijk is totally antisymmetric in its labels i, j, k: ni jk = n jki = nki j mod N and
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ni jk = −n jik mod N. This can be seen by massaging the definition of the ’t Hooft flux, Eq. (A7).
The cyclic property is obtained by multiplying g−1

i j from the left and gij from the right of
Eq. (A7), then

exp
(

2π i
N

ni jk

)
= g−1

i j exp
(

2π i
N

ni jk

)
gi j = g jkgkigi j = exp

(
2π i
N

n jki

)
. (A8)

By taking the inverse of Eq. (A7), we find

exp
(

−2π i
N

ni jk

)
= g−1

ki g−1
jk g−1

i j = gikgk jg ji = exp
(

2π i
N

nik j

)
, (A9)

so nijk flips its sign under odd permutations.
Next, we must identify the gauge redundancy for nijk. We note that the connection formulas

(A1) (and Eq. (A3) for adjoint matter) are invariant under the transformation

gi j �→ exp
(

2π i
N

λi j

)
gi j, (A10)

with λi j ∈ ZN and λ ji = −λi j mod N. In order to achieve invariance of the modified cocycle
condition (A7), nijk must transform as

ni jk �→ ni jk + (δλ)i jk, (A11)

where we have introduced the derivative δ by

(δλ)i jk ≡ λi j − λik + λ jk. (A12)

This is the ZN gauge symmetry acting on the transition functions, and {nijk} is nothing but the
gauge field for that gauge symmetry. This is called ZN one-form gauge symmetry, and {nijk} is
a realization of the corresponding ZN two-form gauge field.

By construction, the ZN two-form gauge field obeys the flatness condition:

(δn)i jk� ≡ ni jk − ni j� + nik� − n jk� = 0 mod N. (A13)

We note that δδλ = 0, so the left-hand side is gauge invariant and is regarded as a field strength
of the discrete gauge field. In order to see this flatness condition, we consider a quadruple
overlap Uijk� = Ui ∩ Uj ∩ Uk ∩ U�. We first compute

gi jg jkgk�g�i = (gi jg jkgki)(gikgk�g�i) = exp
(

2π i
N

(ni jk + nik�)
)

. (A14)

Since this belongs to the center element, we can multiply g−1
i j from the left and gij from the right

without changing the result. Therefore,

exp
(

2π i
N

(ni jk + nik�)
)

= g−1
i j (gi jg jkgk�g�i)gi j = g jkgk�g�igi j

= (g jkgk�g� j )(g j�g�igi j ) = exp
(

2π i
N

(n jk� + n j�i)
)

. (A15)

This gives Eq. (A13). Mathematically, this claims that the gauge-equivalence class of {nijk}
belongs to the second ZN-valued cohomology, [{ni jk}] ∈ H2(M; ZN ). [{ni jk}] �= 0 characterizes
the obstruction to lifting an SU (N )/ZN principal bundle to an SU(N) principal bundle.

This flatness condition, δn = 0 mod N, means that 4D SU(N) and SU (N )/ZN gauge theories
have the same contents for local, dynamical excitations. To see this, it is convenient to introduce
one adjoint Higgs field, and assume that the gauge symmetry is Higgsed as SU(N) → U(1)N − 1.
In this regime, we can construct ’t Hooft–Polyakov monopoles, whose magnetic charges belong
to the root lattice. For SU(N) gauge theories, these are the minimal magnetic charges allowed
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by Dirac quantization, because the fundamental quark can be introduced at least as test parti-
cles by Wilson lines. For SU (N )/ZN gauge theories, however, the fundamental Wilson loop is
not a genuine line operator, and there can be fractionally charged monopoles belonging to the
weight lattice. If δn �= 0 mod N, the magnetic defect is nothing but those fractionally charged
monopoles. The flatness condition claims that those extra monopoles can be introduced only
as test particles by ’t Hooft lines and do not exist as dynamical excitations, and we can see that
local dynamics is the same for both 4D SU(N) and SU (N )/ZN gauge theories.

A2. ’t Hooft flux and ZN two-form gauge fields
Here, we explain the fact that introduction of ’t Hooft flux can be understood as the coupling of
a topological ZN two-form gauge theory to SU(N) Yang–Mills theory, following Refs. [53,54].
This was already suggested in the previous subsection, as we have seen that ’t Hooft flux is
characterized by [{ni jk}] ∈ H2(M, ZN ).

The starting point is the following topological action:

Stop[G, B(2), B(1)] = i
∫

M

1
2π

G ∧ (NB(2) − dB(1)), (A16)

where G is an R-valued 2-form field, B(2) is a U(1) 2-form gauge field, and B(1) is a U(1) 1-form
gauge field. Here, G is an auxiliary field introduced as a Lagrange multiplier and its equation of
motion imposes

NB(2) = dB(1). (A17)

This 2-form gauge field B(2) turns out to play the role of the ’t Hooft flux [{nijk}] in the previous
subsection. Let us discuss the gauge redundancy of this theory. There are both 0-form and
1-form gauge transformations,

B(2) �→ B(2) + d�(1), B(1) �→ B(1) + N�(1) + d�(0). (A18)

Here, the 1-form gauge-transformation parameter �(1) is a U(1) 1-form gauge field, and the
0-form (i.e., ordinary) gauge-transformation parameter �(0) is a 2π -periodic scalar field.

Let us consider physical observables of this theory (A16). There are surface and loop opera-
tors as nontrivial observables. The surface operator is given by

Uk(�) = exp
(

ik
∫

�

B(2)
)

(A19)

for k ∈ Z and closed 2-manifolds � ⊂ M. The level k should be quantized to integers for the
1-form gauge invariance. Moreover, because of the equation of motion (A17),

∫
�

B(2) ∈ 2π
N Z

due to the Dirac quantization for B(1), so the label K is identified in mod N, k ∼ k + N.
Next, we construct the loop operator. We note that the Wilson loop exp (i

∫
CB(1)) is not a

physical loop operator because it violates the 1-form gauge invariance. Instead, the ’t Hooft
loop for B(1) is well defined as a gauge-invariant loop operator,

H (C), (A20)

which is defined as a defect operator and imposes the boundary condition for B(1) so that∫
S2∗

dB(1) = 2π for small spheres linking to C. This can be easily seen by performing the path

integral for B(1) in Eq. (A16) before doing it for G. The equation of motion for B(1) shows that
dG = 0, and, moreover, summing up topological sectors for B(1) imposes

∫
�

G ∈ 2πZ for any
closed 2-manifolds �⊂M. Therefore, G can be regarded as the U(1) gauge field strength,

G = dA, (A21)
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and Stop becomes the level-N BF theory,

Stop = i
∫

M

N
2π

dA ∧ B(2). (A22)

With this description, the ’t Hooft loop is expressed as the Wilson loop of the dual U(1) gauge
field A:

H (C) = exp
(

i
∫

C
A
)

. (A23)

As in the case of the surface operator, we also have the identification H(C)k + n = H(C)k.
We can deform the topological action (A16) by a discrete θ parameter:

Stop,p = i
∫

M

[
1

2π
G ∧ (NB(2) − dB(1)) + N p

4π
B(2) ∧ B(2)

]
. (A24)

For simplicity, let us assume that M admits a spin structure. When p is an integer, this is invariant
under the following gauge transformations:

B(2) �→ B(2) + d�(1), B(1) �→ B(1) + N�(1) + d�(0), G �→ G − p d�(1). (A25)

We can repeat the above discussions with general p, and the contents of the gauge-invariant
loop and surface operators are changed. For details, see Refs. [53,54].

We can couple the above topological theories to SU(N) Yang–Mills theory to introduce the
’t Hooft flux, or to consider the SU (N )/ZN Yang–Mills theory. For this purpose, it is convenient
to consider the U(N) Yang–Mills theory,

SYM,U (N ) = 1
g2

∫
M

|F (ã)|2 + iθ
8π2

∫
M

tr[F (ã)2], (A26)

where F̃ := F (ã) = dã + i ã ∧ ã for the U(N) gauge field ã and |F̃ |2 = tr(F̃ ∧ �F̃ ). This is obvi-
ously different to both SU(N) and SU (N )/ZN Yang–Mills theories for several reasons. There
are massless photons in this theory described by tr(ã), and the topological sectors are not char-
acterized by instantons on closed manifolds as there are extra monopole sectors. We can resolve
these discrepancies by introducing a U(1) 2-form gauge field B and we impose the following
constraint:

NB = tr(F̃ ). (A27)

Here, we simply denote B for B(2). We note that tr(F̃ ) can be identified as the U(1) field strength,
and Eq. (A27) corresponds to Eq. (A17). When performing the path integral

∫
Dã, the config-

uration space should be restricted to satisfy Eq. (A27).
By introducing B, we can additionally require the 1-form gauge invariance. The U(N) 0-form

and U(1) 1-form gauge transformations are given by

ã �→ g−1ãg − ig−1dg + �(1)1, B �→ B + d�(1), (A28)

where g is a U(N)-valued function and �(1) is a U(1) gauge field. The 1-form gauge invariance
is the key to eliminating the massless photon tr[ã] from the physical spectrum as in the case of
would-be Nambu–Goldstone bosons in the Higgs mechanism. We also have the gauge redun-
dancy of the gauge-transformation parameters as

�(1) �→ �(1) + dλ, g �→ e−iλg, (A29)

where λ is a 2π -periodic scalar. The action (A26) for U(N) YM theory is no longer gauge invari-
ant, so we need to change it. We can easily achieve this by replacing F̃ with F̃ − B everywhere
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in Eq. (A26), and we obtain

SYM,p[ã, B] = 1
g2

∫
M

|F̃ − B|2 + iθ
8π2

∫
M

(F̃ − B)2 + iN p
4π

∫
M

B2. (A30)

The last term is the discrete θ parameter discussed in Eq. (A24). In this theory, the fundamental
Wilson line is no longer a genuine line operator, and it becomes a boundary of the topological
surface operator:

W (∂�, �) = tr
[
P exp

(
i
∫

∂�

ã
)]

exp
(

−i
∫

�

B
)

. (A31)

Instead, we have magnetically charged genuine lines, and they are dyonic for nonzero values of
p [108]:

HW p(C). (A32)

Therefore, these theories are physically distinguished even though local dynamics are identical.

A3. ’t Hooft flux on T2 and its minimal action configurations
Let us consider a 2D torus T2, and the coordinate (x, y) ∈ T2 is subject to the identification x
∼ x + Lx, y ∼ y + Ly. In the case of the torus, instead of working with the good open cover as
presented in Appendix A1, it is more convenient to work explicitly with the coordinate [55].

In gauge theories, the fields at (x, y) and at (x + Lx, y) should be identified up to gauge
transformations. Let us denote the gauge-transformation function as gx(y), then

a(x = Lx, y) = gx(y)†a(x = 0, y)gx(y) − igx(y)†dgx(y), (A33)

φ(x = Lx, y) = ρ(gx(y)†)φ(x = 0, y). (A34)

A similar relation exists for fields at (x, y) and (x, y + Ly), and we denote the transition function
as gy(x):

a(x, y = Ly) = gy(x)†a(x, y = 0)gy(x) − igy(x)†dgy(x), (A35)

φ(x, y = Ly) = ρ(gy(x)†)φ(x, y = 0). (A36)

When ρ is the adjoint representation, the consistency condition requires that [19]

gx(Ly)†gy(0)† = gy(Lx)†gx(0)† exp
(

2π i
N

n
)

. (A37)

This label n ∈ ZN is nothing but the ’t Hooft flux [{nijk}] discussed in the previous section. We
note that this label n is already ZN one-form gauge invariant under gx(y) → exp( 2π i

N λx)gx(y),
and gy(x) → exp( 2π i

N λy)gy(x).
In 2D, we can perform SU(N) gauge transformations so that the transition functions gx(y)

and gy(x) become independent of coordinates as SU(N) is simply connected, π1(SU(N)) = 0.
As a result, the minimal ’t Hooft flux, n = 1, can always be explicitly realized by the constant
matrices,

gx(y) = S, gy(x) = C, (A38)

where C and S are clock and shift matrices in SU(N). For SU(3), they are given as

C =

⎛⎜⎝1
ω

ω2

⎞⎟⎠, S =

⎛⎜⎝0 1 0
0 0 1
1 0 0

⎞⎟⎠, (A39)

35/47

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2022/4/04A108/6553859 by KYO

TO
 U

N
IVER

SITY M
edical Library user on 07 July 2022



PTEP 2022, 04A108 Y. Tanizaki and M. Ünsal

with ω = exp
( 2π i

3

)
, and generalization to SU(N) is straightforward. It satisfies

SC = CS exp
(

2π i
N

)
, (A40)

and the nontrivial ’t Hooft flux on T2 is obtained.
Next, we shall see that the ’t Hooft flux in 2D is compatible with the flat connection, F =

da + ia ∧ a = 0. Moreover, we can see that such a gauge configuration is unique up to gauge
transformations. To show this, we first solve F = 0 as

a = −iV †dV (A41)

with some V: [0, Lx] × [0, Ly] → SU(N). Performing the gauge transformation with V†, we
obtain a′ = 0 and the transition functions are replaced as

g′
x(y) = V (0, y)gx(y)V (L, y)†, g′

y(x) = V (x, 0)gy(x)V (x, L)†. (A42)

We note that the new transition functions, g′
x(y), g′

y(x), also satisfy Eq. (A37). Furthermore, by
using the connection formula for a = −iV†dV, we see that ∂yg′

x(y) = 0 and ∂xg′
x(y) = 0, so the

new transition functions must be constant. Then, by performing constant gauge transforma-
tions, we can always set g′

x(y) = S and g′
y(x) = C while keeping a′ = 0. This is the result that

was to be proved.
Let us compute Wilson loops around nontrivial cycles for this classical solution with the

’t Hooft flux. They are given by

Px(y) = gx(y)Pei
∫ Lx

0 ax(x,y)dx = S,

Py(x) = gy(x)Pei
∫ Ly

0 ay(x,y)dy = C. (A43)

We note that transition functions have to be multiplied so that Px and Py transform in the
adjoint representation under gauge transformations, and tr(Px) and tr(Py) are gauge invariant.
Since the classical solution is given by a = 0 after gauge transformations, these Wilson lines
become identical to the transition functions.

A4. Lattice viewpoint of ’t Hooft flux on Td

Let us discuss Wilson’s lattice gauge action for SU(N) gauge theory with the ’t Hooft back-
ground on the hypertorus Td. We first consider with general spacetime dimensions d, and we
will set d = 2 to find the classical solutions and confirm the results in the previous section,
Appendix A3.

The Wilson lattice action is given by

SW =
∑

x

∑
μ �=ν

tr
(
1N − Ũμ(x)Ũν (x + μ̂)Ũ †

μ(x + ν̂ )Ũ †
ν (x)

)
, (A44)

where x = (x1, …, xd) denotes the lattice sites, μ, ν specify directions, 1, …, d, and μ̂, ν̂ are unit
vectors along those directions. We here set the lattice constant to 1 and denote Nμ as the size
of the torus along the μ direction, i.e., xμ = 0, 1, …, Nμ − 1; we identify xμ ∼ xμ + Nμ. The
link variables Ũμ(n) are given by

Ũμ(x) = P exp
(∫ x+μ̂

x
a
)

, (A45)

and they obey the twisted boundary condition:

Ũμ(x + Nν ν̂ ) = g†ν (x)Ũμ(x)gν (x + μ̂). (A46)
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Here, we note that the arguments of Ũμ(x) in Eq. (A44) are restricted to xν = 0, 1, …, Nν for
ν �= μ and xμ = 0, 1, …, Nμ − 1. Therefore, we can set xν = 0 in Eq. (A46), so we can assume
that gν(x) does not depend on xν . If there is a matter field φ in the representation ρ, it satisfies

φ(x + Nν ν̂) = ρ(g†ν (x))φ(x), (A47)

and we assume that ρ has trivial N-ality. The transition functions specify the ’t Hooft flux
nμν ∈ ZN on the torus:

g†μ(x + Nν ν̂ )g†ν (x) = g†ν (x + Nμμ̂)g†μ(x) exp
(

2π i
N

nμν

)
. (A48)

This is the lattice realization of the ’t Hooft twisted boundary condition (A37).
We can redefine the link variables so that they obey the periodic boundary condition, and

denote them as Uμ(x). For xμ = Nμ − 1, we relate it to Ũμ(x) as

Uμ(xμ = Nμ − 1, xν �=μ) = Ũμ(xμ = Nμ − 1, xν �=μ)g†μ(xν ). (A49)

When xμ = 0, 1, …, Nμ − 2, we identify Uμ(x) and Ũμ(x). For a link variable Ũ (x) with xμ

= Nμ in Eq. (A44), we first relate it to the link variable Ũ (x) with 0 ≤ xμ ≤ Nμ − 1 using the
boundary condition (A46) and then rewrite it with the periodic link variable U(x). After this
manipulation, the Wilson action (A44) becomes

SW =
∑

x

∑
μ �=ν

tr
(

1N − e− 2π i
N Bμν (x)Uμ(x)Uν (x + μ̂)U †

μ(x + ν̂ )U †
ν (x)

)
, (A50)

where Bμν(x) = nμν at (xμ, xν) = (Nμ − 1, Nν − 1) and Bμν(x) = 0 otherwise. In this expression,
the ’t Hooft twist is introduced as the specific realization of the background gauge field for ZN

1-form symmetry of SU(N) Yang–Mills theory, and its effect can be seen very explicitly. This
corresponds to Eq. (A30) (with p = 0) in the continuum formulation given in Appendix A2.

Let us consider the case d = 2; we set nxy = 1. By regarding T2 as the rectangle with the
periodic boundary condition, the ’t Hooft flux Bxy = 1 is inserted on the plaquette at the top-
right corner. Other plaquettes are not affected by the twisted boundary condition in the above
realization. In order to minimize the classical action SW, we can set

Uμν (x, y) = 1 (A51)

for (x, y) �= (Nx − 1, Ny − 1), while

Uμν (Nx − 1, Ny − 1) = e2π i/N . (A52)

This can be solved in terms of the link variables as

Ux(x �= Nx − 1, y) = 1, Uy(x, y �= Ny − 1) = 1, (A53)

and

Ux(Nx − 1, y) = S, Uy(x, Ny − 1) = C. (A54)

We can always perform a gauge transformation to get this gauge configuration from arbitrary
minimal action configurations with the ’t Hooft flux, and there is no remnant of gauge trans-
formations except the center elements ZN . This is the lattice derivation of the results in Ap-
pendix A3, and it is shown in Fig. A1. In the figure, we introduce the ’t Hooft flux in the
light-blue shaded plaquette, and the red and blue arrowed links denote Ux = S and Uy = C,
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Figure A1. Turning on one unit of ’t Hooft flux in small T2, the classical moduli space parametrized in
terms of two Polyakov loops gets lifted. The classical minimum of the system is shown in the figure. As
a result, Polyakov loops in the x and y directions become the non-commuting pair Px = S and Py = C.
This configuration respects the Z[0]

N × Z[0]
N part of the center symmetry at the classical level.

respectively. As a result, the holonomy along each direction is given by

Px(y) = P
∏

x′
Ux(x′, y) = S,

Py(x) = P
∏

y′
Uy(x, y′) = C, (A55)

which reproduces Eq. (A43).

Appendix B. 2D Abelian–Higgs model with charge N
In this appendix, we consider 2D U(1) gauge theory coupled to a charge-N complex scalar �.
The Lagrangian is given by

L = 1
2e2

| f12|2 + |(∂μ + iNaμ)�|2 + λ(|�|2 − v2)2 − iθ
2π

f12, (B1)

with f12 = ∂1a2 − ∂2a1. Here, the mass dimensions of fields and coupling constants are given
by [aμ] = 1 so that [a] = [aμdxμ] = 0, [�] = 0, [e2] = 2, [v] = 0, and [λ] = 2. This system has ZN

1-form symmetry, which acts on the Wilson loops, W(C) = exp (i
∮

Ca).
We consider the case with the wine-bottle potential, v2 > 0, so that the system is in the Higgs

regime. The bosonic potential is minimized by setting

� = v eiϕ, (B2)

where ϕ is a 2π -periodic scalar field. When v is sufficiently large, the classical equation of motion
of aμ is then given by

Na = −dϕ, (B3)

and the U(1) gauge field is Higgsed to the ZN gauge field. Within the perturbation theory, the
Wilson loop obeys the perimeter law, so the system is in the deconfined phase. However, it
is usually quite difficult to break the 1-form symmetry in 2D spacetime, unless there is a re-
quirement by the ’t Hooft anomaly [23,88]. This suggests that we are missing some important
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nonperturbative effects in the above perturbative discussion, and we should take this into ac-
count to get the correct physics.

In the following, we first discuss the vortex configuration and its topological nature in Ap-
pendix B1. In Appendix B2, we perform the dilute vortex gas approximation and find the con-
finement of Wilson loops and the multi-branch structure of θ vacua. In Appendix B3, we add a
charge-N massless Dirac fermion, and we observe the presence of N vacua due to spontaneous
chiral symmetry breaking and also the perimeter law of Wilson loops.

B1. The vortex and its fractional θ

As a nontrivial semiclassical configuration in 2D, we have a vortex configuration that is a point-
like defect in Euclidean spacetime. When we are sufficiently far away from the vortex, it is a good
approximation to stay in the classical minima (B2). Let us take the polar coordinate (r, φ) of the
spacetime, where the vortex center is located at the origin, and then the vortex is characterized
by the winding number n by the identification

ϕ = nφ. (B4)

Let us comment on important properties of this vortex configuration. We note that we can
use the classical equation of motion (B3) when we are sufficiently far away from the vortex
center. Using the Stokes theorem, we can see that there should be nonzero field strength near
the vortex center because ∫

R2
da =

∫
S1∞

a = − n
N

∫
dφ = −2πn

N
. (B5)

That is, the single vortex does not necessarily satisfy the Dirac quantization of U(1) gauge fields,
and the θ dependence is fractionalized. This also shows that the Wilson loop has a complex
phase if it surrounds the vortex,

W (C) = exp
(

i
∫

C
a
)

= exp
(

−2π i
N

n
)

, (B6)

when C surrounds the vortex with the winding number n. This phase fluctuation due to the vor-
tex is important to have the area law of the Wilson loop, as we shall see in the next subsection.

B2. Dilute vortex gas and confinement
Let us denote the Euclidean action of the vortex as Sv. As we have just seen in Eq. (B5), the
minimal vortex carries a fractional topological charge, and thus the Boltzmann weight for the
single vortex configuration is given by

exp(−Sv) exp(±i θ/N ), (B7)

where the ± sign for the θ dependence is for the vortex with the winding number ±1. In order
to obtain the partition function within the semiclassical approximation, we assume that the
interaction between vortices is negligible, or, in other words, we consider a dilute gas of vortices.

When computing the partition function on closed 2-manifolds, we have to note that the topo-
logical charge must be an integer because of the Dirac quantization:∫

M

da
2π

∈ Z. (B8)

Therefore, the numbers of vortices and anti-vortices, n, n, should satisfy the constraint

n − n ∈ NZ. (B9)
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As a result, the θ dependence of the partition function is given by

Z(θ ) =
∑

n,n≥0

V n+n

n!n!
e−(n+n)Svei(n−n)θ/Nδn−n∈NZ

=
N−1∑
k=0

exp
[
−V

(
−2e−Sv cos

(
θ − 2πk

N

))]
. (B10)

Therefore, the vacua have N-branch structure, and the ground-state energies are given by

Ek(θ ) = −2e−Sv cos
(

θ − 2πk
N

)
. (B11)

The true ground state is determined by choosing the branch label k with the minimal energy
density, and thus the ground-state energy is

E (θ ) = min
k

Ek(θ ). (B12)

In particular, when −π < θ < π , the label k = 0 is chosen, and when θ goes across π , there is
a first-order phase transition from k = 0 to k = 1.

Now, let us compute the expectation value of the Wilson loop. Here, we assume |θ | < π and
the ground state is given by the k = 0 branch. Let us rewrite the Wilson loop as

W (C)q = exp
(

2π i q
∫

D

da
2π

)
, (B13)

where D is a 2D surface with ∂D = C. Therefore, Wq(C) shifts the θ angle inside the loop C as
θ → θ + 2πq. Therefore, the leading behavior of the Wilson loop is given by〈

W (C)q〉 = exp
(−(E−q(θ ) − E0(θ ))area(D)

)
. (B14)

Therefore, the string tension Tq of the probe charge q is given by

Tq = E−q(θ ) − E0(θ ) = E0(θ + 2πq) − E0(θ ). (B15)

When q �∈ NZ and |θ | < π , the string tension shows Tq > 0 and the Wilson loops are confined.
When q is a multiple of N, Tq = 0 and this can be understood as a consequence of string
breaking by � quanta.

B3. Adding a massless fermion
Let us introduce one massless Dirac fermion with U(1) charge N,

ψγ μ(∂μ + iNaμ)ψ, (B16)

in the Abelian–Higgs model (B1). Under the U(1)A rotation, ψ → eiαγ3ψ and ψ → ψeiαγ3 , the
classical Lagrangian is invariant, but the fermion path-integral measure DψDψ does not have
this invariance, and it shifts the θ angle by θ → θ + 2Nα. Because of the 2π periodicity of θ ,
the Z2N subgroup of U(1)A generates the symmetry of the quantum system, so this system has
discrete axial symmetry. We note that Z2 ⊂ Z2N gives the fermion parity, so it cannot be broken
spontaneously as long as the Lorentz symmetry is unbroken.7

7If we consider the charge-N Schwinger model, the fermion parity is part of the U(1) gauge redundancy,
so the correct axial symmetry should be identified as (Z2N )/Z2 � ZN instead of Z2N . In other words,
there are no fermionic gauge-invariant local operators in the Schwinger model. In our case, however, the
presence of the bosonic field � and fermionic field ψ changes the story, and the fermionic parity is a
global symmetry. Indeed, it is part of the U(1) symmetry, ψ → eiαψ , � → �, and the charged gauge-
invariant operator is given by � ∼ �∗ψ .
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We can show that ZN 1-form symmetry and Z2N axial symmetry have the mixed ’t Hooft
anomaly (see Sect. B4). If the system is gapped, the axial symmetry should be spontaneously
broken in order to satisfy the anomaly-matching constraint:

Z2N
SSB−−→ Z2. (B17)

Within perturbation theory, chiral symmetry is unbroken and the anomaly matching is satisfied
by gapless fermions. We can easily observe this by noting that the classical bosonic vacua (B2)
satisfy Na = −dϕ, and thus the effective Lagrangian is given by

Le = �γ μ∂μ�, (B18)

where � = e−iϕψ ∼ �∗ψ is the gauge-invariant Dirac fermion. In the bosonic case, however, a
drastic difference is caused by the vortex, so let us again examine the dilute vortex gas picture.

Since the vortex has fractional θ dependence, it must be associated with two fermionic zero
modes:

e−Sv−iθ/N�R�L, e−Sv+iθ/N�L�R. (B19)

We note that this vertex is invariant under the spurious U(1) axial symmetry, ψ → eiαγ3ψ , ψ →
ψeiαγ3 , and θ → θ − 2Nα. By summing up the vortex gas with the Dirac quantization constraint,
we have

Z =
N−1∑
k=0

∫
D�D� exp

(
−
∫

d2xLe ,k[�, �]
)

, (B20)

with

Le ,k = �γ μ∂μ� − e−Sv

(
e−i(θ−2πk)/N�R�L + ei(θ−2πk)/N�L�R

)
. (B21)

On each label k, the discrete axial symmetry looks to be explicitly broken, but the total system
has axial symmetry because of the summation over k. In this way, the system is gapped and the
anomaly matching is satisfied by the spontaneous breaking, Z2N → Z2.

We note that the ground-state energies become the same for all labels k. As a result, the string
tension vanishes, and all the Wilson loops obey the perimeter law:

〈W (C)q〉 ∼ 1. (B22)

In the presence of massless Dirac fermions, the system shows deconfinement because of the
screening by massless fermions.

B4. Anomaly matching and its semiclassical realization
In this subsection, we first discuss the (generalized) ’t Hooft anomaly and global inconsistency
for the charge-N Abelian–Higgs model, and explicitly show the semiclassical realization of
anomaly in the dilute vortex gas picture.

In order to observe the ’t Hooft anomaly, let us introduce the background ZN two-form gauge
field B ∈ H2(M, ZN ). We can realize it as a pair of U(1) two-form and one-form gauge fields
(B(2), B(1)), which satisfies the constraint

NB(2) = dB(1). (B23)

This constraint has one-form gauge invariance,

B(2) �→ B(2) + dλ(1), B(1) �→ B(1) + Nλ(1), (B24)
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where the gauge-transformation parameter λ(1) is another U(1) gauge field. Under this one-
form gauge transformation, we require that

a �→ a + λ(1). (B25)

In order to achieve the one-form gauge invariance of Eq. (B1), we must replace the field strength
as

da → da − B(2), (B26)

and the covariant derivative as(
∂μ + iNaμ

)
� → (

∂μ + i
(
Naμ − B(1)

μ

))
�, (B27)

so that the gauged action is given as

Sgauged =
∫ (

1
2e2

| f − B(2)|2 + |(∂μ + i
(
Naμ − B(1)

μ

)
�|2 + λ(|�|2 − v2)2

)
− iθ

2π

∫
( f − B(2)). (B28)

As a result, when we shift θ → θ + 2π , the path-integral weight changes as

exp
(−Sgauged

) → exp
(

−Sgauged + i
∫

M
(da − B(2))

)
= exp

(−Sgauged
)

exp
(

−i
∫

M
B(2)

)
. (B29)

By performing the path integral of both sides, we obtain

Zθ+2π [B] = exp
(

−i
∫

M
B(2)

)
Zθ [B] (B30)

for the partition function Zθ [B] with the background gauge field B = (B(2), B(1)).
Let us reproduce this relation using the dilute vortex gas picture. We can set

exp
(

−i
∫

M
B(2)

)
= e− 2π i

N m (B31)

for some integer m. The topological charge is no longer quantized to integers, but it takes the
fractional values

Qtop = 1
2π

∫
M

(da − B(2)) ∈ −m
N

+ Z. (B32)

We note that the vortex and anti-vortex have the topological charges ±1/N, and thus there has
to be imbalance between the vortex and anti-vortex numbers, n and n:

n − n ∈ −m + NZ. (B33)

The partition function is

Zθ [B] =
∑

n,n≥0

V n+n

n!n!
e−(n+n)Svei(n−n)θ/Nδn−n∈−m+NZ

=
N−1∑
k=0

∑
n,n≥0

V n+n

n!n!
e−(n+n)Svei(n−n)θ/Ne− 2π i

N (n−n+m)k

=
N−1∑
k=0

e− 2π i
N mk exp

[
−V

(
−2e−Sv cos

θ − 2πk
N

)]
. (B34)
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Under the 2π shift of θ , θ → θ + 2π , the label k should also be shifted as k → k
′ = k + 1,

which reproduces the anomaly:

Zθ+2π [B] =
N−1∑
k=0

e− 2π i
N mk exp

[
−V

(
−2e−Sv cos

θ − 2π (k − 1)
N

)]

=
N−1∑
k′=0

e− 2π i
N m(k′+1) exp

[
−V

(
−2e−Sv cos

θ − 2πk′

N

)]
= e− 2π i

N mZθ [B]. (B35)

With a massless fermion, the discrete axial transformation can be regarded as the 2π shift of
θ , and we obtain the same anomalous phase.

Appendix C. Another viewpoint of the area law based on a center vortex
In this section, we give another derivation of the string tension (40) for the Wilson loops from a
slightly different viewpoint. The derivation here is based on the canonical ensemble of a center
vortex, while the derivation in Sect. 2.3.2 is based on the grand canonical ensemble. Of course,
these are equivalent, but it would be useful to have both perspectives.

We consider the situation in which a large Wilson loop WR(C) is inside M2, and both M2

and the loop C are sufficiently large. We denote the total area (volume) of M2 as V, and A is
the area surrounded by the loop C. Let us fix the total number of the center vortex and anti-
vortex in M2 as N . We point out that our derivation is limited to the regime where the dilute
gas description is valid. Since g2N � 1 at the scale of compactification, the density of vortices
is small, and controlled by e−SI/N = e−8π2/g2N . What becomes rather subtle in this derivation is
the effect of the global topology of M2. When we decompose N = n + n, where n and n are the
numbers of vortex and anti-vortex, then we should have n − n ∈ NZ on closed manifolds. Let
us circumvent such complications by taking M2 as an open 2-manifold, such as a disk; then we
have no constraints by the topological charge.

As we have done in Sect. 2.3.2, let n1 and n2 be the numbers of vortices inside and outside the
loop C, and n1 and n2 be the ones for anti-vortices, then n1 + n2 + n1 + n2 = N . The probability
that N vortices are distributed into the above n1, n2, n1, n2 is

PN (n1, n2, n1, n2) = N !
n1! n2! n1! n2!

pn1
1 pn2

2 pn1
1 pn2

2 , (C1)

where pi and pi are determined by the relative areas,

p1 = p1 = 1
2
A
V

, p2 = p2 = 1
2

(
1 − A

V

)
, (C2)

which give the probability of a single chosen configuration being in one of the four classes.
Obviously, this satisfies the normalization∑

n1,n2,n1,n2
n1+n2+n1+n2=N

PN (n1, n2, n1, n2) = (p1 + p2 + p1 + p2)N = 1. (C3)

Inside the loop C, the n1 + n1 vortex and anti-vortex configurations contribute to the Wilson
loop WR(C) as ei 2π |R|

N (n1−n1 ), and the configurations outside do not contribute. The average of
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the Wilson loop for fixed N takes the following form:

〈WR(C)〉 =
∑

n1,n2,n1,n2
n1+n2+n1+n2=N

PN (n1, n2, n1, n2) ei θ+2π |R|
N (n1−n1 )ei θ

N (n2−n2 )

= (p1 ei θ+2π |R|
N + p1 e−i θ+2π |R|

N + p2 ei θ
N + p2 e−i θ

N )N

=
(

1 + A
V

(
cos

θ + 2π |R|
N

− cos
θ

N

))N
. (C4)

We take the infinite-volume limit V → ∞, while keeping the density of vortices fixed as

ρ = N
V

∼ L−2
s e−SI/N ∼ �2(�Ls)

5
3 . (C5)

We can rewrite Eq. (C4) and take the N → ∞ limit as

〈WR(C)〉 =
(

1 + ρA
N

(
cos

θ + 2π |R|
N

− cos
θ

N

))N

→ exp
[
ρA

(
cos

θ + 2π |R|
N

− cos
θ

N

)]
. (C6)

This gives the area law of the Wilson loop with nonzero N-alities, and reproduces the for-
mula (40). In this derivation, since the effect of the global topology of M2 is eliminated by
making M2 an open 2-manifold, the appearance of the multi-branch structure is hidden. This
comes from the special feature of 2D field theories with 1-form symmetry, as the Hilbert space
can be decomposed by the charge of 1-form symmetry [89,109–114]. We note that the 4D YM
theory on R4 does not have such decomposition properties. This is an emergent feature for
small-T2 compactification, which is valid as long as the dynamics that involves the compacti-
fied direction is negligible.
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